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Maximum Likelihood (ML) estimators such as QUESTþ
allow complex psychophysical measurements to be
made more quickly and precisely than traditional
staircase techniques. They could therefore be useful for
quantifying sensory function in populations with limited
attention spans, such as children. To test this, the
present study empirically evaluated the performance of
an ML estimator (QUESTþ) versus a traditional Up-Down
Weighted Staircase in children and adults. Seventy-one
children (4.7–14.7 years) and 43 adults (18.1–29.6 years)
completed a typical psychophysical procedure: Contrast
Sensitivity Function (CSF) determination. Some
participants were tested twice with the same method
(QUESTþor Staircase), allowing test-retest repeatability
to be quantified. Others were tested once each with
either method (QUESTþand Staircase), allowing accuracy
to be quantified. The results showed that QUESTþwas
more efficient: In both children and adults,
approximately half the number of ML trials were
required to attain comparable levels of accuracy and
reliability as a traditional Staircase paradigm, and
plausible CSF estimates could be made in even the
youngest children. The ML procedure was also as robust
as the Staircase to lapses in concentration, and its
performance did not depend on prespecifying correct
model priors. The results show that ML estimators could
greatly improve our ability to study sensory processes
and detect impairments in children, although important
practical considerations for-and-against their use are
discussed.

Introduction

Rapid measures of sensory function are vital, both
for basic research and clinical practice. To quantify
sensory abilities or detect impairments, we may, for
example, wish to know the smallest increment in
luminance a child can see (Contrast Sensitivity), or the
faintest intensity of sound they can hear (Audiometry).
The most straightforward way to answer such ques-
tions is to present the full range of stimulus intensities,
and to then determine, posthoc, the smallest intensity
below which the child responded correctly (Method of
Constant Stimuli). This approach is often impractical,
however, as the required number of stimulus presen-
tations quickly exceeds both the child’s patience and
the experimenter/clinician’s time.

The traditional solution to limited testing time is to
use adaptive procedures such as up-down Staircases to
adjust the magnitude of the stimulus dynamically, trial-
by-trial, in order to quickly locate the observer’s
threshold (or ‘‘just noticeable difference’’). Over the
years, a number of such Staircase methods have been
developed (e.g., Method of Limits, Transformed Up-
Down, Weighted Up-Down, Bekesy Tracking, PEST),
and Staircases are used extensively throughout psy-
chophysics (for reviews, see Ginsburg & Cannon, 1983;
Leek, 2001; Treutwein, 1995). Many standard clinical
tests (e.g., letter charts, acuity cards, and some forms of
perimetry/microperimetry in vision, and audiometry in
hearing) also consist, fundamentally of traditional
Staircase algorithms.
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In the last 40 years, however, various statistical
optimization procedures have been developed which, in
theory, have a number of advantages over traditional
Staircase methods. This includes algorithms such as
Best-PEST (Pentland, 1980), QUEST (Watson & Pelli,
1983), QUESTþ (Watson, 2017), ZEST (King-Smith,
Grigsby, Vingrys, Benes, & Supowit, 1994), FAST
(Vul, Bergsma, & MacLeod, 2010), Psi (Kontsevich &
Tyler, 1999), Psi-marginal (Prins, 2013), qCSF (Lesmes,
Lu, Baek, & Albright, 2010), MUEST (Snoeren & Puts,
1997), UML (Shen & Richards, 2012), and various
unnamed methods (Green, 1993; King-Smith & Rose,
1997; Kujala & Lukka, 2006); for reviews, see Emerson
(1986); Kingdom and Prins (2010); and Madigan and
Williams (1987). These include both maximum likeli-
hood and maximum a priori methods; however,
following convention, we shall hereafter refer to both
collectively as Maximum Likelihood (ML) estimators.
In all cases, the variable(s) of interest are treated as
unknown values in a parametric model, and after every
trial the probability of each possible parameter value
being true is computed explicitly (for mathematical
details, see Kontsevich & Tyler, 1999; Watson, 2017).
Framing the problem in this way confers several
advantages. First, it becomes possible to compute the
expected most informative stimulus to present on the
next trial, thereby making the test more efficient—
preventing, for example, the ‘‘slow downward crawl’’
that is often observed at the start of Staircases. Second,
information can be integrated across multiple sources,
including prior information (e.g., from normative data,
or the individual’s previous test results). Third, multiple
parameters can be estimated simultaneously. For
instance, the whole psychometric function can be
measured instead of only its threshold, or we can
quantify how a given threshold covaries with some
second parameter—such as how detection thresholds
vary with frequency, in the case of contrast sensitivity
and audiometry. Finally, ML estimators also have a
number of other attractive features, including the
ability to specify dynamic stopping criteria based on
statistical confidence (Alcala-Quintana & Garcı́a-Pérez,
2005; Anderson, 2003; McKendrick & Turpin, 2005),
and the ability to explicitly model and account for lapse
rates (Prins, 2012, 2013; Wichmann & Hill, 2001).

Despite these theoretical advantages, many psycho-
physicists—the present authors included—have con-
tinued to favor traditional Staircases when working
with children. This methodological inertia likely has
many causes (see Discussion), but most fundamental is
the concern that complex ML estimators may simply
fail to function effectively when applied to children.
This is for two main reasons. Firstly, ML estimators
require us to make a number of simplifying assump-
tions (see Discussion). These assumptions may be
acceptable in well-trained, relatively homogeneous

groups of adults, but may be inappropriate for
children, who, for example, often exhibit high levels of
inattentiveness (Godwin et al., 2016; Jones, 2018b;
Jones, Kalwarowsky, Braddick, Atkinson, & Nardini,
2015; Kaunhoven & Dorjee, 2017; Manning, Jones,
Dekker, & Pellicano, 2018; Moore, Ferguson, Halliday,
& Riley, 2008; Smallwood, Fishman, & Schooler, 2007;
Wightman & Allen, 1992; Witton, Talcott, & Henning,
2017), response bias (Trehub, Schneider, Thorpe, &
Judge, 1991; Werner, Marean, Halpin, Spetner, &
Gillenwater, 1992), and other nonstationary behaviors.
The concern is that such deviations from an ‘‘ideal’’
observer might at best degrade the efficiency of the test
compared to standard Staircases, and at worse may
cause the results to become excessively noisy or biased.
Secondly, while ML estimators allow stimuli to be
selected in a statistically optimal manner, there is a
worry that more efficient stimulus sequences may
‘‘throw the baby out with the bathwater’’ by sacrificing
some of the inadvertent beneficial properties that
traditional Staircases possess: for example, the slow
lead-in phase which gives the participant time to learn
the task (Consolidation Trials), or the guarantee of an
easier trial following an error (Motivational Trials).

The easiest and most common way to assess the
efficacy of psychophysical methods is through Monte
Carlo simulations. However, this approach is appro-
priate when considering ‘‘nonideal’’ observers such as
children. A large number of variables can influence the
responses of a human observer, and these variables are
liable to interact in complex ways. For example,
increased lapse rates can lead to longer test durations
which can lead to fatigue, which can lead to further
increases in lapse rates. For tractability, simulations
invariably require the experimenter to make a large
number of simplifying assumptions. Often, however,
these are the same contentious assumptions that are
made by the psychophysical algorithm themselves, and
therefore beg the question of how well the algorithm
can cope in the real world. Furthermore, and likely as a
result, such simulations are often inconsistent with
empirical data (see Garcı́a-Pérez & Alcalá-Quintana,
2009). In short, the only way to be certain whether a
given psychophysical method is effective is to assess
their performance empirically.

The purpose of the present study was therefore to
assess empirically the performance of a modern ML
procedure (QUESTþ; Watson, 2017) versus a tradi-
tional adaptive Staircase (Weighted Up-Down;
Kaernbach, 1991). Specifically, we quantified their
relative accuracy, speed, reliability, and robustness in
children aged 4.7–14.7 years, and also in adults. For the
test algorithm we selected QUESTþ, as this is the most
flexible/powerful procedure currently available, and
essentially represents the superset of most ML algo-
rithms to date (see Methods). For the comparison we
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selected a Weighted Up-Down Staircase method, as we
have previously found it to be fast and reliable in
children—though we do not believe our conclusions
would have differed if another Staircase method had
been used. For the psychophysical task, we used a four-
alternative choice Gabor detection procedure to
measure the contrast sensitivity function [CSF]. This
procedure was intended primarily as representative of a
‘‘typical’’ psychophysical task, and again we believe
that the present findings will generalize to other tasks.
CSF determination was of particular interest, however,
owing to it being a well understood task with previous
normative data for comparison, and because of its
particular importance both in basic research and
clinically (see Hou et al., 2010; Lesmes et al., 2010;
Rosén, Lundström, Venkataraman, Winter, & Unsbo,
2014).

Methods

Overview

Spatial Contrast Sensitivity Functions (CSFs) were
measured in healthy children and adults using a four-
alternative forced choice (4AFC) Gabor detection task.
The task and stimulus-type remained the same
throughout, but two different psychophysical proce-
dures were employed: (a) a traditional Staircase
procedure, and (b) a novel QUESTþ procedure similar
to the ‘‘quick CSF’’ (qCSF; Hou et al., 2010; Lesmes et
al., 2010; Rosén et al., 2014). Some participants were
tested with both methods once, allowing their results
and performance to be compared within-subjects.
Other participants performed a single method twice,
allowing test-retest repeatability to be quantified.

Participants

Participants were 114 normally-sighted individuals:
71 children aged 4.7–14.7 years (M: 9.0; SD: 2.1) and 43
adults aged 18.1–29.6 (M: 21.8; SD: 2.7). An additional
three children were recruited, but their data are not
reported as they did not pass the screening criteria for
normal-vision (see below).

As detailed in Table 1, participants were randomly
assigned to complete either both tests once, or one test
twice. To evaluate test-retest reliability, 19 children and
30 adults repeated the same test twice (Table 1, Rows
1–2). To evaluate the relative accuracy and perfor-
mance of the two methods, 34 children and 13 adults
performed both tests once (Table 1, Row 3). An
additional 18 children were assigned to complete both
tests once, but ultimately contributed data for only one

(Table 1, Rows 4–5). Their failure to contribute data
for the second test was for one of two reasons: Twelve
children (the first 12 to be seen) completed both tests
successfully, but the QUESTþ data were not analyzed
due to a critical error in how the algorithm was
implemented, leading to thresholds being grossly
misestimated (see Parameter Domain, below). Six
children were deemed too young to complete the
Staircase condition within the allotted time, so only
performed the shorter QUESTþ condition (see Results:
Speed).

Finally, in addition to the main test conditions
described above, 20 of the 71 children also completed
an additional second variant of the QUESTþ algorithm
in which a prior was used, but was intentionally mis-
specified (Table 1, Row 6; for further details see
Results: Robustness to incorrect priors). These children
were selected quasirandomly, primarily when schedul-
ing permitted.

The distribution of children’s ages can be seen below
in Figure 9. Note that although a wide range of ages
were examined, the majority of children (75%) fell
between 6–11.5 years.

All participants were required to have normal or
corrected-to-normal vision, as defined by no reported
history of eye disease, and a binocular letter acuity
score of 0.16 logMAR (6/9) or better, assessed using an
ETDRS chart at 4 m (Precision Vision Ltd., La Salle,
IL).

Adults were recruited through the UCL Psychology
Subject Pool (‘‘SONA’’), and received £7/hour com-
pensation. Children were recruited through the UCL
Child Vision Lab volunteer database, and received
certificates, small toys, and transportation costs.
Informed written consent was obtained from all adults

Test condition

Participants

Children Adults

N

Mean age

(range) N

Mean age

(range)

2 3 QUESTþ only 10 8.5 (6.1–9.9) 15 22.3 (18.1–29.6)

2 3 Staircase only 9 8.4 (6.1–9.8) 15 20.8 (18.4–23.7)

1 3 both 34 9.9 (7.2–14.7) 13 22.4 (18.1–25.3)

1 3 QUESTþ only 6 5.3 (4.7–6.3) 0

1 3 Staircase only 12 9.2 (5.6–12.3) 0

1 3 QUESTþ with

Bad Priors (extra)

20 9.4 (5.3–12.3) 0

Total 71 9.0 (4.7–14.7) 43 21.8 (18.1–29.6)

Table 1. Breakdown of participants and test conditions. Notes:
All participants completed one of the test conditions shown in
rows 1–5 (see body text for details). Some children additionally
completed the Bad Priors test condition (row 6); however, these
individuals are not included in the total as they are already
counted in rows 1–5.

Journal of Vision (2019) 19(6):22, 1–19 Farahbakhsh, Dekker, & Jones 3

Downloaded from jov.arvojournals.org on 09/17/2019



and parents, and children provided verbal assent. The
research was carried out in accordance with the tenets
of the Declaration of Helsinki, and was approved by
the UCL Ethics Committee (#1153/001).

Stimuli and apparatus

The stimulus was a horizontal Gabor patch of
variable contrast and spatial frequency. The standard
deviation of the Gaussian hull was 2.538 visual angle,
and the total spatial support was 17.718. The presen-
tation duration was 500 ms, including 83 ms raised-
cosine on/off ramps. The mean luminance of the Gabor
was 136 cd/m2, and it was presented against an
equiluminant gray background.

On each trial, a single Gabor was presented at one of
four cardinal locations, selected at random. The center
of each location was 3.88 from a central fixation point,
which consisted of a black circle 0.198 in diameter (see
Figure 1B). The spatial extent of a Gabor is technically
infinite; however, if we consider 61 SD of the hull to be
the ‘‘edge’’ of the stimulus, then the distance from the
fixation point to the nearest edge was ;1.38.

Stimuli were presented on a 27 00, 10-bit IPS monitor
(EIZO ColorEdge CG2730; 2560� 1440 pixels; EIZO
Co., Ltd., Birmingham, UK), connected via Display-
Port to a 10-bit graphics card (Nvidia GeForce GTX
650Ti; Nvidia Corp., Santa Clara, CA). The screen was
viewed binocularly at a distance of approximately 160
cm, although viewing distance was not strictly con-
trolled (Figure 1A).

Throughout the experiment, participants were regu-
larly reminded to fixate the central spot. To ensure
compliance, gaze location was monitored continuously
using a remote eye tracker (Tobii X120; Tobii Tech-
nology AB, Danderyd, Sweden). If at any point the
participant’s gaze deviated by more than 28 from the
central fixation spot, the experiment would automati-
cally pause, and the fixation point would turn gray.

Hardware were controlled with custom MATLAB
code (R2016b, MathWorks, Natick, MA), using the
Psychophysics Toolbox v3 (Brainard, 1997; Kleiner et
al., 2007) and Tobii SDK 3.0 (Tobii Technology AB,
Danderyd, Sweden). The monitor was calibrated using a
ColorCal colorimeter (Cambridge Research Systems,
Cambridge, UK), and the calibration was validated
using both a Minolta CS-100 (Minolta Camera Co.,

Figure 1. Methods. (A) Apparatus. Participants viewed stimuli binocularly at a distance of 160 cm. A remote eye-tracker was used to

ensure central fixation. (B) General procedure. The task was to locate a single Gabor, presented at one of four locations (4AFC). (C)

Staircase procedure. Eight independent, Weighted, Up-Down adaptive tracks were run at predetermined frequencies. Black squares

denote the starting value of each adaptive track. (D) QUESTþ Procedure. The algorithm attempted to fit the three free parameters in

Equation 2 (Gmax, Fmax, b) to the trial-by-trial response data.
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Osaka, Japan), and also by the monitor’s own integrated
photometer (EIZO Co., Ltd., Birmingham, UK).

Testing took place in a quiet room under mesopic
illumination (12.6 lx; Amprobe LM-120 Light Meter;
Danaher Corporation, Washington, DC). Participants
were seated throughout the test. Family members were
discouraged from being present in the room during
testing. When they were present, they sat outside the
child’s eyeline, and were asked to remain silent during
testing. In order to avoid any potential distractions (or
glare), the area around the participant and screen was
also separated from the main room by a thin black
cotton curtain.

Procedure: General

Participants performed a 4AFC Gabor detection task.
This was presented as a game in which participants were
asked to ‘‘find where the zebra is hiding.’’

During each trial, a single Gabor was presented for
500 ms, followed immediately by 100 ms white noise
masks at all four potential target locations (see Figure
1B). Participants were then given unlimited time to
indicate the location of the Gabor, which they did by
pressing one of four arrows on a custom keypad.
Participants generally pressed the response buttons
themselves, although occasionally the experimenter
would press the button for a period under instruction
from the participant (i.e., if they believed that the
participant was becoming inattentive). After a response
was entered, veridical auditory and visual feedback
were presented in the form of a happy/sad cartoon
zebra and a corresponding sound. The next trial then
commenced automatically after an intertrial interval of
100 ms. The stimulus parameters on each trial
(contrast, spatial frequency), and the overall number of
trials, were determined by the psychophysical algo-
rithm (Staircase or QUESTþ), the details of which are
described below.

Furthermore, regardless of the procedure, ;30
additional catch trials were quasirandomly interleaved
throughout the test trials (uniformly-randomly distri-
bution across every six test trials in QUESTþ; across
every 13 test trials in Staircase). The stimulus on these
catch trials consisted of a highly suprathreshold Gabor
(spatial frequency: 3–16 cycles/8; contrast ¼ 0.8–1.0).
These stimuli were expected to be visible to all
participants, and this was confirmed posthoc from their
empirical data. The intended function of these trials
was to quantify lapse rates (i.e., false negative
responses), though as a secondary function they may
also have served to motivate participants. These trials
were not used when fitting the CSF.

Trials were divided into blocks (‘‘levels’’ of the
game). In the Staircase condition, there were eight

blocks: Each block consisted of a single adaptive-track/
spatial-frequency, and consisted of 47 trials on average
(including catch trials). In the QUESTþ condition,
there were six blocks: Each block consisted of exactly
35 trials (including catch trials), and the same instance
of the algorithm ran continuously across all blocks.
Participants were encouraged to take short breaks
between blocks as required.

Prior to testing, participants also completed two
practice blocks of first nine (block 1) and then fifteen
trials (block 2). During the first practice block, the
target Gabor continued to remain visible until the
participant responded. Furthermore, the experimenter
pressed the response key for the first three trials. This
was to teach participants to the concept of the game. In
the second block, the trials were identical to the main
experiment; however, a fixed sequence of stimulus
levels was used, designed to demonstrate a representa-
tive range of possible frequency/contrast levels: in-
cluding both sub- and suprathreshold magnitudes. The
criterion for completing the two practice blocks
successfully was � 90% correct responses on those
trials expected to be suprathreshold. Most participants
(97%) achieved this on their first attempt. Three
individuals failed to reach this criterion on their first
attempt, and so repeated both practice blocks, at which
point the criterion was met.

Procedure: Staircase

As shown in Figure 1C, the Staircase procedure
consisted of eight independent adaptive tracks, each of
which independently estimated contrast sensitivity for a
particular spatial frequency: 2, 4, 8, 10, 16, 20, 25, and
30 cycles/8. The order of the adaptive tracks was
randomized between participants. Within each adap-
tive track, Michelson contrast was varied using a down-
1 up-2 Weighted Staircase, which targets the 66.7%
correct point on the psychometric function (NB: this is
almost the same as the 62% threshold parameter of the
Weibull function fitted by QUESTþ; Madigan &
Williams, 1987). Step sizes were multiplicative, and
decreased every four trials from: 3, 2, 1.5, 1.25,
remaining at 1.25 thereafter (e.g., a step size of 2 meant
that the contrast halved/doubled after a correct/
incorrect response). As illustrated in Figure 1D, each
adaptive track started two steps away from the
expected threshold at that frequency, as determined by
piloting.

Note that a number of actions were taken to
optimize the overall speed/efficiency of the Staircase
procedure, including the use of a Weighted (rather than
Transformed; Levitt, 1971) Staircase, multiplicative
steps, progressively decreasing step sizes, and a starting
point that varied with spatial frequencies. These
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optimizations were important to ensure that any
observed differences in performance between the
QUESTþ and Staircase procedure were not artefacts of
a poor Staircase implementation.

Each adaptive track continued until at least 19
reversals had occurred (mean N trials¼ 47). Contrast
thresholds were then calculated by geometric-mean-
averaging the last eight reversals for each spatial
frequency. The final output was a vector of eight
values (contrast detection thresholds)—one per spa-
tial frequency. During analysis, these values were
then converted to a single CSF measurement by
numerically fitting Equation 2 (see below) to the
data. This fitting was performed using a bounded
nonlinear minimization procedure (MATLAB’s
fminsearchbnd routine), with parameters constrained
to fall within the same limits imposed by QUESTþ
(see below).

Procedure: QUESTþ

Detailed background information regarding QUES-
Tþ is available elsewhere (Watson, 2017). However, in
general terms it consists of a single, flexible algorithm
that can (a) dynamically vary multiple properties of the
stimulus simultaneously (here, both spatial frequency
and contrast); (b) fit any arbitrary model to the raw
trial-by-trial data (here, a three parameter CSF), and
(c) evaluate the estimated likelihoods of all possible
parameter values to determine the most informative
stimulus to present on the next trial. For an intuitive
graphical overview of how Maximum Likelihood
approaches such as QUESTþ can be applied to the

specific problem of CSF estimation, see figure 2 of Vul
and colleagues (2010).

Model

The model that QUESTþ attempted to fit consisted
of a traditional Weibull psychometric function (see
Watson, 2017), which describes the expected propor-
tion of a correct response, Pcorrect, as a function of
stimulus contrast, c:

Pcorrect ¼ cþ 1� c� kð Þ
� 1� expe �10u log10c�log10að Þ

� �h i
: ð1Þ

The function’s lower asymptote, c, upper asymp-
tote, k, and slope, u, were fixed parameters, with
values 0.25, 0.1, and 3 respectively. The lower
asymptote (‘‘guess rate’’) was known a priori (i.e., in
an mAFC paradigm c¼ 1/m). The upper asymptote
and slopes were set based on pilot data, and were only
intended as approximations. The values were similar
to those used elsewhere in the literature (e.g., u¼ 2, k
¼ 0.04 in the qCSF method of Lesmes et al., 2010), but
were somewhat greater to reflect the poorer concen-
tration and/or lower sensitivity of some children. Note
that, given the nature of QUESTþ, k and u could have
also been made free parameters, but this would have
been impractical, given the additional data/trials
required to constrain a five-dimensional parameter
domain (though see Prins, 2013). The key ‘‘threshold’’
parameter, a, was a free parameter that varied with
spatial frequency in accordance with the following
three parameter CSF:

a ¼ 1

�
exp10 log10 Gmaxð Þ � log10 2ð Þ log10 fð Þ�log10 Fmaxð Þ

log10 2bð Þ=2

� �2� �
if f .Fmax

log10 Gmaxð Þ otherwise

8<
: ; ð2Þ

where Gmax represents peak gain (contrast sensitivity),
Fmax peak spatial frequency, and b the rate of fall-off at
high frequencies (full width half maximum, in octaves).
The action of these three parameters is illustrated
graphically in Figure 1D.

Note that this formulation of the CSF represents a
modified version of the log-parabola model recom-
mended previously by Lesmes et al. (2010) and others
(Watson & Ahumada, 2005). The only difference is that
there is no fall-off/truncation of sensitivity at low
frequencies (Lesmes et al.’s d parameter). The reason
for this difference was practical, not theoretical, and
simply reflects the fact that no low frequency stimuli
were presented. In the longer term, the decision to omit
low frequencies was motivated by the fact that we are
interested in developing a clinically relevant measure,

and lower frequencies are difficult to spatially localize,
exhibit greater individual variability (Watson, 2000),
and are potentially redundant, with only acuity and
peak sensitivity sufficient to describe most CSF curves
to a first-degree of approximation (Pelli & Robson,
1991; though for dissenting opinions, see Dorr et al.,
2017; Watson & Ahumada, 2005).

Stimulus domain

The stimulus domain (i.e., the set of potential Gabor
parameter values) was bivariate, and consisted of 20
possible spatial frequencies spaced log-linearly from 2
to 30 cycles/8, and 20 possible grating contrasts spaced
log-linearly from 0.01% to 100%.
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Parameter domain

The parameter domain (i.e., the set of hypotheses
that the model evaluated) was trivariate (i.e., the three
free variables in Equation 2), and consisted of: 20
values of Gmax, spaced log-linearly from 2 to 1500; 20
values of Fmax, spaced log-linearly from 2 to 30; and 20
values of b, spaced log-linearly from 0.5 to 9. These
values were determined based on piloting, and also on
previous data from Lesmes and colleagues (2010; see
also Hou et al., 2010). Due to user error, 12 children
were tested using values of Gmax spaced 30–1500. This
range failed to include the likely true value for some
participants (e.g., see Figure 3), and so could not
possibly provide meaningful data. The data from these
individuals are therefore not reported (see Methods:
Participants).

Response domain

The response domain consisted of a single binary
variable: correct or incorrect.

Priors

For the majority of testing, the prior probabilities for
all three parameters were flat (all values equally likely).
This is equivalent to not including an explicit Bayesian
prior (though note that some prior assumptions are
nonetheless always implicit in the choice of model, and
in the specification of the stimulus and parameter
domains). The decision not to use explicit priors was

taken in order to avoid the suspicion that any observed
benefits were due purely to the test being biased
towards giving the correct result (see Discussion). The
only exception to this was in the ‘‘Bad Priors’’ test
condition (row 6 in the Table 1), in which incorrect
priors were purposefully selected in order to probe the
robustness of the method. The values of these incorrect
priors can be seen below in the Results (Figure 10).

Output

The QUESTþ algorithm continued for 180 trials
(fixed number of trials). In contrast with the Staircase
procedure, no additional analysis was required to fit the
CSF function posthoc, as the algorithm fits the three
parameters in Equation 2 directly, after every trial. In
practice, however, the QUESTþ routine was rerun
during analysis using 80 steps per parameter, in order
to minimize quantization error.

Code

QUESTþ was run using a custom MATLAB
(MathWorks, Natick, MA) implementation (Jones,
2018a), which is freely available online under an Open
Source license at www.github.com/petejonze/
QuestPlus. At the time of writing, an independent
MATLAB implementation of QUESTþ is also avail-
able as part of PsychToolBox (Brainard, 1997; Kleiner
et al., 2007).

Figure 2. Accuracy. (A) Group-median CSFs 6 95% CI (derived using bootstrapping; N¼ 20,000, bias-corrected accelerated percentile

method) for both children (left panel) and adults (right panel). Separate lines indicate measurements made using QUESTþ (blue, solid)

and a Weighted Staircase procedure (Black, dashed). Triangles indicate previous data from the 1.58 eccentric condition of Rovamo and

colleagues (Rovamo, Virsu, & Näsänen, 1978), angular distance from fixation point to nearest edge of grating. (B) Scatter plots for

each of the three constituent parameters in the CSF model equation (Equation 2), as measured using QUESTþ (abscissa) and Staircase

(ordinate). Each marker indicates an individual child (circle) or adult (square). Black lines indicate identity (perfect correlation).
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Results

Accuracy

Group-median CSF curves for both methods
(QUESTþ vs. Staircase) are shown in Figure 2. There
was good agreement between the two methods, and
also with previous normative data (triangles in Figure
2A).

The only marked difference was a small but
consistent tendency for Gmax (the peak of the CSF) to
be greater in the Staircase than the QUESTþ condition,
and also greater for adults than children. Both
differences were confirmed formally by fitting a linear
mixed effects model with fixed terms for age group
(Child vs. Adult) and condition (QUESTþ vs. Stair-
case), and random intercepts for each participant (i.e.,
to account for individuals who performed both
conditions). Both the fixed terms of age, t(171)¼�3.60,
p , 0.001, and method, t(171)¼ 3.75, p , 0.001, were
significant.

The age difference appears to be the result of a
general developmental trend, which we report in more

detail in a future manuscript. The reason for the
difference between methods can be seen by inspection
of the individual data shown in Figure 3. There, it can
be seen that some observers (e.g., ages 7.6, 8.7, 14.6),
though not all, exhibited a distinct peak in sensitivity
between 4—8 cycles/8, with a fall off of sensitivity at 2
cycles/8. Because, as shown below in Figure 7,
QUESTþ tended to primarily use the sensitivity at 2
cycles/8 to define the upper asymptote, these higher
sensitivities to midrange frequencies were not captured
by the ML routine.

These systematic differences notwithstanding, there
was good agreement between the two methods. Thus,
the parameters Gmax and Fmax were strongly correlated
(r ¼ 0.6; see Figure 2B). The parameter b was also
correlated, though the effect was weaker, likely due to
the relatively smaller amounts of individual variability
within each condition. Visually, there was good
agreement between the CSF curves for each individual
(Figure 3). Furthermore, to quantify the overall
concordance of CSF estimates, we took the median
thresholds shown in Figure 2A, and calculated the root
mean squared error (RMSE) between the two sets of
values, using the eight spatial frequencies common to

Figure 3. Accuracy: CSFs for 25 individuals (participants sampled uniformly across age). Curves represent the best fitting CSF, as

measured using QUESTþ (blue, solid), and Staircase (black, dashed). Black circles represent the raw threshold measurement for each

of the constituent Staircase measurements (corresponding constituent data for QUESTþnot shown). Text in each panel denotes the

individual’s age at time of testing, in years.
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both methods. The RMSE between methods was 1.04
dB for children, and 0.80 dB for adults; NB: following
convention (Watson, 2000), 1 dB¼ 20 Log10c. For
reference, the RMSE within methods (i.e., the differ-
ence between the median values from the 1st and 2nd
run in those participants who performed the same
method twice), was similar or greater: 0.66/2.45 dB for
children (QUESTþ/Staircase), and 1.28/0.99 dB for
adults (QUESTþ/Staircase). In this context, the con-
cordance between methods appears strong.

Reliability

To assess the reliability of each method, Bland-
Altman tests (Bland & Altman, 1999) were used to
quantify test-retest repeatability in those participants
who performed the same test twice (Rows 1 and 2 of
Table 1). As shown in Figure 4, for five of the six
parameter/age-group combinations, the QUESTþ data
(with 180 trials) were more reliable across repeats than
the Staircase method (with 350–400 trials). This
indicates that QUESTþ was more reliable than the
longer Staircase procedure.

To assess this difference formally, the Bland-Altman
analysis was repeated for increasing numbers of trials,
and bootstrapping was used to derive 95% CI for the
95% Coefficient of Repeatability. The results are shown
in Figure 4B. By inspection of the confidence intervals,
it can be seen that for any given number of trials,
QUESTþ results were significantly more reliable (all

parameters/ages). Furthermore, with QUESTþ the
reliability of the test reached an approximate asymptote
by 100 trials, whereas the reliability of the Staircase
continued to improve gradually until at least 200 trials.

Speed

In terms of overall test duration, QUESTþwas faster
than the Staircase condition, with average durations of
7.2 6 2.9 versus 12.1 6 2.3 minutes (median 6 IQR),
respectively. The ;40% difference between methods
was consistent across all ages. However absolute test
times did vary with age, increasing substantially for
children younger than around 9 years (Figure 5A).
Anecdotally, this change with age was largely due to
the need for additional explanation, encouragement,
and breaks. One corollary of this was that none of the
very youngest children (, 6 years) were given the
Staircase condition, as it was unlikely that they would
complete it within a single test session. The difference in
test durations between methods was largely due to the
difference in number of trials (QUESTþ: 180 test trials,
plus 30 catch trials; Staircase: 319—429 test trials, plus
30 catch trials). When overall test duration was divided
by number of trials, the duration per trial were similar
for the two methods (in line with the use of identical
within-trial procedures), although the same qualitative
age effect remained (Figure 5B).

Since the stopping criterion was different for the two
algorithms (see Methods), the question is whether the

Figure 4. Reliability. (A) Bland-Altman plots for each CSF parameter and age group (NB: Using all trials). Circles represent individual

participants. Dashed lines indicate the 95% Limits of Agreement. (B) 95% Coefficients of Repeatability for each parameter/age-group

(panels), and for both QUESTþ (blue, solid lines) and Staircase (Blacked, dashed lines), computed using variable numbers of test trials.

Note that this analysis involved performing repeated Bland-Altman analyses: The final point on each curve therefore corresponds to

the data shown in Panel A.
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additional trials in the Staircase were necessary. To
answer this, Figure 6A shows group-median CSFs
fitted using progressively more trials. From these it can
be seen that QUESTþ converged on the reference value
(the group-median CSF estimated using all available
test data) in fewer trials than the Staircase procedure,
suggesting that the former was more efficient. To
quantify this difference more formally, we computed
the extent to which an estimated CSF changed
following each observer response. Specifically, as
illustrated in Figure 6B, we computed DCSF as the area
of the difference between successive CSF estimates,
computed every eight trials (i.e., one trial per adaptive
track in the Staircase procedure, or every eight
QUESTþ trials). This value provides an index of how
stable the CSF measurement was, and is conceptually
related to the ‘‘sweat factor’’ often used in simulations
to evaluate the efficiency of a psychophysical algorithm
(Treutwein, 1995). Values of DCSF were computed
independently for every test and then group-averaged.
From the results shown in Figure 6B, it can be seen that
the QUESTþ estimates were largely stable after 100
trials, whereas the Staircase estimates continued to vary
even after 300 trials. Furthermore, for any given
number of trials, the Staircase estimates were less stable
than those for QUESTþ. For example, the stability of
the QUESTþ procedure (with 180 trials) was not
reached by the Staircase procedure until approximately
300 trials). These results are in qualitative agreement
with the test-retest reliability analyses presented previ-
ously (Figure 4B), and together, they indicate that
QUESTþ was substantially (;50%) more efficient.

To begin to understand the reason for this difference
in test efficiency, Figure 7 shows the distribution of

Figure 5. Speed: temporal duration. (A) Whole test duration

(including breaks and catch trials) as a function of age, for

QUESTþ (blue squares) and Staircase (black circles) conditions.

Each marker represents an individual test run. Lines represent

the best fitting two-term power series (y¼ axbþ c). (B) Per-trial

duration, as a function of age. These represent the same data as

Panel A, but normalized by number of trials. The red line

represents the best fit to both data sets.

Figure 6. Speed: Test efficiency. (A) Group-median CSFs,

computed using different numbers of test trials (same format as

Figure 2A). The top row (blue curves) represent data collected

using QUESTþ. The bottom row (gray curves), represents data

collected using a Weighted Staircase. The red curve in every

panel is the fit to the Staircase data using all available trials,

which we take as the reference value (i.e., the closest available

approximation to the ground truth) (B) Mean (695% CI) change

in the CSF, as a function of number of trials. Change magnitude,

DCSF, was computed by numerically integrating the trial-by-trial

difference in CSF, as illustrated by the red regions in the

breakout panels (NB: these schematics are illustrative only, and

not shown to scale). Values of DCSF were computed indepen-

dently for each individual (and each trial pair), and then group-

averaged.

Figure 7. Heatmaps indicating the distribution of stimulus

values when using QUESTþ (left) and Staircase (right). Trials

from every condition/participant are included. Lighter colors

indicate a greater proportion of trials (irrespective of whether

responses were correct or incorrect). For reference, black

curves give the group-median CSF values from Figure 2A.
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stimulus values under each of the two regimens. By
inspection, it can be seen that QUESTþ rapidly homed
in on observers’ CSF, with the majority of stimuli
presented near-threshold. Conversely, the stimuli in the
Staircase condition were considerably more variable.
The initial ‘‘crawl’’ down to threshold is evident in the
greater proportion of high contrast values, and there
was also a substantial overshoot, with many more very
low contrast (subthreshold) values presented. A rela-
tively large spread of stimulus contrast values is also
evident in the QUESTþ at the highest spatial frequen-
cies (see Figure 7, left panel). This is because the
algorithm typically commenced testing at these higher
frequencies (at which point true sensitivity was entirely
unknown), and used the estimates of contrast sensitiv-
ity made there to constrain the rest of the curve (see
Supplemental Figure S1).

Robustness: Lapses in concentration

To assess the resilience of each method to lapses in
concentration, lapse rates were estimated from the ;30
false-negative (highly suprathreshold) catch-trials in
each test, as follows:

dLapse Rate ¼ m 1� Pcorrectð Þ
m� 1

; ð3Þ

where Pcorrect was the proportion of correct responses,
and m was the number of response alternatives (m¼ 4).
Estimated lapse rates were then correlated against the
area under the CSF curve (AUC), which we used as an
overall index of sensitivity. The results are shown in
Figure 8A. For both methods, higher lapse rates were

correlated with lower estimated sensitivity (Spearman
rank-order; p , 0.001), indicating that the accuracy of
both methods was affected negatively by lapses in
concentration. There was no significant difference
between the best fitting geometric-mean regression
slopes for the two conditions (t194 ¼ 1.30, p¼ 0.194),
indicating that neither method was substantially more
or less resilient to lapses in concentration.

There was a significant negative correlation between
age and lapse rates (Spearman rank-order; r194¼�0.31,
p , 0.001), with children exhibiting more lapses than
adults (see Figure 8B). These differences may explain—
in part or in full—the developmental differences in
sensitivity observed across both methods (see Results:
Accuracy). This more general developmental question
was not explored systematically in the present work,
however. It is also worth noting that most children
(57%) and adults (79%) exhibited no lapses (Lapse Rate
¼ 0), as shown in Figure 8B.

Robustness: Young children

A particular concern was that ML estimators may
work well in general, but produce highly inaccurate or
imprecise estimates in some individuals, particularly the
very young. To explore this possibility, Figure 9A
shows the absolute difference in CSF parameter
estimates for those individuals who completed the same
method twice. From this it can be seen that there was
no indication of a systematic age difference in terms of
test repeatability (except for a very weak tendency for
measurements to be more variable in adults in the
Staircase condition). One possible exception to this is
the very youngest observer, who did produce the most/
second-most variable values of Fmax and b. However, it
should be noted that even greater variability was
exhibited by some adults in the Staircase condition.
Furthermore, values of Gmax tended to be relatively
consistent in younger observers in both conditions.
Figure 9B also shows QUESTþ CSF curves for the six
children younger than 6 years old (4.7–5.7 years). These
curves appeared well formed, and differed only in
values of Gmax, tending to be somewhat lower than
those of their peers. In summary, while the small
numbers preclude any firm conclusions, it appeared
that even very young children were able to complete the
QUESTþ test, and to do so in a manner that produced
plausible and relatively consistent results.

Robustness: Incorrect priors

In all of the foregoing analyses, the QUESTþ
algorithm was implemented using uniform priors. A
unique advantage of ML estimators, however, is their

Figure 8. Robustness to lapses in concentration. (A) Scatter plot

showing overall contrast sensitivity (Area under the CSF Curve)

as a function of lapse rates (proportion of incorrect responses in

false-negative catch trials). Markers represent individual tests

for children (circles) and adults (squares). Data from all test

conditions (Table 1, Rows 1–5) were included, so some

individuals contributed multiple data points. Lines represent

least-square geometric-mean regression slopes. P values are for

Spearman correlations. (B) Histograms showing the distribution

of lapse rates among children (top) and adults (bottom).
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ability to integrate prior information to constrain the
search space. If used incorrectly though, explicit priors
can also be a source of potential measurement error.
For example, if priors based on adult data are
misapplied to children with lower sensitivities, then the
test may become slower, less reliable, or systematically
biased. A full characterization of the robustness of ML
estimators to mis-specified priors was beyond the scope
of the present work. However, to provide an initial
assay, 20 children (Row 6 of Table 1) additionally

completed a version of QUESTþ in the prior estimates
for Gmax and b were initially underestimated (see Figure
10B heatmaps). As shown in Figure 10, the final
parameter estimates in the standard, ‘‘flat prior’’
condition (Figure 10A, black circles) were statistically
indistinguishable from those in the corresponding,
‘‘bad prior’’ condition (Figure 10B, black circles), as
indicated by their overlapping 95% CI. This implies
that, in this instance, QUESTþ was able to recover
from incorrect prior information, although whether

Figure 9. Robustness to young children. (A) Absolute test-retest difference in CSF parameters as a function of age. Each marker

represents a single individual (only those individuals who performed the same test twice included). Black lines represent least-square

geometric-mean regression slopes. P values are for Pearson correlations (NB: all nonsignificant, after correcting for multiple

comparisons). (B) Individual CSF curves for the six children younger than six years measured using QUESTþ, versus the group-median

average across all children (blue shaded curve).

Figure 10. Robustness of QUESTþ to incorrect priors. (A) Group-median (695% CI) parameter estimates (black circles) in the standard,

flat-prior condition. The background heatmap indicates the prior likelihood of each possible parameter value (NB: In this instance, all

values are equally likely). (B) Same as A, but when intentionally incorrect priors were initially specified (Bad Priors condition). Red

triangles highlight the mode of the initial prior distributions. Note the similar parameter estimates in both subfigures.
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this continues to hold in more extreme cases remains
unknown.

Discussion

The present study provides empirical evidence that
ML estimators such as QUESTþ constitute an effective
and efficient psychophysical tool for testing children
aged 5 to 15 years, as well as adults. Even the youngest
participants exhibited no difficulties in completing the
QUESTþ assessment of CSF, and posthoc analyses
indicated that approximately 50% fewer ML trials were
required to attain comparable levels of accuracy and
reliability versus a traditional Staircase paradigm.

The exact difference in performance between ML
estimators and traditional Staircase designs will depend
on the particulars of a given experiment. For example,
it may have been possible to further optimize the
Staircase condition by using fewer runs, or by
modifying the steps sizes or starting location. Equally,
it is likely that the speed and/or reliability of the
QUESTþ paradigm could have been further improved,
for example by varying the range or distribution of
parameter values, or by using prior probabilities to
explicitly constrain the search space. It is impossible,
therefore, to put a definitive number on their relative
efficiency. However, what is clear is that in the present
study—in which both methods were implemented to
the best of our abilities—the performance of QUESTþ
substantially exceeded that of a Weighted Up-Down
Staircase. It was also particularly reassuring to note
that even the youngest children were able to success-
fully complete the QUESTþ procedure, and that our
initial concerns regarding the suitability of ML
estimators for children, such as the lack of a gradual
‘‘lead-in’’ phase, appeared unfounded (see Introduc-
tion).

The decision not to incorporate explicit priors in our
implementation of QUESTþ is noteworthy in that the
reported benefits are potentially an underestimate: It is
likely that if appropriate priors had been specified then
the relative speed and reliability of QUESTþ would
have further improved. The decision not to use explicit
priors was necessary, to avoid the suspicion that any
benefits were purely an artefact of our a priori
assumptions (a ‘‘lucky guess’’). However, it is encour-
aging that even when prior information is not
employed, ML methods still confer substantial benefits.
This is particularly relevant for researchers working
with children, where there is often a paucity of reliable
prior information. Even in cases where prior data are
available, some researchers may, on the basis of the
present results, reasonably choose to not to incorporate

them, to avoid the risk of introducing bias or user-error
(see below).

Comparison to previous literature

The present empirical results are consistent with
simulations, which have shown that ML estimators are
highly efficient under idealized conditions (Kontsevich
& Tyler, 1999; Prins, 2013; Turpin, McKendrick,
Johnson, & Vingrys, 2003; Watson & Pelli, 1983). In
terms of empirical data, the present results are most
directly comparable to studies of the ‘‘quick CSF’’
(qCSF; Hou et al., 2010; Lesmes et al., 2010; Rosén et
al., 2014): a specific implementation of a QUESTþ type
method that also attempts to fit a variant of Equation
2. In those studies, it has been reported (in adults), that
the majority of the CSF measurement error is reduced
between 50–100 trials, and that by ;100 trials ML
estimates are approximately as accurate and precise as
more exhaustive measurements made using traditional
‘‘pointwise’’ threshold estimates at fixed frequencies
(e.g., involving ;300 trials). The present findings are in
good qualitative agreement, and suggest further that
the same level of performance can be similarly expected
in children as young as 5 years. This is particularly
encouraging as CSF measurements have significant
clinical utility as a more complete and precise measure
of spatial vision than current gold standards (Arden,
1978; Ginsburg, 2003; Hess & Howell, 1977; Hou et al.,
2016; Marmor, 1986; Onal, Yenice, Cakir, & Temel,
2008). The present results suggest that effective (;100
trial) measurements could be achieved in ;3.5 min in
children 8þyears, and in 3.5–7 min in younger children.
Previous reports have further indicated that, when
Bayesian priors are employed, ML estimators can
rapidly classify typical/atypical vision in adults with as
few as 25–50 trials (Hou et al., 2010; Lesmes et al.,
2010). Because the present study only examined
normally sighted children, we are unable to say whether
visual impairments could be detected as efficiently in
children also; however, the present data give us no
cause for doubt.

Wider considerations for and against the use of
QUESTþ

The present results demonstrate that ML estimators
such as QUESTþ are more efficient than traditional
Staircase algorithms in children, allowing a given
degree of measurement precision to be attained in
substantially fewer trials. This could prove vital in
allowing detailed, rigorous measurements of vision
even when testing times are constrained (e.g., in clinical
environments) or when the observer’s attention span is
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limited (e.g., in children). However, test efficiency is not
always the only consideration when designing/imple-
menting a psychophysical test. Here we consider other
key concerns that may remain.

User error

Probably the greatest reason against the use of ML
methods is the added potential for experimenter error.
Measurements can be potentially rendered biased,
noisy, or—in extreme cases—unusable due to a range
of factors, including mathematical errors in the model
formulation, an inappropriate choice of model, an
inappropriate range of parameter values, inappropriate
spacing of parameter values, inappropriate priors, an
inappropriate stopping rule, or incorrect implementa-
tion of the algorithm itself.

Traditional Staircase designs are not immune from
user error either. However, those errors tend to be
relatively obvious and easy to diagnose. In contrast,
errors with QUESTþ are often pernicious. For
example, even after careful piloting in the present
study, the QUESTþ data from the first 12 children
(Table 1 Row 5) had to be discarded due to user
experimenter in specifying the parameters domain (see
Methods); and similar reports of ‘‘catastrophic fail-
ures’’ have been reported anecdotally by colleagues. Put
simply, with complex statistical methods there is more
to go wrong, and it is harder to notice when it does. In
practical terms, this means that a much greater level of
detailed testing and development is required, and these
added costs must be traded-off against the gain in test
efficiency. The increased potential for user error is of
particular concern for work involving children, where
overheads are often especially high (e.g., recruitment
costs, labor costs, the cost of acquiring ethical
permissions, etc.), and where repeating a failed
experiment is often not an option.

Model assumptions

ML methods require the user to make a large
number of assumptions. For example, the methods
themselves typically assume that each response is made
independently, and that the observer’s ability to
perform the task remains stationary throughout the
test. Furthermore, the particular model implemented
will also contain many further assumptions (e.g.,
pertaining to the shape of psychometric function, the
values of its fixed parameters, and the possible values of
its free parameters, see Methods). It is worth noting
that ‘‘nonparametric’’ designs such as Staircases also
contain a number of assumptions. For instance,
Staircases likewise assume explicitly that responses are
independent and the target parameter is stationary (see
Levitt, 1971), and the chosen step size and starting

positions implicitly express the experimenters’ beliefs
about the underlying psychometric slope and possible
distribution of threshold values. However, their as-
sumptions are generally fewer in number, and weaker
in strength (i.e., that the psychometric function is
monotonic, but not its precise form). It was encour-
aging that, in the present data, the ML estimator
tended to be relatively robust even when these
assumptions were breached (though see Limitations
and Future work), and it could be argued that by
making all assumptions explicit, methods such as
QUESTþ actually encourages good practice. However,
it is clear that need to specify statistical models in detail
often necessitates much more extensive piloting, and
can be particularly daunting when working with highly
heterogenous populations such as children or clinical
groups.

Loss of information

The efficiency of ML estimators follows in part from
the fact that they minimize redundancy across mea-
surements. For example, the Staircase procedure used
in the present study estimated contrast sensitivity at
eight discrete spatial frequencies, whereas with
QUESTþ, measurements were clustered primarily at a
few key locations (see Figure 7), and these few locations
were sufficient to constrain the three parameters in the
CSF model. Other regions of the stimulus domain were
tested rarely, if at all. For example, given that the
model assumes contrast sensitivity is invariant at
midfrequencies, all sensitivities between 3 cycles/8 and
Fmax could be inferred exactly from sensitivity at 2
cycles/8. Such extrapolation can greatly reduce test
durations, but also means that any localized deviations
from the expected model may be missed. For example,
as has been noted previously (Lesmes et al., 2010), the
present model would be insensitive to ‘‘notches’’ in the
CSF due to neurological disorders (Bodis-Wollner,
1972) or the adaptation of specific frequency-filters
(Blakemore & Campbell, 1969). Furthermore, even in
the present study, the assumed model meant that Gmax

was underestimated in those observers whose contrast
sensitivities exhibit a distinct peak between 4–8 cycles/8.
Elsewhere, fitting a continuous monotonic curve would
be likewise inappropriate if trying to detect isolated
(e.g., noise induced) defects in audiometry, or scotomas
in the visual field.

To some extent, the fact that the ML method used in
the present study would be insensitive to acute
‘‘notches’’ in sensitivity is a criticism of our imple-
mentation, rather than the ML approach per se. For
example, it would be perfectly possible to fit a more
complex spline type model, or to use multiple ML
routines to independently estimate thresholds at
predefined stimulus location (i.e., as required in the
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Staircase design). Indeed, the former approach has
been used successfully to estimate equal-loudness
contours in hearing (Shen, Zhang, & Zhang, 2018),
while the latter is the approach currently used in visual
field testing (Turpin et al., 2003). However, it is
important to note that in doing so, the speed of the
technique will be reduced concomitantly, and in the
limiting case, there may well be relatively little
difference in efficiency between the Staircase and ML
procedures—though residual benefits may remain, such
as the ability of ML procedures to integrate priors and
dynamic stopping rules (Shen et al., 2018).

Not always necessary

As discussed previously, the setup costs (e.g., in
terms of time, effort, and expertise) associated with ML
algorithms can be substantial. In this context, it is
important to note that simpler techniques may
sometimes be perfectly sufficient. For instance, in the
present study, both QUESTþ and a traditional
Staircase ultimately produced concordant measure-
ments with similar reliability. The difference was
primarily that QUESTþ produced these measurements
more quickly. This is consistent with previous reports
that have found that, as long as the starting point and
percent correct target are well chosen, ‘‘a simple
Staircase is [often] as good as a fancy likelihood
method’’ (Klein, 2001, p. 1436; see also Green, 1990).

Summary

Advanced ML estimators have tremendous potential
for allowing detailed and precise psychophysical
measurements to be made in otherwise hard to reach
populations. They are particularly well suited to
situations in which testing time is critical, such as when
the search space is large, the number of participants is
great, when the observer’s concentration span is limited
(as is often the case with young children), or when the
test is only one component of an extensive battery.
However, ML estimators are not always necessary or
appropriate, and, in our experience, are more suscep-
tible to experimenter errors, particularly among inex-
perienced users. Whether their increased efficiency
justifies the additional investment in time, effort, and
risk will depend on the circumstances of a given
experiment. In many cases, the decision of whether to
use ML procedures is ultimately a question of time-
costs, and whether the cost is better born by the
participant (in the form of longer testing times) or the
experimenter (in the form of longer development
times). If testing time is no object, then it may well be
reasonable to use simpler psychophysical designs, such
as Staircases.

Limitations and future work

Age

The majority of the children in the present study
were aged 6 years and above. It remains an open
question as to whether there is a lower limit on which
ages ML estimators are suitable. The present results
were encouraging, insofar as the six youngest children
(4.7–5.7 years) were all able to complete the QUESTþ
procedure (albeit more slowly than their peers), and
there was no evidence of test reliability decreasing with
age (Figure 9A). From this, it may appear that ML
estimators are superior at all ages. However, this may
not be correct. Consider, for example, the fact that
young children and infants are liable to become highly
despondent or distracted when the stimulus approaches
threshold. This tendency is evident in the characteristic
‘‘saw tooth’’ pattern sometimes observed with tradi-
tional Staircase, whereby the child loses all interest
when the task becomes impossible, and does not
resume answering correctly for many trials thereafter
(Jones et al., 2015; Moore et al., 2008). Such
nonstationary behaviors can be accommodated to a
degree when using a Staircase. For example, when the
guessing (false positive) rate is low, it may be
appropriate to simply use the lowest intensity correctly-
responded-to stimulus as an index of threshold, rather
than averaging reversals across trials (see Jones et al.,
2015). However, it is not obvious what corresponding
heuristics could be with QUESTþ. Furthermore, it is
unclear whether some children would ever regain
interest without the run of easy trials guaranteed by a
traditional Staircase following an incorrect response.
Ultimately, these are empirical question, which can
only be answered in future by testing cohorts of infants
and preschool children.

Robustness

It remains unclear precisely how tolerant ML
estimators are to ‘‘user error,’’ either in the form of
model misspecification or incorrect priors. With
regards to model misspecification, it is likely, for
example, that the values we selected for the slope and
upper asymptote of the psychometric function (both of
which were fixed parameters), were not strictly correct
for any individual. They nevertheless appeared to serve
as acceptable approximations, and this is consistent
with previous observations that statistical methods tend
to be reasonably tolerant of incorrect specifications of
psychometric slope (Madigan & Williams, 1987).
However, a breakdown point must exist, so the
question remains: How accurate do the fixed parame-
ters in a psychometric model need to be in order for it
to operate acceptably?
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With regards to incorrect priors, the present results
were encouraging, insomuch as the results remained
largely invariant even when we intentionally included
incorrect priors that (falsely) suggested that other
values were more likely. However, as with model
misspecification, it is trivially true that in some
circumstances erroneous priors will lead to biased or
misleading results. It would be likewise important to
know how great a deviation is tolerable before recovery
is no longer guaranteed, and what the associated
impacts on reliability and test durations are.

Answering these questions is not trivial. There are a
large number of interacting variables to consider, and a
large quantity of data (both simulated and empirical)
would be required to formulate any laws or heuristics.
It would be extremely useful, however, to be able to
specify what the reasonable operating range of a given
model is, both when designing one’s own tests and
judging others’.

The bigger picture

Rapid, reliable tests are vital for detecting disease,
evaluating the effectiveness of novel interventions, and
studying how the visual system develops with age. Even
with a maximally efficient algorithm, however, most
psychophysical measurements will still require several
minutes of sustained testing. In this context, it remains
crucial that the child is sufficiently motivated. This can
generally be achieved through positive feedback and
encouragement, by introducing a sense of competition,
and—perhaps most importantly of all—by presenting
the task in the context of an intuitive and engaging
narrative. Some experimenters additionally advocate
the use of elaborate graphics or game mechanics during
the task itself (‘‘gamification’’). While this can be
effective, such measures can also prove counterpro-
ductive, introducing unnecessary confounds and/or
prolonging the duration of the test.

Furthermore, even with a maximally compelling
task, it is inevitable that some observers will lose
focus at some point during the test. Such lapses in
concentration can add measurement error, and/or
cause sensory abilities to be systematically underes-
timated (Jones, 2018b; Manning et al., 2018). There
have been suggestions in the past that ML estimators
are more resistant to such lapses than traditional
Staircase procedures (Manning et al., 2018; though
see also Garcı́a-Pérez & Alcalá-Quintana, 2009). This
was not observed in the present study, however (see
Figure 8). We therefore remain reliant, in the short
term, on the shrewd judgements and timely interven-
tions of an experienced experimenter to ensure good
quality data.

In the longer term, however, the recent proliferation
of affordable head-, face-, eye- and body-tracking
sensors could allow us monitor task compliance
autonomously (Jones, 2018b). And a key further
advantage of ML estimators is that they provide a
statistical framework for integrating these objective
measures directly into the threshold estimation pro-
cedure. Thus, responses from ‘‘high concentration’’
trials can be given greater weight, while responses
from ‘‘low concentration’’ trials are partially ignored
(for details, see Jones, 2018b). This means that more
attentive observers are required to complete fewer
trials (incentivizing good behavior), and could dras-
tically improve test reliability and accuracy in cases
where trained experimenters are unavailable or too
costly.

Summary and concluding remarks

Maximum Likelihood estimators (QUESTþ) are
more efficient than traditional psychophysical proce-
dures (Up-Down Staircases) in children aged 4.7–14.7
years, and in adults. Given a large number of trials,
both methods converged on the same estimates of an
observer’s Contrast Sensitivity Function. However,
with a limited number of trials, an ML estimator was
more accurate and reliable, and was as robust to lapses
in concentration (though no better). ML estimators are
therefore particularly well suited to situations where
testing speed is imperative.

Keywords: maximum likelihood, psychophysics,
children, contrast sensitivity function, QUESTþ
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