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Abstract—The efficacy of drug treatments depends on how
tightly small molecules bind to their target proteins. The rapid
and accurate quantification of the strength of these interactions
(as measured by ‘binding affinity’) is a grand challenge of compu-
tational chemistry, surmounting which could revolutionize drug
design and provide the platform for patient-specific medicine.
Recent evidence suggests that molecular dynamics (MD) can
achieve useful predictive accuracy (≤ 1 kcal/mol). For this
predictive accuracy to impact clinical decision making, bind-
ing free energy computational campaigns must provide results
rapidly and without loss of accuracy. This demands advances
in algorithms, scalable software systems, and efficient utiliza-
tion of supercomputing resources. We introduce a framework
called HTBAC, designed to support accurate and scalable drug
binding affinity calculations, while marshaling large simulation
campaigns. We show that HTBAC supports the specification and
execution of free-energy protocols at scale. This paper makes
three main contributions: (1) shows the importance of adaptive
execution for ensemble-based free energy protocols to improve
binding affinity accuracy; (2) presents and characterizes HTBAC
– a software system that enables the scalable and adaptive
execution of binding affinity protocols at scale; and (3) for a
widely used free-energy protocol (TIES), shows improvements
in the accuracy of simulations for a fixed amount of resource,
or reduced resource consumption for a fixed accuracy as a
consequence of adaptive execution.

I. INTRODUCTION

Drug discovery and design is immensely expensive with one
study putting the current cost of each new therapeutic molecule
that reaches the clinic at US$1.8 billion [1]. A diversity of
computational approaches, specifically binding free energy
calculations which rely on physics-based molecular dynamics
simulations (MD) have been developed [2] and blind tests
show that many have considerable predictive potential [3],
[4]. The development of commercial approaches that claim
accuracy of below 1 kcal mol−1 [5] has led to increased
interest from the pharmaceutical industry [6] in designing
computational drug campaigns.

These improvements can be attributed to many advances
in methodologies and hardware. Specifically, ensemble-based
binding free energy calculations, which favor many shorter
simulation trajectories over few longer simulations, have been
shown to increase sampling efficiency whilst also reducing
time to insight [7]. For binding affinity calculations to gain
traction, they must have well-defined uncertainty and consis-
tently produce statistically meaningful results.

Computational drug campaigns rely on rapid screening of
millions of compounds, which start with an initial screening
of candidate compounds to filter out the ineffective binders
before using more sensitive methods to refine the structure
of promising candidates. Two prominent ensemble-based free
energy protocols, ESMACS and TIES [8], have shown the
ability to consistently filter and refine the drug design process.
The ESMACS (enhanced sampling of molecular dynamics
with approximation of continuum solvent) protocol provides
an “approximate” endpoint method used to screen out poor
binders. The TIES protocol (thermodynamic integration with
enhanced sampling) uses the more rigorous “alchemical” ther-
modynamic integration approach as implemented in NAMD
[9], [10]. These protocols have produced statistically meaning-
ful results for industrial computational drug campaign [11].

In recent years, considerable effort has been put into im-
proving the efficiency of free energy calculations [12], [13],
[14]. As drug screening campaigns can cover millions of
compounds and require hundreds of millions of core-hours,
it is important that these calculations be effective and aim to
optimize the accuracy and precision of results. This is chal-
lenging as, by definition, drug discovery involves screening
compounds that are highly varied and potentially unique in
their chemical properties. The variability in the drug candidate
chemistry results in diverse sampling behavior that contributes
to the statistical uncertainty of binding free energy predictions.
Further, a particular difficulty comes from the fact that not all
changes induced in protein shape or behavior are local to the
drug binding site and, in some cases, simulation protocols will
need to adjust to account for complex interactions between
drugs and their targets within individual studies.

Traditionally, the simulated duration of free energy cal-
culation are conservatively determined to account for likely
slowest convergence and worst case scenarios. This approach
has at least two shortcomings: it potentially wastes valuable
computational resources and fails to account for the different
value of the simulations results. For example, in a drug
campaign it is more important to understand how strong is
the binding of the best compound candidates than precisely
know how weak is the interactions of the worst compound.

Key to successful campaigns is identifying when small
chemical changes result in large binding strength changes.
This can mean that the parameters which are important to
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campaigns evolve as the study progresses. Here we show how
adaptive approaches using ensemble-based free energy proto-
cols can be designed to capture unique chemical properties and
customize the simulations for a candidate to make the most
effective use of computational resources, thereby improving
statistical uncertainties.

Adaptive approaches on high performance computers (HPC)
require software systems that make runtime decisions based
on intermediate results [15], [16]. To achieve scalability and
efficiency, these software systems must also support efficient
dynamic resource allocation. Further, such adaptivity cannot
be performed via user intervention and hence automation
of the control logic and execution is important. We have
developed the High-Throughput Binding Affinity Calculator
(HTBAC) to enable the scalable execution of adaptive algo-
rithms.

This paper makes three main contributions: (1) shows the
importance of adaptive execution for ensemble-based free
energy protocols to improve binding affinity accuracy; (2)
presents and characterizes HTBAC, a software system that
enables the scalable and adaptive execution of binding affinity
protocols at scale; and (3) for a widely used free-energy
protocol (TIES), shows improvements in the accuracy of
simulations for a fixed amount of resource, or reduced resource
consumption for a fixed accuracy as a consequence of adaptive
execution.

This paper is organized as follows: Section III introduces
ESMACS and TIES, two ensemble-based free energy proto-
cols, arguing how implementing adaptive methodology within
TIES could achieve higher precision with limited resources.
Section II describes the motivation for ensemble-based ap-
proaches and existing solutions alongside the limitations in
their ability to support adaptive methods. Section IV describes
the design and implementation of HTBAC and how we used
HTBAC to implement an adaptive and nonadaptive version
of TIES. In Section V, we present experiments we performed
with HTBAC to characterize its scalability and overheads, and
showing that given a fixed amount of computing resources, we
can achieve better accuracy and better time to solution using
adaptive methods.

II. BACKGROUND

Free-energy calculations using MD simulations occur in a
wide range of research including protein folding and assess-
ing small molecule binding. Free-energy calculations require
three main components: (1) suitable Hamiltonian model; (2)
sampling protocol; and (3) estimator of free energy. Several
approaches to computing binding free energies exist, amongst
which relative binding free energy (or binding affinity) calcu-
lations are generating accurate predictions, delivering consid-
erable promise for computational drug campaigns [17].

Ensemble-based simulations have been shown to reduce
the sampling time required to deliver the precision necessary
to meet the requirements of drug design campaigns. Several
ensemble-based methods are widely used to compute binding
free energies, studying different problem spaces. For example,

a popular approach is to use Markov state models to learn
a simplified representation of the explored phase space and
to choose which regions should be further sampled [18].
Replica exchange with solute tempering use the Metropolis-
Hastings criteria to make periodic decisions about what regions
of the phase space to sample [19], [20], [21]. In expanded
ensemble simulations, thermodynamic states are explored via
a biased random walk in state space [22]. Approaches that
learn by exchanging information have been found to improve
sampling results and decorrelate as fast or faster than standard
simulations.

In binding affinity calculations sampling is performed at
discrete regions along the transformation between the two
compounds. The choice of where exactly this sampling occurs
is a key determinant of the uncertainty in and accuracy of the
calculations [23], [24]. Increasing simulations in regions of
most rapid change reduces errors on the predicated binding
affinity.

Using ensemble-based methods to compute binding affini-
ties of a large number of drug candidates involves a hier-
archy of computational processes: at the lowest level is the
specific molecular dynamics (MD) simulation using an MD
engine, such as Gromacs or AMBER. An ensemble-based
algorithm (or equivalently protocol) is comprised of multiple
such MD simulations that are collectively used to compute
the binding free energy of a single drug candidate. There
are multiple protocols that can be used, each comes with
its specific trade-offs. For example, TIES and ESMACS are
two protocols to compute binding affinities that differ in their
accuracy but also their computational cost. The computational
instance implementing a protocol with specific parameter
values, number of simulations and other computational aspects
of that protocol, constitutes a workflow. A workflow may be
fully specified a priori, or it may adapt one or more of its
properties, say parameters, as a consequence of intermediate
results. Typically, there is a one-to-many relationship between
protocols and workflows and different workflows can be used
to compute a given binding affinity calculation for a given
drug candidate.

When multiple drug candidates need to be evaluated with
certain constraints and a defined objective, the entire compu-
tational activity (i.e., computing binding affinities for multiple
drug candidates) is referred to as a computational campaign.
The objective of the computational campaign of relevance
to this paper is to maximize the number of drug candidates
for which the binding affinity of each individual candidate
is determined to within a (given) acceptable level of error.
The campaign is constrained by the computational resources
available, measured in thousand of core-hours. To meet this
objective, each workflow computing the binding affinity of a
drug candidate is adaptively executed.

Executing scalable and adaptive simulation methods on
production-grade HPC resources using ensemble-based meth-
ods presents several challenges [15], [16]. HTBAC addresses
these challenges in the context of a computational campaign
to compute ensemble-based free energy methods.



III. SCIENCE DRIVERS

In this section we provide details about ESMACS and TIES
specifications and about adaptive methodologies using TIES.
We conclude with a description and validation of the physical
systems used in this work.

A. ESMACS and TIES

ESMACS and TIES [11], [8] are two free energy calculation
protocols that implement absolute and relative methods, re-
spectively. Absolute free energy methods calculate the binding
affinity of a single drug molecule to a protein, while relative
methods calculate the difference in binding affinity between
two (usually similar in structure) drug molecules. Both proto-
cols are designed to use an ensemble MD simulation approach
to enhance the reproducibility and accuracy of standard free
energy calculation techniques (MMPBSA [25] in the case of
ESMACS and thermodynamic integration [26], [10] in TIES).
The use of ensemble averaging allows tight control of error
bounds in the resulting free energy estimates.

ESMACS and TIES consists of three main steps: min-
imization, equilibration and production MD (in its current
implementation all MD steps are conducted in NAMD [9]).
In practice, the equilibration phase is broken into multiple
steps to ensure that the size of the simulation box does
not alter too much over the simulation. During these steps,
positional constraints are gradually released from the structure
and the physical system is heated to a physiologically realistic
temperature.

Whilst both protocols share a common sequence of steps,
the make-up of the ensemble is different. In ESMACS, an
ensemble consists of a set of 25 replicas, i.e., identical
simulations differing only in the initial velocities assigned to
each atom. In TIES, the ensemble contains a set of λ windows,
each spawning a set of replicas. As a transformation parameter
λ increases from 0 to 1, the system description transforms
from containing an initial drug to a target compound via a
series of hybrid states. Sampling along λ is then required to
compute the difference in binding free energy. In previous
studies, TIES has been deployed using 65 replicas, evenly
distributed among 13 λ windows. Following the completion
of the simulation steps, both protocols require the execution
of free energy analysis steps. The detailed composition of
ESMACS and TIES protocols is shown in Fig. 1.

B. The Value of Adaptivity

The main driver for adaptivity is that computational cam-
paigns will typically involve compounds with a wide range of
chemical properties which can impact the time to convergence
and the type of sampling required to gain accurate results.
There may be cases where it is important to increase the
sampling of phase space, possibly through expanding the
ensemble. In general, there is no way to know exactly which
calculation setup a particular system requires before runtime.

Another driver of adaptivity is that, on occasion, alchemical
methods may converge very slowly. This means that the most
effective way to gain accurate and precise free energy results
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Fig. 1. TIES and ESMACS protocols consist of simulations steps followed
by analysis step(s). ESMACS contains 25 replicas per simulation step; TIES
contains 5 replicas per λ window. We model TIES with 13 λ windows,
spawning 65 replicas in each simulation step. All replicas simulate 6ns.

on industrially or clinically relevant timescales is to adapt
either the workflow corresponding to a specific protocol or
adapt different workflows in relation to each other. The latter
is referred to as inter-protocol adaptivity; the former as intra-
protocol wherein, for example, the parameter values associ-
ated with a specific protocol might change. With thousands of
workflows (corresponding to a protocol instances) to adapt in
different ways, this has the potential to allow for significant
optimization.

In TIES, the change in free energy associated with the trans-
formation is calculated using an adaptive quadrature function
which numerically integrates the values of the ∂U/∂λ across
the full set of simulated λ windows. Obtaining accurate and
precise results from TIES using adaptive quadratures requires
that the λ windows correctly capture the changes of ∂U/∂λ
over the transformation. This behavior is highly sensitive to
the chemical details of the compounds being studied and
varies considerably among candidates. Typically, λ windows
are evenly spaced between 0 and 1 with the spacing between
them set before execution at a distance determined by the
simulator to be sufficient for a wide range of systems.

However, the number or the location of the λ windows that
will most impact the calculation are not known a priori, and
varies across candidates. As each window requires multiple
simulations, sampling with a high frequency is expensive.
Approximations using evenly spaced λ windows reach an
acceptable accuracy threshold but adaptive placement of λ
windows is likely to better capture the shape of the ∂U/∂λ
curve, leading to more accurate and precise results for a
comparable computational cost.

In this work, we focus on intra-protocol adaptivity which
relies on intermediate runtime results within a protocol in-
stance to define the following set of simulations. Instead of
approximating the placement of all the λ windows prior to
execution, we run TIES with less λ windows and shorter
bursts of simulations, analyzing intermediate runtime results
(i.e., trajectories) to seed new and ideally placed λ windows.



C. Physical system description

Scientific and computational improvements require valida-
tion across a number of protein ligand complexes. We selected
4 proteins and 8 ligands or ligand pairs to run adaptive free
energy calculations. The proteins are the Protein tyrosine
phosphatase 1B (PTP1B), the Induced myeloid leukemia cell
differentiation protein (MC1), tyrosine kinase 2 (TYK2) and
the bromodomain-containing protein 4 (BRD4). Four ligands
are alchemical transformations from one to another (used in
TIES), four are single ligands suitable for absolute free energy
calculations (used in ESMACS). All systems were taken from
previously published studies [8].

Simulations were set up using our automated tool,
BAC [27]. This process includes parametrization of the com-
pounds, solvation of the complexes, electrostatic neutralization
of the systems by adding counterions and generation of
configurations files for the simulations. The AMBER ff99SB-
ILDN [28] force field was used for the proteins, and TIP3P
was used for water molecules. Compound parameters were
produced using the general AMBER force field (GAFF) [29]
with Gaussian 03 [30] to optimize compound geometries and
to determine electrostatic potentials at the Hartree–Fock level
(with 6-31G** basis functions). The restrained electrostatic
potential (RESP) module in the AMBER package [31] was
used to calculate the partial atomic charges for the compounds.
All systems were solvated in orthorhombic water boxes with
a minimum extension from the protein of 14 Å resulting in
systems with approximately 40,000 atoms.

IV. HIGH-THROUGHPUT BINDING AFFINITY CALCULATOR
(HTBAC)

HTBAC is a software system for running ensemble-based
free energy protocols adaptively and at scale on HPC re-
sources. Currently, HTBAC supports protocols composed of
an arbitrary number of analysis and simulation steps, and relies
on the ensemble management system and runtime system
provided by the RADICAL-Cybertools (RCT). HTBAC is
designed to be extended to support more types of protocols
and alternative runtime middleware.

A. Requirements

HTBAC satisfies three main requirements: (1) enable the
scalable execution of concurrent free energy protocols; (2)
abstract protocol specification from execution and resource
management; and, (3) enable adaptive execution of protocols.

Computational drug campaigns increasingly depend on
scalable ensemble-based protocols. This poses at least two
major computational challenges. First, ensemble-based proto-
cols require execution coordination and resource management
among ensemble members, within protocols as well as across
protocols. Second, the setup of execution environments and
data management has to preserve efficient resource utilization.
These challenges need to be addressed by HTBAC as well as
the underlying ensemble management and runtime system.
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Fig. 2. HTBAC architecture. Users specify protocol(s) with multiple simu-
lation and analysis steps. Descriptor derives a single application that Runner
executes on an external execution layer. Runtime Adaptive Evaluator enables
the execution of adaptive protocols.

Adaptive execution of protocols require the ability to change
the control logic of the ensemble execution, based on interme-
diate results of the ongoing computation. Thus, HTBAC has
to support resource redistribution, according to the logic of
the adaptive algorithms, enabling the optimization of compu-
tational efficiency.

Finally, usability plays an important role in the development
of HTBAC. HTBAC has to provide a flexible interface which
enables users to easily scale the number of drug candidates and
quickly prototype existing and novel free energy protocols.

B. Design and Implementation

HTBAC exposes four constructs to specify free energy pro-
tocols: Protocol, Simulation, Analysis, and Resource. Protocol
enables multiple descriptions of protocol types, while Simula-
tion and Analysis specify simulation and analysis parameters
for each protocol. Resource allows to specify the amount of
resources needed to execute the given protocols. Together,
protocol instances, simulation and analysis parameters, and
resource requirements constitute an HTBAC application.

Each protocol models a unique protein ligand physical
system. Protocols follow a sequence of simulation and analysis
steps, assigning ensemble members to execute independent
simulations or analysis. An ensemble member that executes a
simulation within a simulation step is referred to as a replica.
Each simulation is assigned a different initial velocity, which
enables simulations to begin in different parts of the ligand’s
phase space.

Individual simulations or analyses with input, output, ter-
mination criteria and dedicated resources are designed as a
computational task [32]. Aggregates of tasks with dependen-
cies that determine the order of their execution constitute a
workflow. In this way, HTBAC encodes NP instances of the
Pth protocol as a workflow of computational tasks.

Fig. 2 shows the components and subcomponents of HT-
BAC. The API enables users to describe protocols in terms
of protocol type, simulation and analysis steps, and compute
infrastructure requirements. The Descriptor component uses
two subcomponents to aggregate protocol descriptions into a
single application and resource description. Note that Descrip-
tor can aggregate different types of protocols, with different
computing and resource requirements.



The Runner component has three subcomponents: Execution
Manager, Middleware Connector and Runtime Adaptive Eval-
uator. Execution Manager communicates with the execution
layer via a connector to coordinate the execution of the
application. In principle, HTBAC can use multiple connectors
for diverse middleware to access different computing infras-
tructures.

Middleware Connector converts the application descrip-
tion of HTBAC into a middleware-specific format. Execution
Manager can pass the given application to the connector in
full or only in parts. This enables to start the execution of
an application before its full description is available or to
change those parts of the application that still have to be
executed. This will enable future capabilities like, for example,
to concurrently execute the application on diverse middleware.

Runtime Adaptive Evaluator enables the execution of adap-
tive applications. This subcomponent can evaluate partial
results of an application execution via tailored algorithms. On
the base of this evaluation, Runtime Adaptive Evaluator can
decide to return the control to Execution Manager or to modify
the description of the application that is being executed. In
this way, HTBAC implements adaptivity for diverse protocols,
allowing users to define arbitrary conditions and algorithms.

HTBAC is implemented in Python as a domain-specific
library. All components of HTBAC are implemented as ob-
jects that communicate via method calls. HTBAC uses two
RCT as building blocks [33]: Ensemble Toolkit (EnTK) and
RADICAL-Pilot (RP).

EnTK provides HTBAC capabilities to execute ensemble-
based applications [32]. EnTK exposes three constructs: Task,
Stage and Pipeline. Tasks contain information regarding an
executable, its software environment and its data dependencies.
Stages are sets of tasks without mutual dependencies that
can execute concurrently. Pipelines are lists of stages, where
stages can execute only sequentially. Pipelines can execute
independently. HTBAC uses a Middleware Connector for
EnTK to encode a protocol instance as a single pipeline that
contains stages of individual simulations and analyses tasks.

EnTK is designed to be coupled with different runtime
systems. In this paper, EnTK uses RP to execute tasks via
pilots. RP supports task-level parallelism and high-throughput
by acquiring resources from a computing infrastructure and
scheduling tasks on those resources for execution. RP uses
RADICAL-SAGA to interface with several resource managers,
including SLURM, PBS (pro), and LSF. Pilot systems execute
tasks directly on the resources, without queuing them on the
infrastructure’s scheduler.

C. Execution Model

Users describe one or more protocols alongside their re-
source requirements via HTBAC’s API. Descriptor takes these
descriptions as input and returns an application description
(Fig. 2.1). As seen in §IV-B, this application consists of a set
or sequence of tasks with a set of resource requirements for
their execution.

The application description is passed to the Execution Man-
ager of the Runner component (Fig. 2.2). Execution Manager
evaluates the resource requirements, selects a suitable connec-
tor (currently only to EnTK), tags each protocol instance of the
application with an ID, and passes all or part of the application
description to the connector for execution (Fig. 2.3).

The Middleware Connector of the Runner component gets
the application description, converting it into a middleware-
specific description (EnTK pipelines of stages of tasks) and
a resource request. The connector submits this request to the
underlying execution layer (Fig. 2.4) and initiates the execu-
tion of the application once the execution layer communicates
the availability of the resources (Fig. 2.5).

The resource requirements specified via HTBAC’s API
include walltime, cores, queue, and user credentials. EnTK
derives a resource request from these requirements, converting
it into a pilot description for RP. RP converts this pilot requests
into a batch script that is submitted to the specified HPC
machine. Once the pilot becomes active, EnTK identifies those
application tasks that have satisfied dependencies and can be
executed concurrently. EnTK’s own Execution Manager uses
RP to execute those tasks on pilot’s resources.

HTBAC allows to specify conditions tailored to individual
simulation steps of a protocol implementation. We leverage
this ability to implement adaptivity by enabling the user to
partition protocols into simulation steps and generate new
simulation steps at runtime, based on a set of predefined
conditions. The user specifies these conditions in an analysis
script for the Runtime Adaptive Evaluator subcomponent.

Execution Manager can retrieve the results of simulations
(Fig. 2.6) and these results can be evaluated by Runtime
Adaptive Evaluator via a user-defined analysis script (Fig. 2.7).
Depending on the result of the evaluation, Runtime Adaptive
Evaluator may generate new simulation steps, adding them to
the application description (Fig. 2.8a) or return the control to
Application Manager (Fig. 2.8b) without changing the appli-
cation. If new simulations are to be generated, the Execution
Manager bypasses termination of the application, and passes
the added application description to the connector.

In an adaptive scenario, as the number of simulations
grows at runtime, the ratio of cores-to-task fluctuates. EnTK’s
Execution Manager automatically redistributes an even share
of the total requested cores to each simulation. RP allows
for new simulations to execute within the pilot’s wall-time,
without having to acquire new resources via the resource
management system.

D. Implementing ESMACS and TIES in HTBAC

In §III-A we define the structure of the ESMACS and TIES
protocols. Here we provide skeletons of the TIES protocol
implemented in HTBAC. In L. 1 we show a customization of
a production MD simulation step.

1 import htbac.protocols.TIES
ties_1 = Protocol(system = ’brd4-1’)

3 sim = Simulation(name = ’Production MD’)
... # define simulation conditions

5 sim.ensemble(’replica’, range(5))



sim.ensemble(’lambda’, range(13))
7 # add simulation configurations to protocol
TIES.step0 = sim

9 ties_1.append(TIES.step0)
# assign resources, append protocol to Runner

11 runner = Runner(resource = ’ncsa.blue_waters’,
walltime = 60)

13 runner.add_protocol(protocol = ties_1)
# launch application

15 runner.run()

Listing 1. TIES protocol implemented with HTBAC. We import the
predefined protocol ‘TIES’. We assign the physical system to the protocol, we
instantiate a simulation, customize its steps (replica, lambda) and assign
it to the TIES’s step0. We instantiate Runner with a resource request and
pass the protocol to it.

In §IV-C we show HTBAC’s adaptive execution capabilities.
In L. 2 we provide an intra-protocol adaptive implementation
of TIES, based on the use-case of §III-B.

1 # we start with the same previous implementation
# provide runner with two flags

3 runner.run(save_output = True, terminate = False)
# specify adaptivity script

5 requested_lambdas = AdaptiveQuadrature()
sim1 = Simulation(name = ’production MD 2’)

7 ...
sim1.ensemble(’replica’, range(5))

9 sim1.ensemble(’additional lambdas’,
requested_lambdas)

11 TIES.step1 = sim1
ties_1.append(TIES.step1)

13 runner.add_protocol(protocol = ties_1)
runner.run(terminate = True)

Listing 2. Adaptive TIES protocol implemented with HTBAC. Assuming
L. 1, we run Runner retrieving runtime results, we specify an adaptivity
script for the evaluator, create TIES’s step1. The analysis script operates
on partial simulation results, generating new simulation conditions for the
next simulation step.

V. EXPERIMENTS

Typically, a computational campaign for drug discovery
explores a large number of drug candidates by running sev-
eral workflows multiple times, each requiring thousands of
concurrent simulations. Before embarking on a campaign that
will utilize 150 million core-hours on NCSA Blue Waters,
we perform experiments to characterize the weak and strong
scaling performance of HTBAC and its overheads on Blue
Waters. We validate the results of the free energy calculations
produced using HTBAC against published results.

Given that protocols like TIES are more computationally
demanding than protocols like ESMACS, it is paramount to
use resources efficiently, especially for campaigns that have a
predefined computational budget. As described in § III and IV,
adaptive simulation methods have the potential to reduce the
number of simulations without a loss in accuracy and with
a lower computational load. We run experiments with an
adaptive implementation of TIES in HTBAC, measuring the
benefits in terms of accuracy, reduced number of simulations
and computational load.

A. Experiment Setup

Table I shows 9 experiments we designed to characterize
the behavior of HTBAC on Blue Waters. Each experiment
executes the ESMACS and/or TIES protocol for different

physical systems. Experiments 1–6 use the BRD4 physical
system provided by GlaxoSmithKline, while experiments 7–9
utilize the PTP1B, MC1, and TYK2 physical systems.

Experiment 1 and 2 measure the weak scaling of HTBAC
using the ESMACS and TIES protocols. Experiments 3 uses
both the TIES and ESMACS protocols, characterizing the
weak scaling of heterogeneous protocol executions. Experi-
ments 4 and 5 measure the strong scaling of HTBAC using a
fix number of instances of the ESMACS and TIES protocols.
Experiments 6 uses both the TIES and ESMACS protocols,
characterizing the strong scaling of heterogeneous protocol
executions. Experiments 7–9 characterize nonadaptive and
adaptive simulation methods using the TIES protocol.

In each weak scaling experiment (1–3), we keep the ratio
between resources allocated and protocol instances constant.
Consistently, for each experiment we progressively increase
both the number of cores (i.e., measure of resource) and
the number of protocol instances by a factor of 2. In each
strong scaling experiment (4–6), we change the ratio between
resources allocated and the number of protocol instances: we
fix the number of protocol instances and reduce the number
of cores by a factor of 2.

Weak scaling experiments provide insight into the size of the
workload that can be executed in a given amount of time, while
strong scaling experiments show how the time duration of the
workload scales when adding resources. For all the weak and
strong scaling experiments we characterize the overheads of
HTBAC, EnTK and RP, and we show an approximation of the
time taken by the resources to become available. This offers
insight about the impact of HTBAC and its runtime system on
the time to completion of each workload. In [34], we show
baseline performance of HTBAC using ESMACS with a null
workload.

For weak and strong scaling experiments, we reduced the
number of time-steps of the protocols and omitted the analysis
steps S5 and S6 of their workflows (Fig. 1). These simplifica-
tions are consistent with characterizing scalability performance
instead of simulation duration. The time-steps are set to enable
the physical systems to reach steady-state. For the experiments
1–6 we used the following time-steps: S1 = 1000; S2 = 5000;
S3 = 5000; and S4 = 50000.

We measure the following durations for Experiments 1–6:
• Total Task Execution Time: Time taken by all the task

executables to run on the computing infrastructure.
• HTBAC Overhead: Time taken to instantiate HTBAC,

and validate and process the application description.
• EnTK and RP Overhead: Time taken by EnTK and RP

to manage the execution of tasks.
• aprun Overhead: Time taken by aprun to launch tasks

on Blue Waters.
Note that once RP relinquishes the control flow to aprun,

the precise time at which aprun schedules each task on a
compute node and the MD kernel of each task begins execution
cannot be measured. Instead, for each task, we measure the
difference between the task execution time and its NAMD kernel
execution time, provided by the NAMD output logs. In this way,



TABLE I
PARAMETERS OF SCALABILITY AND ADAPTIVITY EXPERIMENTS.

ID Type of Experiment Physical System(s) Protocol(s) No. Protocol(s) Total Cores

1 Weak scaling BRD4 ESMACS (2, 4, 8, 16) 1600, 3200, 6400
2 Weak scaling BRD4 TIES (2, 4, 8) 4160, 8320, 16640
3 Weak scaling BRD4 ESMACS + TIES (2, 4, 8) 5280, 10560, 21120
4 Strong scaling BRD4 TIES (8, 8, 8) 16640, 8320, 4160
5 Strong scaling BRD4 ESMACS (16, 16, 16) 6400, 3200, 1600
6 Strong scaling BRD4 ESMACS + TIES (20, 20, 20) 22120, 10560, 5280
7 Non-adaptivity PTP1B, MC1, TYK2 TIES (1, 1, 1) 2080, 2080, 2080
8 Adaptivity PTP1B, MC1, TYK2 TIES (1, 1, 1) 2080, 2080, 2080
9 Reference PTP1B, MC1, TYK2 TIES (1, 1, 1) 10400, 10400, 10400
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Fig. 3. Adaptive workflow for TIES. After equilibrating 3 λ, the first stage
starts. This is followed by analysis at every λ interval, to decide whether to
add a new window in between. In our implementation, the simulation-analysis
cycle is repeated for 4 simulation steps, not shown here.

we approximate the time taken by aprun to launch the task.
Once aggregated, these measures constitute what we defined
as aprun Overhead. The summation of all durations provides
the average wall-time of the pilot job.

Experiments 7–9 compare the accuracy and time to solution
of nonadaptive and adaptive simulation methods. For the
nonadaptive simulation method of Experiment 7 we use 13
preassigned and approximated λ windows, consistent with
the value reported in Ref. [8]. In this way, we produce 65
concurrent simulations for stages S1–S4 of TIES (see Fig. 1).
The production simulation stage S4 executes each simulation
for 4 ns. Stage S5 has 5 analysis tasks which aggregate the
simulation results of S4. The global analysis stage S6 has a
single task that aggregates the results from S5.

In the adaptive implementation 3, we initialize the TIES
protocol with 3 λ windows, obtaining 15 replicas. We separate
stage S4 of each TIES replica into 4 sub-stages. Each sub-
stage runs a 1 ns simulation, followed by an adaptive quadra-
tures analysis which estimates free energy errors with respect
to each interval of two λ values.

We use Experiment 9 to compare the adaptive and non-
adaptive execution of TIES. We use 65 simulations, derived
from 13 equally spaced λ windows to calculate the free energy
with high accuracy. This creates a baseline against which to
compare the adaptive and non-adaptive results.

We assigned the following simulation time-steps in Exper-
iment 7 and 9: S1 = 3000; S2 = 50000; S3 = 50000; and

S4 = 2000000. The adaptive simulation of Experiment 8 uses
the same time-steps, apart from S4 which is divided into 4
sub-stages of 500000 time-steps each.

We performed all the experiments on Blue Waters, a 26868
node Cray XE6/XK6 SuperComputer with peak performance
of 13.3 petaFLOPS managed by NCSA. Consistent with
NCSA policies, we initiated the experiments from a virtual
machine outside NCSA, avoiding to run persistent process on
the NCSA login node. We used HTBAC 0.1, EnTK 0.6, and
RP 0.47 and the NAMD-MPI MD kernel, and launched via the
aprun command. For the analysis stages in the TIES protocol
we used AmberTools.

NCSA sets a system policy on the maximum number of
processes that aprun can spawn, limiting the number of
concurrent tasks we can execute on Blue Waters to ≈450.
During the execution of Experiment 2, we observed failing
tasks with 8 TIES protocol instances, i.e., 520 concurrent
tasks. In a trial of 10 repetitions at this scale, we observed
an average of 70 ± 6.67 failing tasks. More data would be
required to model the distribution type of these results.

NCSA allows to run only one MPI application for each
compute node. Thus, we run each MD simulation with 32
cores (i.e., one compute node) even if our performance of
NAMD on Blue Waters indicated that 16 cores offers the
best trade-off between computing time and communication
overhead.

B. Weak Scaling Characterization

Fig. 4(a) shows the weak scaling of HTBAC with the
TIES protocol. Each instance of the TIES protocol contains
a single pipeline with 4 stages and 65 concurrent tasks. We
increase the number of protocol instances linearly, between
2 and 8. When scaling to 8 protocol instances, we execute
more than 450 concurrent tasks, the average limit supported
by aprun, as described in §V-A. This introduces some failures
that contribute to a slight degradation in performance.

Fig. 4(b) shows the weak scaling of HTBAC with the
ESMACS protocol. We increase the number of instances
linearly, between 2 and 16. Each ESMACS protocol contains
1 pipeline with 4 stages and 25 concurrent tasks.

Fig. 4(c) shows the weak scaling of HTBAC with instances
of both TIES and ESMACS protocols. Also in this case, we
scale the instances of both protocols linearly, between 2 and 8.
The first configuration shows 1 ESMACS and 1 TIES protocol,
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(c) TIES and ESMACS (Experiment 3).

and with each increase in scale we double the number of
protocols. Experiments 2 and 3 show scaling ranges within
the limit of the maximum number of concurrent tasks we can
successfully execute on Blue Waters.

For all weak scaling experiments (1–3) we use physical
systems from the BRD4-GSK library with the same number
of atoms and similar chemical properties. The uniformity of
these physical systems ensures a consistent workload with
insignificant variability when characterizing their performance
under different conditions.

In all weak scaling experiments (Fig. 4) we observe that the
value of Total Task Execution Time (green bar) shows minimal
variation as the number of protocol instances increases, sug-
gesting that HTBAC is invariant to the protocol. We conclude
that HTBAC shows near-ideal weak scaling behavior under
these conditions.

The HTBAC overhead depends mostly on the number of
protocol instances that need to be generated for an application.
This overhead shows a super linear increase as we grow the
number of protocol instances, but the duration of the overhead
is negligible when compared to Total Task Execution Time.

The aprun overhead increases as we approach the limit of
concurrent aprun processes that can be executed on Blue Wa-
ters. For example, when scaling to 8 TIES protocol instances
(Fig. 4(a)), we see that the increase in aprun overhead occurs
due to task failure. This is explained by noticing that attempts
to relaunch failed tasks require additional communication
among the nodes that were running the tasks and the MOM
Nodes from which the execution is coordinated.

EnTK and RP overheads mostly depend on the number of
tasks that need to be translated in-memory from a Python
object to a task description [34], [35]. As such, those overheads
are expected to grow proportionally to the number of tasks, as
observed in Fig. 4, blue bars.

The RP overhead is calculated by measuring and aggre-
gating the execution time of the RP components that manage
and coordinate the execution of the protocol instances. Among
these components, the task scheduler of RP introduces the
largest overhead. Due to the general scheduling algorithm
loaded by default in RP, the task scheduling overhead scales
linearly with the number of tasks that need to be scheduled.
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Fig. 5. Strong scaling of HTBAC. The number of protocol instances is fixed
while the number of cores increases. Task Execution Time, and HTBAC,
EnTK+RP, aprun overheads with (a) TIES (Experiment 4), ESMACS
(Experiment 5) and ESMACS + TIES (Experiment 6).

In comparison to Total Task Execution Time, the EnTK
and RP overheads are an order of magnitude shorter, yet
they directly contribute to the total duration of the application
execution. Based on Fig. 4, we approximate the use of our
systems will results in ≈ 15% additional usage of resource
allocation. This overhead can be substantially reduced by using
a special-purpose scheduler for RP as illustrated in Ref. [35].

C. Strong Scaling Characterization

In Experiment 4 we fix the number of instances of the TIES
protocol to 8 (due to the described aprun limitations) and we
vary the amount of resources between 4160, 8320 and 16640
cores. Assuming the definition of ‘generation’ in §V-A, given
4160 cores, we can execute 4 generations of 130 concurrent
tasks; with 8320 cores, 2 generations of 260 tasks; and with
16640 cores, 1 generation of 520 tasks.

In Experiment 5 we fix the number of instances of the
ESMACS protocols to 16 and vary the amount of resources
between 3200, 6400 and 12800 cores. In this way, we obtain
the same number of generations as in Experiment 4.

In Experiment 6 we fix the number of instances of the
ESMACS and TIES protocols to 16 and 4 respectively, and
vary the amount of resources between 5280, 10560 and 22120
cores. In this way, we obtain the same number of generations
as in Experiment 4 and 5.

Fig. 5 shows a linear speedup in Total Task Execution
Time for both experiments, proportional to the increase in the
number of cores. The availability of more resources for a fixed
number of protocols explains this behavior. Overheads remain
essentially constant for both experiments when increasing the
number of cores. The scheduling of the number of tasks, as
opposed to the amount of resources, is the main driver of
EnTK and RP overheads (Ref. [35]).

D. Validation

In order to validate the correctness of the results produced
in Experiment 1–6, using HTBAC and the BRD4-GSK phys-
ical systems, we compare our results with those previously
published in Wan et al. [11]. In this way, we can confirm that
we calculated the correct binding free energies values.

We validated our implementation selecting a subset of
the protein ligand systems used in Wan et al. [11]: ligand



TABLE II
VALIDATION OF HTBAC RESULTS AGAINST PUBLISHED AND

EXPERIMENTAL VALUES

System
HTBAC

(kcal mol−1)
Wan et al.

(kcal mol−1)
Experiment

(kcal mol−1)

BRD4 3 to 1 0.39(10) 0.41(4) 0.30(9)
BRD4 3 to 4 0.02(12) 0.01(6) 0.00(13)
BRD4 3 to 7 −0.88(17) −0.90(8) −1.30(11)

transformations 3 to 1, 4, and 7. We then performed a full
simulation on all 3 systems and calculated the binding affinity
using HTBAC.

The results of our experiments, collected in Table II, show
that all three ∆∆G values are within error bars of the original
study, validating the results we produced with HTBAC.

E. Adaptive Experiments

The design of HTBAC permits enhancing protocols while
continuing to use “static” simulation engines. To this end, we
implemented two adaptive methods using HTBAC: adaptive
quadrature and adaptive termination. Both of these methods
use the features of adaptivity offered in HTBAC to scale
to large number of concurrent simulations and to increase
convergence rate and obtain more accurate scientific results.

The aim of introducing adaptive quadrature for alchemical
free energy calculation protocols (e.g., TIES) is to reduce time
to completion while maintaining (or increasing) the accuracy
of the results. Time to completion is measured by the number
of core-hours consumed by the simulations. Accuracy is de-
fined as the error with respect to a reference value, calculated
via a dense λ window spacing (65 windows). This reference
value is used to establish the accuracy of the non-adaptive
protocol (which has 13 λ windows) and the adaptive protocol
(which has a variable number of λ windows, determined at
run time).

One of the input parameters of the adaptive quadrature
algorithm is the desired acceptable error threshold of the
estimated integral. We set this threshold to the error of the
non-adaptive algorithm calculated via the reference value. The
algorithm then tries to minimize the number of λ windows
constrained by the accuracy requirement.

Table III shows the results of running adaptive quadrature on
5 protein ligand systems, comparing the Total Task Execution
Time and accuracy versus the non-adaptive case. The number
of lambda windows are reduced on average by 32 %, hence
reducing Total Task Execution Time by the same amount. The
error on the adaptive results is also decreased, on average
by 77 % (see fig. 6). More importantly, the error on all of
the systems are reduced to below 0.2 kcal mol−1, which has
recently been shown to be the upper bound of reproducibility
across different simulation engines [36].

The Total Task Execution Time of the TYK2 L7–L8 system
has increased for the adaptive run by 1 λ window, compared
to the non-adaptive case. This is due to the non-adaptive error
being very low, and matching that same accuracy required
the use of a large number of windows. Nonetheless due to
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Fig. 6. Quantifying the benefits of the adaptive quadrature simulations. (top)
The error of the adaptive run is reduced for all 5 test systems, sometimes
by a significant amount. It has been shown that reproducibility of free
energy calculations can be achieved up to 0.2 kcal mol−1 [36]. The adaptive
algorithm brings down the error of the nonadaptive simulations below this
threshold, ensuring that results are also reproducible. (bottom) Resource
consumption is reduced, except for one of the systems, where the low error
threshold required more λ windows.
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comparing the adaptive and nonadaptive simulations. The error estimate
converges for both simulations but the window placement of the adaptive
simulation considerably lowered the error.

the efficient placing of the windows, the accuracy of the free
energy still increased by 40 %.

Fig. 7 compares the error on the adaptive and non-adaptive
simulations as a time series plot. As fewer lambda windows
are calculated the adaptive algorithm uses less resources.
Remarkably, the error is drastically reduced as the windows
are placed adaptively to capture the changes in function.

Adaptive quadrature is specific to alchemical free en-
ergy calculations. Adaptive termination, the second adaptive
method implemented in HTBAC, offers dynamic termination
for any simulation protocol that has as its aim the prediction
of an observable value. The protocol monitors the convergence
of the observable as the simulation progresses, and stops
the execution when a criterion has been met. Non-adaptive
protocols usually have a predefined simulation time, set based
on the assumption that the simulation will converge by that
time. This means that in practical examples the simulation



TABLE III
COMPARING RESULTS OF ADAPTIVE, NON-ADAPTIVE AND REFERENCE RUNS.

System
Ref ∆∆G

(kcal mol−1)
Non-adaptive ∆∆G

(kcal mol−1)
Adaptive ∆∆G
(kcal mol−1) No. of λ windows Decrease in TTX Increase in accuracy

PTP1B L1-L2 −58.51 −57.87(64) −58.60(9) 10 23 % 86 %
PTP1B L10-L12 1.83 2.05(22) 1.94(7) 6 54 % 68 %
MCL1 L32-L38 2.13 2.33(20) 2.14(1) 7 46 % 95 %
TYK2 L4-L9 −28.69 −28.25(44) −28.67(1) 7 46 % 98 %
TYK2 L7-L8 4.97 4.92(5) 5.00(3) 14 −8 % 40 %
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Fig. 8. Plot of the free energy as a function of the resources consumed (hence
simulation time). The adaptive termination algorithm checks the convergence
of the observable every τ = 0.5 ns and if the threshold (0.01 kcal mol−1)
has been met, terminates the simulation.

TABLE IV
SIMULATION TIME OF NON-ADAPTIVE AND ADAPTIVELY TERMINATED

RUNS FOR A GIVEN CONVERGENCE CRITERION

System Non-adaptive Adaptive Decrease in TTX

PTP1B L10-L12 6.0ns 5.0ns 16.7%
TYK2 L4-L9 6.0ns 5.5ns 8.3%
TYK2 L7-L8 6.0ns 4.5ns 25.0%

might have converged before the predefined simulation time.
In the original TIES protocol the production part of the

simulation has to be run for 4 ns and the results are analyzed
thereafter. This assumes that all systems need this simulation
time for the results to converge. In reality, certain systems
could converge faster, therefore one can terminate the simula-
tion before the static 4 ns end. This would lead to faster time to
insight and less compute resources consumed. Adaptive termi-
nation was implemented in HTBAC by having a checkpoint
every τ = 0.5 ns in the simulation. Fig. 8 shows how the
observable for a specific simulation changes as a function of
resource consumption. At every checkpoint the convergence
is evaluated, and the simulation is indeed terminated earlier
than the non-adaptive protocol would suggest. Table IV shows
results that the adaptively terminated TIES protocol saves
compute resources and reduces time to insight on average by
16 % for the physical systems tested.

VI. DISCUSSION AND CONCLUSION

Ensemble-based binding affinity protocols have consider-
able predictive potential in computational drug campaigns.
As drug screening can cover millions of compounds and

hundreds of millions of core-hours, it is important for binding
affinity calculations to optimize the accuracy and precision
of results. However, the optimal protocol configuration for
a given compound is difficult to determine a priori, thus
requiring runtime adaptations to workflow executions. We
introduce HTBAC to enable scalable and adaptive binding
affinity energy calculations on HPC.

Specifically, this paper makes the following contributions:
(1) shows how adaptive execution of ensemble-based free
energy protocol (TIES) improve binding affinity accuracy
given a fixed amount of computing resources; (2) characterizes
HTBAC, the software system we developed to enable the adap-
tive execution of ensemble-based binding affinity protocols
on HPC; and (3) shows the capability to execute adaptive
applications at scale, validating their scientific results.

We characterize the performance of HTBAC on NCSA Blue
Waters. We show near-ideal weak and strong scaling behavior
for ESMACS and TIES, individually and together, reaching
scales of 21,120 cores. Furthermore, we validate binding free
energies computed using HTBAC with both experimental and
previously published computational results.

We compare resource consumption and free energy accuracy
in our adaptive and non-adaptive TIES results. Using the
adaptive quadrature algorithm, we show improvements in
∆∆G on average by 77% over the 5 physical systems tested.
By reducing the λ windows on average by 32%, we reduce
execution time by the same amount. The adaptive termination
implementation of the TIES protocol saves compute resources
and reduces time to solution on average by 16%. To the best
of our knowledge, adaptive TIES protocols have not been
benchmarked against non-adaptive implementations before.

SOFTWARE AND DATA

All experimental data can be found at https://github.com/
radical-experiments/htbac-escience-18. HTBAC (MIT license)
can be found at: https://github.com/radical-cybertools/htbac
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