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ABSTRACT

In this work, we study recommendation systems modelled as
contextual multi-armed bandit (MAB) problems. We pro-
pose a graph-based recommendation system that learns and
exploits the geometry of the user space to create meaningful
clusters in the user domain. This reduces the dimensionality
of the recommendation problem while preserving the accu-
racy of MAB. We then study the effect of graph sparsity and
clusters size on the MAB performance and provide exhaustive
simulation results both in synthetic and in real-case datasets.
Simulation results show improvements with respect to state-
of-the-art MAB algorithms.

Index Terms— Recommendation system, contextual
multi-armed bandit, community detection.

1. INTRODUCTION

Recommending products to users have been an essential func-
tion of commercial websites as Amazon and Netflix, etc. [1].
The aim of a recommendation agent is to propose to a user
the product (or item) that will generate a positive reaction:
a product purchase in Amazon, a link click in ads website,
etc. This user response increases the agent payoff, which ulti-
mately needs to be maximized. The effectiveness of a recom-
mendation system depends on the knowledge of users’ pref-
erence: the deeper the knowledge, the more the tailored is the
recommended item. The challenge is that these preferences
usually are not known a priori and need to be built online by
trial and error for each user. This learning process can be for-
malised by multi-armed bandit (MAB) framework [2–5].

The performance of MAB learning strategies scales with
the ambient dimension, either linearly or as a square root [6],
which makes the problem intractable in scenarios with in-
finitely large strategy sets, as in recommendation systems.

To overcome the dimensionality limitation, clustering
techniques have been proposed to properly quantize the con-
text space (e.g., the user space) [7]. Users preference rela-
tionships can be encoded in a graph, where adjacent nodes
represents users with similar preferences [8, 9]. This graph
can be known a-priori or it can be inferred based on the past
users’ feedbacks (past payoffs). We are interested in this latter

case and in recent works in which the geometrical and irreg-
ular structure of the context have been considered [9–16].
In [10], authors proposed CLUB, an online clustering strategy
where m clusters are optimized for n (>> m) users, where
only one recommendation per cluster is optimized. In [14], a
similar idea has been implemented on both user and item side
to propose COFIBA. In both CLUB and COFIBA, an iterative
graph learning process is considered with a fully connected
graph as starting point. At each recommendation opportunity,
edges are deleted if connecting users with different enough
payoff. Any connected component will then form a cluster.
The leads to a very simple and yet effective MAB problem,
but with the limitation of a i) limited clustering strategy, ii)
no possibility of recovering from inaccurate payoff estimate
(edges can only be deleted from the known graph and they
cannot be added in case of edges wrongly deleted in the past),
and iii) a number of clusters rapidly increasing with time,
which we show not to be the best trend for MABs. In contrast,
DYnUCB [17] groups users via K-means assigning users dy-
namically into clusters. However, it requires an input as a
pre-defined number of clusters. While theoretically K can
be optimized with iterative solutions (e.g., elbow method),
in practice, an appropriated cluster number is typically un-
known, hard to guess, and dynamic over time (as users might
appear or disappear).

To overcome these limitations, in this paper we propose
SCLUB-CD, a novel graph-based MAB problem that learns
and exploits the geometry of the user domain in an online
fashion. Specifically, at each recommendation opportunity, a
user graph is constructed based on estimated user preference.
Then, the graph is divided into clusters based on the commu-
nity detection algorithm [18]. Our main contributions are:

• to adopt graph clustering into MABs to propose a dy-
namic graph estimation and clustering.

• to show that MABs are more efficient when the num-
ber of cluster remains limited over time. Therefore, our
proposed recommendation system keeps the number of
clusters limited over time, opposite behaviour with re-
spect to CLUB.

• to test the proposed algorithm in both synthetic and



realist dataset, showing improved performance with
respect to LinUCB and CLUB state-of-the-art MAB
problems.

2. MAB FOR RECOMMENDATIONS

We now describe the basics on recommendation systems and
how these problems, when tackled as MAB algorithms, can
benefit from context clustering.

Let each user i ∈ I be identified by its preferences ui ∈
Rd , and let the product k ∈ K be identified by its own feature
vector xk ∈ Rd (identifying information such as size, colour
and price of the product), with d being the dimension of the
user and product vector, respectively, and |I| = N . While xk
is known to the agent, the user preference vectors ui need to
be learned on the fly. To this effect, the agent makes sequen-
tial recommendation and observes the outcome (appreciation
of the recommended product). Formally, at each recommen-
dation opportunity t = 1, 2, ..., T , the agent receives a user
index it ∈ I to serve content to, with it selected uniformly
at random from I. It also receives the set of possible prod-
ucts to recommend Ct ⊂ K, with |Ct| = C. The agent then
recommends one product out of the available ones to user it
and observe the user’s feedback in the form of instantaneous
payoff at. The payoff is assumed to be a linear function of
the product features xk and user preference vector uit with a
noise term ε ∼ N (0, σ2

ε ). [4]. Namely,

at = uit
Txk + εit , k ∈ Ct (1)

with at ∈ [0, 1], with 1 being the highest appreciation and 0
the lowest, and εit(x) being a random Gaussian noise ε ∼
N (0, σ2

ε ). Note that uit
Tx is the expected payoff received

from user it for x, while at is the instantaneous one.
Let us assume that users are clustered in M non over-

lapping clusters based on their preferences, with Vj , j =
1, 2, ..,M being the jth cluster, and M be unknown a priori.
Due to the linear payoff scenario, users in the same clusters
will experience similar payoff functions. It follows that rather
than having a preference vector per user, the agent can iden-
tify and learn a preference vector per cluster. Therefore, the
agent needs to learn onlyM preferences vector rather thanN ,
with N � M . This comes at the price of an approximation
in the estimation of the linear payoff, and therefore a subopti-
mality in the recommendation. More formally, each user clus-
ter Vj has the preference vector uc

j representing the common
parameter vector shared by users within the cluster, leading to
an estimated mean payoff given by uc

j(it)
Txk + εj(it), with

k ∈ Ct and j(it) being the cluster index whose user i belongs
to. Note that the actual payoff (per user) is given by (1), while
the agent will estimate the above one per cluster. From here
the suboptimality of the clustering-based recommendations.

The agent aims to minimise the cumulative regretRT over
the time horizon T defined as RT =

∑T
t=1 rt, with rt be-

ing the regret at time t, defined as the difference between the

payoff incurred by the algorithm and the optimal payoff. For-
mally,

rt = max
k∈Ct
{uTitxk} − uit

Txt (2)

where, rt is the regret at time t. Following the MAB theory,
the cumulative regret is minimized if products are selected as
follows

kt = argmax
k∈Ct

(uc
j(it)

xk) + CBj(it)(xk) (3)

The quantity CBj(it) is the upper confidence bound of each
arm with respect to cluster j(it). Basically, a product is se-
lected if the expected payoff is high and it is low the uncer-
tainty on this estimated payoff.

3. GRAPH-BASED MAB

We now describe the proposed SCLUB-CD algorithm, de-
picted in Algorithm 1. At the recommendation opportunity
t, the agent estimates an unweighted and undirected graph
Gt = (V, Et,Wt), with V being the vertex set representing
the N users1 with |V| = N , Et and Wt the edge sets and the
N × N adjacency matrix estimated at t, respectively. The
graph Gt is obtained by following a 3 steps iterative method:

STEP 1. First an undirected and weighted graph G̃t =
(V, Et, W̃t) is estimated. Given the current knowledge of the
system, users preferences are estimated minimizing the linear
least-square estimate of u by multiplying the inverse correla-
tion matrix Mt and the bias vector bt. Formally,

ûi,t =M−1
i,t bi,t, i = 1, 2, ..., N (4)

Then, the graph weights w̃t,i,j in G̃t are evaluated as the
Gaussian RBF-distance between ûi,t and ûj,t.

STEP 2. Then, the graph is converted in a sparse and un-
weighted graph. Sparsity is motivated by the need to tune the
dimensionality of the user space, while the binary weights are
introduced mainly to increase the robustness of the algorithm
to graph estimation errors. Both aspects will be discussed in
the results section.

We introduce the hyperparameter n, such that the top n,
n� N , largest weights in wt,i,j , j = 1, 2, ..., N are encoded
as 1, the remaining are 0. The result graph is Gt. Note that
we do not impose sparsity by setting to zero all weights be-
low a given threshold value (more common approach) but we
introduce n instead. This is to better control the number of
clusters, that needs to remain low for an efficient learning.

STEP 3. Once the graph Gt is estimated, the clusters
V̂1,t,V̂2,t,...,V̂M,t are derived via community detection apply-
ing the Louvain Method [18]. Preferences per cluster are then
estimated (as shown in Algorithm 1) and the algorithm selects

1Without loss of generality, we assume the number of active users con-
stant over time.



Initial: bi,0 = 0 ∈ Rd,Mi,0 = I ∈ Rd×d, ûi,0 = 0 ∈ Rd,
i ∈ [1, N ];

Input: Edge deletion parameter n ∈ (0, N ];
for t = 1, 2, ..., T do

Set ûi,t−1 = M−1
i,t−1bi,t−1, i = 1, 2, ..., N ;

FindGt−1,weighted: Calculate pairwise Gaussian RBF-distance
w̃t−1,i,j between ût−1,i and ût−1,j , i, j = 1, 2, ..., N ;

FindGt−1: Set the largest n values of w̃t−1,i,j , j = 1, 2, .., N as 1;
Set the remaining to 0;

Find V̂ĵt,t−1: Apply Louvain Method onGt;
Set

M̄ĵt,t−1
= I +

∑
i∈V̂

ĵt,t−1

(Mi,t−1 − I)

b̄ĵt,t−1 =
∑

i∈V̂
ĵt,t−1

bi,t−1, ūĵt,t−1 = M̄
−1

ĵt,t−1
b̄ĵt,t−1

Find

kt = arg max
k∈1,...,C

(ūj(it−1)xt,k) + CBĵt−1
(xt,k)

CBĵt−1
(x) = α

√
xT M̄ĵt,t−1x log (t+ 1)

Receive at ∈ [0, 1].
Update:

Mit,t = Mit,t−1 + xtx
T
t , bit,t = bit,t−1 + atxt

Mi,t = Mi,t−1, bi,t = bi,t−1, i 6= it

end
Algorithm 1: SCLUB-CD Algorithm

the product kt at opportunity t following the UCB method,
i.e., following the minimization in (3). Once the product in-
dexed by kt with feature xkt is recommended, xkt is used to
update ûi,t along with the received payoff at via a standard
linear least-square approximation of uit (as shown in Algo-
rithm 1) and a new loop starts.

4. SIMULATION RESULTS

4.1. Simulations Setup

We carried out results both in a synthetic and a realistic
dataset. The synthetic case allows us to simulate a scenario
in which we can actually control the similarity among users,
while the realistic dataset has been implemented to validate
our algorithm in real recommendation problems. In the syn-
thetic case, N = 100 users are clustered in M = 5 clusters
and |K| = 1000 products are considered. Out of these 1000
products, at each trial t, a smaller pool C with size C = 25
is chosen uniformly at random from K as candidate for the
recommendation2. We set the dimension of both the users and
product features vectors to l = d = 25. To control the sim-
ilarity among users within a cluster, intra-cluster noise σc is
introduced. For each user i belonging to Vj , ui is created by
perturbing the uc

j(i) with a white noise term drawn uniformly
at random across from a zero mean normal distrbution with

2This is a common assumption in recommendation systems, therefore we
apply it in both synthetic and realistic scenarios.

variance σ2
c . The lower σ2

c the more compact the clusters. In
the following simulation results, we consider both σc and σε
to be in the range [0.25, 0.5], where we recall that σε is the
standard deviation of the payoff.

For the real-world datasets, we consider LastFM, con-
taining tags of artists and record listened by users, and De-
licious, including URLs bookmarked and tags provided by
users, [19]. While LastFM represents a scenario named
“few-hits” where users’ preference are coherent (therefore
it is reasonable to assume that users can be clustered), De-
licious represents a “many-hits” scenario in which users’
preferences are diverse (therefore the clustering is a strong
approximation). Simulation results are averaged over 10 runs
and provided in the following.

LastFM and Delicious datasets were processed following
the same procedure in [12] which we brief here. First, tags
that appear less than 10 times were removed. Second, all tags
related to each specific item was formed as a TF-IDF vector.
To reduce the dimension, PCA was applied and only the top
25 principle components were retained.

The proposed SCLUB-CD3 is compared with respect
to the state-of-the-art algorithms, namely LinUCB [20],
CLUB [10]. In the synthetic dataset, we provide simula-
tion results also for the SCLUB-CD in the case in which user
clusters is known, but user preference is unknown. We label
this method SCLUB-CD-Correct and it represents a lower
bound in terms of cumulative regret. To study the effect of
the weigted and sparse graph, we provide results also for two
other baseline methods (modified version of the proposed
SCLUB-CD): SCLUB-CD-Weight performs the clustering
based on Ĝt, while SCLUB-CD-Weight-Sparse keeps the top
n largest Gaussian RBF-distance edges but preserving their
weights.

4.2. Results

Fig. 1 shows the cumulative regret as a function of the recom-
mendation opportunities in the case of synthetic dataset and
under various combinations of reward noise and intra-cluster
noise. In the long-term, SCLUB-CD outperforms its com-
petitors consistently over all scenarios, with a substantial gap
(in terms of cumulative regret) for lower intra-cluster noise
(σc = 0.25), Fig. 1(a) and Fig. 1(c). It is interesting to
observe that also when the intra-cluster noise increases (Fig.
1(b) and Fig. 1(d)), clustering the user space with the pro-
posed approach still leads to a system improvement. With
respect to LinUCB, which does not cluster the users, the gain
is experienced because of the faster learning process: Lin-
UCB learnsN preference vector while SCLUB-CD learnsM
ones. With respect to CLUB, the gain is motivated by i) the
online learning estimation of the graph at each time opportu-
nity, ii) the graph-based clustering not limited to identify con-

3Available at https://github.com/LASP-UCL/KaigeYang/tree/graph-
based-recommendation-system.
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(a) σc = 0.25, and σε = 0.25.
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(d) σc = 0.5, and σε = 0.5.

Fig. 1. Cumulative regret for the synthetic dataset.

nected components, iii) the binary and sparse modelling of
the graph. In Fig. 1(c), LinUCB might outperform SCLUB-
CD for time horizon greater than 50000. However, we con-
sidered simulations with N = 100, to have a fair compar-
ison with LinUCB. By increasing the dimensionality of the
user space this potential crossing point is shifted far away in
time [21].

Finally, the gap between SCLUB-CD and SCLUB-CD-
Correct shows the potential room for improvement of the
proposed algorithm, as discussed at the end of this session.
The comparison with SCLUB-CD-Weight and SCLUB-CD-
Weight-Sparse shows the gain in controlling the sparsity level
(and therefore number of clusters) in the proposed algorithm.

Fig. 2 presents results on real world datasets. In LastFM,
SCLUB-CD maintains a leading margin, this is due to a better
clustering methodology. In particular, CLUB tends to inden-
tify many clusters, while SCLUB-CD identifies M = 3 user
clusters only with n = 300, as shown in Fig.2(c). This means
that the proposed approach is able to find the right tradeoff
between dimensionality reduction and approximation in clus-
tering users.

In Delicious, SCLUB-CD still outperforms baseline al-
gorithms, but the leading margin is smaller. Results show it
groups users into M = 11 clusters with n = 700. Overall,
delicious represents the “many-hits” scenario, in which each
user is interested in a small amount and quite dissimilar web-
sites. This means that each user will select few website only,
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Fig. 2. Cumulative regret and cluster number for the real-
world dataset.

therefore the agent can gather a small amount of feedbacks
per user, which translates in a limited training set per user.
Clustering users together allows to increase the dimension of
the training set. Therefore SCLUB-CD outperforms LinUCB
and CLUB, however due to the highly heterogenous scenario
the approximation introduced by the clustering is affecting
more the overall system. This justifies the reduced gain.

5. CONCLUSION

We proposed a graph-based bandit algorithm, which en-
codes users’ similarity in preference by an undirected and
unweighted graph and groups users into clusters. The key
aspects of the proposed algorithm are that i) it adopts graph-
based clustering to extract meaningful clusters, ii) the un-
weigted graph makes the system more robust to weights
estimation errors, iii) the proposed method keeps the num-
ber of clusters limited (through n), unlike CLUB that has a
number of clusters constantly increasing over time. All these
components lead to an overall gain in terms of cumulative re-
gret with respect to state-of-the-art algorithms. These results
also opened new questions such as “What is the sensitivity
of the MAB algorithm to the cluster size?”, “Could we adopt
graph signal processing to further improve the graph knowl-
edge (exploiting also the smoothness of the reward function
on the user graph)?” As future works, we will be addressing
these open questions.
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