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Abstract

Quiescent solar prominences are observed within the solar atmosphere for up to several solar rotations. Their
eruption is commonly preceded by a slow increase in height that can last from hours to days. This increase in the
prominence height is believed to be due to their host magnetic flux rope transitioning through a series of
neighboring quasi-equilibria before the main loss of equilibrium that drives the eruption. Recent work suggests that
the removal of prominence mass from a stable, quiescent flux rope is one possible cause for this change in height.
However, these conclusions are drawn from observations and are subject to interpretation. Here, we present a
simple model to quantify the effect of “mass-draining” during the pre-eruptive height evolution of a solar flux rope.
The flux rope is modeled as a line current suspended within a background potential magnetic field. We first show
that the inclusion of mass, up to 1012kg, can modify the height at which the line current experiences loss of
equilibrium by up to 14%. Next, we show that the rapid removal of mass prior to the loss of equilibrium can allow
the height of the flux rope to increase sharply and without an upper bound as it approaches its loss-of-equilibrium
point. This indicates that the critical height for the loss of equilibrium can occur at a range of heights depending
explicitly on the amount and evolution of mass within the flux rope. Finally, we demonstrate that for the same
amount of drained mass, the effect on the height of the flux rope is up to two orders of magnitude larger for
quiescent prominences than for active region prominences.
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1. Introduction

Coronal mass ejections (CMEs) are complex bundles of
magnetic field and material that erupt from the solar
atmosphere out into the heliosphere. A key feature often
measured within their interplanetary counterpart is a rotation of
the magnetic field vector as spacecraft cross the magnetic
structure, a property believed to be indicative of a magnetic
flux rope (e.g., Burlaga 1988; James et al. 2017; Palmerio et al.
2017). In addition, the existence of a flux rope in the solar
atmosphere has often been related to the formation of filament
systems, elongated structures observed in absorption on the
solar disk (Priest et al. 1989; Aulanier et al. 1998). Filaments
are interpreted as strands of dense material suspended in the
low coronal atmosphere. Such structures are historically
identified as prominences when observed above the limb, and
we shall henceforth use the term prominence to describe these
structures, unless otherwise indicated. The observational
signature of the on-disk counterpart, a filament, provides no
immediate evidence for the suspended nature of the material
above the solar surface (van Ballegooijen & Martens 1989;
Martin 1998; Gibson et al. 2006; Régnier et al. 2011).
Prominences have been observed for up to several solar
rotations, occasionally within a coronal cavity when a
prominence quasi-parallel to the equator is projected above
the limb. A pre-eruptive flux rope has been suggested to exist
in equilibrium for equally extended periods of time (Rust 2003;
Gibson et al. 2004).

Despite being typically stable features within the solar
atmosphere, the final stages of a prominence’s life are highly
dynamic; the suspended plasma either drains back to the

chromosphere, or is ejected into the heliosphere as the core of a
CME, or some combination of both (Dere et al. 1997; Schmahl
& Hildner 1977; Régnier et al. 2011). In the eruptive case, the
sudden destabilization of these structures is also indicative of
the destabilization of the host flux rope. The exact causes for
the loss of stability of a flux rope are understood to depend on
the conditions under which the flux rope formed, and the recent
evolution of the surrounding magnetic field (Moore et al. 2001;
Lynch et al. 2004; Török & Kliem 2005; Fan & Gibson 2007).
Unfortunately, flux ropes are not directly observable in the
solar atmosphere, as they are magnetic in nature and
instrumentation sensitive enough to accurately measure the
coronal magnetic field does not yet exist (although preliminary
attempts are being made, e.g., Baķ-Stȩślicka et al. 2013; Fan
et al. 2018). Therefore, in order to effectively study the stability
criteria of flux ropes, a combination of observations (e.g.,
Zuccarello et al. 2014, 2016), extrapolations (e.g., James et al.
2018), and simulations (e.g., Fan 2017) is typically used (see
also Cheng et al. 2017, and references therein). The simulations
are often employed to study the cause of the loss of stability of
a flux rope in the lead-up to its eruption, with the observations
and extrapolations separately offering information about the
pre-eruptive configuration.
Before the advent of advanced simulations, early work by

van Tend & Kuperus (1978) presented a 2D analytical model in
which the flux rope was approximated as a straight line current
suspended at equilibrium in a background potential magnetic
field. Although a simplified setup was employed, the authors
qualitatively demonstrated that increasing the magnitude of the
line current causes its height above the solar surface to increase.
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This relationship between the current and height of the line
current can be represented with an equilibrium curve. In
addition, they concluded that there is a point at which an
increase in the strength of the line current would no longer
result in a solution on the equilibrium curve. At this time, the
line current was said to have experienced “loss of equilibrium.”
Extensions to this model were employed to quantitatively study
the balance of forces involved with prominences, and the
evolution of this balance prior to an eruption (e.g., Low 1981;
Démoulin & Priest 1988; Martens & Kuin 1989; Démoulin
et al. 1991; Forbes & Isenberg 1991). However, authors such as
Martens & Kuin (1989) and Démoulin et al. (1991) noted that
the influence of the gravity term was negligible assuming
“typical” values for prominence mass, and was unlikely to be
able to perturb the equilibrium dominated by the magnetic
pressure and tension forces.

More recently, work has been carried out to take this simple
line current approach further and formulate more complex,
time-dependent magnetohydrodynamic (MHD) simulations
(for a more complete review on the state of these MHD
simulations, see Cheng et al. 2017, and references therein).
These models contain more physically realistic initial and
boundary conditions that allow the construction, evolution, and
analysis of a fully 3D flux rope. Importantly, the modern
simulations have aligned with the conclusions of authors such
as Martens & Kuin (1989) and Démoulin et al. (1991) that the
evolution of the magnetic field in and around a flux rope is
assumed to be solely responsible for its evolution in time
(Démoulin 1998). Specifically, this low-beta approximation
assumes that the pressure and mass of prominence plasma
suspended by a flux rope are negligible in comparison with the
magnetic pressure and tension forces of the flux rope and its
surroundings (Titov & Démoulin 1999; Filippov 2018). Indeed,
this assumption has been featured frequently in three decades
of modern research.

However, novel observations and hydrostatic modeling are
beginning to suggest that mass may be able to influence the
local and global properties of magnetic flux ropes (Low et al.
2003; Petrie et al. 2007; Seaton et al. 2011; Gunár et al. 2013;
Bi et al. 2014; Reva et al. 2017; Jenkins et al. 2018). In
particular, the Shafranov shift as explored in Blokland &
Keppens (2011) details how varying the gravity term in their
2D magnetohydrostatic (MHS) model can cause the axis of
their flux rope to decrease the height. Then, the mass-unloading
theory (e.g., Low 1999; Forbes 2000; Klimchuk 2001) has been
suggested as one possible cause for the eruption of promi-
nences. In this theory, a particularly heavy prominence
suddenly unloads all of its mass, reducing the gravitational
force acting on the host flux rope and causing it to spring off
into space as an eruption.

The study of the role of mass evolution within prominence
eruptions has typically been isolated to a handful of observa-
tional case studies. Seaton et al. (2011) presented stereoscopic
observations of a prominence erupting from an active region in
which plasma was observed to unload from the prominence prior
to its expansion in height. The authors concluded that in the
absence of additional, contrary evidence, these observations
were an example of a “mass-unloading” eruption driver.

Recently, Jenkins et al. (2018) also presented stereoscopic
observations of a quiescent prominence’s partial eruption in
which “mass-draining” was suggested to have been responsible
for the accelerated expansion of the erupting magnetic flux

rope. In this case the drained mass does not ultimately drive an
eruption; it simply modifies the balance of forces acting on the
prominence to a non-negligible degree (see also Reva et al.
2017). Their conclusion that the mass-draining accelerated the
eruption was reached through a quantitative estimation based
on the Lorentz force equation, specifically the ratio between the
modification of the gravitational force due to the reduction in
mass and the force of the background magnetic tension
restricting the height evolution of the flux rope. However, this
order-of-magnitude estimate of the importance of the mass
-draining does not properly account for the equilibrium
conditions of the host flux rope.
Therefore, in this manuscript, we present an extension to the

model developed by van Tend & Kuperus (1978) that enables
the study of the role of mass in the evolution of a line current in
quasi-equilibrium. Specifically, we first explore how the
inclusion of mass can modify the stability criteria for a line
current that represents a flux rope suspending a prominence.
We then explore how the removal of mass (or “draining”) from
a pre-eruptive line current can modify the global height of the
line current within the solar atmosphere. The general model is
described in Sections 2 and 3, and applied in Section 4 to a
bipolar background potential magnetic field. In Section 5, we
further constrain the model with measurements made from the
observations presented by both Seaton et al. (2011) and Jenkins
et al. (2018). Finally, a discussion and summary are presented
in Section 6.

2. Model Concept

Following the formulation outlined in Démoulin & Aulanier
(2010), hereafter DA10, a flux rope is modeled in Cartesian
coordinates as a magnetic field generated by an infinitely long,
straight line current I at a given height h above the photosphere.
The justification for the choice of a straight line current over a
curved line current lies in the assumed property of quiescent
prominences being oriented largely horizontal to the surface.
The majority of curvature may be assumed to be localized at
the footpoints of the host magnetic flux rope that are located far
from the center of the prominence. An “image” line current -I is
introduced under the photosphere that runs anti-parallel to the
“real” line current. Following van Tend & Kuperus (1978), the
additional image magnetic field beneath the surface results in
no modification to the vertical, z, component of the photo-
spheric magnetic field. This “image” current acts to increase the
height of the “real” line current. The straight line current is then
added to a background potential magnetic field Bext that acts to
force the line current toward the photosphere. A cartoon
representation of these different field contributions is shown in
Figure 1. The total field has an inverse configuration because of
the presence of a flux rope (e.g., similar to the configuration of
Figure 1(a) within Petrie et al. 2007). The line current is then in
equilibrium if the sum of forces is zero,

f f f IB IB0 , 1u d I extå = « =  =- ( )

where fu is the sum of the upward magnetic forces, the so-
called hoop force, fd is the sum of the downward magnetic
forces, I ( I- ) is the real (image) current, Bext- is the horizontal
background magnetic field component orthogonal to the
current at height h, and B−I is the strength of the magnetic
field as a consequence of the image line current. The image
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magnetic field B−I is derived from Ampère’s law,
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where the strength of the magnetic field B−I is measured at a
point in space that is at a distance/height R h2= away from
the line current, and μ0 is the permeability of free space equal
to 4π×10−7 in MKS units.

In order to simulate the existence of a prominence within a
flux rope, the van Tend & Kuperus (1978) model is extended to
include mass that is set to exist at the same point as the line
current, i.e., at height h. The inclusion of mass into the system
results in an additional downward force that acts to further
anchor the line current. In equilibrium, Equation (1) becomes

IB IB mg, 3I ext= +- ( )

where m is the mass of the suspended plasma per unit length
and g is the acceleration due to gravity. g is taken independent
of h (since h r , where re is the solar radius) except where
explicitly stated. All quantities in Equation (3) are defined as
positive.

3. General Equations

3.1. Equilibrium Current

Here, we will establish the general form of equations that
will be applied to a specific Bext in the following sections. The
force f on the line current, per unit length, is

f
I

h
IB mg

4
, 40

2

ext
m
p

= - - ( )

where Bext is a function of h (as well as other parameters
depending on the selected model). We set B 0ext > so that the

external magnetic field creates a force oppositely directed to the
hoop force, I h40

2m p , and an equilibrium exists in the
limit m=0.
The electric current needed for equilibrium is given by

solving Equation (4) for I with f=0,

I
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ext
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where we have added the lower index m to indicate that the
equilibrium current depends on the mass.
With finite mass, Equation (5) provides two equilibria

corresponding to the sign selection in front of the square root.
With a negative sign selected, I 0eq,m < , which implies that
both magnetic forces are upward and opposite to the gravity
force in Equation (4). This case has a vanishing current in the
limit of a vanishing mass and it does not correspond to a force-
free equilibrium with a flux rope. Therefore, we consider only
the second case with a positive sign in front of the square root
of Equation (5),
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Supposing that Bext (0) is finite, then for small enough h
values such that h m g B0 ext

2m p ( ),

I
hB

m g h
2 4

. 7eq,m
ext

0 0

p
m

p
m

» + ( )

Then, Ieq,m(h) has a square root dependence with h when h is
small enough and m>0. This behavior changes to a linear
dependence when m=0.
With m=0, I 0 0eq,0 =( ) , and since Bext typically decreases

faster than 1/h for large h values, I h hB2eq,0 0 extp m=( ) ( ) will
tend toward zero at large heights. This implies that I heq,0 ( ) has
a maximum (at least one) between small and large heights.
However, if m 0> , I heq,m ( ) is dominated by the gravity term at
large h values once Bext has sufficiently decreased, then
I h m g h4eq,m 0p m»( ) ( ) is a growing function of h for
constant g. At even larger h values, as g is inversely
proportional to r h 2+( ) , then I heq,m ( ) will again tend toward
zero, even for large mass values. Nevertheless, for low enough
m and h values, I heq,m ( ) will still have a minimum at h=0 and
large heights, and a maximum (at least one) somewhere in
between. It is the response of the line current to mass within
this region that we focus on during this study.

3.2. Dependence of the Equilibrium Current on Mass

We investigate below the effect of m on Ieq,m keeping all
other quantities fixed,

I

m
g h hB m g h 0. 8

eq,m
ext

2 0 
m
p

¶

¶
= +( ) ( )/

Increasing the mass m requires that the magnitude of the
current is increased so as to reach a given height (i.e., to
increase the hoop force).
Next, supposing m g h hB0 ext

2p m ( )( ) , a first-order
Taylor expansion of Equation (6) provides

I I m g B . 9eq,m eq,0 ext» + ( )

Figure 1. Cartoon diagram of the model setup. The inverse magnetic
configuration is formed by the superposition of three fields: the external
potential field Bext (solid-red), and the field generated by the line current
(located at z=h) and its image (located at z=−h), drawn with solid black
and dashed gray lines, respectively. The line current at z=h is maintained by
the balance of two Lorentz forces, an upward (hoop) force due to the magnetic
field generated by the image line current, and a downward force from a
stabilizing external potential field Bext. The model concept is identical to that
presented by van Tend & Kuperus (1978).
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Then, the equilibrium current is comparatively increased by
adding a term proportional to the mass and to 1/Bext . Since
B hext ( ) is typically a decreasing function of h, this implies that
Ieq,m is increasingly separated from Ieq,0 with height.

3.3. Mass-draining

Finally, we will analyze the effect of draining prominence
mass on the host flux rope’s equilibrium height and possibly its
eruption. We suppose that the draining is fast enough that there
is a negligible evolution, through e.g., diffusion (e.g., van
Driel-Gesztelyi et al. 2003), of the vertical component of the
photospheric field distribution. This is modeled with the image
current and implies that the associated potential field, Bext , is
unchanged. We suppose also that this short-term evolution is
done without reconnection. This implies that the magnetic flux,
F, passing below the flux rope bottom (located at z h a= - ,
where a is the radius of the flux rope/line current) and the
photosphere (at z= 0) is conserved.

van Tend & Kuperus (1978) suggested that a line current
would experience loss-of-equilibrium if the current magnitude
exceeded the maximum of the I heq,0 ( ) curve, as with a classical
electric circuit. DA10 (see also Démoulin et al. 1991; Lin
et al. 2002) expanded on this by imposing a short-term
MHD evolution with flux conservation to study the loss-of-
equilibrium of a flux rope. The hybrid MHD/line current
approach uses pseudo-time long-term evolution of model
parameters, e.g., photospheric flux density f or average
coronal twist T, to overcome the limitations of the classical
approach. The evolution of one of the model parameters in this
way allows the construction of a family of constant F curves
that describe the short-term evolutions. The intersection of
these curves with Ieq,0 details how a flux rope evolves as a
function of the evolving parameter.

Two equilibrium curves, I heq,m ( ) and I heq,0 ( ) are shown in
Figure 2 together with five curves of fixed magnetic flux F,
differing from each other as a result of an evolution in, e.g.,
Bext. Assuming that we start with a nearly potential coronal
configuration, the prominence and its flux rope are supposed to
first evolve quasi-statically along the stable equilibrium curve
of I heq,m ( ), with a height growing slowly with time as a result of
the evolution of Bext . At some point during this evolution, we have
supposed that the draining of the full mass occurs fast enough to
keep both Bext and F unchanged, then the evolution is along the
corresponding F=constant curve toward larger heights. The
general form of the F=constant curve (Equation (9) of DA10),
hereafter defined as Ievol(h) is,

I h
L

F B dy dz
2

, 10

S

evol
s

ext= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∬( ) ( )

where L h a lln 2 2
y

s i
0= +m
p
D ( ( ) ), li, are the external induc-

tance, and normalized internal inductance, respectively, and a
is the radius of the current channel. For this setup in which the
current is focused at the edges of the current channel, li=0.

The effect of draining the mass depends on the location
where it occurs. If it occurs at point A of Figure 2, or a nearby
one, then a stable equilibrium Ieq,0 exists at the intersection with
the Ievol flux curve (at point A′). Comparing the height of stable
equilibrium with and without mass linked by the same Ievol
curve, the equilibrium with mass is always at a lower height
(e.g., h hA A< ¢), which is due to the downward gravity force

compressing the Bext configuration. As the draining point is
shifted to larger heights, e.g., at point B, the new equilibrium
on Ieq,0 curve is further away, at a larger height, from the initial
one on the Ieq,m curve. This is the case until point C where the
Ievol flux curve only touches the Ieq,0 equilibrium curve
tangentially. Equation (20) of DA10 demonstrates that the
equilibrium is linearly neutral at this tangent point C′, but it is
unstable with the nonlinear perturbation term taken into
account (graphically the Ievol curve is extending to the right
in the region where the force f is pointing toward large h
values, so away from the equilibrium curve).
After the mass-draining occurs at a point such as A, the total

magnetic force will be directed upward, accelerating the flux
rope toward the equilibrium curve Ieq,0. However, this
equilibrium will be reached with a finite kinetic energy,
allowing the line current to continue evolving along the Ievol
curve. The line current will then continue on the other side of
the equilibrium point with a change in sign of the total
magnetic force. Finally, at some point the motion will stop and
reverse direction, leading to an oscillation of the flux rope. This
scenario also envisages damped oscillations toward the Ieq,0
curve as the extra energy is progressively radiated away by fast
MHD waves. Such results have been reported in both 2D and
3D numerical simulations of prominence oscillations (e.g.,
Schutgens & Tóth 1999; Zhou et al. 2018, respectively).
Furthermore, the Ievol curve can also cross the other branch

of the Ieq,0 curve past point C′, such as at points A″ and B″ in
Figure 2. Since this part is unstable (see f arrows in Figure 2),
there is the possibility of an eruption if the system has sufficient
energy to reach this unstable part. This region is indicated
qualitatively with a pink area in Figure 2. Its extension toward

Figure 2. Schema showing the possible evolutions with mass-draining. The
equilibrium curve with m=0, I heq,0 ( ), is shown with a continuous dark blue
line. The equilibrium curve with mass, I heq,m ( ), is above with a dashed line.
The constraint of magnetic flux conservation, Equation (12), is shown with the
other colored curves representing different starting points along I heq,0 ( ) for
draining mass. If the draining mass starts between points C and E, no
equilibrium can be reached without mass (region shaded in light green), while
if draining is realized before point C (e.g., at point A), another stable
equilibrium could be reached. In the region shaded in pink, the finite kinetic
energy accumulated may allow the line current to reach the unstable
equilibrium without mass (such as point B″). The small black arrows indicate
the direction of the total force when the line current is slightly shifted away
from the equilibrium curve. The critical height(s) hcrit of the m=0 (m>0)
line current is indicated with the vertical (horizontal) black-dashed–dotted
lines.
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the side with small h values is limited by the ability of the
magnetic force to decrease the kinetic energy before the
unstable region, at larger h values, is reached. We will not
study this aspect any further because it is expected to be an
effect localized to the family of Ievol curves near point C′ and
this would require a detailed analysis (it depends both on m and
Bext (h)). We only point out that an eruption may be started, by
draining mass, before the line current evolves to the limiting
curve Ievol that passes the first unstable point, C′, of the Ieq,0
curve.

3.4. Modification of the Equilibrium Height

In this subsection, we give a quantitative estimate of the
ideas described with Figure 2. Specifically, we analyze the
mass-draining from the equilibrium located at h I,m m( ) with
mass m, to the equilibrium located at h I,0 0( ) without mass.

The total flux passing between the bottom of the flux rope
and the surface is,

F h
I h

a
B z dz

2
ln

2
. 11

h a
0

0
extò

m
p

= -
-
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⎝

⎞
⎠( ) ( ) ( )

Conserving flux passing below the flux rope per unit length
yD during the mass-draining requires that F h F hm 0=( ) ( ),

hence
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where we suppose that the flux rope radius, a, is small
compared to its height, and that a remains unchanged by the
mass-draining to simplify the expressions, as evolution in a has
a small effect on the results (similar to the case m= 0 in DA10
where a did not evolve). Equation (12) explicitly states that the
two equilibria are on the same Ievol(h) curve (Equation (10))

We next suppose that the two equilibria h I,m m( ) and h I,0 0( )
are close enough, so the mass has a small effect on the force
balance (m g h hB0 ext

2p m ( )( ) ). We also take the equili-
brium without mass as a reference to express all terms of the
Taylor development and define the variation quantities:

h h h0 mD = - , I I I0 mD = - . From Figure 2, Δh>0
and ΔI<0.

With a Taylor development to first order in Δh and ΔI of
Equation (12), the conservation of flux imposes the relationship
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The equilibrium curve without mass satisfies
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and the force balance with mass m satisfies,
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With ΔI rewritten as a function of Δh with the flux conserved,
Equation (13), with I h B h40 0 0 ext 0p m= ( ) ( ), the first-order

expansion around h I,0 0( ) of Equation (15) is
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With m=0, Equation (16) describes the test of stability of
the equilibrium around the point h I,0 0( ). Next, we introduce
the notations

n
B h

h
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¶
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( ) ( )

for the negative logarithmic derivative of the external field
component, commonly referred to as the decay index (Bate-
man 1978; Filippov & Den 2001; Török & Kliem 2005;
Zuccarello et al. 2016), and

n
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which is Equation (33) of DA10 (with na=0 because we have
a fixed a value). Then, Equation (16) is rewritten as
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With m=0, the equilibrium at h I,0 0( ) is stable if Δf is
oppositely directed to the displacement −Δh from h0 to hm.
This is achieved for n ncrit< , as expected.
Supposing that the extra energy is somehow dissipated, i.e.,

Δf=0, Equation (19) also describes the mass-draining from
the equilibrium at h I,m m( ) to the equilibrium at h I,0 0( ). This
draining implies the shift in height,

h
m g

B n n
, 20

4
ext
2

crit
0

D =
-p

m
( )

( )

to the new equilibrium h I,0 0( ), which exists only for n ncrit< .
This quantifies the graphical description of Figure 2. In
particular, it shows that hD is proportional to the loaded mass
m and inversely proportional to distance, in terms of decay
index, to the loss-of-equilibrium point (n ncrit= ). Finally, the
strength of the external field has a strong effect on Δh because
a factor 10 on Bext decreases Δh by a factor 100 (this factor 10
on Bext is the order of magnitude for the ratio between the field
present in active and quiescent prominences, for example). We
conclude that the draining of a given mass m could cause the
height of the prominence to increase from a tiny to a very large
amount (up to the loss of equilibrium and resulting eruption)
depending on precisely where this draining occurs along the
equilibrium path and on the strength of the external field.

4. Results

4.1. Bipolar Background Field

We begin by expanding on the case investigated in DA10 to
explore the effect of including mass on the evolution of the line
current, suspended within a bipolar background magnetic field,
up to its loss of equilibrium. Here, the bipolar background
magnetic field is supplied by two infinitely long polarities at
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distance ±D from the position of the line current (DA10),

B D h D2 , 21ext
2 2 1f p= + -( ( )) ( )

where f is the magnetic flux per unit length in the invariant
direction. Substituting Equations (21) and (2) into (4), we
arrive at the condition for the system in equilibrium with f=0,
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The equilibrium curve for the massless line current is
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where I heq,0 ( ) is normalized by its maximum value, Ipeak = f
p
,

occurring at height h h D 1peak peak= =˜ . Note that
Equation (23) corrects a typo in DA10. For the case where a
line current does contain mass, I heq,m˜ ( ˜) takes a form similar to
Equation (6):
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In Figure 3 we show a comparison between normalized
equilibrium curves of line currents suspended within a “typical”
quiet-Sun region of average surface field strength equal to 4G
and loaded with a range of masses. The properties of the masses
used are presented in Table 1, assuming a typical quiescent
prominence of dimensions: length=100Mm, height=30Mm,
width=4Mm (Labrosse et al. 2010; Xia et al. 2012).

4.2. Effect of Mass on Line Current Equilibrium

Here, we impose the same flux evolution analysis, described
in Section 3.3, on the equilibrium curves presented in Figure 3
to study the effect of mass on the equilibrium of the host line
current.

The reference state with fluxes F0̃ and f0 is defined at the
maximum of the I heq,0˜ ( ˜) curve (DA10, and references therein),

F I
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where Ipeak˜ is the maximum value of I heq,0˜ ( ˜), and ã is the
normalized radius of the line current (a a D 0.1= =˜

hereafter). We readily find I hevol˜ ( ˜) from Equation (10),
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where F F f0= f
˜ ˜ .

The intersection of I hevol˜ ( ˜) and I heq,0˜ ( ˜) for the case of ff=1
for the massless line current is shown in Figure 4(a). The orange
curve in Figure 4(b) then corresponds to ff=0.986 (1.4%
reduction in f0, the strength of the photospheric polarities),
which is also applied to the case of a massless line current,
indicating a single point of intersection between the two I h˜( ˜)
curves, at h/D=1.15. Any further reduction in ff results in no
intersection between the two I h˜( ˜) curves. DA10 demonstrate
that such a line current experiences an ideal-MHD instability and
an outward force drives the eruption of the line current.
In Figures 3 and 4(b) it is shown that an increase in the

amount of mass loaded onto the line current results in a shift in
the maximum value of I/Ipeak and its corresponding h/D value.
As with the orange curve, the green and blue curves are the last
point of intersect between I heq,m˜ ( ˜) and I hevol˜ ( ˜), where a line
current is loaded with 109 and 1010kgMm−1, respectively.
This implies that the flux of the photospheric polarity must
decrease further than seen for the massless case in order for the
mass-loaded line current to experience an ideal-MHD instabil-
ity. For a line current loaded with 109 or 1010kgMm−1, ideal-
MHD instability occurs after f has decreased by 2.7% and
13.1%, respectively, at a height of h/D=1.17,1.32. Therefore,
the simple model presented here appears to demonstrate that a
mass-loaded line current can be significantly anchored as a result
of the inclusion of mass (e.g., Blokland & Keppens 2011),

Figure 3. Equilibrium curves demonstrating Equation (24), the relationship between electric current magnitude and height of the line current suspended within a
bipolar background potential magnetic field generated by a 4G mean surface field. These equilibrium curves are calculated assuming a range of prominence mass
between 107 and 1010kgMm−1. The dotted black line corresponds to no mass within the system, comparable to the solid black line in Figure 2(c) of Démoulin &
Aulanier (2010).

Table 1
Properties of the Masses Loaded onto the Line Currents Presented in Figure 3

NH (Total) Mass (Total) Mass (Per unit length)
(cm−3) (kg) (kg Mm−1)

5×107 109 107

5×108 1010 108

5×109 1011 109

5×1010 1012 1010

Note.It is assumed that all mass within a prominence is cool (low ionization
ratio), therefore NH is the number density of neutral hydrogen, assuming the
range of masses within the second column (Labrosse et al. 2010).
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requiring additional current within, photospheric flux decay
below, and height for the line current to experience loss of
equilibrium.

Fan (2018) recently published the first example in which a
prominence comprised of mass on the order of 1012kg erupted
in a fully MHD simulation. Interestingly, the existence of this
prominence was shown to have a significantly stabilizing effect
on its host flux rope when compared to an identical flux rope
without prominence formation induced. Specifically, the
prominence was shown to inhibit the initiation of the kink
instability prior to a successful eruption. The work presented
here shows that a similar conclusion can also be reached with
the torus instability using significantly simplified conditions.

4.3. Effect of Mass-draining on the Pre-eruptive Evolution of
the Line Current

Blokland & Keppens (2011) showed that the inclusion of
mass within their MHS model caused the center of their flux
rope to be pulled downward, i.e., the Shafranov shift. Going
further, we have established that the inclusion of mass within
the simple model presented by van Tend & Kuperus (1978) and
expanded by DA10, can result in a non-negligible modification
to the equilibrium curves and implies additional stability. It is
therefore reasonable to suggest that the removal of this mass
from a pre-loss-of-equilibrium line current will also result in a
modification to its evolution, as suggested in several observa-
tional case studies of prominences (e.g., Seaton et al. 2011; Bi
et al. 2014; Reva et al. 2017; Jenkins et al. 2018).

To test this hypothesis and simulate the draining of
prominence mass from a flux rope, we first apply the general,
first-order development described in Section 3.3, specifically
Equation (20), to the specified bipolar background magnetic field
of Equation (21). The results are presented in Figure 5 as the
dashed black lines. Δh is larger when hm is closer to the loss-of-
equilibrium point (i.e., n=ncrit). However, Equation (20) is
derived with a Taylor expansion in Δh, so it cannot describe
large Δh values.

Therefore, we have used the “Chebfun” package (see
Driscoll et al. 2014) implemented in MATLAB to solve
numerically for the intersects between I heq,m˜ ( ˜), I heq,0˜ ( ˜), and
I hevol˜ ( ˜) for a range of values of ff. These solutions are
presented in Figure 5, plotted over the analytical solution for
comparison. Although the main trend is accessible via both the

analytical and numerical solutions, the numerical solution
emphasizes the sensitivity of the equilibrium to mass evolution
when the line current is close to its loss-of-equilibrium point.

5. Implications for Observations

We now move to establish a basic comparison between the
results of the above model and two specific observations of
mass-draining. Our model shows that some of the quantities
may be very sensitive to the value used in their computation;
see e.g., Figure 5 for large hm/D. The model input parameters
(filament dimensions, height, mass, and external field as a
function of time) require indirect, often complex methods to be
estimated from observations, and are subject to different types
of errors. Therefore, our intention is to establish an order of
magnitude indication to the importance of mass-draining in
these two cases, not an exact measure. Furthermore, we find
that varying the value of a/D between 0.1 and 0.5 results in

Figure 4. Effect of mass on the stability of a line current suspended within a bipolar background potential field. Panel a: intersection of I heq,0˜ ( ˜) and I hevol˜ ( ˜), with
ff=1 indicating two equilibrium positions, h 1, 1.33=˜ , as in Figure 2(c) of Démoulin & Aulanier (2010). Panel b: the orange, green, and blue curves correspond to
the last point of intersect, with ff decreasing, between I heq,m˜ ( ˜) and I hevol˜ ( ˜), with ff=0.986,0.973, and 0.869 for line currents loaded with masses equal to 0, 109, and
1010kgMm−1, respectively. The vertical magenta dotted lines indicate the h/D value for this last intersection, in each case, between the two I h˜( ˜) curves. The h/D
value is seen to increase as more mass is loaded.

Figure 5. Change in the height of a line current due to a range of mass-
draining, assuming a bipolar background potential magnetic field generated by
an average surface field of strength 4G. Analytical solutions to Equation (20)
are plotted for each mass as dashed black lines. Overplotted on these dashed
lines are the solid colored lines representing the numerical solution. The
analytical solution works well for small h and m values, but clearly deviates
from the numerical solution at larger values.
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modifications to the stability of the line current of only a
few %. Therefore, for this comparison we maintain the
assumption of a the thin flux rope and fix a/D=0.1.

We first refer to a recent case study by Jenkins et al. (2018)
in which the authors used the column density estimation
technique of Williams et al. (2013) and Carlyle et al. (2014) to
study the draining of mass from an erupting quiet-Sun
prominence. According to the authors’ observations, shortly
prior to the prominence’s eruption the total mass within the
field of view reduced by at least 1×1010kg, equal to 15% of
the initial mass within the field of view. The additional
properties of the erupting prominence were estimated from
observations taken using the Atmospheric Imaging Assembly
(Lemen et al. 2012) on board the Solar Dynamics Observatory
(Pesnell et al. 2012):
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where Ly is the length of the prominence. Specifically, D is half
the width and Ly is the length of the red dashed box in Figure 3(b)
of Jenkins et al. (2018). The value of BPhot is the average strength
of the magnetic field within the bounds of the red dashed box in
Figure 3(a) of Jenkins et al. (2018). The results of the application
of these values to the model are shown in Figure 6.

In the application of the observations to this model we have
set initial mass equal to 9×1010kg and final mass equal to
8×1010kg. According to the model, such a mass-loaded line
current would need to reach a height of ≈75Mm to lose
stability, ≈30Mm higher than the prominence top was
observed; the quiet-Sun prominence was suggested to lose
equilibrium, inferred by the large acceleration, after it had risen
to a height of ≈45Mm. In fact, the comparison between model
and observations cannot be precise because of the approximate
values derived from observations and the simplicity of the
model. Moreover, all of the mass present in the model exists at
the height of the line current, a location representative of the
axis of a flux rope. As it is commonly assumed that prominence
material resides below this height, in the dips of the magnetic
field of a flux rope (e.g., Aulanier et al. 1998; Gunár &
Mackay 2015), we expect the model height corresponding to
loss of equilibrium to always be larger than any observed
prominence height (see also Zuccarello et al. 2016).

The increase in height observed by Jenkins et al. (2018) after
the prominence underwent mass-draining was >60Mm before
leaving the field of view. The simple model described here predicts
the maximum possible increase in height for the same amount of
mass-draining to be up to 1.7Mm, assuming the final state is also
in equilibrium. However, it is suggested by the authors that the flux
rope associated with the prominence was at a point of marginal
instability when the mass-draining initiated. Indeed, we have
shown that the simple model described here predicts the largest
increases in height due to mass-draining to occur as the line current
approaches its loss of equilibrium. Hence, the large increase in the
height of the observed prominence (60 Mm) shortly after the
draining of mass could be interpreted as being caused by the flux
rope losing equilibrium and erupting into the heliosphere due to the

torus instability. The prominence observed by Jenkins et al. (2018)
did successfully erupt and was later observed as a CME by
multiple coronagraphs.
The mass estimates of the prominence material studied by

Jenkins et al. (2018) were derived from observations captured
using the Extreme Ultraviolet Imager (EUVI; Wuelser et al. 2004)
on board the Solar Terrestrial Observatory Behind (STEREO;
Kaiser et al. 2008) spacecraft. At the time of the observations,
2011 December, EUVI was capturing high-temporal-resolution
images in only the 195Å passband; the other filters were at a
much lower cadence. For this reason, the column density of the
prominence was calculated using the so-called “monochromatic
method,” resulting in a lower-limit estimate to the column density.
Therefore, we take the derived value of total mass and mass
drained as lower limits, and in turn all values of Δh to be lower-
limit estimates to the increase in the height of the line current.
Next, we compare to an earlier case study, presented by

Seaton et al. (2011), in which it was concluded that mass-
draining from a prominence rooted within an active region was
responsible for the ≈35Mm height rise prior to the eruption of
the prominence. The active region that the eruptive prominence
was located in was in its decaying phase, with an average
surface magnetic field strength of 100G according to
magnetogram observations taken using the Michelson Doppler
Imager (Scherrer et al. 1995) on board the Solar and
Heliospheric Observatory (SOHO; Domingo et al. 1995). Our
model can be used to test this conclusion by assuming the same
degree of mass-draining as was observed by Jenkins et al.
(2018), and modifying BPhot so as to test the sensitivity of the
model to a range of surface fluxes.
In the solar context, higher values of BPhot are associated

with smaller values of D, in turn reducing the critical height of
the flux rope. Indeed, this is a commonly observed and well
studied relationship between prominence height and magnetic
domain (e.g., Rompolt 1990; McCauley et al. 2015; Filippov
2016, and references therein). However, in order to mean-
ingfully vary D with BPhot within this model, additional

Figure 6. Modification to the height of the line current assuming a draining
equal to 1×1010kg of prominence mass (Jenkins et al. 2018) at a range of
photospheric magnetic field strengths. Quiet-Sun surface field strengths result
in a significantly larger change in height due to mass-draining than field
strengths similar to those observed in active regions.
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assumptions would have to be made. Therefore, to facilitate a
simple comparison between the two observational case studies
and the additional range of realistic surface flux values, we opt
to compare conditions for a “normalized filament,” fixing D as
in Jenkins et al. (2018) and simply varying BPhot.

The results, shown in Figure 6, suggest that increasing the
surface magnetic flux results in a stronger background potential
magnetic field, and reduces the effect that mass-draining can have
on the height change Δh. According to the model, draining
1×1010kg from a line current embedded within a bipolar
background potential magnetic field that has a surface magnetic
field strength of 100G would result in a very small maximum
change to the height of the line current unless the configuration is
very close to loss of equilibrium. It is therefore unlikely that the
mass-draining was directly responsible for the observed ≈35Mm
increase in the height of the prominence. Nevertheless, as appears
to have been the case in the prominence studied by Jenkins et al.
(2018), the mass-draining may have been responsible for upsetting
the equilibrium toward the non-equilibrium point.

A similar result to this was previously reported by Reeves &
Forbes (2005), in which the authors concluded the effect of
mass was likely negligible in a system restricted by a
background field stronger than 6G. Our result is complemen-
tary to this by providing a quantitative comparison for a range
of surface fluxes and masses.

6. Discussion and Summary

The general cases described in this manuscript detail how the
inclusion of realistic prominence masses and complete draining
of this mass from the line current can have both stabilizing and
destabilizing effects. Returning to Figure 2 for comparison, a
line current at point A, for example, will drain total mass and
move along the constant F curve to A′, resulting in damped
oscillations around A. In such a case, the line current does not
experience a loss-of-equilibrium; the draining of mass has
simply allowed the line current to increase in height to a new
equilibrium and further evolution of other parameters would be
required for a successful eruption to occur. The mass-draining
can also be partial and can also occur during the oscillations.
Indeed, Zhou et al. (2018) showed that the oscillation of the
prominence in their 3D MHD simulation resulted in the
draining of mass from the structure due to the periodic increase
in height of field lines during the oscillation. The authors also
noted that this causes the height of individual field lines to
increase due to the reduction in the gravitational force,
although this is studied locally for a few field lines.

Considering, a line current evolving from C to C′ due to
mass-draining, the line current would become unstable to an
ideal-MHD instability as it reaches point C′, and experience a
loss of equilibrium triggered by the draining of mass.

For a line current that drains a partial amount of the total
mass loaded, the height of the line current will increase
accordingly, as has already been discussed in Section 4.3. If
this is realized at point A or B of Figure 2, the line current will
not evolve all the way to point A′ or B′; rather it will evolve to
a point on the constant F curve that is in between and
dependent on the degree of draining.

Considering point D, a point that is not sampled using the
methods outlined in this manuscript, then the partial draining of
total mass may result in the line current either reaching a stable
equilibrium again or experiencing a loss of equilibrium. In this

case, the nature of the line current after mass-draining would
depend on the degree of mass drained. Graphically, for a line
current to experience loss of equilibrium, the constant F curve
cutting the mass-loaded line current equilibrium curve at point
D would have to touch the mass-drained equilibrium curve
tangentially or not at all. If we define mdrained as the amount of
mass drained and mmin as the minimum amount of mass-
draining required to destabilize a line current at point D, then if
mdrained<mmin the final state of the line current would be in
equilibrium. Assuming no more mass-draining occurred, the
additional physical parameters of the system would be required
to evolve for a successful eruption to occur. It then follows that
if mdrained�mmin the line current would experience loss of
equilibrium as a result of the mass-draining.
At point E the line current is already unstable to an ideal-

MHD instability without any draining of mass. If mass-
draining was to occur at this point, the draining of total or
partial mass would not contribute to the initiation of the loss of
equilibrium but would instead contribute an additional
accelerating force to the erupting flux rope.
Finally, applying specific conditions to the general case, it is

shown that:

1. For a line current suspended within a bipolar background
field generated by a surface field of 4G, the inclusion of
typical prominence masses can increase the height at
which the line current experiences an ideal-MHD
instability by up to 14%, indicating that the mass provides
a larger anchoring effect than is typically assumed.

2. The draining of the larger masses from a line current can
cause a non-negligible increase in the height of the line
current without an upper bound, with the largest height
increase observed as the line current approaches its loss
of equilibrium.

3. Using the observational measurements of Jenkins et al.
(2018) as the input parameters, it is shown that the
modification to the height of the line current due to mass-
draining is as much as 1.7Mm. This non-negligible
increase in the height of the line current effectively
demonstrates the ability for mass-draining to perturb the
equilibrium of weak-field quiescent flux ropes.

4. Scaling the model for comparison with observations
presented by Seaton et al. (2011), it is shown that
draining mass from a line current suspended in a
background field generated by up to kilogauss surface
field results in only a negligible modification to the height
of the line current.

We have discussed the role that mass plays in the global
evolution and eruption of flux ropes, suggesting that it depends
on four main parameters: the strength of the surface field
generating the background potential field, how much mass is
loaded into a flux rope, how much mass drains during its
evolution, and when along a flux rope’s equilibrium curve the
mass drains. The effect of the local evolution of plasma within
prominences is not discussed in this manuscript, i.e., the mass-
draining that is studied here differs from the mass-loss due to
the Rayleigh–Taylor instability (RTI) that has been studied
extensively in both observations and simulations (e.g., Hillier
et al. 2012; Xia & Keppens 2016; Hillier 2018). In addition,
Kaneko & Yokoyama (2018) pointed out that, in their case, the
mass-loss from the prominence due to RTI was balanced by
new condensations into the prominence. A parametric study
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would be required in order to ascertain the effect of such local
evolutions of mass on the global stability of a flux rope–
prominence system.

Finally, we conclude that the role of mass within solar
eruptions, particularly those involving quiescent prominences,
is greater than has been historically attributed, and requires a
more in-depth analysis.
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