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Abstract

We present griz light curves of 251 SNe Ia from the first 3 years of the Dark Energy Survey Supernova Program’s
(DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the
calibrated fluxes and associated uncertainties used in the cosmological parameter analysis by employing a scene
modeling approach that simultaneously models a variable transient flux and temporally constant host galaxy. We
inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon
comparison of input and measured artificial supernova fluxes, we find that flux biases peak at 3mmag. We require
corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location,
similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the
light curves can be found at https://des.ncsa.illinois.edu/releases/sn.

Key words: cosmology: observations – supernovae: general – techniques: photometric

1. Introduction

The discovery of the accelerated expansion of the universe
(Riess et al. 1998; Perlmutter et al. 1999) using SNe Ia has
motivated the collection of ever-larger SNIa samples in order
to improve measurements of cosmological distances and test
the nature of dark energy. Constraints from SNeIa are best
measured with a combination of low (z<0.1) and higher
(z>0.1) redshift SNe. The trend in SN surveys over the last
three decades has been toward wider and/or deeper rolling
surveys where the same images are used to both discover SNe
and measure their light curves. The rolling search is conducive
to forward modeling photometric methods. So-called “Scene
Modeling Photometry” (hereafter SMP), which simultaneously
models a variable transient flux and temporally constant host
galaxy, was first developed by Astier et al. (2006) and has been
implemented for recent SNIa cosmology analyses including
for the Sloan Digital Sky Survey (SDSS; Holtzman et al. 2008,
hereafter H08) and Supernova Legacy Survey (SNLS; Astier
et al. 2013, hereafter A13), and as a cross-check in Pan-
STARRS (PS1; Scolnic et al. 2017).

The Dark Energy Survey (DES) was conducted in two parts; a
wide-field galaxy survey (5000 deg2) and a dedicated transient
search in the southern celestial hemisphere covering an area of
27deg2 (Bernstein et al. 2012, K15: Kessler et al. 2015). The
Dark Energy Survey Supernova Program (hereafter DES-SN) has
discovered tens of thousands of transients, of which ∼3000 are
photometrically classified SNeIa covering 0.01<z<1.2. A
subset of ≈500 SNeIa from 0.017<z<0.9 over 5 yr has been
spectroscopically confirmed.

In this work we detail and validate our SMP pipeline, which
forward models SNe and their host galaxies to obtain the DES-
SN light curves used for cosmological analysis. This paper is
part of a series of nine papers describing the analyses that lead
to cosmological constraints from the spectroscopic SNeIa
observed in the first three years of DES-SN and combined with
a low-redshift sample (hereafter DES-SN3YR). These are the
DES-SN search and discovery (K15), spectroscopic follow-up
(D’Andrea et al. 2018), calibration (Lasker et al. 2018),
photometry (this work), simulations of our data set (Kessler
et al. 2018), analysis of Host-SN correlations (M. Smith et al.
2019, in preparation), an inverse distance ladder H0 measure-
ment (Macaulay et al. 2018), the blinded cosmological analysis
and systematics validation (B18-SYS: Brout et al. 2018-SYS),
a Bayesian Hierarchical Method of cosmological parameter
fitting (Hinton et al. 2018), and ultimately the unblinded

cosmological parameter constraints (DES Collaboration et al.
2018).
Prior to implementing SMP, supernova candidates were

discovered and located by the Difference Imaging pipeline,
hereafter DiffImg (K15), which uses template images,
degrades either the template image or the search image to
match the image with worse seeing, and performs an image
subtraction to produce catalogs of transient detections.
DiffImg then creates candidates from multiple spatially
coincident detections, and produces light curves from point-
spread function (PSF) photometry on the differenced images.
DiffImg photometry is used in the real-time analysis of light
curves for the spectroscopic follow-up program, and has
already been used in several analyses (Soares-Santos et al.
2016, 2017; Doctor et al. 2017). SMP is not used for transient
discovery because it would require modeling of all galaxies
within the DES-SN footprint, which is not tractable for real-
time transient searches. However, because our SMP pipeline
does not degrade images in the extraction of SN fluxes, it is
ideal for use in precision cosmology. The light curves
presented here are used in the DES-SN3YR cosmological
parameter analysis (B18-SYS) and for obtaining cosmological
constraints (DES Collaboration et al. 2018).
We describe our implementation of the scene modeling

concept, which is derived from the techniques used by SDSS
(H08) and SNLS (A13) and has been developed specifically for
DES-SN cosmology. Scene modeling methods have been used
extensively in other types of analyses such as crowded-field
photometry (Riess et al. 2016; Schlafly et al. 2018). In our
implementation of SMP, the transient flux and host galaxy are
modeled simultaneously. The transient flux is allowed to vary
over time and the host galaxy flux is fixed across all
observations.
In order to evaluate the results of SMP, A13 moved nearby

stars on their images to locations near host galaxies and treated
them as fake SNe but did not measure light curves. We have
developed a unique approach in which we generated 100,000
artificial SN light curves that are inserted as point sources onto
DECam images (hereafter “fakes”). Injection of artificial point
sources is one component of a multifaceted plan to use fake
SNe to trace biases throughout the DES-SN cosmological
parameter analysis. Here, they are used to check for flux biases
introduced by the photometric pipeline and to determine
corrections for SMP flux uncertainties. B18-SYS use fakes to
characterize the output of DiffImg and SMP, which is needed
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for catalog-level simulations that are used to predict distance
biases. B18-SYS also present a full cosmological analysis of
10,000 fake SNe that have been “discovered” by the search
pipeline, processed by the SMP pipeline, and processed through
our cosmological analysis pipeline in the same manner as the
real data set.

One outstanding problem in SN photometry that was dealt
with in previous surveys (e.g., R14: Rest et al. 2014, J17: Jones
et al. 2017) is the underestimation of SN flux uncertainties
when SNe are located near high local host galaxy brightness.
R14 and J17 characterize the size of this effect by performing
photometry at the location of the SNe when the SN flux is
known to be zero. Here, we describe how we use our extensive
pipeline of fakes to assess the size of this effect for our analysis
and model it precisely in catalog level simulations of our
data set.

The outline of this paper is as follows. We discuss our data
set, the preparation, and internal calibration of DES images in
Section 2. Our scene modeling method is explained in
Section 3. In Section 4 we show the results of our validation
on fakes. In Section 5 we apply our pipeline to the DES-SN 3
year spectroscopic sample and present the light curves used for
our cosmological parameter analysis; the publicly released
light-curve data can be found online.52 In Section 6 we cross-
check the PSF model because it is not tested in our fakes
analysis. In Section 7 we discuss improvements to SMP and we
compare to DiffImg and in Section 8 we give our
conclusions.

2. Data Set and Image Preprocessing

2.1. The 3 yr Spectroscopic Sample

The DES-SN performed a deep, time-domain survey in four
optical bands (griz) with an average cadence of 7 days per filter
covering ∼27deg2 over 5 annual campaigns from 2013 to
2018 using the Dark Energy Camera (DECam: Flaugher et al.
2015). DECam exposure processing (Morganson et al. 2018),
DiffImg, and automated artifact rejection (Goldstein et al.
2015) were run on a nightly basis.

DES-SN observed in eight “shallow” and in two “deep”
fields, with the shallow and deep fields having typical nightly
point-source depths of 23.5 and 24.5mag, respectively.
Multiple exposures are taken each night with 3, 3, 5, and 11
(1, 1, 1, and 2) exposures taken in griz for the deep (shallow)
fields (See D’Andrea et al. 2018). Images used in this analysis
were taken during the first three years of DES-SN, from 2013
September to 2016 February, in which we discovered roughly
∼12,000 transients. Among these transients, ∼3000 were
identified as likely SNeIa based on their light curves and 251
were spectroscopically confirmed (D’Andrea et al. 2018).

2.2. Image Processing

2.2.1. FirstCut

The DECam images used by the SMP pipeline are first
preprocessed as part of the nightly single-epoch processing.
This preprocessing stage, denoted FirstCut (Morganson et al.
2018), accounts for crosstalk correction, bias subtraction, bad-
pixel masking (masking known problematic pixels in the
camera), and flat-fielding. It also makes corrections to image

fluxes for CCD nonlinearity (Bernstein et al. 2017b) and the
brighter-fatter effect (A13, Antilogus et al. 2014, and Gruen
et al. 2015), and it masks cosmic rays and satellite trails.
A sky level has been fit and subtracted using the principle

component analysis pipeline developed by Bernstein et al.
(2017a). This procedure decomposes the image under the
assumption that it is the sum of the astrophysical sources of
interest, a zero-mean noise component, and a background
component that is a linear function of a small number of sky
templates.

2.2.2. Additional Image Preparation

After FirstCut, we perform additional image preparation.
While we do not use DiffImg photometry, we use a number
of the same modules as summarized below and described in
detail in K15. For each exposure and CCD we perform the
following steps: (i) compute an astrometric solution from a
joint fit to a template image, resulting in improved relative
astrometry between the different epochs, (ii) determine a
position-dependent PSF following the K15 options instead of
those from FirstCut, and (iii) overlay the same fakes that were
overlaid during the search. Additionally, we use a DES-derived
stellar catalog (described in Section 3.2.1 of K15) instead of an
external catalog such as USNO-B (Monet et al. 2003).

2.3. Star Catalog

Calibrated tertiary standard star magnitudes from Burke et al.
(2018) are used for the DES-SN internal calibration of each
DES-SN image. Approximately 50 tertiary standard stars lie
within each DECam CCD image. Burke et al. (2018) have
determined grizY magnitudes in the AB system of these
standard stars using the “Forward Global Calibration Method”
(FGCM). The FGCM “forward” computes the fraction of
photons observed for each star over repeated exposures by
utilizing measurement of the instrument transmission function,
precipitable water vapor, observing conditions, and a model of
the stellar source. In addition, using the passband transmission
(instrument+atmosphere) versus wavelength and the spectral
energy distribution (SED) of the source, corrections are applied
to the stellar catalog fluxes (as well as to the final SN fluxes).
These SED-dependent “chromatic corrections” account for
differences between SED and the mean stellar SED, and
between atmospheric transmission of each exposure and the
mean atmospheric transmission. This correction extends the
FGCM calibration precision to be valid over a wide color range
(−1g− i3). We refer the reader to Li et al. (2016) for
more detail. The implications on cosmological measurements
due to these corrections are discussed in Lasker et al. (2018).

3. Method

The SMP method utilizes a set of calibrated DECam image
stamps centered at the location of an SN to constrain a model
for a temporally varying SN and a temporally constant host
galaxy (Figure 1). Here we outline the steps required to build
and fit the SMP model.

3.1. Stellar Photometry

We use PSF-fitted photometry of the tertiary standard stars to
determine the zero-point of each image. As discussed above,
the sky background in the FirstCut images was subtracted using

52 DES-SNSpectroscopicSampleY1-Y3SMPPhotometryRelease: https://
des.ncsa.illinois.edu/releases/sn.
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PCA over the entire exposure. However, at the specific
locations of transient objects we check for residual nonzero
sky background. Residual sky often occurs when the moon is
bright, causing large sky gradients that are not captured with
PCA. We apply a second method of local sky background and
sky uncertainty estimation using concentric apertures of 40 and
60 pixels following Jones et al. (2015) and the resulting sky
and uncertainty are calculated in the same manner for each
tertiary standard star as well as for the SN.

Biases are induced in PSF-fitted flux measurements when the
astrometric solution of a source is incorrect or is uncertain (Rest
et al. 2014). These biases are smaller for stars than for SNe
because the stars have higher signal-to-noise ratios (S/Ns) and
their positions are better constrained. When computing
photometric magnitudes, in the limit of high S/N and a correct
PSF model, there is no astrometrically induced flux bias if the
astrometric solution and uncertainty are the same for both the
stars and the SN itself. The bias in the zero-point and the bias in
the SN flux will cancel. Here, we discuss the expected
photometric biases in the real SNe data set; in the fake data set
this is more subtle and is discussed in Section 4.3.

There are fundamental differences between stars and the
SNe that must be accounted for. The stars may have
measurable proper motion while the SNe do not. Additionally,
the centroids of SNe have larger uncertainty because there are
fewer epochs to constrain the position and the S/N is lower.
Therefore, in modeling the SNe, we fix the location of the SN
in R.A. and decl. across all images (Section 3). While the SN
position is fixed (“fixed-position photometry”), we determine
the position of the stars for each image in order to account for
stellar proper motions (“variable-position”). Proper motions of
the standard stars, which are estimated by linear fits to the
positions over 3 yr of observations, have an rms of ∼10mas
per year.

In order to be consistent in the application of the stellar
position in the photometry, Rest et al. (2014) and Scolnic et al.
(2017) run fixed-position photometry on both the stars and
SNe. In our pipeline we apply fixed-position photometry to the
SN but we apply variable-position photometry on the stars, and
this inconsistency causes a small 1–2 mmag bias toward fainter
SN flux measurements but has the benefit of accounting for
stellar proper motions. These small biases are not corrected for,
but rather are incorporated into the systematic uncertainty
budget as they are subdominant to the total calibration
uncertainties of the systematic error budget described
in B18-SYS.

Millions of tertiary standard star measurements are taken
over the course of DES-SN. Following A13, the uncertainty
used in the stellar photometry fits does not include source
Poisson noise. The 1σ scatter in the recovered stellar

magnitudes (hereafter “repeatability”) is plotted in Figure 2.
For the brightest stars (<17 mag), the photometric uncertainties
after including Poisson noise analytically are 1mmag, but the
observed measurement scatter is >5 mmag (Figure 2) in each
band. This floor, after subtracting out the mean photometric
uncertainty, is added in quadrature to all flux uncertainties.
In order to demonstrate the size of the chromatic corrections

applied to the tertiary standards in the SN fields, we compare
the uncorrected individual exposure (nightly) stellar photo-
metry with the FGCM chromatically corrected stellar catalog
magnitudes (Figure 3). Differences are up to 4mmag over the
color range of the tertiary standards ( g i0.25 2< - < mag).

3.2. Image Model Fitting

As in H08 and A13, SMP uses a time series of image stamps
from the data located at the position of the SN. We assume that
the DECam pixel fluxes can be modeled from a temporally
varying SN flux and a temporally constant galaxy model that is
modeled as a grid of pixels. In order to facilitate model
comparisons to all images simultaneously, all data images are
scaled to a common zero-point of 31.00mag.53 Following H08
and A13, the model is resampled to compare with the data set
and the data are never resampled to avoid correlated noise. A
visual representation of the model is shown in Figure 1. The
“Model” images shown on the right-hand side of Figure 1 are

Figure 1. Visual representation of the SMP process. The model is comprised of a temporally constant galaxy model and a temporally varying SN flux (delta function).
Both the SN and galaxy are convolved with the PSF of each image in Fourier space to produce a model, which can be compared to data.

Figure 2. Solid lines designate 1σ scatter in the recovered stellar magnitude
(repeatability) as a function of stellar catalog magnitude for each DECam band.
Dotted lines designate the mean photometric uncertainties. There is a floor in
the photometric repeatability of ∼6mmag.

53 This ZP of 31.00 is for internal SMP computations only; the ZP in the public
data files is 27.5.
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compared to data, and to constrain our model we minimize the
following:
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s ) as motivated by A13 to preserve statistical
optimality for faint sources and avoid potential biases due to
inaccuracy of the PSF model. However, because the denomi-
nator of Equation (1) does not include all sources of noise, we
modify the photometric uncertainties output by SMP using both
the analytical expectations of source and galaxy noise
(Section 3.4), and we correct our uncertainties using results
on fake SNe (Section 5).

For our model Sij n, , we define a temporally varying SN flux
for each exposure n (Fn) and a temporally constant grid of
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fluxes per pixel are defined as follows:
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and the model image Sij n, is defined as

S FSN FGAL , 4ij n ij n ij n, , ,= + ( )

where PSFij n,
˜ is the Fourier transform of the PSF evaluated at

the location of the SN. We vary the SN sky position in Fourier
space, where the SN point source is represented by a plane
wave at SNi¯ , SNj¯ in pixel coordinates relative to the center of
the galaxy model (i0 and j0), which is defined to be the
DiffImg SN position. This formalism allows us to model the
SN position at subpixel locations in Fourier space and to
evaluate the likelihood in real space. The floated parameters in

our fits are designated in bold font in Equations (2) and (3);
these parameters are Fn, gij, SNi¯ , and SNj¯ .
We adopt a galaxy model on a grid of pixels with the same

0 27 pixel scale as the DECam images. The reference center of
each data stamp is the position of the SN as determined by
DiffImg. This position is an average of all epochs for which
there was a DiffImg detection. The reference center is at a
subpixel location, so as to facilitate comparison of our model
with the data, we shift the galaxy model and the SN model for
each exposure by the difference of the center image pixel and
the reference center.
In order to avoid degeneracies between the galaxy model and

the SN flux, we fix the model SN flux at zero for epochs
outside the observer frame range MJD 300peakD > days or

MJD 60peakD < - days, where MJDpeak is the derived date of
peak flux from an initial light-curve fit of DiffImg
photometry and MJD MJD MJDpeak exposure peakD = - . We find
that any residual SN flux beyond 300 days contributes to
negligible biases in photometry (<0.01%).

3.3. Implementation

We utilize a Markov Chain Monte Carlo Metropolis
Hastings algorithm (Metropolis et al. 1953; Hastings 1970) to
sample the likelihood and we assume flat priors on each of our
model parameters with the exception of the SN R.A. and decl.
for which we assume a top-hat prior with radius 2 pixels that
is centered at the location of the DiffImg fit sky position.
For our model image stamps, we adopt a radius of 13 pixels
(3.5 arcsec) around i j,0 0, inside of which we compute χ2 from
Equation (1) using only pixels that fall entirely within the
predefined radius. For each filter, we have a total of ∼500
galaxy model parameters and anywhere from 25 to 500 SN flux
parameters; one for SN flux in each exposure that falls within
our defined MJD range over which we fit SN fluxes. For our
sampling algorithm, we do not employ more complicated
algorithms such as emcee because the computation require-
ments of our likelihood and the number of parameters make
running the required 2N walkers intractable. Instead, during the
first 100,000 steps we optimize our steps in each parameter to
achieve between a 25% and 75% acceptance rate. We employ a
Geweke Diagnostic (Geweke 1992) test to ensure that our
chains for the SN fluxes have sufficiently sampled the posterior
space. Our chains can run up to 2,000,000 steps. The galaxy
model, which is represented as a grid of delta functions in
Fourier space, has power on all scales that can lead to poor
convergence. For this reason we do not explicitly check for
convergence of gij, but rather we ensure convergence of the
FGALij n, pixels in a 1″ aperture centered at the location of
the SN.
The SMP fits are performed separately in each band. While

there could be added benefit in measuring the SN position by
fitting all bands simultaneously, atmospheric refraction causes
the position of the SN to be color dependent, which is not
accounted for in this work. A total of 41,004 jobs were run
independently in order to produce griz light curves for the 251
SNe in the spectroscopic sample and 10,000 fakes. Each job
utilized a single FNAL processor and could take anywhere
from 5 to 48 hr to fit, with the latter occurring for deep-field
z-band fits with up to 750 exposures. The vast majority of the
computation time is in the convolution of the galaxy model
with the PSF for each exposure. To improve fitting speed, the
PSFs were stored in Fourier space and the galaxy model (gij) is

Figure 3. Nightly (per exposure) tertiary standard star magnitudes compared to
the FGCM pipeline catalog magnitudes as a function of the FGCM catalog
g−i color. The color binned mean of the magnitude residuals is shown in red.
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transformed to Fourier space and subsequently convolved with
the PSF requiring only n+1 Fourier transforms. After fitting,
we evaluate the best fit Fn for each exposure n by taking the
mean of the MCMC chain. The error on Fn is the standard
deviation of the MCMC chain. For observation sequences with
multiple back-to-back exposures, we report the weighted
average flux and uncertainty among the individual exposures.

3.4. Uncertainties

Here we describe the treatment of the statistical uncertainties
within SMP to which an additional empirically observed
dependence on host galaxy surface brightness is included in
Section 4.4. There has been debate about the proper way to
include Poisson noise of the host galaxy and source in the
photometry fits (H08 and A13). H08 weight their fits according
to expected photon statistics, which includes the Poisson noise
of the host galaxy. A13 exclude the noise contribution of the
host galaxy and source in the fitting process. We have chosen
the latter method (shown in Equation (1)) and correct our
output uncertainties using expected photon statistics after the
fitting process following:

, 5stat
2

fit
2

source
2

hostgal
2

SMPs s s s= + + ( )

where fitSMPs is the uncertainty derived from the SMP Monte
Carlo chains that were computed using only the sky
uncertainty, σsource is the Poisson noise of the SN, and
σhostgal is the host galaxy Poisson noise. The host galaxy
photon variance on exposure n is approximated by

fgal PSF
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NEA, 6n

ij ij n ij n
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2
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å
å
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where fgalij n, is FGALij n, expressed in photoelectrons following:

fgal FGAL 10 Gain , 7ij n ij n
ZP

n, ,
31 2.5n= ´ ´- ( )( )

and the noise equivalent area is NEA 1 PSFij ij n,
2º å .

Equation (5) corresponds to our analytic expectation of the
photometric uncertainties. Finally, we report the weighted
average uncertainty among the individual back-to-back expo-
sures. Below we test the accuracy of our photometric extraction
and correct σstat for underestimation of the measurement noise.

4. Corrections and Tests on Fake Supernovae

Fake SN Ia light curves are inserted onto DECam images at
locations of real galaxies. Here we analyze a set of 10,000
fakes that were discovered by DiffImg and processed by
SMP. We optimize our pipeline for minimal photometric
outliers, check for biases in our photometric method, and apply
corrections to our photometric uncertainties.

4.1. Fake Supernovae

The insertion of fake SNe at the image level and the
subsequent analysis of their measured fluxes is an important
test of the photometric pipeline. It allows us to quantify
measurement biases, compare SMP uncertainties to the
measured minus true flux differences and determine uncertainty
corrections, and optimize SMP cuts to reject flux outliers. We

simulate a sample of SNIa light curves and insert light-curve
fluxes onto DES-SN images using the measured PSF. Because
we insert an entire sample of SNIa light curves, we are able to
characterize biases in photometry as well as the propagation of
these photometry biases to biases in measured distances. A13
moved nearby stars in their images to locations near host
galaxies and treated them as fake transients, which preserves
the true PSF for each star, but it is difficult to trace photometry
biases to distance biases given that they have limited statistics
of fake stars and do not model a sample of fake SNe light-curve
magnitudes. Additionally, A13 did not account for a position-
dependent PSF when moving stars, whereas the method
described here does.
Fake SN light-curve fluxes are generated using the Super-

Nova ANAlysis software package (Kessler et al. 2009) in a
ΛCDM cosmology (ΩM=0.3). Light-curve fluxes are overlaid
as PSF sources onto the DECam images and processed with the
DiffImg pipeline. A detailed description of the simulation
used for the fakes can be found in Section 2 of Kessler et al.
(2018), but here we provide a brief summary. The fake SNe
span a wide magnitude range (from 19th mag to well below the
detection limit) and redshift range (0.1<z<1.2). K15
overlay fluxes onto the CCD image near real galaxies with
SN locations chosen with a probability proportional to the host
surface brightness density. The SN flux is distributed over
nearby pixels using the PSF determined with PSFEx, and the
flux in each pixel is varied by random Poisson noise. Since we
use a scaling of the modeled PSF to insert the fake transient,
rather than the real PSF (i.e., moving real stars in the image),
we separately check for potential PSF modeling errors that are
not included as a part of the analysis of the fakes.
K15 inserted 100,000 fake SN light curves into the first 3 yr

of DES-SN images. These fakes were used to monitor image
quality and ∼40,000 fake SNeIa were “discovered” by
DiffImg. However because SMP is computationally expen-
sive, for this first DES-cosmology analysis, only on a subset of
10,000 fake SN light curves were processed by SMP.

4.2. Outlier Rejection

In order to reduce the number of photometric outliers, exposure
quality requirements (cuts) were optimized on the sample of fake
SNe. We denote the fraction of 5σ flux outliers (η5σ) when
comparing the SMP fit flux (Fn) to the true fake flux (FTrue). We
remove exposures with poor data-model agreement (χ2/ndof
>1.2) and with poor seeing conditions (PSFFWHM>2.75 arcsec).
To make additional improvements we also place conservative cuts
based on zero-point and sky level to remove the poorest quality
images. These cuts retain 94% of all exposures and reduce η5σ
from 6×10−4 to 2×10−4.

4.3. Photometry Biases

Comparing the input photometry to the recovered photo-
metry ( F F Fn TrueD = - ), we measure photometric biases
<0.5% over 19th to 24th magnitude. As shown in panel (a) of
Figure 4, there is a slight bias in the deep fields for F FTrueD of
−0.3% at faint magnitudes, which is included in the systematic
error budget of B18-SYS.
There are three key differences between the analysis of the

DES-SN data set and that of the fake SNe. First, the astrometric
solution used to insert fakes (K15) is the same solution that is
used to model the fakes within SMP. Astrometric uncertainty is
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not simulated in the fake point sources. Second, K15 use zero-
points that were fit using aperture photometry to insert fake
fluxes onto images, while SMP uses PSF fitting. In order to
assess the accuracy of SMP, we correct for the zero-point
difference between the K15 and SMP. Thus, our results
presented here are insensitive to incorrect modeling of the
zero-point. B18-SYS discuss an independent method for
validating the zero-point and internal calibration uncertainties.
Third, the analysis of the fakes uses the same PSF model that

was used to insert the fakes. Inaccuracies of the PSF model are
not simulated in the fakes, and thus in Section 6 we perform a
cross-check of our PSF model.
If the SMP flux uncertainties are accurate, then rms
F 1statsD =( ) . However, we observe that the rms of the

fakes is slightly above unity as shown in panel (b) of Figure 4.
To characterize the excess scatter, we examine the dependence
of the rms on the local host galaxy local surface brightness
(mSB).

Figure 4. (a) Fractional flux residuals as a function of fake SN magnitude. All host galaxy local surface brightnesses are included. Comparison with the uncertainty in
calibration nonuniformity from Burke et al. (2018) (σuniformity=0.006 mag) is shown. The shaded regions designate the 1σ errors on the mean. (b) The rms of the
pull-distribution as a function of fake SN magnitude.

Figure 5. Scale correction (S)=rms( F statsD ) as a function of mSB, for 10,000 Fake SNeIa processed by SMP. The stars on the x-axis denote the mean local surface
brightness in the DES subset for each band. Inset: examples of high and low mSB galaxies and SMP best-fit models, data − model, and χ2.
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4.4. Host Galaxy Surface Brightness Dependence

We find that there is an underestimation of photometric
uncertainties for SNe located in galaxies with high local surface
brightness, as was seen previously in DiffImg (K15). A scale
correction (S) is computed from the fakes as shown in Figure 5
that is required to bring rms of recovered fake fluxes as a
function of mSB to unity. This dependence (hereafter the Host
SB dependence) has been seen in the past (K15, Scolnic et al.
2017). The source of the Host SB dependence is unclear
because we include host galaxy Poisson noise in our SMP
uncertainty calculation (see Section 3.4). In SMP, we find no
significant bias in F statsD as a function of mSB.

The inset of Figure 5 shows the results of SMP run on two
example host galaxies, one bright and one faint. For the bright
host galaxy, visibly poorer χ2 distributions are seen across the
image stamp and structure can be seen in the residual stamp.

To account for the increased scatter as a function of host
galaxy surface brightness, K15 scaled their output SN flux
uncertainties. In SMP we apply the same method of scaling our
SN flux uncertainties with multiplicative corrections (S). The
SMP light-curve photometric uncertainties (σF) are given by

S, 8F stats s= ´ ( )

where σstat was defined as the coadded measurement
uncertainty and S is the function of mSB, bandpass, and field
shown in Figure 5.

5. DES-SN Spec Sample Y1-Y3

In this work, we analyze the spectroscopically confirmed
SNIa subset of the data. As described in D’Andrea et al.
(2018), 533 transients were targeted for spectroscopic classi-
fication, 251 of which were spectroscopically classified as Type
Ia. We have run SMP photometry on this sample, and show
representative examples of our resulting light curves across a
range of redshifts in Figure 6. Light-curve fits to the SALT2
model are included to guide the eye, however we refer to B18-
SYS for a detailed discussion of light-curve fitting and light-
curve quality cuts.

A table of photometric measurements and uncertainties for
the DES-SN sample is available online in machine readable
format (see footnote 52). While all corrections to the flux
uncertainties are included, we provide a separate table listing
the uncertainty scales (S).

6. Cross-check of the PSF Model

As discussed in Section 3.1, any differences between
photometry of the standard stars and the photometry of the
SNe can result in photometric biases. We explicitly check
for biases in photometry due to potential inaccuracies of the
measured PSF model because this is not accounted for in the
analysis of the fakes. This check is performed by comparing
the ratio of the stellar model stamps that were used to compute
the zero-points with the data stamps (model/data). The same
model/data comparison is made for the SMP galaxy+SN
model. Any potential differences between the stellar ratios and
the SN ratios could lead to biases that are not canceled out by
the zero-point. In order to obtain sufficient S/N, we stack the
residuals for many fits where the SNe and stars are bright. In
the top panel of Figure 7 we stack model/data stamps for 3000
stellar fits of stars ( M19 21star< < ) over 25 nights on three
different CCDs. We find that inaccuracies of the PSF model are

limited to <0.3% in any given pixel. Additionally, as shown in
the middle panel of Figure 7, we stack model/data stamps for
the DES-SN SNeIa and their host galaxies for epochs with
19<MSN<21 and find similar results although it is difficult
to assess given the limited statistics of the spectroscopic data
set (∼300 stacked exposures). Finally, in the bottom panel of
Figure 7, we show model/data stamps for fits to the fake SNe
sample. As expected, we do not observe the same discrepancies
between data and model because inaccuracies in the PSF model
are not simulated in our analysis of the fakes.
To analyze the impact of the observed difference between

our PSF model and the SN data, we correct the PSF model by
the stacked stellar residual stamps and then recompute stellar
photometry. We find that this correction results in zero-point
differences of <0.5 mmag. Given that the small 0.5mmag bias
resulting from inaccuracies of the PSF model appear for both
the tertiary standard stars and the real SNeIa data set, this bias
will largely cancel out and is not corrected for in this analysis.

7. Discussion

The SMP pipeline developed for DES-SN models the SN
host galaxy and SN transient flux simultaneously in order to
extract an SN flux in each exposure. We have used 10,000 fake
SN light curves overlaid onto our images to quantify potential
biases in our photometry. We find that biases in photometry are
limited to 3mmag, which is small in comparison to the internal
calibration uncertainties described in B18-SYS (6 mmag).
Additionally, we find that errors in the PSF modeling are
subdominant to the photometric uncertainty budget. Finally, we
correct our uncertainties for the host SB dependence.

7.1. The Host SB Dependence

The host SB dependence was first quantified for DiffImg
photometry in K15 and the excess scatter is also seen in the
SMP results. Because the host SB dependence is not unique to
difference imaging photometry, we conclude it does not result
from the use of SWarp (Bertin et al. 2002), which is used to
coadd exposures, nor is it from hotPants (Becker 2015).
Because the size of the dependence is similar in all bands,
chromatic refraction likely plays a subdominant role in the host
SB dependence. The source of this additional scatter is likely
due to a number of confounding sources similar to the
photometric repeatability floor for the stars. Atmospheric
distortions contribute a chromatic increase in flux scatter and
astrometric errors could introduce unmodeled uncertainty in the
host galaxy itself. With improvements to the astrometric
solution expected in the coming analysis of the full DES-SN
5 yr data set, we will be able to examine the dependence on
astrometric quality.

7.2. Comparison To Difference Imaging

DiffImg was designed for DES-SN as a rapid transient
identification and SMP was designed as a precision photometric
tool to be used for cosmology. Because they have been
optimized for different purposes, it is difficult to make a direct
comparison. We find that the fraction of catastrophic photo-
metric outliers (η5σ) occurs at 0.02% for SMP in comparison
with 0.08% for the DiffImg pipeline. In addition, we
compare the overall size of our photometric errors and find
that the uncertainties output by the SMP pipeline are slightly
smaller than those of DiffImg (Figure 8).
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7.3. Future Work

A number of improvements can be made to our photometric
pipeline and analysis of the fake SNe. There are two main
aspects of our fakes analysis that inhibit our ability to
characterize the full extent of our photometric pipeline. First,
we know the precise PSF of our fake SNe because we use the
same PSF to overlay the point source and do the SMP fitting. In
the future we will vary the PSF and calculate the impact on
photometric repeatability, biases and the host SB dependence.
Second, the method by which the fakes are inserted onto the

images is not representative of the true astrometric uncertainty
because the fakes are inserted and modeled in SMP using
the same astrometric solution. In the future we will vary
the location of the fake point source on each exposure by the
astrometric uncertainty. The ability to simulate both of these
effects will facilitate the tracing of photometric biases due to
the PSF and astrometry all the way to cosmological parameters.
For future stage IV surveys in which calibration uncertainty

in the filter zero-points approaches the <4 mmag level, current
photometric errors (3 mmag) will need to be reduced.
Additionally, as the measurement uncertainties on SN fluxes

Figure 6. Representative light curves of DES SNe from the DES-SN3YR sample with photometric data provided by SMP and fits to the light-curve data provided by
SALT2 simply intended to guide the reader’s eye. SNe with C3 or X3 in the name are found in deep fields, the remaining SNe are found in the shallow fields. The
fields are described in detail in Section 2.1 of B18-SYS.
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improve, it will become ever more important to understand the
source of the host SB dependence. While Kessler et al. (2018)
show that the host SB dependence has little effect on the DES-
SN detection efficiency of SNe Ia, more general transient
searches for faint nearby sources (e.g., Kilonovae) on bright
galaxies could also be significantly affected.
The host SB dependence may be mitigated in future DES-SN

analyses with upcoming improvements to the astrometric
solution and DES image processing pipelines, which will
include the tree ring effect noted in Plazas et al. (2014). As we
do not expect the dependence to fully disappear, and to
facilitate more accurate simulations of the SMP pipeline, we
will also investigate applying a series of additive flux
uncertainty floors dependent not only on mSB, but also on
observing conditions. Lastly, we will also investigate the
effects of better galaxy modeling and resampling tools such as
GALSIM (Rowe et al. 2015).

8. Conclusion

We have presented the photometric pipeline for the DES-SN
and made available the Y1-Y3 Spectroscopic SN sample light
curves that are used in the cosmological analysis companion
papers. This analysis uses the SMP Pipeline to measure fluxes
of SNe in their galactic environments. SMP was run on the 251
spectroscopically confirmed SNeIa and was validated on a
sample of 10,000 fake SNeIa light curves injected as point
sources onto DECam images. We find that we recover flux
values to within 0.3% accuracy. We show improvement over
the DiffImg pipeline used for real-time transient discovery;
however, we find that we still must correct for the under-
estimated uncertainties in high local surface brightness
galaxies. The SMP pipeline will be tested further on 40,000
fake SNe and ultimately run on the full five year photome-
trically classified data set of ∼3000 likely SNeIa.

This paper has gone through internal review by the DES
collaboration. D.B. and M.S. were supported by DOE grant DE-
FOA-0001358 and NSF grant AST-1517742. This research used

Figure 7. Top panel: ratio of stellar model to DECam data image for 3000
stacked cutouts of tertiary standard stars fainter than 19th Mag. Middle panel:
ratio of SMP SN + galaxy model to DECam data image for 300 stacked cutouts
of SNe in the DES-SN data set brighter than 21st Mag. Bottom panel: the same
ratio but for the results of the fake SNe Ia.

Figure 8. SMP and DiffImg flux uncertainties with the one-to-one line drawn
for comparison.

10

The Astrophysical Journal, 874:106 (12pp), 2019 March 20 Brout et al.



resources of the National Energy Research Scientific Computing
Center (NERSC), a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. Part of this
research was conducted by the Australian Research Council
Centre of Excellence for All-sky Astrophysics (CAASTRO),
through project number CE110001020.

Funding for the DES Projects has been provided by the U.S.
Department of Energy, the U.S. National Science Foundation,
the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the
Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmo-
logical Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State
University, the Mitchell Institute for Fundamental Physics
and Astronomy at Texas A&M University, Financiadora de
Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo
à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério
da Ciência, Tecnologia e Inovação, the Deutsche Forschungs-
gemeinschaft and the Collaborating Institutions in the Dark
Energy Survey.

The Collaborating Institutions are Argonne National Labora-
tory, the University of California at Santa Cruz, the University
of Cambridge, Centro de Investigaciones Energéticas, Med-
ioambientales y Tecnológicas-Madrid, the University of
Chicago, University College London, the DES-Brazil Con-
sortium, the University of Edinburgh, the Eidgenössische
Technische Hochschule (ETH) Zürich, Fermi National Accel-
erator Laboratory, the University of Illinois at Urbana-
Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC),
the Institut de Física d’Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig-Maximilians Universität
München and the associated Excellence Cluster Universe, the
University of Michigan, the National Optical Astronomy
Observatory, the University of Nottingham, The Ohio State
University, the University of Pennsylvania, the University of
Portsmouth, SLAC National Accelerator Laboratory, Stanford
University, the University of Sussex, Texas A&M University,
and the OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-
American Observatory, National Optical Astronomy Observa-
tory, which is operated by the Association of Universities for
Research in Astronomy (AURA) under a cooperative agree-
ment with the National Science Foundation.

The DES data management system is supported by the
National Science Foundation under grant Nos. AST-1138766
and AST-1536171. The DES participants from Spanish
institutions are partially supported by MINECO under grants
AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-
2016-0588, SEV-2016-0597, and MDM-2015-0509, some of
which include ERDF funds from the European Union. IFAE is
partially funded by the CERCA program of the Generalitat de
Catalunya. Research leading to these results has received
funding from the European Research Council under the
European Union’s Seventh Framework Program (FP7/2007-
2013) including ERC grant agreements 240672, 291329, and
306478. We acknowledge support from the Australian
Research Council Centre of Excellence for All-sky Astro-
physics (CAASTRO), through project number CE110001020,

and the Brazilian Instituto Nacional de Ciência e Tecnologia
(INCT) e-Universe (CNPq grant 465376/2014-2).
This manuscript has been authored by Fermi Research

Alliance, LLC under contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy, Office of Science, Office of
High Energy Physics.
The UCSC team is supported in part by NASA grant

NNG17PX03C, NSF grants AST-1518052 and 1815935, the
Gordon & Betty Moore Foundation, the Heising-Simons
Foundation, and by fellowships from the Alfred P. Sloan
Foundation and the David and Lucile Packard Foundation to
R.J.F.

ORCID iDs

D. Brout https://orcid.org/0000-0001-5201-8374
R. Kessler https://orcid.org/0000-0003-3221-0419
C. B. D’Andrea https://orcid.org/0000-0002-8198-0332
S. R. Hinton https://orcid.org/0000-0003-2071-9349
F. J. Castander https://orcid.org/0000-0001-7316-4573
E. Morganson https://orcid.org/0000-0001-7180-109X
P. Nugent https://orcid.org/0000-0002-3389-0586
J. Annis https://orcid.org/0000-0002-0609-3987
D. W. Gerdes https://orcid.org/0000-0001-6942-2736
D. A. Goldstein https://orcid.org/0000-0003-3461-8661
R. A. Gruendl https://orcid.org/0000-0002-4588-6517
D. L. Hollowood https://orcid.org/0000-0002-9369-4157
P. Martini https://orcid.org/0000-0002-4279-4182
R. Miquel https://orcid.org/0000-0002-6610-4836
M. Soares-Santos https://orcid.org/0000-0001-6082-8529
G. Tarle https://orcid.org/0000-0003-1704-0781
A. R. Walker https://orcid.org/0000-0002-7123-8943
B. Yanny https://orcid.org/0000-0002-9541-2678

References

Antilogus, P., Astier, P., Doherty, P., Guyonnet, A., & Regnault, N. 2014,
JInst, 9, C03048

Astier, P., El Hage, P., Guy, J., et al. 2013, A&A, 557, A55
Astier, P., Guy, J., Regnault, N., et al. 2006, A&A, 447, 31
Becker, A. 2015, HOTPANTS: High Order Transform of PSF ANd Template

Subtraction, Astrophysics Source Code Library, ascl:1504.004
Bernstein, G. M., Abott, T. M. C., Desai, S., et al. 2017a, PASP, 129, 114502
Bernstein, G. M., Armstrong, R., Plazas, A., et al. 2017b, PASP, 129,

074503
Bernstein, J. P., Kessler, R., Kuhlmann, S., et al. 2012, ApJ, 753, 152
Bertin, E., Mellier, Y., Radovich, M., et al. 2002, in ASP Conf. Ser. 281,

Astronomical Data Analysis Software and Systems XI, ed. D. A. Bohlender,
D. Durand, & T. H. Handley (San Francisco, CA: ASP), 228

Brout, D., Scolnic, D., Kessler, C. B., et al. 2018, arXiv:1811.02377
Burke, D. L., Rykoff, E. S., Allam, S., et al. 2018, AJ, 155, 41
D’Andrea, C., Smith, M., & Sullivan, M. 2018, arXiv:1811.09565
DES Collaboration A. et al. 2018, arXiv:1811.02374
Doctor, Z., Kessler, R., Chen, H. Y., et al. 2017, ApJ, 837, 57
Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150
Geweke, J. 1992, in Bayesian Statistics, ed. J. M. Bernardo et al. (Oxford:

Clarendon Press), 169
Goldstein, D. A., D’Andrea, C. B., Fischer, J. A., et al. 2015, AJ, 150, 82
Gruen, D., Bernstein, G. M., Jarvis, M., et al. 2015, JInst, 10, C05032
Hastings, W. K. 1970, Biometrika, 57, 97
Hinton, S. R., Davis, T. M., Kim, A. G., et al. 2018, arXiv:1811.02381
Holtzman, J. A., Marriner, J., Kessler, R., et al. 2008, AJ, 136, 2306
Jones, D. O., Scolnic, D. M., Riess, A. G., et al. 2017, ApJ, 843, 6
Jones, D. O., Scolnic, D. M., & Rodney, S. A. 2015, PythonPhot: Simple

DAOPHOT-type photometry in Python, Astrophysics Source Code Library,
ascl:1501.010

Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009, PASP, 121, 1028
Kessler, R., Brout, D., D’Andrea, C. B., et al. 2018, arXiv:1811.02379

11

The Astrophysical Journal, 874:106 (12pp), 2019 March 20 Brout et al.

https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0001-5201-8374
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0002-8198-0332
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0003-2071-9349
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7316-4573
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0001-7180-109X
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-3389-0586
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0002-0609-3987
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0003-3461-8661
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0001-6082-8529
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://orcid.org/0000-0002-9541-2678
https://doi.org/10.1088/1748-0221/9/03/C03048
http://adsabs.harvard.edu/abs/2014JInst...9C3048A
https://doi.org/10.1051/0004-6361/201321668
http://adsabs.harvard.edu/abs/2013A&amp;A...557A..55A
https://doi.org/10.1051/0004-6361:20054185
http://adsabs.harvard.edu/abs/2006A&amp;A...447...31A
http://www.ascl.net/1504.004
https://doi.org/10.1088/1538-3873/aa858e
http://adsabs.harvard.edu/abs/2017PASP..129k4502B
https://doi.org/10.1088/1538-3873/aa6c55
http://adsabs.harvard.edu/abs/2017PASP..129g4503B
http://adsabs.harvard.edu/abs/2017PASP..129g4503B
https://doi.org/10.1088/0004-637X/753/2/152
http://adsabs.harvard.edu/abs/2012ApJ...753..152B
http://adsabs.harvard.edu/abs/2002ASPC..281..228B
http://arxiv.org/abs/1811.02377
https://doi.org/10.3847/1538-3881/aa9f22
http://adsabs.harvard.edu/abs/2018AJ....155...41B
http://arxiv.org/abs/1811.09565
http://arxiv.org/abs/1811.02374
https://doi.org/10.3847/1538-4357/aa5d09
http://adsabs.harvard.edu/abs/2017ApJ...837...57D
https://doi.org/10.1088/0004-6256/150/5/150
http://adsabs.harvard.edu/abs/2015AJ....150..150F
https://doi.org/10.1088/0004-6256/150/3/82
http://adsabs.harvard.edu/abs/2015AJ....150...82G
https://doi.org/10.1088/1748-0221/10/05/C05032
http://adsabs.harvard.edu/abs/2015JInst..10C5032G
https://doi.org/10.2307/2334940
http://arxiv.org/abs/1811.02381
https://doi.org/10.1088/0004-6256/136/6/2306
http://adsabs.harvard.edu/abs/2008AJ....136.2306H
https://doi.org/10.3847/1538-4357/aa767b
http://adsabs.harvard.edu/abs/2017ApJ...843....6J
http://www.ascl.net/1501.010
https://doi.org/10.1086/605984
http://adsabs.harvard.edu/abs/2009PASP..121.1028K
http://arxiv.org/abs/1811.02379


Kessler, R., Marriner, J., Childress, M., et al. 2015, AJ, 150, 172
Lasker, J., Kessler, R., Scolnic, D., et al. 2018, arXiv:1811.02380
Li, T. S., DePoy, D. L., Marshall, J. L., et al. 2016, AJ, 151, 157
Macaulay, E., Nichol, R. C., Bacon, D., et al. 2018, arXiv:1811.02376
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &

Teller, E. 1953, 21, 1087
Monet, D. G., Levine, S. E., Canzian, B., et al. 2003, AJ, 125, 984
Morganson, E., Gruendl, F., Menanteau, M., et al. 2018, PASP, 130, 989
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565

Plazas, A. A., Bernstein, G. M., & Sheldon, E. S. 2014, JInst, 9, C04001
Rest, A., Scolnic, D., Foley, R. J., et al. 2014, ApJ, 795, 44
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009
Riess, A. G., Macri, L. M., Hoffmann, S. L., et al. 2016, ApJ, 826, 56
Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015, A&C, 10, 121
Schlafly, E. F., Green, G. M., Lang, D., et al. 2018, ApJS, 234, 39
Scolnic, D. M., Jones, D. O., Rest, A., et al. 2017, ApJ, 859, 101
Soares-Santos, M., Holz, D. E., Annis, J., et al. 2017, ApJL, 848, L16
Soares-Santos, M., Kessler, R., Berger, E., et al. 2016, ApJL, 823, L33

12

The Astrophysical Journal, 874:106 (12pp), 2019 March 20 Brout et al.

https://doi.org/10.1088/0004-6256/150/6/172
http://adsabs.harvard.edu/abs/2015AJ....150..172K
http://arxiv.org/abs/1811.02380
https://doi.org/10.3847/0004-6256/151/6/157
http://adsabs.harvard.edu/abs/2016AJ....151..157L
http://arxiv.org/abs/1811.02376
https://doi.org/10.1086/345888
http://adsabs.harvard.edu/abs/2003AJ....125..984M
https://doi.org/10.1088/1538-3873/aab4ef
http://adsabs.harvard.edu/abs/2018PASP..130g4501M
https://doi.org/10.1086/307221
http://adsabs.harvard.edu/abs/1999ApJ...517..565P
https://doi.org/10.1088/1748-0221/9/04/C04001
http://adsabs.harvard.edu/abs/2014JInst...9C4001P
https://doi.org/10.1088/0004-637X/795/1/44
http://adsabs.harvard.edu/abs/2014ApJ...795...44R
https://doi.org/10.1086/300499
http://adsabs.harvard.edu/abs/1998AJ....116.1009R
https://doi.org/10.3847/0004-637X/826/1/56
http://adsabs.harvard.edu/abs/2016ApJ...826...56R
https://doi.org/10.1016/j.ascom.2015.02.002
http://adsabs.harvard.edu/abs/2015A&amp;C....10..121R
https://doi.org/10.3847/1538-4365/aaa3e2
http://adsabs.harvard.edu/abs/2018ApJS..234...39S
https://doi.org/10.3847/1538-4357/aab9bb
http://adsabs.harvard.edu/abs/2018ApJ...859..101S
https://doi.org/10.3847/2041-8213/aa9059
http://adsabs.harvard.edu/abs/2017ApJ...848L..16S
https://doi.org/10.3847/2041-8205/823/2/L33
http://adsabs.harvard.edu/abs/2016ApJ...823L..33S

	1. Introduction
	2. Data Set and Image Preprocessing
	2.1. The 3 yr Spectroscopic Sample
	2.2. Image Processing
	2.2.1. FirstCut
	2.2.2. Additional Image Preparation

	2.3. Star Catalog

	3. Method
	3.1. Stellar Photometry
	3.2. Image Model Fitting
	3.3. Implementation
	3.4. Uncertainties

	4. Corrections and Tests on Fake Supernovae
	4.1. Fake Supernovae
	4.2. Outlier Rejection
	4.3. Photometry Biases
	4.4. Host Galaxy Surface Brightness Dependence

	5. DES-SN Spec Sample Y1-Y3
	6. Cross-check of the PSF Model
	7. Discussion
	7.1. The Host SB Dependence
	7.2. Comparison To Difference Imaging
	7.3. Future Work

	8. Conclusion
	References



