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Abstract Growing evidence shows that lithospheric mantle beneath cratons may contain a certain
amount of water that originated from dehydration of subducted slabs or mantle metasomatism. As water
can significantly reduce the viscosity of nominally anhydrous minerals such as olivine, hydration-induced
rheological weakening is a possible mechanism for the lithospheric thinning of cratons. Using 2-D
thermomechanical numerical models, we investigated the influence of water on dislocation and diffusion
creep of olivine during the evolution of cratonic lithosphere. Modeling results indicate that dislocation
creep of wet olivine alone is insufficient to trigger dramatic lithospheric thinning within a timescale
of tens of millions of years, even with an extremely high water content. However, if diffusion creep is
incorporated, significant convective instability will occur at the base of the lithosphere and drive
lithospheric mantle dripping, which results in intense lithospheric thinning. We performed semianalytical
models to better understand the influence of various parameters on the onset of convective instability.
The convective instability promoted by hydration weakening drives lithospheric mantle dripping beneath
cratons and thus provides a possible mechanism for cratonic thinning.

Plain Language Summary Mechanisms and processes of craton destruction are the subjects
of ongoing debates. Growing evidence indicates that the cratonic lithosphere contains a certain amount
of water. Although deformation experiments demonstrated significant weakening effects of water on the
viscosity of nominally anhydrous minerals such as olivine, how water distribution affects the craton
evolution is not clear. In this study, we used experimentally determined flow laws of dry and wet olivine,
to systematically investigate hydration-induced weakening on the dynamics of the cratonic lithosphere.
Our numerical modeling results indicate that the combined contribution of dislocation and diffusion creep
of wet olivine can generate lithospheric mantle dripping at the base of the lithosphere due to convective
instability, which results in significant lithospheric thinning. Therefore, hydration-driven weakening is an
important mechanism of craton destruction as well as intracontinental lithospheric thinning.

1. Introduction

Although most cratons remain stable since the formation of the thick lithospheric keels, some exceptions are
present. For example, the North China craton (Menzies et al., 2007), the North Atlantic craton (Tappe et al.,
2007), and the Wyoming craton (Carlson et al., 2004) have experienced dramatic lithospheric deformation/
thinning and magmatism in the Phanerozoic. The Tanzanian craton is subject to marginal deformation due
to the surrounding active continental rifting (e.g., Weeraratne et al., 2003). Rifting events were likely involved
in the San Francisco craton (e.g., Danderfer et al., 2009). The possible mechanisms (e.g. convective removal,
basal traction) that may destroy the continental lithosphere have been summarized previously (e.g., Lee et al.,
2011). However, destructing cratonic lithosphere is more difficult, because it is thick, cold, depleted, and rhe-
ologically strong (e.g., Foley, 2008). Previous studies have investigated several destruction mechanisms, such
as small-scale convection on craton edges (He, 2014; King & Ritsema, 2000; van Wijk et al., 2010), lithospheric
material dripping due to the Rayleigh-Taylor instability caused by compositional heterogeneity (Gorczyk et al.,
2012), lithospheric mantle stratification (Liao & Gerya, 2014; Liao et al., 2013; O’Neill et al., 2010), lithospheric
delamination due to eclogitization of the mafic lower crust (Gao et al., 2004), and thermomagmatic erosion
(Foley, 2008; Koptev, 2015; Wu et al., 2005; Xu, 2001; Zhang et al., 2005). Some of the proposed mechanisms
are somewhat qualitative and thus hard to appraise.
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Recently, hydration of the lithospheric mantle beneath cratons is revealed based on mantle xenoliths and
magnetotellurics studies (Fullea et al., 2011; Li et al., 2008; Selway et al., 2014; Wang et al., 2014; Xia et al.,
2013). Water is a primary constituent of fluids from subducted slabs. With increasing pressure and tempera-
ture along subduction paths, fluids are produced by metamorphic dehydration and partial melting due to the
breakdown of hydrous minerals and exsolution of structural hydroxyl and molecular water from nominally
anhydrous minerals (e.g., Hacker, 2008; Zheng et al., 2016). Concentrations of dissolved silica and alkalis in H2O
is increased with depths, producing fluids in the form of aqueous solutions, hydrous melts, and supercritical
fluids (e.g., Manning, 2004; Ni et al., 2017). Moderate water contents (∼50 ppm H2O by weight) in olivine (and
much higher water contents in orthopyroxene and clinopyroxene) were measured in the peridotite xenoliths
from the Colarado Plateau (Li et al., 2008), where hydrofluid was probably introduced into the Archean cratonic
mantle through the low-angle subduction of the Farallon plate during the early Cenozoic (Figure 1a) (Dixon
et al., 2004; Lee, 2005; Li et al., 2008; Smith, 2010). In the North China craton, abnormally high water content
(∼1,000 ppm) is estimated for the lithospheric mantle source of early Cretaceous basalts, which erupted at
the destruction climax of the North China craton (Xia et al., 2013). Water was likely incorporated in the litho-
spheric mantle of the North China craton due to slab dehydration of the Paleo-Pacific subduction (Figure 1a)
(Huang & Zhao, 2006; Menzies et al., 2007; Niu, 2005; Zhang et al., 2009) or released from the mantle transi-
tion zone perturbed by the propagation of the stagnant Pacific slab (Figure 1a) (Chen et al., 2017; Wang et al.,
2016). Water transportation from the subducted slab to the mantle wedge at shallow depth (<200 km) is a
fast process within several million years (e.g., Arcayet al., 2005; Faccenda et al., 2012). On the other hand, water
transportation from the deep mantle (either from a stagnant oceanic slab or from the mantle transition zone)
to the shallow lithosphere could be slow, but this process can be enhanced by small-scale convection at the
top of a stagnant oceanic slab (Richard & Bercovici, 2009) or slab perturbation in the hydrous mantle transition
zone (Wang et al., 2016). In addition, kimberlites represent localized water and CO2 reservoirs in the upper
mantle and bring episodic fluids rich in CO2, H2O, K+, Na+, and Al3+ to the overlying continental lithosphere
(Price et al., 2000; Sleep, 2009). Despite of sparse exposure, large amounts of kimberlites could be trapped in
the cratonic lithosphere and cause hydration and carbonate metasomatism of the subcontinental lithospheric
mantle (Peslier et al., 2010; Selway et al., 2014; Sleep, 2005, 2009). A concentrated midlithospheric metasoma-
tism layer has been proposed in the North China craton (Xu, 2001). Although kimberlites provide additional
evidence for high water contents, their extremely high water contents may not be representative of the aver-
age water content of the lithospheric mantle, since they may become trapped in the catatonic lithosphere
and cause local hydration and carbonate metasomatism. Studies of mantle xenoliths indicate that the volume
percentage of phlogopite, one of the most important hydrous silicates during mantle metasomatism, is very
limited in the lithospheric mantle beneath cratons (Doucet et al., 2014). Hence, kimberlites are isolated intru-
sions and the extremely high water content in olivine megacrysts from kimberlites are not representative of
the lithospheric mantle beneath cratons (Wang, 2010).

Large viscosity contrast between the depleted cratonic mantle and the surrounding enriched asthenospheric
mantle has been regarded as one of the key parameters that ensure the long-term stability of cratons (Lenardic
et al., 2003; Peslier et al., 2010). Water can dramatically reduce mantle viscosity (Figures 1b and 1c); therefore, it
may significantly influence the dynamic evolution of the cratonic lithosphere. In this study, we investigate the
hydration-induced weakening effect on cratonic evolution using 2-D numerical models. As the lithospheric
thinning of cratons often occurs under tectonic extension, e.g., the North China craton was subjected to
large-scale basin formation and magmatism in the Jurassic and early Cretaceous due to back-arc extension
(Menzies et al., 2007; Wu et al., 2005; Xu et al., 2009; Zhang et al., 2005), the North Atlantic craton experienced
extensive continental rifting and is now crosscut by the Labrador Sea (Tappe et al., 2007), we focus here on
the lithospheric dynamics under extension.

2. Method
2.1. Numerical Method
The 2-D thermomechanical coupled numerical code I2ELVIS (Gerya & Yuen, 2003) based on finite differences
and marker-in-cell techniques is used to solve the mass, momentum, and energy conservation equations in a
fully staggered grid for an incompressible media (equations (1)–(6)):

𝜕vi

𝜕xi
= 0 (1)
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Figure 1. Hydration-induced cratonic lithosphere weakening. (a) A sketch showing the possible scenarios of cratonic
lithosphere hydration through oceanic subduction (modified based on the previous studies (Faccenda, 2014; Lee et al.,
2011; Wang et al., 2016). 1-Shallow slab dehydration, 2-deep slab dehydrationm and 3-water released from mantle
transition zone due to slab perturbation (Wang et al., 2016). (b) Influence of water content (unit in H/106 Si) of wet
olivine on mantle viscosity by only considering dislocation creep. (c) Influence of water content by considering both
dislocation and diffusion creep. The flow law of wet olivine (Hirth & Kohlsted, 2003) is used for calculation. A constant
strain rate 10−15 s−1 is assumed. Initial P − T condition is shown in the inset.

𝜕𝜎′
ij

𝜕xj
−

𝜕Pi

𝜕xi
= −𝜌gi (2)

𝜌Cp
DT
Dt

= 𝜕

𝜕xi

(
k
𝜕T
𝜕xi

)
+ H (3)

H = Hs + Ha + Hr + HL (4)

Hs = 𝜎′
ij�̇�ij (5)

Ha = T𝛼
DP
Dt

(6)

where v is velocity, 𝜎′ the deviatoric stress tensor, P the total pressure (mean normal stress), 𝜌 the density,
g the gravitational acceleration, Cp the heat capacity, T the temperature, k the thermal conductivity, H the
internal heating, Hs the shear heating, Ha the adiabatic heating, Hr the radioactive heating with a constant
value for each rock, and HL the latent heating included implicitly by increasing the effective heat capacity and
thermal expansion of the partially crystallized/molten rocks (Burg & Gerya, 2005), 𝛼 the thermal expansion.
The Einstein notation is used for the indexes i and j, which denote spatial directions i = (x, y) and j = (x, y) in
two dimensions.

Viscoplastic rheology is employed in our models. Plastic rheology is described by Drucker-Prager yield cri-
terion (equation (7)), where the yielding stress (𝜎y) is pressure dependent (C-rock cohesion, 𝜑-effective
friction coefficient). The viscous rheology contains both diffusion and dislocation creep (equation (8)) (Hirth &
Kohlstedt, 2003; Li et al., 2008), which are temperature, pressure, and stress/strain rate-dependent (where A is
preexponential constant, d is grain size, COH is water content, Ea is activation energy, Va is activation volume,
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Table 1
Rheology Parameters of Different Rocks

Type (MPa−n s−1)a n m r Ea (J/mol) Va (m3/mol)

Crustb

Wet quartzite 3.2 × 10−4 2.3 0 0 1.54 × 105 0

Mantlec (wet olivine)

Dislocation 90 3.5 0 1.2 4.8 × 105 1.1 × 10−5

Diffusion 1.0 × 106 1 −3 1 3.35 × 105 0.4 × 10−5

Mantlec (dry olivine)

Dislocatione 1.1 × 105 3.5 0 0 5.3 × 105 1.7 × 10−5

Diffusione 1.5 × 109 1 −3 0 3.75 × 105 0.6 × 10−5

aUnit is MPa−n s−1 μm−m in diffusion creep. bParameters are from Ranalli (1995). cParameters are from Hirth and
Kohlstedt (2003). dVa is from Kawazoe et al. (2009). eVa is from Karato et al. (1993).

R is the gas constant, and m, n, and r are experimentally determined exponents, 𝜂 is viscosity, 𝜎II, �̇�II, 𝜎
′
ij, and

�̇�ij are square root of the second invariant of deviatoric stress, strain rate, deviatoric stress, and strain rate
tensors, respectively). Effective viscosity of rocks (𝜂eff) is constrained by the smaller value between the plas-
tic viscosity (𝜂plas) and viscous viscosity (𝜂vis). Viscous viscosity is also an effective value constrained by both
dislocation and diffusion creep (equation (11)). Rock density is a function of composition, temperature, and
pressure: 𝜌 = 𝜌0[1 + 𝛽(P − Pr)][1 − 𝛼(T − Tr)], where 𝜌0 is the reference density of a given material at the
reference pressure Pr (105 Pa) and temperature Tr (298.15 K), and 𝛽 and 𝛼 are the compressibility and thermal
expansion, respectively. Detailed parameters are listed in Tables 1 and 2.

𝜎y = C + P𝜑 (7)

𝜖II = AdmCr
OH𝜎

n
II exp

(
−

Ea + PVa

RT

)
(8)

𝜂plas =
𝜎y

2�̇�II
(9)

𝜂disl(diff) =
𝜎II

2𝜖II
(10)

𝜂vis =
1

1∕𝜂disl + 1∕𝜂diff
(11)

𝜂eff = min(𝜂plas, 𝜂vis) (12)

𝜎II =
√

0.5𝜎′
ij, �̇�II =

√
0.5�̇�ij, (13)

It is worth emphasizing that the flow law formulation (equation (8)) for olivine contains water content (COH) in
units of H∕106 Si. Water content can be converted from water fugacity (fH2O in units of Pa), which is a function
of temperature and pressure, and measured in water-saturated conditions (Hirth & Kohlstedt, 2003; Kohlstedt
et al., 1996; Li et al., 2008; Mei & Kohlstedt, 2000a). However, mantle (maybe except the mantle wedge) is
generally undersaturated in water (Hirschmann, 2006; Hirth & Kohlstedt, 2003). Thus, water fugacity is an
inconvenient parameter for tracking water content in mantle in geodynamic models. A conversion from water
fugacity to water content is necessary (Kohlstedt et al., 1996), and the updated flow law using water content
is employed in this study (equation (8)) (Hirth & Kohlstedt, 2003; Li et al., 2008). Water content COH can be
regarded as a constant value in a closed system or vary with time in an open system (Karato & Jung, 2003). In
this study, we consider that the water content of olivine is constant in each model run, assuming that a certain
amount of water has been instantaneously introduced to the cratonic lithosphere and is retained thereafter.
For grain size-sensitive diffusion creep, we adopt a constant grain size in each model run by neglecting the
change of grain size during recrystallization and annealing. Thus, the influence of water on mantle rheology
is estimated by dislocation and diffusion creep of wet olivine with variable water contents. The influence of
oxygen fugacity on wet olivine is ignored in this study. Based on deformation experiments, higher oxygen
fugacity will increase strain rate of olivine (Tielke et al., 2017). The strain rate of wet olivine under oxygen
fugacity conditions buffered by Fe/FeO (Mackwell et al., 1985) will be increased by a factor of 1.8 at 1300∘C
when buffered by Ni/NiO (Bai et al., 1991).
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Table 2
Physical Parameters of Rock

Variable Symbol (unit) Crust Mantle Referencesa

Density 𝜌0

(
kg
m3

))
2,700 3,300b 1

Cohesion Co (Pa) 5 × 105 5 × 105 2

Friction coefficient 𝜙 0.4 0.6 2

Radioactive heating Hr

(
W

m3

)
1.75 × 10−6 2.2 × 10−8 1

Latent heating QL

(
J

kg

)
3 × 105 4 × 105 1, 3

Thermal capacity Cp

(
J

kg K

)
1,000 1,000 1

Thermal expansivity 𝛼

(
1
K

)
3 × 10−5 3 × 10−5 1

Compressibility 𝛽

(
1

MPa

)
1 × 10−5 1 × 10−5 1

Thermal conductivityc k
(

W
mK

) (
1.18 +

(
474

T+77

)
exp(0.00004P

) (
0.73 + 1293

T+77

)
exp(0.00004P) 4

aReferences: 1, Turcotte and Schubert (2002); 2, Ranalli (1995); 3, Bittner and Schmeling (1995); and 4, Clauser and
Huenges (1995). bLithospheric mantle may have lower reference densities in different test models. Asthenospheric
mantle always has the same reference density. cPressure in MPa.

The molar concentration of forsterite in olivine, Mg∕(Mg+Fe)×100, is defined as the Fo number of olivine.
Because the flow laws of olivine came from deformation experiments on San Carlos olivine with composition
of Fo90, we use Fo90 to estimate the water content in the lithospheric mantle. The molecular weight of olivine
(Mg0.9 Fe0.1)2SiO4 is 147.017 g. So water content of 1000 H/106 Si is equal to 1,000∕2 × 18∕147.017 = 61.2
ppm H2O in weight. When we calculate the bulk water content in pyrolite, the hydrogen partitioning coeffi-
cient between olivine, pyroxene, and garnet should be considered (e.g., Aubaud et al., 2004), 50 ppm H2O in
olivine will correspond to 181 ppm H2O in pyrolite (64% olivine, 15% orthopyroxene, 11% garnet, and 10%
clinopyroxene). The normal upper mantle beneath mid-ocean ridges contains 50–200 ppm H2O, whereas
H2O concentration in plume sources may range from 300 to 1,000 ppm, suggesting heterogeneous water
distribution in the mantle (Hirschmann, 2006).

2.2. Model Setup
The initial model domain is composed of homogeneous compositional layers (Figures 2a and 2b). In the top
of the model domain, a 20 km sticky air layer is prescribed, which ensures the free surface boundary con-
dition (Crameri et al., 2012). The upper and lower crust has an equal thickness (20 km), underlain by the
lithospheric mantle layer (160 km). Underneath the lithosphere is the asthenospheric mantle layer. In terms
of the initial temperature distribution, two model setups are considered. In the first model setup (Figure 2a),
horizontally homogeneous temperature distribution is prescribed. In the second model setup (Figure 2b),

Model setup 2: With a thermal perturbation

v = 0.3 cm/yr v = -0.3 cm/yr 

Model setup 1: Lateral homogeneous

0
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mante
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Figure 2. Initial model setup. Model setup with (a) homogeneous layers and (b) a prescribed thermal perturbation in
the lithosphere. Extensional velocities are prescribed on the side boundaries. Initial temperature linearly increases in
the lithosphere.
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Figure 3. Model results using only dislocation creep of olivine. Composition and viscosity fields are shown. (a) Homogeneous layered model with a moderate
water content of 1,000 H/106 Si. No strain localization after t = 40.5 Ma. (b) Model development with an initially imposed thermal perturbation and a moderate
water content of 1,000 H/106 Si. Continental rifting and final breakup are developed. (c) Model results with dislocation creep of dry olivine. Continental rifting
develops. (d) Evolution of boundary force influenced by water content of olivine. Black arrows in the viscosity fields illustrate the flow direction of the upper
mantle. HE: horizontal exaggeration of the model domain.

a thermal perturbation is prescribed in the middle of the lithospheric domain, and this setup will produce
faster strain localization.

Free slip combined with a constant (normal) velocity boundary condition is used for all the boundaries. Mod-
erate time-independent extension rate (i.e., 0.3 cm/yr half extension rate) is uniformly prescribed on the side
boundaries, and compensation velocities on the upper and lower boundaries are computed based on mass
conservation (e.g., Liao & Gerya, 2014). Constant temperatures are prescribed for the upper and lower bound-
aries, and the thermal insulation condition (i.e., zero horizontal heat flux) is used for the side boundaries.
Temperature of the 20 km thick sticky air is 0∘C, initially. In the lithosphere, the initial temperature increases
linearly from 0∘C on the crustal surface (20 km depth) to 1,300∘C at the lithosphere-asthenosphere bound-
ary (LAB, 220 km depth). The difference between the linearly interpolated temperature profile and the one
obtained through steady state temperature equation was briefly discussed in the previous study (Liao & Gerya,
2017, Figure S1), which showed that the significant difference between these two thermal profiles is only
present in the upper crust, where radiogenic heating rate is larger than the underlying rock. Below the LAB,
asthenospheric mantle has a small and constant gradient of 0.5∘C/km initially. Material properties are listed
in Table 2.

3. Modeling Results
3.1. Models With Dislocation Creep Only
In nature, both dislocation and diffusion creep are active at the same time during deformation. But they may
not contribute to deformation of the crust and mantle equally, and one creep dominates deformation over
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Figure 4. Model results with both dislocation and diffusion creep for (a) dry olivine and wet olivine with a water content of (b) 1,000 H/106 Si and (c) 200 H/106

Si. (d) Perturbation growth along the LAB shown by temperature, density, and viscosity. In the viscosity snapshot, 𝜆 and h are the wavelength and thickness of
the convective layer, respectively.

the other under different conditions (Burgmann & Dresen, 2008). Dislocation creep of either crustal or mantle
material dominates deformation with low temperature, high stress, and large grain size (Burgmann & Dresen,
2008), which typically are lithospheric conditions. Besides, previous studies addressed that the Lehmann dis-
continuity (∼200 km) is probably caused by a change in deformation mechanism: from dislocation creep in
the shallow upper mantle producing seismic anisotropy to diffusion creep in the deep upper mantle generat-
ing isotropic structure (Karato, 1992-Karato,2010-Karato). Thus, dislocation creep may play a dominant role in
the lithospheric scale. Here we first test models with only dislocation creep (Figure 3). With the homogeneous
layered setup, dislocation creep does not generate significant deformation with a moderate water content
of 1,000 H/106 Si in olivine (equal to ∼60 ppm H2O by weight). No strain localization occurs after 40.5 Ma
(Figure 3a). The cratonic lithosphere thins homogeneously in response to the boundary extension. Increasing
the water content of olivine to 2,500 H/106 Si has no significant effect on the deformation pattern, and the
model results remain similar. For comparison, the model with a prescribed thermal perturbation generates
faster strain localization and the final continental breakup occurs at 37.6 Ma (Figure 3b). However, a similar
model using the dislocation creep of dry olivine and a prescribed thermal perturbation shows much slower
development of continental rifting (Figure 3c).

In addition, boundary force is computed to evaluate the overall resistance of the model box to boundary
extension (Brune et al., 2012, Buck et al., 1999, Liao & Gerya, 2014, Liao et al., 2013). The boundary force is cal-
culated by integrating the normal deviatoric stress along the left and right boundaries of the lithosphere and
taking the average of the two values (Figure 3d). Since the cratonic lithosphere is typically twice as thick (also
cold) as normal/young continental lithosphere, the computed boundary force for the cratonic lithosphere
(e.g., mean lithospheric stress of 200 MPa accounts for ∼40 TN/m for a 200 km thick craton, O’Neill et al., 2008)
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Rac . (b) Lithospheric thinning caused by lithospheric mantle dripping.

is typically much larger than the estimation of thin lithosphere (e.g.,∼13 TN/m
force for a 80 km thick lithosphere, Brune et al., 2012) and tectonic driving
force (e.g., Buck, 2006). This indicates that rifting a craton is difficult in nature.
Here we focus on the relative values of the boundary force affected by dry and
wet olivine rheology. Two major features of the boundary force are observed
from our modeling results. First, the models using the flow law of wet olivine
require a smaller boundary force than the models employing the flow law
of dry olivine. Second, a higher water content in olivine reduces the bound-
ary force and produces faster strain localization if the thermal perturbation is
initially imposed (the dashed color lines with open circles in Figure 3d).

Because only a small amount of H2O can remarkably decrease the stress
of dislocation creep and increase contribution of dislocation creep to the
deformation of olivine (e.g., Wang, 2010), the presence of H2O can signifi-
cantly decrease the rifting force. Our model results suggest the usage of wet
olivine rheology results in much weaker lithospheric mantle, and even a small
amount of H2O can remarkably decrease the stress of dislocation creep. The
boundary force for rifting the cratonic lithosphere decreases by one third
compared to the model using dry olivine rheology (Figure 3d). Increase of
the water content does not vary boundary force significantly. This is consis-
tent with the theoretical plot (Figure 1b), which shows the largest difference
between the dry olivine line and the wet olivine lines. The difference between
different wet olivine lines (e.g., COH = 1,000 and COH = 2,500) is small, par-
ticularly at low pressures (Figure 1b). Much larger influence of water content
on boundary force can be expected for models employing both diffusion and
dislocation creep (Figure 1c).

3.2. Models With Both Dislocation and Diffusion Creep
Contribution from the diffusion creep of olivine (assuming a constant grain
size of 1 mm) is added into the homogeneous layered models (Figure 4). For
dry olivine, the cratonic lithosphere thins homogeneously in response to the
extension, and no strain localization occurs after ∼ 38 Ma (Figure 4a). With
a moderate water content of 1,000 H/106 Si in olivine, the model employing
wet olivine rheology with both dislocation and diffusion creep produces litho-

spheric instabilities (Figure 4b). The lowermost lithospheric mantle drips off from the base of the lithosphere
only after 7 Ma. The water content of olivine plays a key role in the initiation of lithospheric mantle dripping.
A test model with 200 H/106 Si (∼12 ppm) water content in olivine produces dripping much later and less
vigorously (Figure 4c).

Convective instability (i.e., Rayleigh-Benard instability) grows along the LAB and forms small-scale convection
cells, promoting lithospheric mantle dripping (Figure 4d). The initial perturbations of the convective insta-
bility grow from numerical noises (e.g., randomly distributed markers introducing small horizontal variation
in density). Without the numerical noises there would be ideally no instability growth. The numerical noise
could be analogous to heterogeneity within the interior of the Earth. The convective instability occurs when
the Rayleigh number (Ra) is larger than the critical Rayleigh number (Rac) (Turcotte & Schubert, 2002), which is
a function of the nondimensional wave number w (w = 2𝜋h∕𝜆, where h is the thickness of a convection layer
and 𝜆 is the wavelength of a convection cell, Figures 4d and 5a). Furthermore, lithospheric thinning caused by
material dripping is computed (Figure 5b). Compared to the uniform thinning in the model with dry olivine
rheology, the model with wet olivine rheology generates rapid and large lithospheric thinning, and a higher
water content in olivine produces stronger thinning.

3.3. Parameter Test
Model evolution is sensitive to the used parameters. Here we investigate several key parameters (the refer-
ence density of the lithospheric mantle, the temperature along the LAB, the grain size of olivine aggregates,
initial lithospheric thickness, and the activation volume of mantle) and document their effects on model
development (Figures 6–11).
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Figure 6. Influence of the reference density of the lithospheric mantle (𝜌LM) on model evolution with varied water
contents. (a) Numerical models and (b, c) snapshots of model results. The reference density of the asthenospheric
mantle (𝜌0) is 3,300 kg/m3 in this study. The onset time of convective instability of the numerical models is determined
by the rapid increase of the averaged downwelling velocities. Note that although convective instability occurs with
smaller 𝜌LM, lithospheric mantle dripping may happen much later.

3.3.1. Reference Density of the Lithospheric Mantle
The depleted Archean cratonic mantle is commonly regarded as buoyant with several tens of kg/m3 less
denser than the underlying asthenospheric mantle (Carlson et al., 2005; Djomani et al., 2001). We test a set
of models with smaller initial lithospheric mantle densities 𝜌LM based on different water contents. It is worth
emphasizing that the 𝜌LM is the reference density at T = 25.15∘C and P = 105 Pa. The effective density of rocks
depends on composition, temperature, and pressure, and only the temperature-dependent component of
density influence the growth of the convective instability.

Model results are plotted in Figure 6. Lower reference densities of the lithospheric mantle favor later onset
of convective instability (Figure 6a). With the reference density of the lithospheric mantle 𝜌LM = 2,90 kg/m3

(10 kg/m3 smaller than the reference density of the asthenospheric mantle, which is 3,300 kg/m3 in this study),
convective instability and lithospheric mantle dripping occurs after ∼11 Ma when water content in olivine
reaches 1,000 H/106 Si (Figure 6b). In case of 𝜌LM = 3,280 kg/m3, although convective instability occurs along
the base of the lithosphere at ∼11 Ma, lithospheric mantle dripping occurs much later (Figure 6c). With a
sufficiently small reference density of the lithospheric mantle (e.g., 𝜌LM = 3,250 kg/m3), small-scale convec-
tion occurs only in the convective layer at the base of the lithosphere without forming lithospheric mantle
dripping. This is because the effective density of the lithospheric mantle (considered the thermal effect, i.e.,
temperature dependent) is still smaller than that of the asthenospheric mantle.
3.3.2. Initial Temperature Along the LAB
Although the cratonic lithosphere is relatively cold (Carlson et al., 2005; Menzies et al., 2007), the tempera-
ture of a cratonic root (especially at the base of the cratonic lithosphere) may change significantly due to
episodic heating events during its long-term evolution. For instance, plume upwelling was proposed as an
effective way of heating/weakening the base of the cratonic lithosphere (Foley, 2008; Koptev et al., 2015).
Therefore, we examine the influence of initial temperatures at the LAB ( TLAB) on the evolution of the cratonic
lithosphere. Based on the reference model (Figure 4), colder and warmer initial TLABs are tested. Cold cratonic
lithosphere inhibits lithospheric dripping, while warm lithosphere promotes dripping (Figure 7). Significant
dripping occurs when the cratonic lithosphere has been heated intensely (e.g., TLAB = 1,500∘C), which may
happen, for example, due to plume upwelling (Foley, 2008; Koptev et al., 2015). Further discussion on the
influence of the TLAB on lithospheric dripping is given in section 4.1.
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Figure 7. Influence of grain size and mantle potential temperature on lithospheric mantle dripping. (a) Numerical
models and (b, c) snapshots of model results. The reference density of the lithospheric mantle and water content are
labeled on the figure. The onset time of convective instability of the numerical models is determined by the rapid
increase of the averaged downwelling velocities.

3.3.3. Grain Size of Olivine Aggregates
Diffusion creep is grain size dependent, and a decrease in grain size of olivine aggregates results in an increase
in strain rate of diffusion creep. Our model results suggest that small grain size promotes lithospheric dripping
(Figure 7). The contribution from dislocation and diffusion creep is distinguished by plotting the logarithmic
viscosity ratio r (log10(𝜂disl∕𝜂diff), Figure 8). The expression r = 0 means 𝜂disl is equal to 𝜂diff, suggesting the
equal contribution from dislocation and diffusion creep on mantle deformation. The r < 0 tells us that 𝜂disl is
smaller than 𝜂diff, which indicates that dislocation creep is relatively fast and dominates mantle deformation.
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size d = 1 mm. The 1-D viscosity ratio is picked at horizontal distance
X = 500 km and time t =∼ 2.4 Ma. The 2-D plot is from the model shown in
Figure 4b.

Whereas when r > 0, diffusion creep becomes more important than
dislocation creep. Figure 8 shows a clear transition from dislocation
creep-dominated deformation to diffusion creep-dominated deformation
in the mantle lithosphere, and the transition depth occurs deeper for larger
grain sizes. This is consistent with the deformation mechanism transition
inferred from deformation maps of wet olivine (Wang, 2010). Thus, adding
diffusion creep may largely enhance mantle deformation at the bottom
of the lithosphere. If the grain size is sufficiently large (e.g., d = 10 mm),
the diffusion creep will be less effective and the transition depth becomes
deeper than the LAB. This indicates that in the coarse-grained lithosphere,
the diffusion creep becomes less important and the lithospheric mantle
dripping becomes difficult.

Constant grain size is used in this study, which is a big assumption. Grain
size is a key parameter of diffusion creep, and it largely controls the tran-
sition from dislocation-dominated to diffusion-dominated deformation.
Influence of grain size evolution on lithosphere and mantle dynamics was
addressed in previous studies (e.g., Gueydan & Precigout, 2014; Rozel et al.,
2011). Grain size evolution is not only stress and temperature dependent
(e.g., Rozel et al., 2011) but also water content dependent (Karato, 1989). A
higher water content in olivine will promote rapid grain growth and reduce
strain rate of diffusion creep by increasing the diffusion distance of vacan-
cies along grain boundary (i.e., Coble creep, Karato, 1989). However, the
dominant means by which hydrogen affects strain rate is to increase con-
centration of silicon vacancies and then facilitate dislocation climb rate
(Mei & Kohlstedt, 2000b, 2000a; Tielke et al., 2017). Such water weakening
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Figure 9. Influence of lithospheric thickness on model evolution. (a) An initial thinner lithosphere (150 km). (b) An initial thicker lithosphere (250 km). All other
parameters (including the mantle potential temperature) are identical with the reference model shown in Figure 4b.

effect will result in strain localization and fine-grained mantle shear zones by dynamic recrystallization and,
consequently, increase strain rate of diffusion creep. The trade-offs between water content and grain size
evolution need to be quantitatively investigated in future studies.

3.3.4. Thickness of the Cratonic Lithosphere
The thickness of the cratonic lithosphere may affect the lithospheric dripping dynamics. It was proposed that
the North China craton has experienced at least two stages of lithospheric thinning in the Late Mesozoic
and Cenozoic (Xu, 2007). Multistage lithospheric thinning suggests a dramatic change in initial lithospheric
structure (lithospheric thickness and thermal structure). For instance, the second stage of the lithospheric
thinning may start from a relatively thin and warm lithosphere in the North China craton. Thus, it is worth
testing the influence of varied initial lithospheric thickness on the model evolution.

We conducted two numerical models with a thinner (150 km) and a thicker (250 km) cratonic lithosphere
(compared to the reference model), respectively (Figure 9). We keep the mantle potential temperatures in
these two models (TLAB = 1,275∘C and TLAB = 1,325∘C, respectively) the same with the reference model
(i.e., TLAB = 1300∘C). Thus, the only varied parameter is the lithospheric thickness. Both models produce
lithospheric mantle dripping due to convective instability (Figure 9). The model with a thicker lithosphere
generates earlier and more vigorous lithospheric dripping (Figure 9b), mainly because its thicker convec-
tive layer (e.g., Sleep, 2007). This thicker convective layer advances convective instability, because it tends to
form relatively large wavelength of convection cells and larger Rayleigh numbers (see detailed discussion in
section 4.1).
3.3.5. Activation Volume of Mantle
Activation volume (Va) of mantle rheology may play an important role on asthenospheric mantle dynamics
because of large pressure at great depth. A big range of uncertainty is given for the activation volume of
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mantle (Hirth & Kohlstedt, 2003). The activation volume of olivine determined by deformation experiments
shows large variations from 0±0.5×10−5 m3∕mol (Li et al., 2006) to 2.7×10−5 m3∕mol (Borch & Green, 1989)
and decreases with increasing pressure (Hirth & Kohlstedt, 2003). The highest-resolution mechanical data are
acquired at∼300 MPa in most deformation experiments, while the pressure of the upper mantle are 2–12 GPa.
Therefore, over the entire upper mantle, the effect of pressure on viscosity can be as large as several orders of
magnitude, and it is important to test the influence of the activation volume of olivine on cratonic evolution.

According to the summary of Hirth and Kohlstedt (2003), the activation volume we used for dislocation and
diffusion creep of wet olivine is 1.1 × 10−5 m3/mol and 0.4 × 10−5 m3/mol, respectively (Table 1). In this set
of experiments, we use the same activation volume for both dislocation and diffusion creep (Figure 10). An
increase in activation volume results in a significant delay of lithospheric dripping and larger mean viscosity of
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the asthenospheric mantle (Figure 10a). With a larger activation volume (Va = 1.1×10−5 m3/mol, Figure 10b),
viscosity of the asthenospheric mantle becomes more realistic than that in the previous models (Figure 4b).
The mean viscosity of the asthenospheric mantle is around 1020 Pa s, which is close to the mantle viscos-
ity from the base of the lithosphere to 410 km estimated from joint inversion of mantle convection, mineral
physics, and postglacial rebounding observations (Mitrovica & Forte, 2004; Steinberger & Calderwood, 2006).
The mean asthenospheric mantle viscosity decreases gradually followed by a dramatic decrease due to the
onset of lithospheric dripping.

3.4. Model Test Without Boundary Extension
We initiate the 2-D numerical modeling by applying boundary extension in this study, since some deformed
cratons experienced intense tectonic extension, such as the typical example of the North China craton, which
was subjected to large-scale basin formation and pervasive magmatism in the Jurassic and early Cretaceous
due to back-arc extension (Menzies et al., 2007; Wu et al., 2005; Xu et al., 2009; Zhang et al., 2005). Here we test
a model without boundary extension based on the reference model, and velocity boundary condition is free
slip for all boundaries (Figure 11). Model results show that convective instability occurs in the convective layer
at the base of the lithosphere, promoting lithospheric mantle dripping. This indicates that boundary exten-
sion is not a necessary condition for the initiation and development of convective instability. Moreover, this
model produces earlier convective instability than the reference model (Figure 11b), because the convective
layer in the reference model is continuously thinning as a response to the boundary extension (see more dis-
cussion in section 4.1). As aforementioned, the computed boundary force for rifting the cratonic lithosphere
(Figure 3d) is much larger than the available tectonic force (e.g., Buck, 2006). Lithospheric thinning of cratons
through rifting can be considerable difficult in nature. Convective lithospheric mantle dripping could thus be
an effective way of cratonic lithospheric thinning, occurrence of which does not rely on tectonic extension.

4. Discussion
4.1. Semianalytical Models of the Onset of Convective Instability
In order to benchmark our numerical models and further understand the influence of various parameters (i.e.,
water content COH, the reference density of the lithospheric mantle 𝜌LM, grain size d, and the temperature
at the LAB TLAB), we explore the conditions for convective instability using semianalytic models (i.e., similar
to Motoki & Ballmer, 2015). Convection is driven by a thermal inversion at the base of the lithosphere, or
thermal-rheological boundary layer (TBL) (e.g., Sleep, 2007). Thereby, the relevant local Rayleigh number Raloc

of the base of the TBL systematically grows as the TBL grows with time, and convective instability occurs as
soon as Raloc exceeds a critical Rayleigh number Rac (e.g., Turcotte & Schubert, 2002). Rac is ∼1,000 for the
preferred wave number w of convection (with w = 2𝜋h∕𝜆, where h is the thickness of the convective layer
and 𝜆 the wavelength of a convection cell), but varies with w (Turcotte & Schubert, 2002). We compute the
local Rayleigh number (Raloc) of the layer that potentially goes convectively unstable, i.e., the convective layer,
and compare with the critical Rayleigh number (Rac):

Raloc =
[𝛼(T0 − Tloc)𝜌0 − Δ𝜌0]gh3

𝜅𝜂loc
(14)

tonset ∶ Raloc > Rac (15)

where 𝛼 is the thermal expansivity, T0 is the temperature at the LAB (e.g., 1300∘C in most cases), Tloc is the
temperature at the top of the TBL, 𝜌0 is the reference density, Δ𝜌0 is the compositional density difference
between asthenospheric mantle and lithospheric mantle, g is the gravitational acceleration, h is the thickness
of the convective layer (twice the thickness of the TBL; explained below), 𝜅 is the thermal diffusivity, 𝜂loc is
the relevant maximum viscosity at the top of the TBL, and tonset is the onset time of convective instability. The
thickness of the convective layer is the most important parameter which has the largest effect on the com-
puted 𝜂loc. We define the top of the TBL as the depth at which 𝜂 = 𝜂loc = 2 × 1021 Pa s, assuming that the stiff
shallow part of the TBL does not contribute to convective instability. From a blank model (i.e., without pro-
ducing convective instability, but otherwise analogous to the relevant model), we extract the averaged 1-D
temperature and pressure profiles, based on which, we compute the depth at which 𝜂 = 2 × 1021 Pa s using
the flow laws of wet olivine (considering both dislocation and diffusion creep, equations (8)–(12) and Tables 1
and 2). We define the bottom of the TBL as the LAB (i.e., where the geotherm reaches the potential tempera-
ture of TLAB). Thus, computing the thickness of the TBL, we explicitly take into account water content, mantle
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Figure 12. Semianalytical test of the onset time of convective instability using different model parameters. Numerical
models are imposed in the plots. Effects of the four model parameters: (a) water content, (b) reference density of
lithospheric mantle, (c) grain size, and (d) temperature at LAB. The onset time of convective instability of the numerical
models is determined by the rapid increase of the averaged downwelling velocities.

potential temperature, the reference density of the lithospheric mantle, and grain size. The relevant thickness
of the convective layer h is taken to be twice the thickness of the TBL, because the top of the asthenosphere
also contributes to convection and assuming a ∼1:1 aspect ratio of initial convection cells.

According to equations (14) and (15), we compute the onset time of convective instability as a function of
parameters COH, 𝜌LM, d, and TLAB. Figure 12 shows a comparison of these semianalytical onset ages (lines) with
those predicted by numerical experiments (filled circles). The three lines in each panel refer to slightly different
Rac (i.e., 800, 1,000, and 1,200), and the predictions of almost all numerical models fall within these bounds
as given by the semianalytic solutions. Rac is indeed expected to slightly vary from case to case, because Rac

depends on w (see above) and only a given set of w are allowed in our restricted numerical-model domain. This
interpretation of the observed variability in numerical model predictions is corroborated by a systematically
reduced variability for the subset of cases with short onset ages. For short onset ages, h and 𝜆 tend to be small,
and thus, convection cells can readily assume the most preferred w within a given width of the numerical
domain. A test model without boundary extension (Figure 11) shows earlier lithospheric mantle dripping,
which can be explained by the larger layer thickness (h) that gives larger thermal Rayleigh number.

4.2. Hydration-Driven Weakening of the Cratonic Lithosphere
Due to the high numerical resolution and short time steps used in this study, model running time is several
tens of millions of years, which is much shorter than the relatively long destruction processes of some cra-
tons. For example, the destruction of the North China craton lasted from the Jurassic to the Cretaceous (e.g.,
Menzieset al., 2007). Besides, when we start our numerical simulations, we assume that water has been
transported into the cratonic lithosphere and distribute homogeneously. The prior deformation history and
heterogeneous water distribution in the upper mantle are ignored. These model limitations are justified,
since our study focuses on how water interplays with other parameters to facilitate cratonic thinning through
convective instability.

Results of parameter tests indicate that lithospheric dripping is favored by high water content of olivine, dense
lithospheric mantle, high temperature at the LAB, small grain size of olivine aggregates, and small values of
mantle activation volume. The grain size of olivine varies between 0.1 mm and 10 mm in this study, which
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the profile in Dave and Li (2016).

falls in a reasonable range of peridotites (Karato, 2010). The relatively large
density of lithospheric mantle and high temperature at the LAB will coun-
teract if the major element composition of the lithospheric mantle is not
significantly changed. Dry, depleted, and buoyant lithospheric mantle pre-
vents cratonic roots from lithospheric dripping. However, for cratonic roots
that have experienced intensive modification/fertilization in some regions
(Folet, 2008; Koptev et al., 2015; Tappe et al., 2007), suitable conditions
for lithospheric mantle dripping may form. For example, the depleted
lithospheric mantle beneath the Eastern Block of the North China craton
was subjected to significant metasomatism prior to lithospheric thinning
(Zhang et al., 2009). The cratonic root beneath North America may have
been dragged and detached from the craton center by mantle flow (Kaban
et al., 2015). Density of the continental lithospheric mantle is generally
less than the underlying asthenosphere because of depleted composition.
However, Phanerozoic or metasomatized Fe-rich cratonic mantle may have
higher density due to high content of garnet and reduced Fo number in
olivine (Artemieva, 2009).

Cratonic lithospheric thinning due to hydration weakening can be sum-
marized into two stages (Figure 13a). The first stage is fast lithospheric
thinning due to the occurrence of convective instability, which has been
largely discussed in the above sections. The second stage shows slower
lithospheric thinning than that of the stage one, but lithospheric thin-
ning is still faster than the model using dry olivine rheology (Figure 13a).
This is caused by the continuous convective thermal erosion (Figure 13b).
The occurrence of the convective thermal erosion after the vigorous litho-
spheric mantle dripping indicates that cratonic thinning is a long-term
process, such as the North China craton (e.g., Menzies et al., 2007, Xu,
2007). Recently, the first seismic evidence of small-scale mantle convection
beneath the Wyoming craton is revealed (Figure 13c) (Dave & Li, 2016). The
formation of the small-scale mantle convection is likely promoted by slab
dehydration of the flat Farallon subduction (e.g., Li et al., 2008). Thus, litho-
spheric mantle dripping (i.e., convective instability) driven by hydration
weakening may play an important role in intraplate lithospheric thinning,
such as the North China craton (Menzies et al., 1993, 2007), the Colorado
Plateau (Li et al., 2008), and the Wyoming craton (Dave & Li, 2016).

5. Conclusions

We investigated the influence of hydration-induced weakening on the
dynamics of cratonic lithosphere using wet olivine flow law for the mantle
rheology and give the following conclusions.

1. Using only dislocation creep of wet olivine for mantle rheology, convective instability does not occur along
the base of the cratonic lithosphere, although the lithospheric mantle has been largely weakened.

2. Employing both dislocation and diffusion creep of wet olivine for mantle rheology, convective instability
occurs in the basal layer of the lithospheric mantle, and lithospheric mantle drips into the asthenospheric
mantle resulting in a thinner cratonic lithosphere.

3. Model parameters influence the dynamics of convective instability. Semianalytical models are performed
to predict the onset time of convective instability influenced by various parameters.

4. Dehydration of juxtaposed oceanic subduction slabs and long-term mantle metasomatism during craton
evolution can cause hydration weakening of the cratonic lithosphere, promoting convective instability and
lithospheric mantle dripping. Cratonic lithosphere can be thinned accordingly; faster lithospheric thinning
during lithospheric mantle dripping followed by continuous and slower thinning due to thermal erosion.
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