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Abstract 

There is evidence to suggest that associations exist between spatial skills and 

mathematics in pre-school and adult populations. However, relatively few studies 

explore these associations in primary school aged children. The experimental studies 

presented in this thesis investigated the developmental relations between spatial and 

mathematical skills in children aged 5 to 10 years, including the transfer of spatial 

training gains to mathematics. Associations between spatial thinking and 

mathematics were observed longitudinally and cross-sectionally. Secondary data 

analysis of the Millennium Cohort Study, a longitudinal study of children in the United 

Kingdom, indicated that spatial performance at 5 years was a significant longitudinal 

predictor of mathematics at 7 years. Spatial skills explained 15% of the variation in 

mathematics achievement at 7 years even after controlling for gender, socio-

economic status and language skills (N = 12099). Findings from a cross-sectional study 

of children aged 6 to 10 years found that spatial skills explained 7% to 13% of the 

variation across three mathematics performance measures (standardised 

mathematics, approximate number system, and number line estimation skills) (N = 

155). Some relations reported between spatial and mathematical skills were sub-

domain specific. While spatial scaling was a significant predictor of all mathematics 

outcomes, disembedding was associated with standardised mathematics 

performance only. Certain spatial-mathematical relations were also sensitive to 

developmental age. Mental rotation had a greater influence on mathematics for 

younger compared to older children. These insights on the selectivity and 

developmental sensitivity of spatial-mathematical relations were used to design an 

intervention study, which targeted mental rotation and spatial scaling skills. In this 

study, spatial training led to gains in the spatial skill trained (near transfer), transfer 

of gains to un-trained spatial domains (intermediate transfer), and transfer of gains 

to mathematical domains (far transfer). It was concluded that spatial skills have a 

causal role in mathematics outcomes in childhood. 
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Impact statement  

Significant associations were found between spatial thinking and mathematics skills 

in children aged 5 to 10 years. These spatial-mathematical relations were supported 

by both longitudinal and cross-sectional evidence. Furthermore, training spatial 

thinking led to gains in the spatial skill trained (near transfer), transfer of gains to un-

trained spatial domains (intermediate transfer), and transfer of gains to 

mathematical domains (far transfer). The implications of these findings are far 

reaching.  

The findings of this thesis fine-tune the relationship between different sub-domains 

of spatial thinking and different mathematical skills, demonstrating that spatial-

mathematical relations show specificity to certain spatial and mathematical sub-

domains, and sensitivity to developmental age. They add to the theoretical debate 

on the causal relationship between spatial and mathematics skills, outlining a causal 

effect of spatial thinking on mathematics outcomes that was previously only inferred 

based on correlational evidence. The findings also contribute to the current 

understanding of transfer of cognitive training gains to untrained domains. It is 

proposed that the choice of cognitive training be determined by an understanding of 

the underlying cognitive mechanisms of training targets. The training gains reported 

in this research highlight the importance of choosing task and age sensitive targets 

for cognitive training.  

The evidence presented in this thesis strongly advocates for the spatialisation of 

primary school mathematics curricula such that children are taught how to read 

diagrams and graphs, encouraged to sketch and draw, exposed to spatial language, 

and given hands on opportunities to manipulate and explore with 3D materials. Given 

the ease with which they can be delivered, the findings from this thesis highlight the 

potential of instructional videos (explicit instruction) as a practical tool for spatialising 

the classroom. The introduction of spatial training, and the use of spatial tools in 

mathematics classrooms, are proposed as novel ways of improving mathematics 

performance in primary school children. Beyond individual gains, improving spatial 

and mathematics skills may lead to national improvements on international 
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assessments of mathematics, in which children from the UK typically perform less 

favourably on space and shape related domains, compared to other aspects of 

mathematics (Greany, Barnes, Mostafa, Pensiero, & Swensson, 2016).  

Outside the classroom, improving mathematics outcomes may have a wider 

economic impact. Improving mathematics attainment in the early school years may 

lead to related improvements in the quality of Science, Technology, Engineering, and 

Mathematics (STEM) graduates, with consequent implications for the STEM industry. 

In recent years, many employers have reported STEM personnel shortages and 

difficulties recruiting suitably qualified STEM graduates (National Audit Office UK, 

2018). Given the continuous expansion of the STEM industry, improving STEM skills 

has become a national priority. The findings presented in this thesis suggest that 

targeting spatial skills offers a promising avenue to tackle this challenge. 

 

   



6 
 

Dissemination 

Peer Reviewed Publications 

Data from Chapter 4 are under review for publication as a Journal Article in 

Developmental Science: 

Gilligan, K. A., Thomas, M. S. C., & Farran, E. K. (submitted). First demonstration of 

effective spatial training for near-transfer to spatial performance and far-transfer to 

a range of mathematics skills at 8 years. Developmental Science Special Issue. 

Data from Chapter 3 are published as a Journal Article in Developmental Science: 

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2018). The 

developmental relations between spatial cognition and mathematics in primary 

school children. Developmental Science. https://doi: 10.1111/desc.12786  

Collaboration from this thesis using data from Chapter 3 is published as a Journal 

Article in the British Journal of Educational Psychology.  

Hodgkiss, A., Gilligan, K. A., Tolmie, A. K., Thomas, M. S. C., & Farran, E. K. (2018). 

Spatial cognition and science achievement: The contribution of intrinsic and extrinsic 

spatial skills from 7 to 11 years. British Journal of Educational Psychology. 

https://doi.org/10.1111/bjep.12211 

Extended research using data from Chapter 3 is published as a Journal Article in 

Cognitive Development: 

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2018). The use of 

discrimination scaling tasks: a novel perspective on the development of spatial 

scaling. Cognitive Development. https://doi.org/10.1016/j.cogdev.2018.04.001 

Data from Chapter 2 are published as a Journal Article in the Journal of Experimental 

Child Psychology:  

Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to 

mathematics achievement in middle childhood. Journal of Experimental Child 

Psychology, 163, 107–125. https://doi.org/10.1016/j.jecp.2017.04.016  

https://doi.org/10.1111/bjep.12211
https://doi.org/10.1016/j.cogdev.2018.04.001
https://doi.org/10.1016/j.jecp.2017.04.016


7 
 

Conference Proceedings and Seminars 

Data from Chapter 4 were presented at the British Psychological Society, 

Developmental Section Annual Conference, Liverpool, UK:  

Gilligan, K. A., Thomas, M. S. C., & Farran, E. K. (2018). The effectiveness of spatial 

training videos to improve spatial and mathematical thinking in primary school 

children. Oral presentation. 

Extended data from Chapter 3 were presented at Mathematics Education Centre's 3rd 

annual symposium: The symbol grounding problem, Loughborough University, UK: 

Gilligan K. A., Hodgkiss, A., Patel, P. C., & Farran, E. K. (2018). The role of spatial 

language in the primary school mathematics classroom. Poster presentation.  

Data from Chapter 4 were presented at the European Association for Research on 

Learning and Instruction (EARLI) Sig 4 Conference, London, UK: 

Gilligan, K. A., Thomas, M. S. C., & Farran, E. K. (2018).  Brain space: Improving spatial 

thinking with instructional videos. Poster presentation. 

Data from Chapter 4 were presented to the Developmental Neurocognition Lab, 

Birkbeck University, UK: 

Gilligan, K. A., Thomas, M. S. C., & Farran, E. K. (2018). Evidence of near and far 

transfer: Using instructional videos of spatial thinking to improve spatial and 

mathematics skills in children. Oral presentation. 

Data from Chapter 4 were presented at the British Psychological Society, 

Developmental Section Annual Conference, Stratford Upon Avon, UK: 

Gilligan, K. A., Thomas, M. S. C., & Farran, E. K. (2017). Brain space: Using instructional 

videos of spatial thinking to improve spatial and mathematics skills. Oral 

presentation. 



8 
 

Data from Chapter 3 were presented at the 39th Annual Meeting of the Cognitive 

Science Society, London, UK:  

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2017). The role of spatial 

skills in mathematics cognition: Evidence from children aged 5-10 years. Poster 

presentation.  

Data from Chapters 2 and 3 were presented at the 20th European Society for Cognitive 

Psychology (ESCOP) Conference, Potsdam, Germany: 

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2017). Spatial thinking 

and mathematics: a developmental perspective. Poster presentation.  

Data from Chapters 2 and 3 were presented at the Doctoral Education Summer 

Conference, UCL Institute of Education, UCL, UK:  

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2017). The role of spatial 

thinking as a predictor of mathematics performance in primary school students. Oral 

presentation. 

Data from Chapters 2 and 3 were presented at the Royal Society meeting on the 

origins of numerical abilities, London, UK: 

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2017). Finding Space for 

Maths: An Investigation of the Associations between Spatial and Maths Skills in the 

Primary School Years. Poster presentation.  

Data from Chapters 2 and 3 were presented at the Centre for Educational 

Neuroscience Seminar Series, Birkbeck University, UK: 

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2017). Exploring the 

developmental relations between spatial cognition and mathematics in primary 

school. Oral presentation. 

Data from Chapters 2 and 3 were presented at the British Psychological Society, 

Developmental Section Annual Conference, Belfast, UK: 

Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2017). Exploring 

associations between spatial cognition and mathematics: A developmental 

perspective. Poster presentation. 



9 
 

 

 

To my mother Lorraine, 

for inspiring me with your kindness, strength and resilience  

and to my father Paul, 

for showing me the value of dedication, determination and hard work.   



10 
 

Acknowledgements  

I would like to thank the Bloomsbury Scholarship Programme and the National Centre 

for Curriculum and Assessment, for generously funding my doctoral research. Very 

special thanks are due to the 500+ children who took part in this research and to all 

the teachers who welcomed me into their classrooms. Thank you for taking an 

interest in my research. I had so much fun working with you all. This thesis would not 

have been possible without you. 

I owe a huge debt of thanks to my two supervisors, Prof. Emily Farran and Prof. 

Michael Thomas. I could not have asked for better mentors. Thank you for your time, 

patience, and guidance. I would like to particularly thank Emily for going above and 

beyond all my expectations of a PhD supervisor, and for making this PhD a wonderful 

experience. Thank you for your constant reassurance, and for giving me both 

guidance and freedom when I needed them most. You have been an inspirational 

role model. I am very excited to continue working with you. I would also like to thank 

Prof. Eirini Flouri for all of her help and advice during my time at UCL.  

Throughout my doctorate, I was lucky enough to be surrounded by other fantastic 

PhD students, who I now call good friends. Thank you to Su, Nelly, Lizzie, Annie, and 

all other members of the CoGDeV lab and the CEN PhD group. I especially want to 

thank Alex Hodgkiss who has made this PhD infinitely more enjoyable. I could not ask 

for a better collaborator or friend. Thank you for occasionally pandering to my desires 

for cinema trips in the middle of the day.  

This thesis would not have been possible without the love of my friends and family. I 

have been lucky enough to have wonderful friends who have helped and encouraged 

me through this thesis. I particularly want to thank Alan, Sam, Rachel, and Darina for 

providing motivation and distraction in equal measure. To my grandfathers, Tony 

Davis and Brian Gilligan who sadly did not see the completion of this thesis, thank 

you for always encouraging my love of learning. To my parents, Lorraine and Paul, 

thank you for your love and understanding during this PhD. Thank you for always 

enthusiastically supporting my goals and helping me to achieve them. To my sister 



11 
 

Aisling, thank you for being my best friend, for listening to endless PHD rants, for 

teaching me how to use commas, and most importantly, for always helping me to 

keep things in perspective with your witty humour and endless kindness. 

To my fiancé Ciarán Lee. Quite simply this thesis would not have been possible 

without your love. Thank you for endless cups of Barry’s Tea, for always having secret 

stashes of chocolate buttons, and for inspiring me on countless occasions with your 

own passion for research. Thank you for coming on this adventure with me and for 

filling my life with happiness. 

 

 

   



12 
 

Table of Contents 

Abstract.................................................................................................................3 

Impact statement ................................................................................................ 4 

Dissemination ...................................................................................................... 6 

Acknowledgements ........................................................................................... 10 

List of Figures ..................................................................................................... 16 

List of Tables…. .................................................................................................. 18 

List of Abbreviations .......................................................................................... 20 

Chapter 1 Literature review and introduction to thesis .................................. 22 

1.1 Introduction and Rationale .......................................................................... 22 

1.2 The development of spatial thinking ........................................................... 24 

1.2.1 Theoretical perspectives on spatial development ............................... 24 

1.2.2 Typology of spatial thinking ................................................................. 27 

1.2.3 Current behavioural literature on spatial development ...................... 33 

1.3 The development of mathematical thinking ............................................... 42 

1.3.1 Theoretical perspectives on the development of numerical cognition

 …………………………………………………………………………………………………………44 

1.3.2 Typology and development of numerical cognition ............................ 47 

1.3.3 Predictors of individual variation in mathematics skills ...................... 52 

1.4 Spatial ability and success in mathematics ................................................. 55 

1.4.1 Evidence for spatial- mathematical relations ...................................... 55 

1.4.2 Explaining associations between spatial and mathematics skills ........ 60 

1.5 Cognitive training......................................................................................... 63 

1.5.1 Training spatial skills............................................................................. 64 

1.5.2 Evidence of transfer of spatial training gains to mathematics ............ 66 

1.5.3 Insights into cognitive training from other cognitive domains ............ 69 

1.6 Conclusions and thesis directions ............................................................... 70 

Chapter 2 The longitudinal contribution of spatial ability to mathematics 

achievement in the early primary school years ................................................... 73 

2.1 Introduction ................................................................................................. 73 

2.2 Materials and Methods ............................................................................... 76 



13 
 

2.2.1 The Millennium Cohort Study .............................................................. 76 

2.2.2 Participants .......................................................................................... 76 

2.2.3 Measures .............................................................................................. 80 

2.2.4 Analysis strategy .................................................................................. 81 

2.3 Results ......................................................................................................... 84 

2.3.1 Overall task performance ..................................................................... 84 

2.3.2 Performance differences based on gender and SES ............................ 85 

2.3.3 Associations between mathematics and cognitive measures ............. 87 

2.3.4 Regression analyses ............................................................................. 87 

2.4 Discussion .................................................................................................... 95 

2.4.1 Strengths and limitations ..................................................................... 98 

2.4.2 Conclusion ............................................................................................ 99 

Chapter 3 The developmental relations between spatial cognition and 

mathematics in primary school children ............................................................ 100 

3.1 Introduction ............................................................................................... 100 

3.2 Materials and Methods ............................................................................. 104 

3.2.1 Participants ........................................................................................ 104 

3.2.2 Spatial skills assessed, and measures used ........................................ 105 

3.2.3 Mathematics ability measures ........................................................... 111 

3.2.4 Receptive Vocabulary Measure ......................................................... 115 

3.2.5 Procedure ........................................................................................... 115 

3.2.6 Data analysis ...................................................................................... 117 

3.3 Results Part A: Descriptive statistics ......................................................... 120 

3.3.1 Gender differences............................................................................. 120 

3.3.2 Spatial task performance ................................................................... 121 

3.3.3 Summary of the development of spatial skills ................................... 127 

3.3.4 Mathematics performance ................................................................ 128 

3.3.5 Language performance ...................................................................... 131 

3.4 Results Part B: Spatial-Mathematical Relations ........................................ 134 

3.4.1 Associations between task performance on different measures ...... 134 

3.4.2 Information on collinearity ................................................................ 136 

3.4.3 Identifying predictors of mathematics outcomes.............................. 137 



14 
 

3.5 Discussion .................................................................................................. 152 

3.5.1 Overview of findings........................................................................... 152 

3.5.2 Mechanisms of spatial-mathematical associations ........................... 155 

3.5.3 The role of control variables .............................................................. 157 

3.5.4 Future directions and limitations ....................................................... 158 

3.5.5 Conclusion .......................................................................................... 161 

Chapter 4 Effective spatial training for near-transfer to spatial performance and 

for far-transfer to a range of mathematics skills at 8 years ............................... 162 

4.1 Introduction ............................................................................................... 162 

4.1.1 Rationale for the study ....................................................................... 162 

4.1.2 Transfer of spatial training gains to mathematics ............................. 163 

4.1.3 The selection of training targets ........................................................ 165 

4.1.4 Motivational factors in training studies ............................................. 166 

4.1.5 Causality and training studies ............................................................ 168 

4.1.6 Current study ...................................................................................... 170 

4.2 Materials and Methods ............................................................................. 170 

4.2.1 Participants ......................................................................................... 170 

4.2.2 Study Design ....................................................................................... 171 

4.2.3 Training Procedures ........................................................................... 172 

4.2.4 Tasks and Measures ........................................................................... 175 

4.2.5 Data treatment ................................................................................... 183 

4.3 Results ........................................................................................................ 184 

4.3.1 Performance at Time 1 ....................................................................... 184 

4.3.2 Gender differences in task performance at Time 1 ........................... 188 

4.3.3 Performance at Time 2 ....................................................................... 192 

4.4 Discussion .................................................................................................. 199 

4.4.1 Near, intermediate and far transfer of gains ..................................... 200 

4.4.2 Explicit vs. implicit instruction ............................................................ 202 

4.4.3 Motivational Factors .......................................................................... 203 

4.4.4 Implications, future directions and limitations .................................. 204 

4.4.5 Conclusion .......................................................................................... 205 

Chapter 5 General Discussion ...................................................................... 207 



15 
 

5.1 Thesis Overview ......................................................................................... 207 

5.2 Overview of findings .................................................................................. 209 

5.3 Theoretical conclusions ............................................................................. 213 

5.3.1 Specificity of spatial-mathematical relations ..................................... 214 

5.3.2 Developmental sensitivity of spatial-mathematical associations ...... 217 

5.3.3 Causal role of spatial skills on mathematics ...................................... 218 

5.3.4 Other theoretical conclusions ............................................................ 220 

5.4 Implications ............................................................................................... 222 

5.4.1 Educational implications .................................................................... 222 

5.4.2 Economic and societal implications ................................................... 224 

5.5 Limitations and future directions .............................................................. 225 

5.6 Conclusion ................................................................................................. 228 

Appendices…………………………… .......................................................................... 230 

Appendix A ........................................................................................................... 230 

Appendix B ........................................................................................................... 233 

Appendix C ........................................................................................................... 238 

Appendix D ........................................................................................................... 239 

Appendix E ........................................................................................................... 240 

Appendix F ............................................................................................................ 241 

References ……………………………………………………………………………………………………242 

 

 

  



16 
 

List of Figures  

Figure 1.1. Uttal et al.’s (2013) two-by-two classification of spatial skills, taken from 

Newcombe (2018). ..................................................................................................... 30 

Figure 2.1. Cognitive and mathematics task performance across SES groups. ......... 86 

Figure 3.1. Example stimulus from the CEFT ........................................................... 106 

Figure 3.2. Sample item from the Mental Rotation Task (135° anti-clockwise trial)

 .................................................................................................................................. 107 

Figure 3.3. Relative position of model (left) and referent (right) maps relative to the 

participant, in the Spatial Scaling Task ..................................................................... 109 

Figure 3.4. Sample spatial scaling targets for trials requiring gross level acuity (left) 

and fine level acuity (right) ...................................................................................... 109 

Figure 3.5. Position of distractor targets in the Spatial Scaling Task. ...................... 110 

Figure 3.6. Sample trial from the Perspective Taking Task (2 items at 90°) ............ 111 

Figure 3.7. Sample dot arrays from the ANS Task ................................................... 113 

Figure 3.8. Sample items from the Number Line Estimation Task. Number to Position 

trials are shown above and Position to Number trials are shown below ................ 115 

Figure 3.9. Performance on the Mental Rotation Task across different degrees of 

rotation and different age groups ............................................................................ 123 

Figure 3.10. Performance accuracy on the Spatial Scaling Task across trials at different 

scaling factors and different levels of acuity............................................................ 125 

Figure 3.11. Performance accuracy on the Perspective Taking Task across different 

angle and complexity conditions ............................................................................. 127 

Figure 3.12. Spatial task performance across development ................................... 128 

Figure 3.13. Significant interactions between age and spatial skills ....................... 149 

Figure 4.1. Screenshot taken from the instructional video of mental rotation (explicit 

instruction) ............................................................................................................... 173 

Figure 4.2. Screenshot taken from the instructional video of spatial scaling (explicit 

instruction) ............................................................................................................... 173 

Figure 4.3. Screenshot taken from the control instructional video (explicit instruction)

 .................................................................................................................................. 174 

Figure 4.4. Sample trial from the control training task (implicit instruction) .......... 175 



17 
 

Figure 4.5. Sample item from the Mental Rotation Task (45° anti-clockwise trial) 176 

Figure 4.6. Sample mismatch trial at a scaling factor of 0.875 from the Spatial Scaling 

Task, taken from Möhring et al. (2016). .................................................................. 177 

Figure 4.7. Sample Missing Term Problem .............................................................. 178 

Figure 4.8. Sample item from the Number Line Estimation Task ............................ 179 

Figure 4.9. Sample Geometry Shape Item ............................................................... 180 

Figure 4.10. Sample Geometry Symmetry Item. ..................................................... 181 

Figure 4.11. Response scale for measuring expectations of the effectiveness of 

training ..................................................................................................................... 182 

Figure 4.12. Sample scale from the Participant Engagement Questionnaire ......... 183 

Figure 4.13. Performance on the Mental Rotation Task at Time 1 across different 

degrees of rotation .................................................................................................. 186 

Figure 4.14. Spatial Scaling performance at Time 1 across different scaling factors

 .................................................................................................................................. 187 

Figure 4.15. Mental Rotation accuracy at Time 1 and Time 2 for different training 

types. ........................................................................................................................ 193 

Figure 4.16. Spatial scaling accuracy at Time 1 and Time 2 for different training types.

 .................................................................................................................................. 194 

Figure 4.17. Percentage Correct on Missing Term Problems at Time 1 and Time 2 for 

different training types. ........................................................................................... 195 

Figure 4.18. PAE on the Number Line Estimation Task at Time 1 and Time 2 for 

different training types. ........................................................................................... 196 

Figure 4.19. Accuracy on Geometry Shape Items at Time 1 and Time 2 for different 

training types. .......................................................................................................... 197 

Figure 4.20. Accuracy on Geometry Shape Items at Time 1 and Time 2 for different 

training modes. ........................................................................................................ 197 

Figure 4.21. Self-reported levels of engagement following training across training 

modes and training types. ........................................................................................ 199 

Figure 5.1. The causal relationship between spatial and mathematical thinking. .. 219 

 

  



18 
 

List of Tables 

Table 1.1. Spatial ability factors generated using factor analysis approaches, 

adapted from Hegarty and Waller (2004) ................................................................  29 

Table 1.2. Mapping of spatial categories from previous models onto the Uttal et al. 

(2013) model of spatial skills, adapted from Uttal et al. (2013) ..............................  32 

Table 2.1. Demographic characteristics of the final study sample compared to 

participants excluded from analysis .........................................................................  79 

Table 2.2. Cognitive measures included in the MCS Waves 3 and 4 .......................  80 

Table 2.3. Descriptive statistics for task performance across Waves 3 and 4  ........  84 

Table 2.4. Gender differences in cognitive and mathematics task performance ...  85 

Table 2.5. Correlations between mathematics and cognitive measures  ...............  87 

Table 2.6. General linear models predicting mathematics achievement at 7 

years .........................................................................................................................  91 

Table 3.1. Demographic features of the study sample ............................................  105 

Table 3.2. Task orders for session 2 .........................................................................  116 

Table 3.3. Task orders for Session 3.........................................................................  117 

Table 3.4. Post-hoc power analysis for regression models .....................................  119 

Table 3.5. Gender differences in performance on spatial, mathematics and language 

measures ..................................................................................................................  121 

Table 3.6. Percentage of participants demonstrating linear estimates across 

different blocks of the number line task ..................................................................  130 

Table 3.7. Descriptive statistics for mathematics and language task performance 

across age groups .....................................................................................................  132 

Table 3.8. Correlations between test measures ......................................................  135 

Table 3.9. Co-linearity analysis for each of the main regression models ................  136 

Table 3.10. Co-linearity analysis for each of the follow-up regression models ......  137 

Table 3.11. Regression Model 1: Factors predicting standardised mathematics 

achievement (NFER PiM)  .........................................................................................  142 

Table 3.12. Regression Model 2: Factors predicting ANS performance  .................  144 

Table 3.13. Regression Model 3: Factors predicting R2LIN scores on the 0-10 

Number Line Estimation Task...................................................................................  145 



19 
 

Table 3.14. Regression Model 4: Factors predicting R2LIN scores on the 0-100 

Number Line Estimation Task ..................................................................................  146 

Table 3.15. Regression Model 5: Factors predicting R2LIN scores on the 0-1000 

Number Line Estimation Task  .................................................................................  147 

Table 3.16. Comparison of outcomes of regression analyses based on pairwise 

deletion and mean replacement of missing data ....................................................  151 

Table 4.1. Number of participants in each training group ......................................  172 

Table 4.2. Items included in the Participant Engagement Questionnaire...............  183  

Table 4.3. Descriptive statistics at Time 1 ...............................................................  185 

Table 4.4. Gender differences in task performance at Time 1 ................................  189 

Table 4.5. Correlations between tasks at Time 1 ....................................................  191 

  



20 
 

List of Abbreviations 

ANOVA Analysis of Variance 

ANS   Approximate Number System  

BAS II   British Ability Scales II  

BPVS   British Picture Vocabulary Scale  

CEBR  Centre for Economics and Business Research  

CMAQ   Child Math Anxiety Questionnaire  

CMTT   Child Mental Transformation Test  

CEFT   Children’s Embedded Figures Test  

CBI   Confederation of British Industry’s  

CFA   Confirmatory Factor Analysis  

EEG   Electroencephalogram  

EFA   Exploratory Factor Analysis  

FMRI  Functional Magnetic Resonance Imaging  

L1   Level 1  

L2  Level 2  

R2
LIN  Linear Model  

R2
LOG  Logarithmic Model  

MANOVA Multivariate Analysis of Variance 

MANCOVA Multivariate Analysis of Covariance  

M4YC  Math for Young Children  

MCS  Millennium Cohort Study  

NFER  National Foundation for Educational Research  

NHS  National Health Service  

NP  Number Estimation  

OFCOM  Office of Communications  

OECD   Organisation for Economic Co-Operation and Development  

PAE   Percentage Absolute Error  

PiM  Progress in Mathematics 

PISA  Programme for International Student Assessment 

PN   Position Estimation  



21 
 

STEM  Science, Technology, Engineering and Mathematics  

SES  Socio-Economic Status  

SNARC   Spatial Numerical Association of Response Codes  

SFON   Spontaneous Focus on Number  

TIMSS  Trends in International Mathematics and Science Study 

TOSA  Test of Spatial Assembly  

TOL   Tolerance  

VSWM  Visuo-Spatial Working Memory  

WIAT   Wechsler Individual Achievement Test  

WM   Working Memory  

 

 

 

  



22 
 

Chapter 1 Literature review and introduction to thesis  

1.1 Introduction and Rationale  

“Our world is a world that exists in space, and a world without space is 
literally inconceivable. Given this basic truth, it is clear that living in the 
world requires spatial functioning of some kind.” (Newcombe & Shipley, 
2015) 

Spatial thinking has diverse and wide-ranging applications in everyday life, from 

navigation which allows individuals to move around their environment, to tool use 

and the manipulation of objects (Newcombe, 2018). Spatial representations are 

required in the use of gesture, maps, diagrams, spatial language and mental images 

(Newcombe, 2018). Recent studies suggest that spatial skills also play an important 

role in Science, Technology, Engineering and Mathematics (STEM) learning (e.g., Wai, 

Lubinski, & Benbow, 2009). In both childhood and adolescence, spatial skills have 

been identified as significant longitudinal predictors of STEM outcomes (e.g., D. I. 

Miller & Halpern, 2013; Verdine et al., 2014). Based on these associations, spatial 

ability training has been proposed as a novel means of improving both spatial and 

STEM skills. The overarching aim of this thesis is to explore the role of spatial thinking 

for one important aspect of STEM achievement, mathematics performance. 

Despite its importance, there is still no single well-accepted typology of spatial 

thinking, and consequently there are gaps in the current understanding of how and 

when specific spatial skills develop. Given the range of tasks for which spatial skills 

are necessary, there is a need to better understand when different spatial skills 

develop, and why individual differences in spatial thinking are observed. In addition, 

initial attempts to elicit transfer of gains from spatial training to mathematics in 

children have rendered mixed results (Cheng & Mix, 2014; Hawes, Moss, Caswell, & 

Poliszczuk, 2015). These mixed findings suggest that transfer of spatial training gains 

is specific to certain spatial and certain mathematics tasks, and that the success of 

training studies is developmentally (age) selective. This will be discussed further in 

section 1.4. 
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This thesis is motivated from three perspectives. First, from a theoretical standpoint 

there is a lack of research directed at fine-tuning the relations between spatial and 

mathematics skills through development. As will be further outlined in the literature 

review, given the proposed multi-dimensionality of spatial and mathematical 

cognition, it is somewhat surprising that studies to date typically focus on individual 

spatial sub-domains and individual aspects of mathematics. There is a need to 

explore the developmental relations between different spatial and mathematical 

sub-domains, the possible underlying causal mechanisms that underpin these 

relations, and developmental variations in these spatial-mathematical relationships. 

This foundational research is needed to further develop this field and to enable the 

selection of age-appropriate training targets for future interventions.  

Second, from an educational perspective, integrating spatial thinking into STEM 

classrooms may offer a novel way of improving students’ academic outcomes. 

Students from England typically perform poorly on mathematical space and shape 

domains in international assessments (Greany, Barnes, Mostafa, Pensiero, & 

Swensson, 2016; Jerrim & Shure, 2016). Furthermore, spatial skills are largely absent 

from science and mathematics curricula at both primary and secondary level 

education in the UK (UK Department for Education, 2013). Fine-tuning the role of 

spatial skills for STEM learning across development and integrating spatial thinking 

into STEM lessons may help to improve STEM achievement.  

Third, improving STEM success is a particularly pertinent economic issue. STEM-

related industries contribute over 400 billion pounds to the UK economy per year 

(Berressem, 2011; Centre for Economics and Business Research [CEBR], 2015) yet 

over 39% of firms in need of STEM employees have reported difficulties recruiting 

suitably qualified candidates (Confederation of British Industry's [CBI], 2013). If not 

addressed, it is predicted that a shortfall in the STEM workforce will cost the UK 

economy over 27 billion pounds per annum by 2020 (Engineering UK, 2018). 

Identifying the role of spatial skills for STEM learning, and developing ways of 

improving STEM outcomes through spatial thinking, may improve the quality of STEM 

graduates with knock-on improvements for the STEM industry.  
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If effective, spatial training interventions could offer a promising alternative to 

traditional attempts at improving STEM achievement, which could in turn confer both 

educational and economic benefits. Findings from spatial training interventions could 

also provide theoretical insights into the spatial-STEM relationship. The first step in 

designing effective interventions must be to establish a better understanding of the 

developmental trajectories of spatial and mathematics skills through childhood, and 

to elucidate the developmental relations of these constructs.  

1.2 The development of spatial thinking  

Spatial cognition, as described by Hart and Moore (1973), is ”the knowledge and 

internal or cognitive representation of the structure, entities, and relations of space; 

in other words, the internalised reflection and reconstruction of space in thought” (p. 

248). This section outlines the current understanding of the typology and 

development of spatial thinking. Spatial thinking can be explored from a number of 

inter-related avenues. In section 1.2.1, three main theories of spatial development 

are outlined, i.e., Piagetian, Vygotskian and Nativist theories of development. These 

theories provide a framework for understanding the structure and development of 

spatial thought within the broader context of innate developmental starting points, 

and environmental and social influences. In section 1.2.2, different typologies of 

spatial thinking are outlined and reviewed. In this thesis the Uttal et al. (2013) 

typology of spatial thinking is used. This is also supported by Newcombe and Shipley 

(2015). Theoretical, neurological and behavioural evidence is presented to support 

the selection of this model. In section 1.2.3, current behavioural evidence on the 

development of spatial ability is reviewed in the context of the Uttal et al. (2013) 

typology of spatial thinking.  

1.2.1 Theoretical perspectives on spatial development 

Three theories have historically dominated the literature on the normative 

development of spatial skills. These theories reflect Piagetian, Vygotskian and Nativist 

perspectives respectively (Newcombe & Huttenlocher, 2003). Piaget’s interactionist 

theory proposes that infants are born with no knowledge of space, object 

permanency or occupation of space by matter (Piaget, 1951; 1952; 1954). Piaget 
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argued that infants learn proficient spatial skills through interactions with their 

physical environment, and proposed that children continue to accomplish spatial 

milestones such as topological, projective and euclidian thinking until 9 to 10 years 

(Piaget & Inhelder, 1948). As outlined by Piaget, topological thinking uses concepts 

of proximity, order, separation and enclosure. Projective thinking develops when 

children begin to incorporate perspective into their understanding of spatial 

relationships, allowing them to perceive objects in relation to each other, accounting 

for vertical and horizontal relationships. Euclidian thinking involves the introduction 

of measurement concepts such as the length of lines or number of lines, which adds 

relative proportion into spatial thinking. Critics have highlighted several weaknesses 

in accepting Piaget’s interactionist approach to spatial development, including 

evidence that many spatial skills and competencies develop before 10 years (Frick, 

Möhring, & Newcombe, 2014; Frick & Wang, 2014). Piagetian theory also fails to 

account for individual differences and error-making in mature spatial performance in 

adults (Möhring, Newcombe, & Frick, 2016). Despite its shortcomings, Piagetian 

theory highlights the important roles of both environmental interaction and 

biological maturation in the acquisition of spatial skills.  

In contrast, Vygotskian theories state that spatial competencies are acquired through 

social interaction, language, and the social environment (Newcombe & Huttenlocher, 

2003). Children are proposed to develop spatial skills through “guided participation” 

involving a teacher or model who has higher levels of expertise (Rogoff, 1990). The 

cultural transmission of symbolic systems from teachers to students is also thought 

to enhance spatial development (Gauvain, 1993;1995; Hutchins, 1995). While a role 

for cultural and social influence on childhood development seems likely, critics of this 

approach argue that Vygotskian models overestimate the influences of adult 

instruction and cultural contribution, characterising children as passive entities in 

their own spatial development (Newcombe & Huttenlocher, 2003). 

Nativist theories propose that individuals are born with an innate spatial ability 

(Spelke & Newport, 1998). These theories propose that the development of spatial 

skills occurs through enrichment of innate neonatal starting points, or biological 

maturation in specific brain regions (Diamond, 1991). In support of this theory, there 
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is evidence that children may have core modules (biological correlates) for object 

representation and geometric relations (Baillargeon, Spelke, & Wasserman, 1985; 

Kellman & Spelke, 1983; Spelke & Kinzler, 2007). Object representation is the ability 

to perceive and represent objects based on their spatio-temporal features (Spelke & 

Kinzler, 2007). An understanding of geometric relations reflects an ability to perceive 

the geometry of an environment, including relations such as the distance and angle 

between objects in a layout (Spelke & Kinzler, 2007). However, there is also 

conflicting evidence that does not support the existence of core modules of spatial 

thinking. The core module approach fails to: explain the roles of visual learning and 

manual exploration on spatial development, account for our ability to learn to 

navigate, justify why there is differing performance on spatial tasks on account of 

task design features, and explain training effects in reorienting experiments that are 

proposed to recruit the innate geometric module (Johnson, 2009; Needham, 2009; 

Twyman & Newcombe, 2010). There is reason to believe that innate core modules 

(biological correlates) are essential as cognitive starting points for spatial thinking. 

However, Nativist theories often under acknowledge the importance of 

environmental input and experience in spatial development (Carey, 1991; 

Newcombe, Uttal, & Sauter, 2013).  

Review and criticism of these theoretical perspectives has led to the emergence of 

the adaptive combination theory, an alternative, neoconstructivist approach to 

understanding spatial development (Newcombe & Huttenlocher, 2000; 2006; 

Newcombe et al., 2013). This theory encompasses and combines the strengths of 

Piagetian, Vygotskian and Nativist perspectives (Newcombe & Huttenlocher, 2000). 

The adaptive combination theory supports Piaget’s interactionist approach while also 

placing a greater importance on early cognitive starting points and the influences of 

cultural and social factors. This theory acknowledges that individuals are born with 

certain spatial abilities or may acquire these skills in the first few months of life. 

Environmental interaction at both physical and social levels, enables the growth and 

development of these skills over the first decade of a child’s life (Newcombe et al., 

2013). Hence, individual differences in spatial performance may be attributable to a 

range of biological, cognitive, genetic and/or environmental factors. Environmental 
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factors are likely to include both universally available and variable aspects of a child’s 

environment. For example, experiences such as interaction with solid objects and 

experience gained through movement, are available to most children (Newcombe & 

Huttenlocher, 2003). In contrast, other factors may be differentially experienced by 

some, but not all children, in their natural environments. That is, experiences of 

spatial language, building block play, map use and gesture, are likely to be beneficial 

to spatial development, and vary substantially across children (Newcombe & 

Huttenlocher, 2003). 

Adaptive combination theory is supported by behavioural findings that, while 

normative spatial development appears to follow a somewhat universal trajectory, 

there are also substantial individual differences in spatial performance at all stages 

of development (Mix et al., 2016). This reflects the importance of a) establishing 

developmental trajectories of spatial thinking and b) understanding the 

environmental inputs that influence and modify spatial abilities across childhood. 

This thesis is framed using the adaptive combination theory of spatial development. 

1.2.2 Typology of spatial thinking  

Spatial cognition was first distinguished from general intelligence in the 1930s when 

unitary intelligence models were rendered inadequate and spatial cognition was 

recognised as a distinct contributor to variance in intelligence tests (Eysenck, 1939; 

Thurstone, 1938). Since this time, research on spatial cognition has been complicated 

by variations in both the spatial terminology and spatial typologies used. Attempts at 

defining a typology for spatial thinking have been approached from both 

psychometric and theoretical perspectives which has led to the emergence of many 

contrasting typologies (Linn & Petersen, 1985). Factor analysis studies throughout 

the 1950s and 60s used psychometric approaches to sub-classify spatial cognition 

into a series of spatial sub-components (Guilford & Lacey, 1947; Voyer, Voyer, & 

Bryden, 1995; Zimmerman, 1954). However, the sub-divisions generated were highly 

unstable, with overlap between spatial sub-categories and large differences in 

categories based on the inclusion or exclusion of certain spatial tasks (Carroll, 1993; 

Höffler, 2010; Lohman, 1988). As shown in Table 1.1, factor analysis studies led to the 
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emergence of many contrasting models of spatial cognition, each with different 

definitions and classifications of spatial skills (Hegarty & Waller, 2004). Additional 

limitations of using factor analysis studies to establish the underlying structure of 

spatial thinking include the assumptions that, all participants employ similar cognitive 

strategies in spatial task completion, participants will continue to use the same 

cognitive strategy throughout completion of a given spatial task, and in a given study 

all sub-components of spatial ability have been represented by cognitive tasks 

(Hegarty & Waller, 2004). As outlined by Newcombe (2018) navigation has typically 

been omitted from models of spatial thinking generated by factor analysis, as 

traditionally navigation was a very difficult construct to assess.  
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Table 1.1 

Spatial ability factors generated using factor analysis approaches, adapted from 

Hegarty and Waller (2004) 

Study Factors Identified 
Tests cited as typical 

markers for each factor 

Michael, Guilford, Fruchter, 
& Zimmerman, 1957 

1. Spatial Visualization -Paper Folding, Form Board  
2. Spatial Relations and 
Orientation 

-Cube Comparisons Test, 
Guildford-Zimmerman 
Spatial Orientation, Card 
Rotations  

 3. Kinesthetic Imagery -Hands test 

McGee, 1979 1. Spatial Visualization -Paper Folding 

 
2. Spatial Orientation -Cube Comparisons, 

Guildford-Zimmerman 
Spatial Orientation 

Lohman, 1988 1. Spatial Visualization  -Paper Folding, Form Board, 
Cube Comparisons 

 2. Spatial Relations  -Card Rotations 
 3. Spatial Orientation -Guilford-Zimmerman 

Spatial Orientation, 

Carroll, 1993 1. Spatial Visualization -Paper Folding, Form Board, 
Cube Comparisons,  
Guildford-Zimmerman 
Spatial Orientation 

 2. Spatial Relations -Card Rotations 
 3. Closure Speed -Snowy Pictures  
 4. Flexibility of Closure -Hidden Figures  
 5. Perceptual Speed -Identical Pictures  

 
6. Visual Memory -Silverman-Eals visual 

memory task 

 

Alternatively, typologies of spatial cognition can be derived using iterative, 

theoretical approaches, categorising spatial tasks based on the cognitive or 

perceptual processes required to complete them (Uttal et al., 2013). One such 

typology is Uttal et al.’s (2013) theoretical, top-down model of spatial skills (see also 

Newcombe and Shipley [2015]). As shown in Figure 1.1, this model is built on two 

fundamental theoretical distinctions. The first is between intrinsic and extrinsic 
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representations and the second is between static and dynamic representations. 

Intrinsic representations are those pertaining to the size and orientation of an object, 

its parts and their relationships. In contrast, extrinsic representations relate to the 

location of an object, the relationship between objects, and the relationship between 

objects and their reference frames. Dynamic representations require movement such 

as bending, moving, folding, scaling or rotation, whilst static representations do not. 

By combining these two fundamental distinctions, Uttal et al. (2013) propose a two-

by-two classification of spatial skills with four distinct sub-domains: intrinsic-static, 

intrinsic-dynamic, extrinsic-static and extrinsic-dynamic.  

 

Figure 1.1. Uttal et al.’s (2013) two-by-two classification of spatial skills, taken from 

Newcombe (2018). 

There is convincing theoretical, neurological and behavioural evidence to support the 

Uttal et al. (2013) model of spatial thinking (Chatterjee, 2008; Hegarty, Montello, 

Richardson, Ishikawa, & Lovelace, 2006; Palmer, 1978; Talmy, 2000). Although Uttal 

et al.’s (2013) model has been designed from a top-down perspective, its findings are 

complimentary to, and facilitate the incorporation of previous models. As shown in 

Table 1.2, early categorisations of spatial skills based on factor analysis studies or 

early theoretical models, can be mapped onto Uttal et al.’s (2013) spatial sub-

domains. For example, Linn and Peterson (1985) outlined three theoretically driven 

categories of spatial thinking: spatial perception, mental rotation and spatial 

visualisation. As shown in Table 1.2, spatial perception and mental rotation fall within 

Uttal et al.’s (2013) extrinsic-static and intrinsic-dynamic sub-domains respectively, 



31 
 

while spatial visualisation tasks, which are diverse in their nature, require both 

intrinsic-static and intrinsic-dynamic spatial skills. More extensive descriptions of the 

tasks listed in Table 1.2 can be found in Appendix A.   

The Uttal et al. (2013) model also aligns with spatial models that are based on the 

evolutionary origins of spatial skills. From an evolutionary perspective, Newcombe 

(2018) proposed three kinds of spatial cognition with separate functions: navigation, 

tool use, and spatialisation. Tool use falls into the category of intrinsic relations, e.g., 

mental rotation could be used for correctly positioning stones to build a wall. 

Navigation can be described as an extrinsic spatial task, e.g., perspective taking to 

judge the field of vision of a predator. Newcombe (2018) additionally describes 

spatialisation as higher order tasks that use abstract spatial representations such as 

spatial language, gesture and sketches. These representations can be used to assist 

in the completion of other spatial tasks.  

Neurological evidence for Uttal et al.’s (2013) model stems from functional Magnetic 

Resonance Imaging (fMRI) and Electroencephalogram (EEG) studies that highlight 

localisation, and processing differences between “what” (intrinsic) and “where” 

(extrinsic) information in the brain (Chatterjee, 2008). Differences in neural 

performance patterns measured using EEG have also been reported between 

intrinsic (mental rotation) and extrinsic (perspective taking) tasks (Christoforou, 

Hatzipanayioti & Avraamides, 2018). Behavioural studies also support the Uttal et al. 

(2013) model. Significant differences have been reported between object visualisers 

and spatial visualisers who excel at intrinsic-static and intrinsic-dynamic spatial tasks 

respectively (Kozhevnikov, Hegarty, & Mayer, 2002; Kozhevnikov, Kosslyn, & 

Shephard, 2005). Furthermore, recent confirmatory factor analysis (CFA) found 

evidence for a distinction between intrinsic and extrinsic spatial skills at 6 and 9 years 

(Mix, Hambrick, Satyam, Burgoyne, & Levine, 2018). Specifically, mental rotation, 

block design, figure copying and visuo-spatial working memory (VSWM) loaded onto 

one factor (intrinsic) and map reading, perspective taking and proportional reasoning 

loaded onto another factor (extrinsic). Taken together, there is convincing evidence 

to support the use of Uttal et al.’s (2013) model. 
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Table 1.2 

Mapping of spatial categories from previous models onto the Uttal et al. (2013) model 

of spatial skills, adapted from Uttal et al. (2013).  

Uttal et al. 
sub-

domain 
(2013)  

Description 
Examples of 

measures 

Linn & 
Petersen 

(1985) 
Carroll (1993) 

Intrinsic and 
static  

Perceiving objects, 
paths, or spatial 
configurations 
amid distracting 
background 
information 

Embedded 
Figures tasks, 
flexibility of 
closure, 
mazes 

Spatial 
visualization 

Visuospatial 
perceptual speed 

Intrinsic and 
dynamic 

Piecing together 
objects into more 
complex 
configurations, 
visualizing and 
mentally 
transforming 
objects, often from 
2-D to 3-D, or vice 
versa. Rotating 2-D 
or 3-D objects 

Form Board, 
Block Design, 
Paper 
Folding, 
Mental 
Cutting, 
Mental 
Rotations 
Test, Cube 
Comparison, 
Perdue 
Spatial 
Visualization 
Test, Card 
Rotation Test  

Spatial 
visualization, 
mental 
rotation 

Spatial 
visualization, 
spatial 
relations/speeded 
rotation 

Extrinsic and 
static  

Understanding 
abstract spatial 
principles, such as 
horizontal 
invariance or 
verticality  

Water-Level, 
Water Clock, 
Plumb-Line, 
Cross-Bar, 
Rod and 
Frame Test 

Spatial 
perception 

Not included 

Extrinsic and 
dynamic 

Visualizing an 
environment in its 
entirety from a 
different position 

Piaget’s 
Three 
Mountains 
Task, 
Guildford-
Zimmerman 
spatial 
orientation 

Not included Not included 

 



33 
 

The use of Uttal et al.’s (2013) model should be viewed in the context of its 

limitations. As is the case for other top-down models, it is unclear the degree to which 

the proposed spatial sub-divisions reflect the true cognitive (latent) structure of 

spatial thinking (Burgess, 2006; Mix et al., 2016). Furthermore, the use of this model 

is sometimes complicated by the fact that some spatial activities, including spatial 

tasks in the classroom, may recruit a number of Uttal et al.’s (2013) spatial sub-

domains in combination (Okamoto, Kotsopoulos, McGarvey, & Hallowell, 2015). For 

example, some tasks require a series of steps such as choosing the correct size card 

and folding it to match a sample. A child would be required to use extrinsic-static 

spatial skills to scale between the various pieces of card to select the correct one. 

Intrinsic-dynamic spatial skills would then be required to rotate and re-orient the card 

and fold it correctly (Hawes, Tepylo, & Moss, 2015). 

Of note, this thesis investigates spatial thinking in small-scale spaces only. Different 

scale spaces are defined by their perceptual and motor requirements (Broadbent, 

2014). Spatial thinking in large-scale spaces is that which requires movement and 

observations from a number of vantage points (Broadbent, 2014; Kuipers, 

1978;1982). In contrast, spatial thinking in small-scale spaces has no requirements 

for movement or for changing location. Although spatial thinking across small and 

large spaces may share processing requirements (Hegarty et al., 2006), there is also 

evidence of processing differences across differently sized spaces (Tversky, Morrison, 

Franklin, & Bryant, 1999; Zacks, Mires, Tversky, & Hazeltine, 2000). As such, this 

thesis investigates spatial skills in the context of small-scale spaces only, where 

movement and multiple vantage points are not required. Spatial navigation or spatial 

processing in large-scale spaces is beyond the remit of this thesis. 

1.2.3 Current behavioural literature on spatial development  

The existing literature on the development of spatial skills in childhood from 5 to 10 

years can be reviewed in the context of Uttal et al.’s (2013) classification of spatial 

thinking. 
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1.2.3.1 The development of intrinsic-static spatial skills 

Intrinsic-static spatial thinking requires coding of spatial features of objects, including 

their size and the arrangement of their parts, e.g., identifying objects as members of 

categories (Newcombe & Shipley, 2015). Intrinsic-static thinking is also required for 

carving shapes into parts (Newcombe & Shipley, 2015). The Children’s Embedded 

Figures Task (CEFT) is the most commonly used measure of intrinsic-static spatial 

thinking and few other spatial tasks assess performance on this spatial sub-domain. 

The CEFT requires identification of the spatial configuration of one object against a 

distracting background (Ekstrom, French, Harman, & Dermen, 1976; Okamoto et al., 

2015; Witkin & Goodenough, 1981; Witkin, Otman, Raskin, & Karp, 1971). Children 

have the ability to complete pre-school versions of the CEFT by 3 years, and 

performance on the pre-school version of this task continues to improve from 3 to 5 

years (Busch, Watson, Brinkley, Howard, & Nelson, 1993).  

Intrinsic-static spatial skills measured using disembedding tasks like the CEFT, show 

developmental progression through the primary school years (Witkin et al., 1971). 

Between 6 and 11 years, performance on the CEFT improves significantly with age, 

with significant differences in performance between all consecutive age groups 

(Amador-Campos & Kirchner-Nebot, 1997). However, other studies suggest that the 

developmental differences in CEFT performance may be subtler, with smaller 

between-age group effects (Guisande, Fernanda Páramo, Tinajero Vacas, & Almeida, 

2007). Furthermore, notwithstanding developmental differences in CEFT 

performance, individuals also show substantial individual variation in disembedding 

skills, which continues into adulthood (Jia, Zhang, & Li, 2014). More research using 

new tasks is needed to better understand the development of intrinsic-static spatial 

skills. 

1.2.3.2 The development of intrinsic-dynamic spatial skills 

The majority of studies that have investigated spatial development, focus on intrinsic-

dynamic spatial skills. Intrinsic-dynamic spatial skills include mental transformations 

like mentally rotating, folding, bending or breaking objects (Newcombe & Shipley, 

2015). A considerable amount of research has focused on mental rotation, the ability 
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to imagine rotations of an object in 2D or 3D space (Frick, Ferrara, & Newcombe, 

2013). Early precursors of successful mental rotation have been reported at 16 

months. Frick and Wang (2014) presented children with a toy on a turntable that was 

covered and rotated by 90 degrees. The turntable was uncovered to reveal that the 

toy had moved with the turntable (probable outcome) or had remained in the original 

location (improbable outcome). At 16 months, but not at 14 months, children 

demonstrated prolonged eye gazes for improbable outcomes. This suggests that 

children at 16 months expected the toy to turn with the turntable and were capable 

of anticipating rotational outcomes (Frick & Wang, 2014). However, children at 14 

months did not show these precursors to successful mental rotation. Object fitting 

tasks are also useful for measuring precursors of mental rotation ability. Örnkloo & 

von Hofsten (2007) presented children with a box with a hole at the top (the shape 

of this varied by trial) and a series of objects at a perpendicular orientation to the 

hole (ensuring that rotation was required to fit the object into the hole). The authors 

recorded how children handled the objects before attempting to place them into the 

hole. At 14 months, children ignored the orientation of the objects when attempting 

to place them into the hole, at 18 months children appeared to realise that the 

objects required rotation but completed inaccurate rotations, while at 22 months 

children were largely accurate in rotating objects and fitting them into the hole 

(Ornkloo & von Hofsten, 2007). Successful precursors to mental rotation have also 

been reported in other studies. For example, at 25 months, children can rotate 

shapes (cylindrical oblong and square shaped oblong) to place them on top of 2D 

outlines, and to stack them in towers (Shutts, Ornkloo, von Hofsten, Keen, & Spelke, 

2009). 

In contrast to the tasks above, results from studies using more typical mental rotation 

paradigms with more complex shapes, and imagined rotations, show that children 

find mental rotation tasks challenging until approximately 5 years. For these tasks, 

several studies report above chance accuracy on mental rotation tasks from 5 years 

only (Broadbent, 2014; Dean & Harvey, 1979; Dean & Sherzer, 1982; Frick et al., 2013; 

Frick, Hansen, & Newcombe, 2013; Marmor, 1975; 1977; Okamoto-Barth & Call, 

2008). Like adults, children show increased reaction times and increased error rates 
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for trials at higher degrees of rotation (e.g., Kosslyn, Margolis, Barrett, Goldknopf, & 

Daly, 1990). Some studies report above chance accuracy on mental rotation tasks at 

4 years. For example, Estes (1998) reported a mean performance accuracy of 60% at 

4 years on a computerised rotation-matching task, where chance performance was 

50%. This was compared to 83% at 6 years (Estes, 1998). While above chance 

accuracy was reported at 4 years, performance remained relatively low. In another 

study in which children were asked to decide whether two images, including one 

rotated image, were matching or not, Marmor (1977) reported that 75% of children 

at 4 years demonstrated an adult-like linear increase in response time with increasing 

degrees of rotation. However, a subsequent study using a similar experimental 

paradigm failed to replicate these findings (Dean & Harvey, 1979). Recent findings 

from Frick et al. (2013) also report above chance accuracy on mental rotation in 

some, but not all, children at 4 years (approximately 40% of children). This percentage 

increases to 95% at 5 years. In other mental rotation studies, even after task 

modifications such as providing manual or observational experience, children at 4 

years do not perform above chance (Frick et al., 2013).  

Similar findings have been reported for other intrinsic-dynamic spatial tasks. 

Performance on the Child Mental Transformation Task (CMTT) which requires 

mentally moving objects along diagonal lines and mentally rotating objects, shows 

significant age-based improvements between 4 and 7 years (Levine, Huttenlocher, 

Taylor, & Langrock, 1999). For mental folding, which requires imagining what an 

object will look like after it has been folded, there is evidence that by 5 years the 

majority of children demonstrate above chance performance which improves with 

age until it plateaus at 7 to 8 years (Harris, Newcombe, & Hirsh-Pasek, 2013). Overall, 

the findings indicate that precursors of successful intrinsic-dynamic spatial skills are 

evident in infancy. Although above chance accuracy on intrinsic-dynamic spatial tasks 

is reported in some studies at 4 years, in the majority of studies it appears that 

children are not capable of achieving above chance accuracy on intrinsic-dynamic 

tasks until the age of 5 years. These intrinsic-dynamic spatial skills continue to 

develop until at least 7 to 8 years.  
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1.2.3.3 The development of extrinsic-static spatial skills 

Extrinsic-static spatial tasks require mapping of an object’s location in relation to a 

reference system (Okamoto et al., 2015). Historically, horizontal and vertical 

invariance tasks were used to assess extrinsic-static spatial skills. For example, the 

Rod and Frame Test examines the ability to accurately code horizontal and vertical 

dimensions of a rod as defined by gravity, while ignoring the reference of a tilted 

frame (Newcombe & Shipley, 2015). Performance on this task gradually improves 

with age from 4 years until adulthood (Bagust, Docherty, Haynes, Telford, & Isableu, 

2013; Haywood, Teeple, Givens, & Patterson, 1977; Witkin, Goodenough, & Karp, 

1967). More recently, spatial scaling tasks have been introduced to measure 

extrinsic-static spatial thinking (Newcombe & Shipley, 2015). The prerequisite skills 

required for spatial scaling, including symbolic correspondence and metric encoding, 

emerge in early childhood (Huttenlocher, Newcombe & Sandberg, 1994; Newcombe, 

Sluzenski, & Huttenlocher, 2005; Vasilyeva and Huttenlocher, 2004). Comprehension 

of symbolic correspondence, or the correspondence between a model and a 

reference space has been reported in children as young as 3 years (DeLoache, 1987; 

DeLoache, 1989). At this age, children recognise that features on a map or model 

represent features in the real world. Metric encoding, or the ability to encode 

distances metrically, has been reported in infants as young as 5 months, with some 

infants demonstrating sensitivity to distance differences of just 20cm (Newcombe, 

Huttenlocher, & Learmonth, 1999; Newcombe et al., 2005). Bushnell, McKenzie, 

Lawrence and Connell (1995) demonstrated metric encoding in infants at 12 months 

showing that they can locate an object which is hidden in a circular enclosure under 

one of many randomly placed identical cushions. Given the lack of cues or landmarks 

and the random arrangement of the cushions, this suggests an ability to use metric 

encoding relative to the participant, in order to identify the correct cushion. Similar 

findings from Huttenlocher et al. (1994) propose that metric encoding in children is 

robust by 16 months.  

Beyond these prerequisite skills, there is evidence that the ability to successfully map 

encoded distances between different sized spaces, i.e., spatial scaling, develops 

significantly between 3 and 5 years. For example, Frick and Newcombe (2012) 
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reported that children’s scaling ability, measured using a two-dimensional 

localisation task, improves with age from 3 to 6 years, at which time children’s 

accuracy levels are broadly comparable to adult scores. No significant difference in 

performance between children at 5 and 6 years was reported. In a computer-based 

study Möhring, Newcombe and Frick (2014) demonstrated improvements in spatial 

scaling across different scaling factors between 4 and 5 years. Similar results have 

also been reported in studies using more natural environments. For example, 

Vasilyeva and Huttenlocher (2004) reported that 90% of children at 5 years could 

successfully place objects on a rectangular rug using a two-dimensional map. In 

comparison, at 4 years only 60% of children were successful when presented with the 

same task. While some studies have reported accurate spatial scaling in children 

younger than 5 years, these findings may be attributable to the use of simplified tasks 

in which objects are presented along a single dimension. Huttenlocher, Newcombe 

and Vasilyeva (1999) reported accurate spatial scaling for most children at 3 and 4 

years when tested using a scaling paradigm with a single dimension; the horizontal 

axis. Similarly, at 4 years children can successfully use a map to locate one of three 

target bins, positioned along a single spatial dimension (Shusterman, Ah Lee, & 

Spelke, 2008). In studies requiring scaling in two dimensions, at 4 years, children find 

it difficult to correctly place an object in a target location within a room, based on 

locations learnt from a corresponding map (Uttal, 1996). Indeed, in certain spatial 

paradigms children up to 10 years find task completion difficult (Libens & Downs, 

1993).  

In summary, children as young as 3 years demonstrate symbolic correspondence and 

metric encoding, prerequisite skills for spatial scaling. Above chance accuracy on 

scaling tasks in one and two dimensions is typically evident from 3 and 5 years 

respectively. However, task performance is influenced by the number of spatial 

dimensions used and the task features of a given measure. There is limited 

information on spatial scaling performance in children older than 5 years.  
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1.2.3.4 The development of extrinsic-dynamic spatial skills 

Extrinsic-dynamic spatial tasks require an understanding of the changing relations 

between two or more objects, or between the observer and other objects (Okamoto 

et al., 2015). These tasks are based on the fact that all objects have a location that 

can be coded using either an object-based reference frame (allocentric) or using a 

body-relative reference frame (egocentric) (Newcombe & Shipley, 2015). Perspective 

taking and other extrinsic-dynamic spatial tasks require an ability to use an allocentric 

reference frame, to represent a viewpoint that differs from one’s own (Frick, 

Möhring, & Newcombe, 2014b) or to imagine observer movements (Newcombe & 

Frick, 2010). Perspective taking tasks are often used to measure extrinsic-dynamic 

spatial skills. Piaget and Inhelder (1956) first measured perspective taking with the 

Three Mountains Task and reported that perspective taking skills do not develop until 

9 to 10 years. However, several studies have since contradicted these findings. The 

paragraphs below detail that the precursors to perspective taking have been 

reported from 2 years while more sophisticated forms of perspective taking are 

evident from approximately 6 years (Frick et al., 2014b). 

Perspective taking is proposed to develop in two stages Level 1 (L1) and Level 2 (L2) 

(Flavell, Everett, Croft, & Flavell, 1981; Masangkay et al., 1974). During L1, children 

demonstrate precursors to successful perspective taking and understand that 

different standpoints give rise to different views, i.e., individuals with L1 knowledge 

understand that another person can see something different to themselves (Flavell, 

et al., 1981; Masangkay et al., 1974). L1 skills have been reported in children at 24 

months (Moll & Tomasello, 2007; Sodian, Thoermer, & Metz, 2007). However, at this 

developmental stage, children find it difficult to imagine exactly what can be seen 

from a contrasting view point and can only do so in certain environmental conditions 

(Newcombe & Huttenlocher, 1992; 2003). During L1, children often demonstrate 

egocentric representations that are based on their own perspective (Newcombe & 

Huttenlocher, 1992). L2 capabilities in perspective taking develop at approximately 6 

years, at which time children are capable of imagining a scene from an alternate 

perspective, i.e., using an allocentric reference frame to encode the location of an 
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object relative to other objects (Frick et al., 2014b; Masangkay et al., 1974; Pillow & 

Flavell, 1986). 

Perspective taking skills continue to develop and improve through childhood, with 

particular increases in L2 abilities between 7 and 8 years (Flavell et al., 1981; Frick et 

al., 2014b; Masangkay et al., 1974; Pillow & Flavell, 1986). There is evidence that it is 

not until 8 years that individuals fully develop the ability to integrate egocentric and 

allocentric reference frames and use them to successfully navigate within their 

surroundings (Nardini, Jones, Bedford, & Braddick, 2008). It is noteworthy that 

successful perspective taking at both L1 and L2 appears to be dependent on task 

design features including the complexity of the task, the number of objects involved, 

and the presence of conflicting frames of reference (Newcombe & Huttenlocher, 

1992). For example, a study by Frick et al. (2014b) reported that increasing the 

number of objects used in perspective taking tasks led to reductions in task 

performance.  

Taken together, there is evidence suggesting that L1 perspective taking skills are 

present from 24 months while L2 perspective taking skills develop at approximately 

6 years. L2 skills continue to develop throughout childhood with particular increases 

in L2 abilities between 7 and 8 years (Frick et al., 2014b; Salatas & Flavell, 1976). 

However, there is limited evidence exploring perspective taking abilities after this 

age.  

1.2.3.5 Summary of the development of spatial skills  

Traditional Piagetian theories suggest that the skills required for the completion of 

spatial tasks are not evident until 10 to 11 years when children no longer hold 

topological views of spatial concepts (Piaget & Inhelder, 1948). In contrast to this, the 

literature highlighted here suggests that children show early precursors to successful 

spatial thinking in infancy, with marked improvements in spatial task performance 

between 5 and 8 years. The literature suggests that there may be subtle differences 

in the early developmental profiles of different spatial sub-domains. There is 

evidence that children demonstrate intrinsic-static spatial skills at 3 years and 

intrinsic-dynamic spatial skills at 4 years. For extrinsic-static spatial skills, there is 



41 
 

above chance accuracy at approximately 5 years, while extrinsic-dynamic spatial 

abilities appear to emerge slightly later at approximately 6 years. Across all spatial 

sub-domains, there is evidence that task performance is dependent on features of 

task design. Unfortunately, few studies explore spatial development in later 

childhood, and no one study includes multiple measures of spatial thinking at 

consecutive developmental stages. Comparing spatial development across different 

sub-domains and across different studies is hindered by the different populations and 

testing paradigms used, thus the comparative findings outlined here should be 

interpreted with caution. This concern is further addressed in section 3.3. 

Importantly, although this section highlighted developmental differences in spatial 

thinking, substantial individual differences in spatial performance are also reported 

across all of Uttal et al.’s (2013) spatial sub-domain (e.g., Liben and Downs, 1993, 

Newcombe & Frick, 2010). While children’s spatial skills improve as they get older, 

factors such as environmental, biological and cultural influences may explain the 

large disparities in spatial performance between children of the same age. The roles 

of both development and individual differences in performance must be considered 

in any discussion of spatial thinking. These findings are consistent with the adaptive 

combination theory of spatial development. Beyond biological starting points, the 

findings emphasise the role of experience in the development of spatial skills. They 

highlight the fact that differences in personal experiences may lead to different 

spatial outcomes.    

As outlined further in section 1.4, this thesis focuses on the important role that spatial 

thinking may play in educational and applied settings such as in the development of 

STEM skills. However, spatial thinking also has a practical significance in everyday life. 

The vast implications of spatial cognition are outlined by Newcombe (2018):  

 “Any kind of action in a spatial world is in some sense spatial functioning, 
and hence can sensibly be called spatial cognition” (Newcombe, 2018, 
p.2)  

Spatial thinking is required when driving a car, packing items into a suitcase, finding 

the freezer aisle at the supermarket, wrapping a gift, and playing tennis, among other 
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examples. Spatial cognition has been identified as a sub-component of intelligence 

and has been reported as a distinct factor (beyond verbal and mathematical domains) 

in many factor analysis studies (Newcombe et al., 2013). From an evolutionary 

perspective, the development of advanced spatial cognition has facilitated humans 

in tool use, a skill that is largely unique to humans and sets us aside from other 

primates (Okamoto-Barth & Call, 2008). For these reasons, understanding the 

development of spatial thinking and factors that predict individual variation in spatial 

thinking, has significant practical and theoretical implications. Chapters 2 and 3 of 

this thesis, provide insights into the development of spatial thinking in the context of 

the main aim of this thesis; exploring spatial-mathematical relations. Subsequent 

sections outline the development of mathematical skills and explore the role of 

spatial thinking for mathematics outcomes.  

1.3 The development of mathematical thinking 

This section reviews current literature on the structure and development of 

mathematical thinking. As described for spatial ability, the development of 

mathematical thinking is explored in the context of three main theoretical 

perspectives; Piagetian, Vygotskian and Nativist theories (section 1.3.1). Framed in 

the context of these theoretical perspectives, one proposed typology of 

mathematical thinking, the von Aster and Shalev (2007) typology of mathematical 

thinking is described. Behavioural evidence on the development of mathematical 

skills is also outlined (section 1.3.2). This section also highlights the role of other 

factors in predicting mathematics outcomes including general cognitive abilities, 

language skills and socio-demographic factors (section 1.3.3).  

Although mathematics is often taught as a single subject in schools, the domain of 

mathematics contains several different components and success in mathematics 

requires a range of skills and competencies. Distinctions between different strands of 

mathematics in the classroom are derived from similarities in content, and not from 

cognitive principles (Mix et al., 2016). Modern mathematics curricula have developed 

over time, shaped by economic and social influences (Newcombe & Huttenlocher, 

2003). Despite cultural differences, mathematics programmes across countries, are 
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often very similar, that is, they are based around mathematical competencies (e.g., 

factual knowledge of mathematical concepts, problem solving using mathematical 

concepts, applying mathematical concepts in novel contexts) and content areas (e.g., 

number and measurement, space and geometry, algebra). However, as suggested by 

Davis, Drefs, and Francis (2015) it is unclear whether the focus of school-based 

mathematics curricula today reflects the day-to-day mathematics skills required for 

21st century life. For example, given the steep rise of careers in STEM domains it is 

noteworthy that spatial thinking is typically absent from modern mathematics 

curricula (Davis et al., 2015). As outlined in further detail in section 1.4.1, spatial 

thinking has been associated with success in STEM performance, particularly 

mathematics performance, in several studies.  

Understanding numbers is pivotal to developing more advanced skills in 

mathematics. However, the terms “numerical cognition” and “mathematical 

cognition” are often incorrectly used interchangeably. Although they are related, 

there is an important distinction between these terms and numerical cognition is an 

important prerequisite for other aspects of mathematical cognition. Numerical 

cognition relates to the acquisition and development of quantitative skills. In 

contrast, mathematical cognition relates to a wider, more comprehensive range of 

mathematics skills, beyond number, to other content strands such as algebra, 

geometry, statistics and, trigonometry, among others (Butterworth, 1999). 

Understanding numerosities and developing quantitative skills, are pivotal to the 

development of other mathematical competencies (Träff, 2013). Identifying the 

developmental trajectory of quantitative skills is particularly important in the study 

of both numerical cognition, and mathematics cognition more generally. As outlined 

in the next section, the first step in identifying how and why numerical (and 

mathematical) skills develop, is to understand the main theoretical perspectives of 

childhood development (Piagetian, Vygotskian and Nativist perspectives) and how 

they relate to mathematics.  
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1.3.1 Theoretical perspectives on the development of numerical cognition 

As highlighted above, the development of numerical cognition will now be discussed 

within the context of Piagetian, Vygotskian and Nativist perspectives (Newcombe & 

Huttenlocher, 2003). Piaget proposed that children cannot reason quantitatively until 

approximately 11 years, and that quantitative abilities develop through interaction 

with the environment (Piaget, 1941). This includes experiences such as a stimulating 

home numeracy environment and early learning about numbers (Cankaya & LeFevre, 

2016; Skwarchuk, Vandermaas-Peeler, & LeFevre, 2016). However, the Piagetian 

perspective is weakened by studies that have demonstrated quantitative abilities in 

infants and pre-school children younger than 11 years (Gelman & Gaillistel, 1978; 

Starkey & Cooper, 1980; Starkey, Spelke, & Gelman, 1990; Wynn, 1992).  

Alternatively, the Nativist approach posits that individuals are born with an innate 

quantitative ability (Starkey, 1992). This is supported by findings that infants as young 

as 1 week show sensitivity to changes in numerosities (Antell & Keating, 1983). Similar 

findings have been reported in EEG studies and habituation studies in older infants 

(Izard, Sann, Spelke, & Streri, 2009; Starkey & Cooper, 1980; Xu & Spelke, 2000). 

Habituation studies are based on the idea that a stimulus loses novelty when it is 

presented repeatedly, and an individual will eventually stop responding to it 

(dishabituation). If an individual perceives a novel stimulus, a response is elicited 

showing that the individual can tell the difference between the habituated and the 

novel stimuli (Phelps, 2011). These habituation studies in infants suggest that infants 

have a concept of quantity, i.e., they perceive a difference when they are presented 

with different numbers of items. However, the findings of other studies suggest that 

infant competencies regarding quantity may be less advanced than previously 

believed. In one habituation study, Clearfield and Mix (2001) found that children at 6 

months responded to differences in amount (area or length) and not to differences 

in number. Mix, Levine, and Huttenlocher (1997) found that children at 7 months are 

not capable of accurately detecting numerical correspondence between sounds and 

visual displays. Furthermore, children at 4 years, but not at 3 years, can solve 

nonverbal addition and subtraction questions (Levine, Jordan, & Huttenlocher, 1992). 

Thus, the behavioural findings supporting the Nativist approach should be 
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interpreted with caution. The Nativist approach is also supported by biological 

studies highlighting a role of genetics on mathematics performance (Plomin & Kovas, 

2005). However, while genetics may play a role in cognition, this does not dictate that 

cognitive skills cannot be shaped by experience (Fisher, 2006). Research to date 

indicates that while some quantitative abilities may show innate qualities, this does 

not preclude them from development through experience. The role of experience in 

development should not be underestimated. As highlighted by Newcombe (2017)  

“strong starting points are not mature ending points” (Newcombe, 2017, 
p.51) 

Vygotskian theories highlight the role of social factors on quantitative development 

including cultural influences on quantitative skills (Miller & Stigler, 1987; Saxe et al., 

1987). In comparison to spatial cognition, there is a large amount of research 

investigating the environmental factors thought to explain individual differences in 

quantitative skills, and mathematical skills more generally. The importance of cultural 

transmission in the development of quantitative skills is highlighted by the central 

role of cultural environment in the teaching of number symbols, i.e., the concept that 

the quantity 5 is linked to the written word five, the digit 5, and the verbal word five 

(Dehaene, 1997). The acquisition of symbolic number understanding is driven by 

cultural experiences of schooling and education. Further support for Vygotskian 

theories comes from evidence of inter-country, and indeed inter-school differences 

in mathematics performance (Cowan, 2015). For example, in comparison to children 

from the UK, superior performance is often reported on international mathematics 

assessments for children from East Asian countries (Greany et al., 2016). Among 

other reasons, this may be attributable to the fact that, in comparison to children 

from the UK, East Asian children learn number skills at a younger age, they spend 

more time learning mathematics outside school, and their parents are less likely to 

believe that mathematics skills are determined by biological factors (Cowan & Saxton, 

2010).  

Within countries, there are also social influences on mathematics performance that 

are reflected in between-school variations in mathematics achievement (Cowan & 
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Donlan, 2010; Goldhaber, Liddle, Theobald, & Walch, 2010; Gutman & Feinstein, 

2008). For example, higher levels of mathematics anxiety in teachers has been 

associated with reduced student achievement in mathematics (Beilock, Gunderson, 

Ramirez, & Levine, 2010). Higher motivation and higher self-belief in mathematical 

ability has been reported in low ability students whose teachers reported a flexible 

(not fixed) mindset towards mathematical learning (Rattan, Good, & Dweck, 2012). 

Collaborative work between groups of students has been shown to improve 

mathematics achievement (Desforges & Cockburn, 1987), while no significant benefit 

of ability grouping in mathematics has been demonstrated (Ireson, Hallam, & Hurley, 

2005). However, Vygotskian theories cannot account for evidence of quantitative 

abilities in very early childhood in children who have yet to encounter formal 

education. Vygotskian perspectives are further weakened by evidence of quantitative 

skills in non-human primates (Flombaum, Junge, & Hauser, 2005; Xu & Spelke, 2000). 

This section has outlined evidence supporting and critiquing Piagetian, Vygotskian 

and Nativist approaches to numerical development. There is convincing evidence 

supporting each of these approaches. However, there is no reason to assume that 

the approaches are mutually exclusive. Therefore, in this thesis, it is proposed that 

quantitative development can best be understood by combining these three 

theoretical perspectives, similarly to the adaptive combination approach outlined for 

spatial development in section 1.2.1. This combined approach recognises that 

individuals have some innate capacity (skill) to represent number, and that these 

number skills develop and improve with experience. Furthermore, in contrast to 

spatial cognition which has largely been forgotten in the primary school classroom 

(Davis et al., 2015), the cultural role of schooling and education may be particularly 

influential for quantitative and mathematical development. Outlined in further detail 

in the next section, the von Aster and Shalev (2007) typology of numerical cognition 

was selected for use in this thesis, as it fits with the proposed theoretical approach 

to numerical development. Von Aster and Shalev’s (2007) model proposes that the 

building blocks for numerical cognition may originate from innate, biological starting 

points (Nativist approach). However, environmental interaction (Piagetian approach) 



47 
 

and cultural influence (Vygotskian approach) are required for the development of 

proficient mathematical competencies.  

1.3.2 Typology and development of numerical cognition  

This study adopts von Aster and Shalev's (2007) typology of numerical cognition 

which posits that individuals are equipped with an innate, core system for 

representing numbers; the approximate number system (ANS). The ANS stores 

approximate representations of numerical magnitude in the brain without symbols 

(Cordes, Gelman, Gallistel, & Whalen, 2001; Dehaene, 2011; Feigenson, Dehaene, & 

Spelke, 2004). These representations are believed to be stored on a mental number 

line (Dehaene, Bossini, & Giraux, 1993; de Hevia, Vallar, & Girelli, 2006; Le Corre & 

Carey, 2007). Evidence for an ANS includes findings that very young infants are 

capable of discriminating, representing, and remembering large numbers of items 

(Feigenson et al., 2004; Libertus & Brannon, 2010; Lipton & Spelke, 2003; Xu & Spelke, 

2000). For ANS tasks, where participants are asked to determine the more numerous 

of two dot arrays, there is typically a distance effect in performance. Participants 

respond more accurately and faster, when the numerical distance separating two 

numbers is relatively large, e.g., 7 (3 vs. 10,) than when it is small, e.g., 2 (3 vs. 5) 

(Buckley & Gillman, 1974; Dehaene, Dupoux, & Mehler, 1990; Moyer & Landauer, 

1967). These distance effects have been reported for infants, children and adults, in 

both behavioural and imaging studies (Butterworth, 2005; Butterworth & Varma, 

2013; Girelli, Lucangeli, & Butterworth, 2000; Pinel, Dehaene, Rivière, & LeBihan, 

2001; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). Individuals who have larger 

numerical distance effects are proposed to have less distinct representations of 

numerical magnitude (Holloway & Ansari, 2008). Although the ANS can be described 

as an innate system, this does not preclude it from change and development with 

experience. There is evidence that for ANS tasks, performance improves through 

childhood, adolescence and early adulthood until approximately 30 years (e.g., 

Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Halberda & Feigenson, 2008; Piazza 

et al., 2010; Purpura & Simms, 2018). This suggests that while basic ANS abilities are 

innate, this system undergoes development with experience.  
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The symbolic number system is the way in which symbolic numerals are represented 

in the brain (Mussolin, Nys, Content, & Leybaert, 2014). The von Aster and Shalev 

(2007) model states that the core number system (the ANS) provides a foundation 

from which the symbolic number system develops (the ANS Mapping Account of 

symbolic number development). These two systems in combination, provide a 

platform upon which more complex mathematics abilities are established (Barth, La 

Mont, Lipton, & Spelke, 2005; Butterworth, 1999; Feigenson et al., 2004; Piazza, 

2010). There are two tasks commonly used to measure the symbolic number system. 

First, symbolic number representations can be measured using symbolic comparison 

tasks in which participants must compare the size of two symbolic numbers (De 

Smedt, Noël, Gilmore, & Ansari, 2013; Gilmore, McCarthy, & Spelke, 2007). Many 

studies have demonstrated that performance on symbolic magnitude comparison 

tasks improves with age (Matejko & Ansari, 2016; Moore & Ashcraft, 2015; Vanbinst, 

Ceulemans, Peters, Ghesquière, & De Smedt, 2018; Xenidou-Dervou, Molenaar, 

Ansari, van der Schoot, & van Lieshout, 2017).  

Second, symbolic number skills can be measured using symbolic number line 

estimation tasks (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; LeFevre et 

al., 2010; Siegler & Opfer, 2003). For symbolic number line estimation tasks 

participants are required to estimate the location of symbolic numbers on a number 

line (the start and end points of which are clearly indicated, e.g., 0-10, 0-100) (Siegler 

& Opfer, 2003). Performance on tasks of this type is typically measured in two ways, 

first as percentage absolute error (PAE) which indicates the difference between a 

participant’s estimate and the actual position of a number on a number line, relative 

to the length of the line (Siegler & Booth, 2004). Second, curve estimation compares 

the fit of linear models (R2
LIN) and logarithmic models (R2

LOG) to participants’ 

performance using correlations between participants’ estimates and the actual 

positions of numbers on the number line (Siegler & Opfer, 2003). Logarithmic 

performance patterns suggest that individuals represent smaller numbers in a 

spaced-out manner at the lower end of the number line, while the positions of larger 

numbers are condensed at the top of the line. Hence performance decreases with 

increasing numerical magnitude. In contrast, linear performance patterns suggest 
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that participants spread numbers evenly along the number line. Hence, participants 

perform similarly regardless of numerical magnitude (Simms, Clayton, Cragg, 

Gilmore, & Johnson, 2016). The proximity of R2
LIN scores and R2

LOG scores to the value 

1, indicates the degree to which a participant’s estimates reflect a linear or 

logarithmic pattern respectively. Demonstration of linear performance patterns on 

number line estimation tasks reflects a more accurate representation of symbolic 

number. Thus, comparing whether participants’ estimates are more reflective of R2
LIN 

or R2
LOG representations is one way of measuring number line estimation 

performance. 

Regardless of the metric used, there is consistency across studies such that 

performance on symbolic number line estimation improves with development (e.g., 

Ashcraft & Moore, 2012; Friso-van den Bos et al., 2015; Moore & Ashcraft, 2015; 

Praet & Desoete, 2014; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013). For 

example, Siegler, Thompson, and Opfer (2009) reported a transition from logarithmic 

to linear representations for 0-100 number line estimation tasks between 

kindergarten and Grade 2, and for 0-1000 number line estimation tasks between 

Grades 2 and 4.  

The exact process by which the ANS might give rise to the symbolic number system 

is unclear. As outlined above, one proposal, the ANS Mapping Account, suggests that 

the ANS is the foundation onto which symbolic representations are subsequently 

mapped, giving rise to a logarithmic, and eventually linear, representation of 

symbolic numbers (Feigenson et al., 2004). Children are proposed to learn symbols 

and number words through rote-counting and map these onto the ANS (Ansari, 2008; 

Halberda & Feigenson, 2008; Mundy & Gilmore, 2009; Siegler & Booth, 2004; von 

Aster & Shalev, 2007). Following the development of symbolic number abilities, the 

ANS may become a checking system for symbolic arithmetic. An alternative view, the 

Dual Representation View, proposes that symbolic numbers are processed and 

acquire meaning in a fundamentally different way from non-symbolic (ANS) 

representations (e.g., Carey, 2004; 2009; Lyons, Ansari, & Beilock, 2012; Rips, 

Bloomfield, & Asmuth, 2008; Wiese, 2007). It is suggested that learning number 

words and symbols leads to new “exact” numerical representations with exact 
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ordinal content information. These representations may subsequently map with ANS 

representations causing increased ANS precision (Mussolin et al., 2014; Pica, Lemer, 

Izard, & Dehaene, 2004; Verguts & Fias, 2008). Under this proposal non-symbolic 

foundations (the ANS) do not act as the starting point for the development of 

symbolic numbers (Piazza et al., 2010; Piazza, Pica, Izard, Spelke, & Dehaene, 2013). 

The eventual development of the symbolic number system enables individuals to 

represent large numbers exactly (Carey, 2004; Dehaene, 2011; Le Corre & Carey, 

2007; von Aster & Shalev, 2007). The age at which the symbolic number system 

develops is dependent on environmental exposure to symbolic language and 

symbols. Increases in symbolic task performance are seen throughout the primary 

school years (Mundy & Gilmore, 2009; Sekuler & Mierkiewicz, 1977; Vanbinst, 

Ceulemans, Peters, Ghesquière, & De Smedt, 2018). This is mirrored by differences 

in brain activation patterns for symbolic number tasks for individuals of differing ages 

(Butterworth & Varma, 2013). Areas of the prefrontal cortex are typically activated 

during the completion of symbolic number tasks in children, while the intraparietal 

sulcus is activated when adults complete similar tasks (Ansari, Garcia, Lucas, Hamon, 

& Dhital, 2005). These changes may reflect a shift from processing and problem 

solving during symbolic number tasks in childhood, to automatic memory retrieval, 

symbol processing and magnitude processing in the completion of symbolic number 

tasks in adulthood (Butterworth & Varma, 2013). Like the ANS, these developmental 

differences highlight the capacity for change in the symbolic number system with 

increasing age.  

In combination, it is proposed that basic number abilities including ANS skills and 

symbolic number skills act as a platform for the development of more complex 

mathematical skills such as multi-digit calculation, word problems, algebra, 

measurement and data handling skills (Feigenson, Libertus, & Halberda, 2013; Träff, 

2013). This is supported by evidence that basic number abilities are longitudinal 

predictors of later mathematics achievement. Significant concurrent and longitudinal 

associations have been reported between symbolic number representations (using 

both symbolic number comparison and number line estimation tasks) and 

mathematics outcomes in several studies (De Smedt et al., 2013; Friso-van den Bos 
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et al., 2015; Muldoon, Towse, Simms, Perra, & Menzies, 2013; Price & Fuchs, 2016; 

Sasanguie et al., 2013; Schneider et al., 2017; Schneider et al., 2018; Xenidou-Dervou 

et al., 2017). Intervention studies have also shown that training in symbolic number 

skills leads to gains in other mathematical domains (Honoré & Noël, 2016; 

Obersteiner, Reiss, & Ufer, 2013; Van Herwegen, Costa, Nicholson, & Donlan, 2018). 

As stated by DeSmedt et al. (2013) this suggests a causal relationship between 

symbolic number skills and school- relevant mathematical competencies.  

As outlined in a review by De Smedt et al. (2013) there is mixed evidence on the 

existence of associations between the ANS and mathematics achievement. Several 

meta-analyses have found significant correlations between the ANS and mathematics 

performance (Chen & Li, 2014; Fazio, Bailey, Thompson, & Siegler, 2014; Halberda, 

Mazzocco, & Feigenson, 2008; Mazzocco, Feigenson, & Halberda, 2011; Schneider et 

al., 2017). However, these results are not uncontested and in other studies no 

associations between the ANS and mathematics outcomes have been found 

(Holloway & Ansari, 2008; Lyons, Price, Vaessen, Blomert, & Ansari, 2014). One 

proposed explanation of these conflicting findings is that the relationship between 

the ANS and mathematics performance is sensitive to variations in participant ages, 

the ANS and mathematics tasks used, and stimuli employed (De Smedt et al., 2013; 

Schneider et al., 2017). 

Although they are not adopted in this thesis, other slightly adapted, similar models 

have also been proposed for the development of numerical cognition. For example, 

in contrast to an ANS, Butterworth (1999; 2010) suggests that quantities are 

represented exactly in the ANS and not as approximate representations. This model, 

the Numerosity Coding Theory, suggests that acquisition of the symbolic number 

system is not required for representing and manipulating exact numerosities 

(Butterworth, 1999; 2010). Others have argued that an ANS does not exist at all, but, 

that infants reason about number by opening “object files” for each new object seen 

(Hauser & Carey, 1998; Simon, 1997). In this model, nonverbal calculation is thought 

to develop through the maintenance and manipulation of mental models of objects 

(Huttenlocher et al., 1994). Despite their differences, models explaining the 

development of numerical cognition show similarities in that they each demonstrate 
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developmental transitions from limited representations to exact knowledge of 

quantities and number (Newcombe & Huttenlocher, 2003). Furthermore, for each of 

these models, developmental transitions are dependent on both biological starting 

points and environmental influences including the cultural environment (Newcombe 

& Huttenlocher, 2003).  

The von Aster and Shalev (2007) typology provides one model with which 

mathematical development can be explored. In this section, evidence was presented 

supporting the use of this typology of mathematical thinking. Evidence was 

presented, supporting the idea that the ANS and symbolic number skills provide a 

platform for the development of more complex mathematical skills. For example, 

there is evidence that both ANS and symbolic number skills are predictors of later 

mathematics achievement. Evidence was also presented that number skills improve 

and develop with experience. However, as outlined in the next section, beyond 

developmental differences, a range of other factors, have also been proposed to 

influence mathematical performance.  

1.3.3 Predictors of individual variation in mathematics skills 

Although there is evidence that mathematical skills develop with age, there is also 

substantial variation in children’s individual mathematical abilities within age groups 

(e.g., Friso-van den Bos et al., 2015). Cockcroft (1982) suggested that there might be 

as much as a seven-year-difference in mathematics skills in children at 11 years. 

Understanding the causes of individual variability in mathematics is pivotal to finding 

ways of improving children’s mathematical outcomes. Beyond genetics, this variation 

may be attributable to cognitive, demographic or dispositional factors.  

Mathematics is a multi-dimensional skill that requires several general cognitive 

abilities other than numerical skills alone. Beyond the role of spatial abilities which 

will be discussed in the next section, success in mathematics has been associated with 

higher scores in measures of general cognitive ability (von Aster & Shalev, 2007), 

working memory (Alloway & Alloway, 2010; Andersson, 2006; Bull, Espy & Wiese, 

2008; Passolunghi, Mammarella & Altoe, 2008; Raghubar, Barnes, & Hecht, 2010), 

executive functioning (Cragg & Gilmore, 2014; Cragg, Keeble, Richardson, Roome, & 
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Gilmore, 2017; Fuchs et al., 2010; Purpura, Schmitt, & Ganley, 2017; Verdine et al., 

2014), reasoning (Nunes et al., 2007), processing speed (Berg, 2008), and attention 

(Merrell & Tymms, 2001). Early language skills including expressive and receptive 

language have also been associated with success in mathematics (Cowan, 2015). 

Findings from Le Fevre et al. (2010) show that linguistic measures are a reliable early 

predictor of achievement in mathematics, while Moll, Snowling, Göbel, and Hulme 

(2015) reported that individuals with language difficulties or reading problems also 

demonstrate poor performance in mathematical achievement tests. However, while 

language might play a distinct role in mathematical development, correlations 

between numeracy and literacy achievement may also reflect the presence of an 

underlying general intelligence or “g” factor (Alloway & Alloway, 2010; Mayes, 

Calhoun, Bixler, & Zimmerman, 2009). 

Differences in mathematical performance have also been associated with social and 

demographic factors including socio-economic status (SES) (Byrnes & Wasik, 2009), 

gender (Halpern et al., 2007) and ethnicity (Sonnenschein & Galindo, 2015). Children 

from low SES backgrounds typically perform less favourably on mathematical 

measures when compared to their higher SES counterparts (Byrnes & Wasik, 2009; 

Oakes, 2005; Sirin, 2005). These differences continue into adolescence with lower 

SES schools having lower mathematics achievement than higher SES schools 

(McConney & Perry, 2010). Based on the findings of a meta-analysis, Banerjee (2016) 

outlined several underlying factors that may explain the reduced performance of 

individuals from lower SES backgrounds. The lack of a positive environment, negative 

attitudes towards school and learning, and a lack of support from teachers and 

schools were all outlined as possible factors (Banerjee, 2016).  

Evidence for gender differences in mathematics achievement is less well supported, 

and many studies argue against gender differences in this domain. In a meta-analysis 

of gender differences in mathematics in adolescence, Lindberg, Hyde, Petersen and 

Linn (2010) found no significant gender difference in mathematics performance, and, 

on average, the effect sizes reported were small (.05 < d < .07). Similarly, in childhood 

populations, Hyde et al. (2008) reported that the average effect size for gender 

differences in standardised mathematics performance was small (based on over 7 
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million US students aged 7 to 16 years) (d < 0.1). Where significant differences were 

reported, the differences often favoured females. In another large study of 1391 

participants, no significant gender differences were reported by Hutchinson, Lyons 

and Ansari (2017) between 6 and 13 years, on a range of numerical tasks. However, 

the trend of a female advantage in mathematics is mirrored in other studies 

(Robinson & Lubienski, 2011). Overall, recent research contradicts historical views of 

a male advantage in mathematics and suggests that where male performance in 

mathematics is higher, the size of performance differences is small. Possible 

explanations for gender differences in mathematics include suggestions that they are 

attributable to variations in interests, neurological, or cognitive outcomes, which are 

in turn shaped by biological, genetic and environmental influences (Halpern et al., 

2007; Penner & Paret, 2008). 

Finally, there is relatively less information on differences in mathematics 

performance across ethnic groups. In a US-based study by Hall, Davis, Bolen and Chia 

(2010), scores for mathematical-concepts and mathematical-computation were 

lower for Black, compared to White students (10 and 13 years). In younger children 

from the US, significant differences in mathematics performance were also reported 

at 4 years (Sonnenschein & Galindo, 2015). These differences favoured White 

compared to Black and Latino groups. One proposed explanation is that these 

differences are attributable to variations in the early home numeracy environment 

across ethnic groups (Brooks-Gunn & Markman, 2005). This may reflect cultural 

distinctions, socioeconomic differences or a mismatch between the culture of 

parents and the school system that their child is a part of (Sonnenschein & Galindo, 

2015). In the UK, evidence on mathematics performance differences across ethnic 

groups is limited. Statistics from the UK Department for Education (2017) show that 

on average 75% of students aged 10 to 11 years met the expected standard of 

mathematics by the end of Key Stage 2, however, this percentage differed across 

ethnic groups (Chinese 92%; Black Caribbean 67%; White British 62%; White Irish 

80%; Indian 86%) (UK Department for Education, 2017). Given that these results are 

based on one specific age group, there is a need to investigate the role of ethnicity in 

mathematics outcomes across different developmental ages.      
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To summarise, there is convincing evidence that cognitive, demographic and 

dispositional factors play a role in the development of mathematical skills. While the 

primary focus of this thesis is to delineate the relationship between spatial thinking 

and mathematics performance, the findings need to be considered in the context of 

other known predictors of mathematics achievement. This is discussed in the next 

section, with reference to spatial cognition. 

1.4 Spatial ability and success in mathematics  

1.4.1 Evidence for spatial- mathematical relations 

1.4.1.1 Adult and adolescent studies  

Spatial ability has been identified as a reliable predictor of STEM outcomes in many 

large-scale longitudinal studies (N > 500), following both normative and intellectually 

gifted populations through adolescence and adulthood (Shea, Lubinski, & Benbow, 

2001; Wai et al., 2009). Talent Search participants are young people from the United 

States who qualify for special educational programmes due to high performance on 

college entrance exams at a young age (Wai et al., 2009). Even after controlling for 

quantitative and verbal skills, longitudinal studies of Talent Search participants have 

reported significant correlations between high spatial ability scores (intrinsic-

dynamic spatial skills) at 13 years and later STEM outcomes (Shea et al., 2001). The 

STEM outcomes measured included: a preference for mathematics as a high school 

subject at 18 years, achievement of undergraduate and graduate degrees in STEM 

measured at 23 years, and future careers in STEM domains relative to careers in the 

humanities measured at 33 years (Shea et al., 2001). Similar findings have been 

reported in studies of non-gifted students. It has been reported that those who 

pursue STEM careers and complete STEM degrees at both undergraduate and 

masters level have higher spatial ability scores at 13 years (Wai et al., 2009). The 

spatial ability measure used in these studies was a composite of performance across 

a range of spatial tasks, predominantly targeting intrinsic-dynamic spatial skills. 

This pattern of associations between spatial thinking and STEM outcomes in adults is 

mirrored in cross-sectional studies. Spatial ability has been implicated as an 
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important factor in undergraduate science success, medicine, dentistry, and 

engineering performance (Hegarty, 2014; Hegarty, Keehner, Cohen, Montello, & 

Lippa, 2007; Hegarty, Keehner, Khooshabeh, & Montello, 2009; Uttal, Miller, & 

Newcombe, 2013). Mental rotation skills (intrinsic-dynamic spatial skills) have been 

associated with undergraduate students’ abilities to translate organic chemistry 

diagrams (Stull, Hegarty, Dixon, & Stieff, 2012). For physics, spatial visualisation skills 

(intrinsic-dynamic sub-domain) are significantly correlated with mechanics problem 

solving (Kozhevnikov & Thornton, 2006) while for engineering, mental rotation skills 

(intrinsic-dynamic sub-domain) are significantly associated with an individual’s 

efficiency in learning to use computer aided design software (Sorby & Baartmans, 

2000). 

More specifically for mathematics, mental rotation skills (intrinsic-dynamic sub-

domain) has been associated with mathematical performance in adults using number 

line estimation and magnitude comparison tasks (Thompson, Nuerk, Moeller, & 

Cohen Kadosh, 2013). Similarly, in adolescents intrinsic-dynamic spatial skills are 

significantly correlated with mental arithmetic and problem solving at 15 to 16 years 

(Reuhkala, 2001), geometry performance at 13 years (Delgado & Prieto, 2004), and 

mathematical word problems at 12 years (Hegarty & Kozhevnikov, 1999). 

Neuroimaging findings suggest that these spatial-mathematical associations may be 

attributable to shared processing requirements for spatial and mathematical tasks. 

There is evidence that overlapping circuits in the parietal lobe are activated in the 

completion of both number, and spatial tasks (Cutini, Scarpa, Scatturin, Dell’Acqua, 

& Zorzi, 2014; Hubbard, Piazza, Pinel, & Dehaene, 2005; Winter, Matlock, Shaki, & 

Fischer, 2015). 

Overall, the evidence from longitudinal, cross-sectional and neuroimaging studies of 

adults and adolescents supports the existence of associations between spatial 

thinking and STEM domains; in particular the mathematics domain. However, as 

outlined in sections 1.2 and 1.3, both spatial and mathematical skills undergo 

significant development in childhood (before 13 years). Therefore, it is important to 

establish whether spatial-mathematical relations are present at all stages of 

development, or whether they emerge when mature performance levels are 
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reached. The next section reviews the evidence for spatial-mathematical associations 

in childhood populations.  

1.4.1.2 Longitudinal studies in childhood populations 

Longitudinal studies in childhood populations have also measured the associations 

between spatial skills and mathematics. These studies predominantly focus on the 

predictive role of pre-school spatial skills. Verdine et al. (2014) reported that spatial 

skills at 3 years, assessed using the Test of Spatial Assembly (TOSA), a measure of 

intrinsic-dynamic spatial ability, predicted a significant 27% of the variation in 

mathematical problem solving, measured using the Wechsler Individual Achievement 

Test (WIAT) at 4 years. Similarly, a preliminary report from Farmer et al. (2013) 

indicated that spatial performance on the TOSA at 3 years is significantly correlated 

with a combined mathematics measure, at 5 years. Wolfgang, Stannard, and Jones 

(2001) demonstrated that spatial play in the pre-school years, in particular 

adaptiveness and integration in block play, is associated with mathematics 

achievement at 12 years. However, these results should be interpreted cautiously as 

interpretation of free block play is subjective and subject to errors. Furthermore, 

block play does not exclusively measure spatial thinking as it is influenced by a range 

of cognitive skills including attention and executive functions (Wolfgang et al., 2001). 

In a study of primary school children, Gunderson, Ramirez, Beilock, and Levine (2012) 

reported that performance on the Thurstone Mental Rotation Task (intrinsic-dynamic 

sub-domain) at 7 years, predicted improvement in number line estimation 6 months 

later. Gunderson et al. (2012) extended these results to show that performance on 

the CMTT, also a measure of intrinsic-dynamic spatial skills, at 5 years was predictive 

of approximate symbolic calculation at 8 years. These results were found to be 

mediated by number line estimation scores at 6 years.  

As seen for adult studies, a majority of longitudinal studies that have explored spatial-

mathematical associations in children, measure spatial skills in the intrinsic-dynamic 

spatial sub-domain. However, there is also some evidence that these associations 

hold for other spatial sub-domains and mathematics. This suggests that the 

association between spatial ability and mathematics competence is wide-ranging. 



58 
 

Performance on a spatial relations task, which required input from both intrinsic-

static and intrinsic-dynamic spatial sub-domains, was found at 3 years to be a 

significant predictor of arithmetic at 10 years (Zhang et al., 2014). Similarly, a 

composite measure of spatial skills, assessing both intrinsic-static and intrinsic-

dynamic sub-domains at 7 years, significantly predicted mathematics achievement at 

10 years (Carr et al., 2017). Casey et al. (2015) reported that spatial skills in girls, 

assessed using a composite measure generated from block design (intrinsic-dynamic 

spatial sub-domain) and mental transformation tasks (intrinsic-static and intrinsic-

dynamic spatial sub-domains), at 7 years were a significant predictor of mathematics 

reasoning at 11 years. Longitudinal studies of primary school students have also 

reported correlations between visuospatial skills, including visual perception and 

motor integration at 6 years, and mathematics achievement at 9 years. However, 

these findings were confounded by the visual and motor demands of the tasks used 

(Lachance & Mazzocco, 2006; Mazzocco & Myers, 2003).  

Overall, there is evidence that spatial abilities in the pre-school years, particularly 

intrinsic-dynamic spatial skills, are associated with later mathematics performance. 

In older children there is evidence that general spatial abilities in the primary school 

years are associated with later mathematics outcomes at 9 to 11 years. However, 

because most studies of primary school aged children use spatial composite scores, 

it is unclear which spatial sub-domains drive associations between spatial and 

mathematical performance in middle childhood.  

1.4.1.3 Cross-sectional studies in childhood populations 

Further insights into spatial-mathematical relations can be obtained from cross-

sectional studies in primary school populations (from 5 to 10 years). Significant 

correlations have been reported between mental rotation (an intrinsic-dynamic 

spatial skill) and both calculation and arithmetic in children aged 6 to 8 years (Cheng 

& Mix, 2014; Hawes et al., 2015). For other intrinsic spatial tasks including 

disembedding (an intrinsic-static spatial skill) and spatial visualisation (an intrinsic-

dynamic spatial skill), performance has been associated with a range of mathematics 

achievement measures at 10 and 11.5 years respectively (.37 < r < .42 ) (Tosto et al., 



59 
 

2014). Performance on mental rotation and disembedding tasks (intrinsic-static and 

intrinsic-dynamic sub-domains) and VSWM, was also identified as a significant 

predictor of standardised mathematics achievement (measured using the WIAT) at 8 

to 10 years (Simms et al., 2016). In contrast, Carr, Steiner, Kyser, and Biddlecomb 

(2008) reported no significant association between mental rotation (an intrinsic-

dynamic spatial skill) and standardised mathematics performance at 7 years. 

Mix et al. (2016; 2017) have completed the most extensive cross-sectional research 

to date on spatial and mathematical thinking in the primary school years. In both 

initial exploratory factor analysis (EFA) (2016) and follow-up CFA (2017) studies, Mix 

et al. found that, although spatial and mathematics tasks are highly correlated, they 

form distinct factors (Mix et al., 2016; 2017). By comparing children of differing ages 

on the same spatial and mathematics tasks, Mix et al. (2016; 2017) have provided 

important preliminary evidence that there are distinct relations between individual 

spatial sub-domains and specific aspects of mathematics performance, and that 

these relations vary with age. More specifically, mental rotation (an intrinsic-dynamic 

spatial skill) was a significant predictor of mathematics (a general mathematics factor 

derived from performance on a range of mathematics measures) at 6 years only, 

while VSWM was a significant predictor at 11 years only. VSWM was measured using 

a spatial location memory task. No spatial predictors were identified for mathematics 

at 9 years. These findings suggest that associations between spatial thinking and 

mathematics in the primary school years may not be limited to the intrinsic-dynamic 

spatial domain. However, of note, some cross-factor loadings were not replicated 

across both the EFA and CFA studies. These inconsistencies suggest that there is 

instability of cross-factor loadings across different populations, which weakens the 

generalisability of the results. Thus, the findings should be interpreted cautiously 

(Mix et al., 2016; 2017). 

In summary, current literature supports the organisation of spatial and mathematics 

domains as two distinct factors, with some cross-factor loadings. Cross-sectional 

studies provide evidence that different sub-domains of spatial thinking and different 

aspects of mathematics are differentially associated. That is, not all spatial and 

mathematics skills are associated to the same degree. Furthermore, there is evidence 
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that the relationship between spatial and mathematical skills changes with 

development. Associations between some spatial and mathematics skills are present 

at specific developmental stages only. However, no known study investigates the role 

of different spatial sub-domains for mathematics, at different developmental ages in 

primary school. 

These findings across both longitudinal and cross-sectional studies in children 

highlight a need to further elucidate the specificity of spatial-mathematical 

relationships across different tasks and skills. In particular, there is limited research 

on spatial-mathematical relations across the primary school years. Elucidating these 

relations in primary school children is important as there is evidence that the 

relationship between spatial skills and mathematics is sensitive to developmental 

age.  

1.4.2 Explaining associations between spatial and mathematics skills 

There is a need to move beyond the question of “whether” to “why” significant 

correlations are repeatedly reported between mathematical and spatial constructs. 

Using evidence from longitudinal studies, Bailey (2017) presented a convincing 

argument for a causal effect of spatial skills on mathematics in the pre-school years. 

However, these findings are not definitive and cannot easily be translated to older 

children. Understanding the causal relationship and underlying explanations for 

spatial-mathematical associations, is key to integrating spatial learning into the 

mathematics classroom and to developing successful classroom interventions 

(Clements & Sarama, 2004; Hawes, Tepylo & Moss, 2015; Mix & Cheng, 2012).  

Findings on spatial-mathematical relations do not support a simple linear coupling 

between spatial and mathematical cognition (Fias & Bonato, 2018). Instead, it has 

been proposed that several different explanations underpin spatial-mathematical 

associations, depending on the mathematical and spatial sub-domains assessed (Fias 

& Bonato, 2018). Historically the Mental Number Line, or the idea that numbers are 

represented spatially in the brain, was proposed to explain observed associations 

between spatial and mathematical constructs (Barsalou, 2008; Lakoff & Núñez, 
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2000). The Spatial-Numerical Association of Response Codes (SNARC) effect, thought 

to reflect the presence of the Mental Number Line, has been demonstrated in several 

studies. For example, individuals are faster to respond to small numbers with their 

left hand and larger numbers with their right hand, suggesting that small numbers 

are spatially represented to the left and larger numbers are represented to the right 

in the brain (Dehaene et al., 1993). Findings from arithmetic-based studies show that 

individuals typically overestimate addition results (right-side-of-space bias) and 

underestimate subtraction results (left-side-of-space bias) (Fischer & Shaki, 2014; 

Werner & Raab, 2014). In a similar way arithmetic performance is also influenced by 

the spatial presentation of equations and numbers (Fisher, Borchert, & Bassok, 2011; 

Landy & Goldstone, 2007; McNeil & Alibali, 2004). However, accepting the Mental 

Number Line as the driver of all spatial-mathematical relations is inconsistent with 

the differential associations observed between certain spatial and mathematical sub-

domains, reported by Mix et al. (2016; 2017) among others. Instead, it has been 

suggested that not all associations between spatial and mathematical tasks can be 

explained in the same way, and a range of other explanations have subsequently 

been proposed as theoretical accounts for specific spatial-mathematical relations. 

First, it has been proposed that extrinsic-static spatial tasks, particularly spatial 

scaling tasks, rely on intensive quantification skills, or proportional reasoning 

(Newcombe, Möhring, & Frick, 2018). Magnitude can be encoded using two different 

quantification systems, an extensive system (using absolute amounts) or an intensive 

system (using proportions or ratios). Accurate spatial scaling between two different 

sized spaces requires the intensive coding strategy, with proportional mapping of 

relative, not absolute, distances. In mathematics, similar proportional mapping 

between extensive discrete representations of numbers to continuous intensive 

representations, is required for number line estimation and reasoning about formal 

fractions (Möhring, Newcombe, Levine, & Frick, 2016; Rouder & Geary, 2014). 

Theoretically, ANS tasks may also require proportional reasoning to facilitate ordinal 

comparisons, while performance on some geometry, area and distance tasks also rely 

on proportional and not absolute judgements (Barth & Paladino, 2011; Dehaene, 

Piazza, Pinel, & Cohen, 2003). In support of this, at 4 to 5 years significant correlations 
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between spatial scaling performance and proportional reasoning performance 

(identification of the strength of flavour of different combinations of cherry juice and 

water) have been reported (Möhring, Newcombe, & Frick, 2015). Taken together, 

extrinsic-static spatial task performance is expected to correlate with mathematics 

tasks that rely on intensive quantity processing or proportional reasoning.  

Second, for intrinsic-dynamic and extrinsic-dynamic spatial tasks, active processing 

including mental visualisation and manipulation of objects in space is thought to be 

required for successful task completion (Lourenco, Cheung, & Aulet, 2018; Mix et al., 

2016). It is postulated that the generation of mental models allows individuals to 

visualise not only individual components of problems but also the relations between 

parts (Lourenco et al., 2018). Theoretically, in mathematics, individuals may use 

mental visualisations to represent and solve complex mathematical word problems, 

e.g., by keeping terms together and structuring order of operations tasks, or to 

represent and organise complex mathematical relationships such as multi-digit 

numbers (Huttenlocher, Jordan, & Levine, 1994; Laski et al., 2013; Thompson et al., 

2013). Mental visualisations may also be used to ground abstract concepts. For 

example, in missing term problems of the format 4 + __ = 5, individuals may use 

visualisations of blocks or other concrete objects to balance the equation presented 

(Lourenco et al., 2018). Dynamic spatial tasks are thus expected to correlate with 

mathematical tasks requiring the mental manipulation or organisation of numbers. 

Third, intrinsic-static spatial tasks are reliant on form perception; the ability to 

distinguish shapes from a more complex background or to break more complex 

pictures into parts (Mix et al., 2016). Form perception is theoretically useful for spatial 

tasks such as map reading and figure drawing (Newcombe & Shipley, 2015), and for 

mathematics tasks such as distinguishing symbols such as + and × symbols, 

interpreting charts and graphs, and accurately completing multistep calculations 

which require an understanding of the spatial relations between symbols (Landy & 

Goldstone, 2007; 2010; Mix et al., 2016). As such, intrinsic-static spatial skills are 

predicted to relate to mathematics tasks that require identification and use of 

symbols or visual aids.  
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Proposing theoretical explanations for associations between spatial and 

mathematical skills is further complicated by the role of developmental age. As 

outlined in the previous section, the relationship between spatial skills and 

mathematics appears to show sensitivity to developmental age. One explanation for 

this is that the role of spatial skills as predictors of mathematics may be greater for 

novel tasks compared to practiced, automatic mathematics skills (Ackerman, 1988; 

Uttal & Cohen, 2012; Young, Levine, & Mix, 2018). Spatial skills may provide 

scaffolding when students are faced with new mathematics material but may play a 

reduced role as mathematics skills become increasingly automatic or familiar (Mix et 

al., 2016). Alternatively, age-based differences in spatial-mathematical associations 

may be due to variations in the mathematical content that children are exposed to 

across school years (Mix et al., 2016). For example, in the early school years spatial 

scaling may be associated with number line estimation skills, but scaling performance 

is unlikely to correlate with performance on complex equations, to which children are 

exposed to in later school years.  

In this section, it has been outlined that not all associations between spatial and 

mathematical tasks can be explained in the same way and a range of explanations 

have been proposed as theoretical accounts for specific spatial-mathematical 

relations. However, it is noteworthy that these accounts are based on theoretical 

predictions and, to date, there is limited evidence exploring the specificity of spatial-

mathematical associations in primary school children in the context of these 

mechanistic accounts. Furthermore, this list of possible underlying mechanisms put 

forward to explain spatial-mathematical associations is not exhaustive and there may 

be additional explanations for other spatial-mathematical relations that have yet to 

be identified. Further research is needed to corroborate and refine the proposed 

explanations for spatial-mathematical relations, which considers the specificity and 

developmental sensitivity of these associations.  

1.5 Cognitive training  

Moving beyond associational studies, cognitive training offers a method of exploring 

the direction of causality between different cognitive skills. The current literature on 
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the malleability of spatial thinking and the evidence that spatial training can foster 

improvements in mathematics is important to consider and critically assess. In 

addition to theoretical implications, there are significant educational implications of 

identifying effective training paradigms that render gains across spatial and 

mathematical skills. Such training could have direct benefits to student learning in 

the mathematics classroom.  

1.5.1 Training spatial skills 

There is a large body of evidence supporting the malleability of spatial thinking 

through intervention (Uttal et al., 2013). Baenninger and Newcombe (1989) were the 

first to classify spatial training paradigms into two types: direct and indirect training. 

Direct training paradigms involve task-specific spatial training, with training being 

provided on test items relevant to the spatial skill or range of spatial measures being 

assessed. For example, Lizarraga and Ganuza (2003) reported gains in mental rotation 

performance after 12 weeks of training with mental rotation practice worksheets and 

experience manipulating cubes (d = 0.788), compared to a control group who 

received no intervention. One limitation of direct training is that it is difficult to 

distinguish training gains from practice effects. For indirect spatial training, it is 

proposed that participants’ exposure to spatially rich experiences increases their 

subsequent spatial task performance. However, indirect training paradigms do not 

include experiences that are directly related to a specific spatial task (Baenninger & 

Newcombe, 1989). In one example of indirect spatial training, Blüchel, Lehmann, 

Kellner, and Jansen (2013) reported significant gains in spatial (mental rotation) 

performance at 9 years following a two-week motor training programme, that was 

not targeted towards improving spatial thinking skills. The programme involved 

training in motor skills such as catching, juggling and bouncing balls, but did not have 

a direct spatial training component. An extended conceptualisation of spatial training 

was proposed by Uttal et al. (2013) who expanded Baenninger and Newcombe’s 

(1989) description of indirect training to include two distinct forms: video game 

training in which training is delivered using video games and course-based training in 

which participants are exposed to a semester long spatially relevant course (Uttal et 

al., 2013). Like Baenninger and Newcombe (1989), Uttal et al. (2013) also recognised 
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direct training as spatial task training involving task practice, strategic instruction or 

computer-based lessons.  

The malleability of spatial thinking has been well summarised in two meta-analyses 

(Baenninger & Newcome, 1989; Uttal et al., 2013). First, across 26 studies of spatial 

training, significantly larger effect sizes were reported for groups who received direct 

spatial training, compared to control groups who completed no training (Baenninger 

& Newcombe, 1989). In contrast, no significant spatial gains were reported for groups 

receiving indirect spatial training compared to controls. However, these findings 

should be interpreted in the context of the small number of studies that investigated 

indirect training (n = 2 studies). More recently, Uttal et al. (2013) completed a second 

extensive meta-analysis investigating the malleability of spatial thinking (N = 217 

studies). An effect size of almost one half a standard deviation was reported for 

spatial training compared to control conditions (Hedges G = 0.47) (Uttal et al., 2013). 

Unlike Baenninger and Newcombe (1989) no differences in effect size were reported 

for different types of spatial training. Uttal et al. (2013) also explored the durability 

and transferability of spatial training effects. Some studies administer post-testing 

immediately following training while others wait days, weeks, or even months until 

post-testing (Uttal et al., 2013). However, Uttal et al. (2013) found no significant 

difference in the size of training gains reported, based on the timing of post testing. 

This suggests that spatial gains achieved through training are durable. Uttal et al. 

(2013) also investigated gains in novel task performance following training, i.e., gains 

in tasks/skills that had not been trained. Gains with an effect size of 0.48 (Hedges G) 

were reported for novel tasks after spatial training. This is convincing evidence that 

spatial training transfers to other untrained skills.  

Of the 217 studies included in Uttal et al.’s (2013) meta-analysis, 26% were 

completed with children. The average effect size for studies of children under 13 

years was 0.61 (Hedges G), higher than the effect size for all older age groups. As 

proposed by Heckman and Masterov (2007) this may be because cognition is 

particularly malleable in childhood. Of the child-based studies reviewed by Uttal et 

al. (2013), 66% included direct spatial task training. A measure of intrinsic-dynamic 

spatial skills was included in 68% of studies; an intrinsic-static spatial task was used 
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in 28% of studies, while only 7.5% and 11% included an extrinsic-static or extrinsic-

dynamic spatial task respectively. These findings suggest that spatial thinking is 

malleable, and that spatial training can lead to large gains in spatial performance. 

However, there is a clear bias in the training methods typically employed in spatial 

training studies involving children, with a disproportionate emphasis on intrinsic-

dynamic spatial skills.  

1.5.2 Evidence of transfer of spatial training gains to mathematics  

Despite the malleability of spatial skills and the known associations between spatial 

ability and mathematics competence, only two known studies have investigated 

transfer of spatial training gains to mathematics outcomes in children, using spatial 

training in which there is no mathematical component in the training paradigm. The 

findings of these studies are inconsistent. Cheng and Mix (2014) reported significant 

gains in mathematical calculation following a single 40-minute mental rotation 

training session (intrinsic-dynamic spatial skill) in children aged 6 to 8 years. Gains 

were specific to missing term arithmetic problems, e.g., 4 + __ = 9, and no similar 

improvements were reported for children in the control condition who completed 

crossword puzzles. In a similar study also using mental rotation training in children 

aged 6-8 years, Hawes et al. (2015) failed to replicate these findings. Here, 

participants completed 15 sessions of computerised mental rotation training 

(intervention) or literacy training (control) respectively. Despite improvements in 

mental rotation and mental transformation (an untrained spatial skill) for the 

intervention group, Hawes et al. (2015) did not report improvements in mathematics 

measured using nonverbal arithmetic and missing term arithmetic problems.  

The inconsistencies between the findings reported in these two studies may be 

explained by several factors. First, individual training was delivered in the Cheng and 

Mix (2012) paradigm, while Hawes et al. (2015) administered group training in a 

classroom setting. Gains reported by Cheng and Mix (2012) may therefore be 

attributable to the motivational benefits of one-to-one interaction with a researcher. 

Without the direct supervision of a researcher, it is unclear to what degree 

participant motivation and engagement with training may have influenced outcomes 
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in the Hawes et al. (2015) paradigm. Second, the timing of post-testing differed 

between the studies. Cheng and Mix (2012) delivered post-testing immediately 

following training, while Hawes et al. (2015) administered post-testing one week 

after training. There is no guarantee that the gains reported by Cheng and Mix (2012) 

are durable, and instead they may reflect a priming effect. Thus, the timing of post-

testing may have influenced the results of Cheng and Mix (2012). Third, the training 

modes differed somewhat between the studies. Cheng and Mix (2012) provided 

participants with physical manipulatives (shapes) and instructed participants to move 

the shapes provided, to check their answers. In contrast, Hawes et al. (2015) provided 

participants with feedback on the accuracy of their responses, but no explanation 

was provided to explain accuracy. The possible explanations for differences in the 

outcomes of the two training studies in this domain are explored further in Chapter 

4. However, in short, there is mixed evidence on the effectiveness of spatial training 

for mathematics. There is a need for future research on the features of spatial 

training that may promote mathematical gains.  

Further insight can be gained from studies that integrate spatial skills into 

mathematical training and instruction. Hawes, Moss, Caswell, Naqvi, and MacKinnon 

(2017) reported significant gains in both spatial and mathematical outcomes 

following a 32-week classroom-based intervention in which spatial visualisation 

activities were integrated into mathematics, geometry-based lessons (Math for 

Young Children [M4YC] project). Based on a sample of children aged 4 to 7 years, 

spatial gains were found in mental rotation (ηp
2 = .16), spatial language (ηp

2 = .16), 

and visuospatial reasoning (ηp
2 = .19). Gains were also reported in symbolic number 

processing (ηp
2 = .10) but not non-symbolic comparison (ηp

2 = .03) or number 

knowledge (ηp
2 = .01) compared to controls. Cohen (1988) defined ηp

2 values of 0.01, 

0.06, and 0.14, as small, medium, and large effect sizes respectively. The authors 

suggest that the mathematical gains may reflect shared processing requirements for 

spatial and symbolic number tasks. Alternatively, they may be accounted for by 

improved spatial representation of number after training, or improvements in 

executive functions. Improved executive functions have been associated with higher 

mathematics achievement in previous studies (e.g., Hawes, Moss, Caswell, Naqvi, & 
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MacKinnon, 2017). Also based on the M4YC project, Bruce and Hawes (2015) 

reported significant gains in mental rotation at 6 to 8 years, following a teacher-led 

intervention of geometry and spatial based activities. Of note, this study did not 

include a control group. In older children aged 10 to 12 years, similar findings were 

reported in a classroom-based study where children completed 2 hours of training 

per week, over a 10-week period (Lowrie, Logan, & Ramful, 2017). Training was 

delivered by teachers and included lessons that focussed on developing spatial 

constructs, in addition to lessons that integrated spatial thinking into problem-solving 

tasks. Significant gains were reported in spatial visualisation (d = 0.65), mental 

rotation (d = 0.43), and geometry-based mathematics items (d = 0.34). However, no 

gains in spatial orientation or number-based mathematics items were found. This 

study did not include a control group; therefore, it is unclear to what degree the 

performance gains reported were attributable to practice effects. Overall, these 

studies highlight the effectiveness of incorporating spatial thinking into mathematics 

lessons as a means of improving mathematics outcomes.  

In many studies that integrate spatial thinking into mathematics lessons, teachers are 

permitted to customise and adapt the proposed lessons, tailoring them to their 

classrooms (Hawes et al., 2017; Lowrie et al., 2017). Thus, not all participating 

children are exposed to identical training paradigms, and while unlikely, it is possible 

that adaptations made by teachers to their lessons may contribute to the 

performance gains reported. Another limitation of integrating spatial thinking and 

mathematics in training paradigms is that studies of this type cannot offer insight into 

the underlying causal relationship between spatial and mathematical constructs. In 

these studies, it is not possible to disentangle the impact of the spatial and 

mathematical aspects of training respectively. Additionally, given that the training 

materials (lessons) require a range of skills and processes, it is also not possible to 

elucidate which of these mechanisms has contributed to the gains reported. Finally, 

many classroom-based studies investigating spatial and mathematical training do not 

include a control group (Bruce & Hawes, 2015; Lowrie et al., 2017). This limits the 

inferences that can be made as any gains reported following training might be due to 

practice effects. Despite these limitations, from an educational perspective, these 
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studies offer useful tools for mathematical teaching. They also offer valuable insight 

(both practical and theoretical) into the impact of embedding spatial thinking into 

classroom-based mathematics activities.  

1.5.3 Insights into cognitive training from other cognitive domains 

Failure to find transfer of spatial training gains to mathematics, an untrained 

cognitive domain, may be due to poor selection of training tasks. As reported in 

section 1.5.2, there is mixed evidence for transfer of training gains from spatial 

domains to mathematics skills (Cheng & Mix, 2014; Hawes et al., 2015). Within the 

broader cognitive training literature, similar mixed findings have been reported for 

transfer of training gains in other untrained domains, e.g., working memory (WM). 

WM is the ability to store information (verbal or visuo-spatial) for short amounts of 

time and to manipulate this information (Baddeley & Hitch, 1974). Like spatial 

thinking the malleability of WM has been demonstrated in many studies with 

improved performance on WM tasks after behavioural training (Hedges G = .31 for 

verbal WM training; Hedges G = .28 for VSWM training)(Melby-Lervåg, Redick, & 

Hulme, 2016). Significant correlations have also been reported between WM and 

mathematics outcomes across a range of studies (Friso-van den Bos, van der Ven, 

Kroesbergen, & van Luit, 2013; Fuchs et al., 2010). Therefore, similarly to spatial 

thinking, it has been proposed that WM training may lead to transfer of gains to 

mathematics outcomes. Although WM is a cognitive ability that has been targeted 

extensively in training studies, there is very little evidence of transfer of WM training 

gains to distantly related tasks, such as general cognitive abilities or academic 

outcomes (Melby-Lervåg & Hulme, 2013; Melby-Lervåg et al., 2016; Schwaighofer, 

Fischer, & Bühner, 2015). Obtaining transfer of training gains to skills beyond those 

that have been targeted by intervention is not easily achieved (Redick, Shipstead, 

Wiemers, Melby-Lervåg, & Hulme, 2015). The findings from WM studies highlight the 

apparent selectivity of training and raise the question as to why one might expect to 

see transfer of training gains between two seemingly distinct cognitive skills. In this 

thesis, it is proposed that the success of cognitive training is contingent on an 

understanding of the underlying cognitive mechanisms between training targets and 

transfer domains. It is proposed that the decision to complete training studies should 
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be supported not only by correlations between training targets and transfer domains, 

but also some understanding of how, and why these domains might be associated.  

In summary this section has provided convincing evidence that spatial thinking, 

particularly intrinsic-dynamic spatial thinking, is malleable. However, from the 

current findings in this domain, no clear conclusion can be drawn regarding the 

transfer of spatial training gains to mathematics in childhood populations. 

Furthermore, the findings from cognitive training studies in other domains such as 

WM suggest that transfer of cognitive training gains to untrained domains is difficult 

to achieve. In particular, correlations between measures may be an insufficient basis 

for establishing training paradigms. This is explored further in Chapter 4. 

1.6 Conclusions and thesis directions 

The use of spatial training to improve mathematics is promising because spatial 

thinking is malleable, and leads to gains in spatial task performance (Bruce & Hawes, 

2015; Taylor & Hutton, 2013; Uttal et al., 2013). While there is convincing evidence 

from correlational studies that spatial and mathematical skills are associated in pre-

school and adult populations, the findings in the primary school years are less 

established (e.g., Verdine et al., 2014; Wai et al., 2009). Furthermore, few studies 

have employed spatial training in an effort to show transfer of spatial training gains 

to mathematics, and the results of these training studies are variable. Some studies 

report a positive impact of spatial training on mathematics (Cheng & Mix, 2014; 

Hawes et al., 2018; Lowrie et al., 2017) while others report no transfer of spatial 

training gains to mathematics (Hawes et al., 2015). Beyond features of task and study 

design, such as those outlined in section 1.5.2, the inconsistencies in the results may 

be attributable to the fact that spatial and mathematical thinking are often treated 

as unitary constructs. However, as outlined in sections 1.2 and 1.3, both spatial and 

mathematical cognition are complex cognitive domains.  

This thesis explores spatial thinking in the context of Uttal et al.'s (2013) theoretical 

classification of spatial skills. This classification has four spatial sub-domains (intrinsic-

static, intrinsic-dynamic, extrinsic-static and extrinsic-dynamic) through which the 

development of spatial thinking and its role for mathematics in childhood are 
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explored. Sub-domains of mathematical thinking are considered using von Aster and 

Shalev's (2007) model of numerical cognition. This model proposes an innate, core 

system for representing numbers, the ANS. Through development, the ANS becomes 

integrated with a symbolic number system providing a platform for more complex 

mathematics abilities such as multi-digit calculation, word problem solving, algebra, 

measurement and data handling skills (Butterworth, 1999; Feigenson et al., 2004; 

Piazza, 2010; Träff, 2013).  

This thesis includes three inter-related experimental studies, outlined in Chapters 2, 

3 and 4, each of which presents specific research questions and employs a distinct 

methodological approach. The thesis focuses on exploring these important questions 

in children aged 5 to 10 years. The findings from these studies are drawn together in 

Chapter 5 to form conclusions and identify future research directions. The study 

presented in Chapter 2 explores the longitudinal and concurrent relationships 

between spatial and mathematical skills in children aged 5 and 7 years, controlling 

for socio-demographic factors and language skills. The study involves secondary data 

analysis of 12,099 children who participated in the Millennium Cohort Study (MCS). 

It expands on previous findings by using a large-scale, longitudinal sample of primary 

school children, a population that have been largely omitted from research on the 

associations between spatial ability and mathematics achievement. In this chapter, 

the differential associations between spatial and mathematical skills for children of 

different genders and those in different SES groups are also explored.  

Building on this, in Chapter 3 the developmental relations between spatial and 

mathematics skills across 5 consecutive age groups in the primary school years (6, 7, 

8, 9 and 10 years) are explored. Using a cross-sectional approach, this study compares 

performance across Uttal et al.'s (2013) four spatial sub-domains and each of von 

Aster and Shalev's (2007) mathematical sub-domains, including classroom-based 

mathematics skills (N = 155). It provides important insights into the specificity of 

associations between spatial and mathematical skills, acknowledging that both 

spatial and mathematical thinking are multi-dimensional constructs. Importantly it 

provides evidence that spatial-mathematical associations are age-dependent, and 

highlights age and task relevant targets for spatial training. 
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In Chapter 4, the efficacy of explicit (instructional videos) and implicit (practice with 

feedback) methods of training spatial skills at 8 years are compared, and the transfer 

of spatial training gains to other spatial and mathematical domains are investigated. 

Informed by the longitudinal and cross-sectional findings reported in Chapters 2 and 

3, the study outlined in this chapter uses an intervention-based design including pre-

testing, training and post-testing (N = 250). The outcomes provide insights into the 

malleability of spatial thinking, and the causal relationship between different sub-

domains of spatial and mathematical thinking.  

Together, the three components of this thesis provide important evidence for the 

complex relationship between spatial skills and mathematics, the specificity of 

spatial-mathematical relations across sub-domains, the age dependency of spatial-

mathematical relations, and the efficacy of spatial skills training as a novel means of 

improving mathematics performance. The implications and importance of these 

findings and the areas for further research are discussed in Chapter 5.   
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Chapter 2 The longitudinal contribution of spatial ability to 

mathematics achievement in the early primary school years  

2.1 Introduction 

As outlined in Chapter 1 there is evidence that spatial and mathematical skills are 

associated in pre-school aged children. For example, findings from Verdine et al. 

(2014) showed that spatial skills at 3 years, significantly predicted mathematical 

problem solving at 4 years, assessed using the TOSA, an intrinsic-dynamic spatial 

measure. Beyond the pre-school years, relatively few studies explore spatial-

mathematical relations in middle childhood, and those that do, present somewhat 

mixed results. In this chapter the role of spatial skills at the age at which children first 

enter formal schooling, an age group of children that are largely absent from previous 

literature, is explored. In the UK, children begin formal education at approximately 5 

years. At this age, they are presented with a range of novel mathematical content. 

Previous studies have suggested that improved spatial thinking may assist in learning 

novel information (Ackerman, 1988; Uttal & Cohen, 2012). Therefore, it stands to 

reason that individual differences in spatial thinking may influence learning of novel 

mathematical content of the curriculum. Hence, in this chapter it is proposed that 

individual differences in spatial skills on entry to primary school have an important 

predictive role in supporting mathematical success in subsequent years.  

More specifically, the study presented in this chapter explores the role of intrinsic-

dynamic spatial skills as predictors of mathematics ability in the early primary school 

years. The use of an intrinsic-dynamic spatial task is useful, given the strong 

association of this spatial sub-domain with mathematics observed in studies with 

older children and adults (for example, Reuhkala, 2001; Thompson et al., 2013; Wai 

et al., 2009). Findings from correlational studies in children suggest that intrinsic-

dynamic spatial skills specifically, have particular associations with mathematics at 6 

years but not at 9 years (Mix et al., 2016). To date, the most convincing evidence that 

spatial skills may play a predictive, beneficial role in mathematics outcomes during 

the early years of schooling comes from Gunderson et al. (2012) who also measured 



74 
 

intrinsic-dynamic spatial performance. In their study, Gundersen et al. (2012) 

demonstrated that intrinsic-dynamic spatial skills at 5 years are predictive of 

approximate calculation performance at 8 years. The authors suggest that these 

benefits are mediated by number line estimation skills. However, a major limitation 

to this study is that approximate calculation skills are one small sub-component of 

mathematics performance. To enhance the generalisability of the results reported 

and to enable application to successful classroom intervention, there is a need to 

explore the role of spatial thinking on more comprehensive measures of mathematics 

skills beyond calculation alone. 

The finding that spatial and mathematical skills are associated in middle childhood is 

also limited by the fact that few studies control for other known predictors of 

mathematics achievement, including language skills. As outlined in Chapter 1, it is not 

yet known whether there is a direct relationship between spatial and mathematical 

skills or whether these associations might be attributable to the overlapping language 

demands of the tasks used, or by an underlying intelligence (IQ) factor (Alloway & 

Alloway, 2010; Mayes et al., 2009). Previous studies have demonstrated significant 

associations between mathematics and language skills (LeFevre et al., 2010; Moll et 

al., 2015). Therefore, there is a need to control for language ability when exploring 

the role of other mathematical predictors. By comparing models that include or 

exclude shared variance with language skills respectively, the unique and shared 

variance in mathematics performance that is attributable to spatial skills can be 

established.  

In addition, as outlined in Chapter 1, there is evidence that socio-demographic factors 

influence mathematics outcomes. There are inconsistent findings on whether 

mathematical performance differs across genders, with no reliable evidence for a 

male or female advantage (Halpern et al., 2007; Hyde et al., 2008). Furthermore, 

where gender effects are reported, the size of performance differences is often small 

(Hyde et al., 2008). To better understand gender effects in mathematics outcomes, 

there is a need to use large scale studies with representative populations. There is 

more convincing evidence that mathematical performance differs across different 

SES groups (Byrnes & Wasik, 2009). Yet, no known studies on spatial-mathematical 
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relations generalise their findings to investigate whether socio-demographic factors 

mediate the observed associations between spatial and mathematical skills. For 

example, by exploring whether spatial-mathematical relations are stronger for 

children from high compared to low income groups, or for males versus females. 

Furthermore, no known studies explore differences in spatial and mathematics skills 

across ethnic groups, or the role of ethnicity in mediating spatial-mathematical 

relations. 

This is the first study to investigate both the concurrent and longitudinal relationships 

between intrinsic-dynamic spatial skills and mathematics in the early primary school 

years (5 to 7 years). While most studies to date focus on specific sub-components of 

mathematics such as arithmetic or calculation, this study explores associations 

between spatial skills and mathematics achievement more generally. There are 

benefits of exploring the role of spatial skills for mathematics from both a holistic 

perspective and in the context of individual mathematical sub-domains. This study 

explores the value of intrinsic-dynamic spatial skills as a predictor of mathematics 

achievement, measured using a standardised mathematics measure that is proposed 

to reflect the range of skills and competencies required in the mathematics 

classroom. As such, the findings of this study have practical importance for 

influencing mathematical achievement in the classroom. Using data from the MCS, 

the study presented in this chapter explores associations between spatial skills and 

mathematics in the early primary school years using a large-scale, general population 

longitudinal sample. It investigates changes in intrinsic-dynamic spatial skills over 

time and identifies the contribution of spatial skills at 5 and 7 years to achievement 

in mathematics at 7 years. Importantly, it extends previous research by exploring the 

role of spatial skills for mathematics performance while accounting for the roles of 

other known and possible predictors of mathematics performance, i.e., gender, SES, 

ethnicity and language skills. In short, this study identifies reliable associations 

between a specific spatial skill and mathematics achievement at early primary school 

ages which, if significant, could enable the effective design of targeted age-based 

mathematics interventions, the outcomes of which may have both educational and 

economic implications. 
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2.2 Materials and Methods 

2.2.1 The Millennium Cohort Study (MCS) 

The MCS is a longitudinal population-based study of children born in the United 

Kingdom between 2000 and 2002. Participants of the MCS were sampled using a 

stratified, clustered design, ensuring adequate representation of disadvantaged and 

ethnic minority groups and over-representation of children living in the smaller UK 

countries including Scotland, Northern Ireland and Wales. To date, the MCS has 

collected 6 waves of data during which the children in the study were approximately 

9 months, and 3, 5, 7, 11 and 14 years respectively. The MCS uses questionnaires, 

interviews, and a range of cognitive assessments with cohort members, their families 

and teachers to collect information on a wide range of variables including; cognitive 

development; child and parental physical and mental health; income and poverty; 

parenting; ethnicity and schooling among others.  

The current study focuses on the Millennium Cohort during Waves 3 and 4, for which 

suitable measures of spatial ability are available. Wave 3 was completed between 

February 2006 and January 2007 when the study participants (N = 15,460) were 

approximately 5 years. Wave 4 was completed between January 2008 and February 

2009 when the participants (N = 14,043) were approximately 7 years. The Centre for 

Longitudinal Studies, who manage the MCS, attained ethical approval for Wave 3 of 

the MCS from the London Multi-Centre Research Ethics Committee of the National 

Health Service (NHS), while ethical approval for Wave 4 of the study was obtained 

from the Northern and Yorkshire Research Ethics Committee of the NHS. No 

additional ethical approval was required for this study. The data used in this study 

was open access. It was accessed and downloaded by registering with the UK Data 

Service. For more details see https://www.ukdataservice.ac.uk. 

2.2.2 Participants 

Power analysis, based on the largest possible regression model (20 predictors), 

indicated that to achieve power of 0.8, with a small effect size of (f2 = 0.02), 1064 

participants were required.  The initial study sample included the eldest cohort child 

https://www.ukdataservice.ac.uk/
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from each MCS family (N = 19,244). The inclusion of a single participant from each 

family ensured that clustering effects did not occur. Participants with missing data on 

any of the cognitive or educational measures chosen for this study (see below) were 

subsequently excluded from the sample rendering a sample size of 12,537 

participants. Participants who did not indicate that they spoke English only or mostly 

English at home were excluded from this study to remove variance created by 

differences in language comprehension (438 participants excluded). The final sample 

size for this study was 12,099 participants. Thus the desired power was achieved.  The 

Organisation for Economic Co-Operation and Development (OECD) equivalised 

income scores at Wave 4 were used as a measure of SES in this study. OECD 

equivalised income scores convert reported household income into a modified scale 

based on the number and age of all members of the family (Hansen & Joshi, 2008). 

Any missing income data were replaced and each observation was weighted to reflect 

the original sampling probability and attrition (Hansen & Joshi, 2008). The final 

income distribution was divided, generating five equal-sized quintiles.  

The demographics of the final sample compared to those of the excluded sample are 

shown in Table 2.1. The excluded sample includes all participants present in the 

original MCS sample who were excluded from this analysis. The demographics shown 

in Table 2.1 are based on unweighted data. Data were unweighted as some of the 

excluded sample were not present at Wave 4. Therefore, application of Wave 4 

weights accounting for sampling design, non-response and attrition was not suitable 

for this group. Hence, Wave 4 weights were applied to neither the excluded nor the 

final samples. As shown, the selection criteria used to generate the final study sample 

led to small but significant differences in the ages of the samples at Wave 3 and Wave 

4. Across both waves, the mean age for the excluded sample was higher than that of 

the included sample. Although there is a significant difference in the gender ratio 

between the samples, the table indicates that the final sample has a more balanced 

gender distribution, compared to the excluded sample. As expected, the percentage 

of participants in all non-white ethnic groups was reduced in the final sample leading 

to a 13.4% increase in the percentage of white participants in the study compared to 

the relative percentage of white participants in the excluded sample. This is most 
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likely explained by the English language exclusion criteria. The excluded sample also 

has significantly higher proportions of participants in the lowest and second income 

quintiles. This may be explained by higher rates of non-response and attrition in the 

lower income groups. In comparison, the final sample includes approximately even 

percentages of participants in each income-based quintile, with a slight under-

representation of the lower income groups. The final results should be viewed in light 

of the slight under-representation of participants in lower income families, and the 

slight over-representation of white participants relative to all other ethnic groups.  
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Table 2.1 

Demographic characteristics of the final study sample compared to participants 

excluded from analysis (unweighted data) 

 

Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001, a For the excluded 

sample, ages at Waves 3 and Wave 4 are based on a sample size of 3146 and 1745 

participants respectively. This reduction in sample size is due to the large number of 

participants in the initial sample who did not participate in Wave 3 and/or Wave 4.  

 Excluded Sample Final Sample Test 

  N % total N 
% 

total 
Pearson’s 

χ2 

Gender       

 Male 3818 53.4 6079 50.2 18.33 *** 

 Female 3327 46.6 6020 49.8  

Ethnic group      

 White 5220 73.1 10463 86.5 578.57*** 

 Mixed 265 3.7 324 2.7  

 Indian 237 3.3 259 2.1  

 
Pakistani & 
Bangladeshi 

800 11.2 534 4.4 
 

 Black or Black British 384 5.4 340 2.8  

 Other Ethnic group  177 2.5 122 1.0  

 Missing  62 .9 57 0.5  

OECD Equivalised Income Quintiles      

 Lowest  589 8.2 2267 18.7 344.35*** 

 Second quintile 468 6.6 2394 19.8  

 Third quintile 295 4.1 2502 20.7  

 Fourth quintile  224 3.1 2475 20.5  

 Highest quintile  173 2.4 2450 20.2  

 Missing 5396 75.4 11 0.1  

  Mean SD Mean SD T (D) 

Age Wave 3 (years)      

 Male  5.23a .25 5.22 0.25 3.55 
(.068)***  Female  5.23a .26 5.21 0.24 

Age Wave 4 (years)      

 Male  7.30a .30 7.23 0.25 10.90 
(.296)***  Female  7.30a .28 7.22 0.25 
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2.2.3 Measures 

As shown in Table 2.2, all participants completed a series of cognitive measures 

across Wave 3 and Wave 4 of the MCS. This included a subset of items from a 

standardised test of mathematics for 7 year olds (National Foundation for 

Educational Research [NFER], 2004) in addition to a selection of measures taken from 

the British Ability Scales II (BAS II), a standardised test battery that measures cognitive 

ability (Elliott, Smith, & Mc Cullock, 1996). For all test measures, age-based 

standardised test scores converted to z-scores, are reported. 

Table 2.2 

Cognitive measures included in the MCS Waves 3 and 4 

Test Measure Wave 3 Wave 4 

BAS II-Pattern Construction   

BAS II-Naming Vocabulary   

BAS II-Word Reading   

NFER-Progress in Maths   

Note. BAS II = British Ability Scales II; NFER = National Foundation for Educational 

Research. 

2.2.3.1 Mathematics skills 

A shortened version of the National Foundation for Educational Research Progress in 

Maths (NFER PiM) test for 7 year olds was administered at Wave 4 as a measure of 

mathematics (NFER, 2004). The NFER PiM is an assessment of mathematics ability 

and includes a wide assortment of items on all aspects of the National Mathematics 

Curricula including questions on numbers, shapes, measurement and data handling. 

Age-based standardised scores were based on 6-month age intervals and were 

calculated based on the full-length NFER PiM test normed in 2004.  
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2.2.3.2 Spatial skills 

This study used the Pattern Construction subscale of the BAS II as a measure of spatial 

ability (BAS II; Elliott et al., 1996; Hill, 2005). This nonverbal reasoning task is modelled 

on Kohs’ traditional Block Design Test (Kohs, 1919). The task requires participants to 

copy a stimulus pattern using a set of blocks. The block faces are either all yellow, all 

black, or half-yellow, half-black. Participants must re-create a stimulus pattern by 

rotating, re-arranging and joining the blocks. The task falls within the intrinsic-

dynamic sub-domain of spatial cognition as described by Uttal et al. (2013). In easier 

trials, the stimulus pattern is presented using 3-D blocks. Harder trials use 2-D picture 

representations of the stimulus pattern. Task success is measured as accuracy in 

block orientation and positioning, and response time. Age-based standardised scores 

were calculated based on 3-month age intervals (BAS II; Elliott et al., 1996; Hill, 2005). 

2.2.3.3 Control variables  

Additional sub-tests of the BAS II included as covariates in analyses were the Naming 

Vocabulary subscale (Wave 3) which measures expressive verbal ability and the Word 

Reading subscale (Wave 4) which measures educational knowledge of reading. In the 

Naming Vocabulary scale children are shown a series of pictures and are asked to 

name each of them. In the Word Reading scale, children are shown words on cards 

and are asked to read them aloud. Age-based standardised scores for these measures 

were based on 3-month age intervals. Due to the age difference of participants at 

different waves of the MCS, different language measures were included at Wave 3 

and Wave 4. No single language measure was available for both waves. 

2.2.4 Analysis strategy 

Missing OECD equivalised income values, which accounted for 0.1% of cases, and 

missing ethnicity values, which accounted for 0.5% of cases, were calculated using 

the multiple imputation function in SPSS. MCS weights to account for the original 

stratified, clustered design of the MCS sample and sample attrition and non-

response, were applied to all analyses unless otherwise stated. All sample sizes 

reported are based on unweighted data. Initial descriptive statistics were completed 

to provide an overview of overall performance patterns across tasks. T-tests and 
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analysis of variance (ANOVA) were used to investigate the main effects of gender and 

SES (income groups) on task performance for all test measures including both 

language and spatial-based cognitive tasks, and mathematics achievement. Where 

equal variances could not be assumed, the results for unequal variance were 

reported. Post-hoc Games-Howell or Hochberg’s GT2 tests were used appropriately 

in cases where the assumption of homogeneity of variance was violated or met 

respectively. A correlation matrix was completed to investigate the relative 

associations between performance measures and to inform subsequent general 

linear models. T-statistics were used to compare correlation coefficients (Field, 

2013). 

2.2.4.1 Regression models 

To explore the role of spatial skills as a predictor of mathematics achievement, 

general linear models in SPSS were used. General linear models allow for the use of 

MCS weights to account for sample design, attrition and non-response. The use of 

age-adjusted z-scores for all cognitive task measures and age allowed for meaningful 

comparison of unstandardised b values within models. Although age-based 

standardised scores were used throughout, these scores were based on 3-month 

(BAS II) or 6-month (NFER PiM) age intervals and did not account for age-based 

variability within these age brackets. Hence, exact age at Wave 4 was included as a 

predictor in all models. While this extra adjustment for age is a more conservative 

approach, comparable results were found when models were run which did not 

include age as a predictor. 

Model 1 was the most conservative and investigated the additional variation in 

mathematics explained by spatial skills, above that explained by demographic and 

language measures. As outlined in section 2.3.4.1, Model 1 presented the influence 

of spatial skills on mathematics, controlling for other variables including gender, SES 

(income-based quintiles), ethnicity, age and language skills (Naming Vocabulary and 

Word Reading at Wave 3 and 4 respectively). In this model, spatial task performance 

(performance on the Pattern Construction Task) at Wave 3 and 4 was considered 

simultaneously. Model 1 also explored the role of gender and SES as moderators in 
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the relationship between spatial and mathematics skills by adding interaction terms 

for gender*spatial skills and SES*spatial skills at Wave 4. These interaction terms 

were included due to the identification of gender and SES (income-based quintiles) 

differences in spatial task performance in the bivariate analysis (further details in 

section 2.3.2).  

Model 2, presented in section 2.3.4.2, was a less conservative model and investigated 

shared variation between spatial and language skills as predictors of mathematics. 

This model explored the role of spatial skills as a predictor of mathematics when 

controlling for demographic factors only. Language skills were only included after 

spatial skills in this model. 

Model 3 sought to determine the longitudinal contribution of spatial and language 

skills at Wave 3 as predictors of mathematics achievement at Wave 4. No Wave 4 

measures were included as predictors in Model 3. In the two previous models it is 

likely that the longitudinal value of Wave 3 measures in predicting mathematics 

achievement was underestimated due to shared variance between Wave 3 and Wave 

4 spatial and language measures respectively. Hence, Model 3 was included to 

explore the longitudinal contributions of cognitive skills to mathematics achievement 

in the absence of concurrent predictors.  

Model 4 investigated the role of concurrent predictors of mathematics achievement 

at Wave 4. Model 4, presented in section 2.3.4.4, investigated the role of spatial and 

language measures at Wave 4 as concurrent predictors of mathematics achievement 

at Wave 4. No Wave 3 measures were included as predictors in Model 4. The inclusion 

of Models 3 and 4 allowed for the comparison of concurrent and longitudinal 

predictors of mathematics respectively. To allow for more meaningful comparison of 

Model 3 and Model 4, the order of inclusion of variables in Model 4 was identical to 

Model 3.  

In summary comparison between Models 1 and 2 provided the range of potential 

variance in mathematics achievement explained by spatial skills (in the presence and 

absence of other predictors of mathematics). Comparison across Model 3 and Model 
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4 outlined the roles of longitudinal and concurrent predictors (both spatial and 

language) of mathematical achievement.  

2.3 Results 

2.3.1 Overall task performance  

Descriptive statistics for each of the cognitive and academic measures used in this 

study are shown in Table 2.3. While these results are specifically based on the sample 

included in this study, they are comparable to those describing the performance of 

the total MCS sample at Waves 3 and Wave 4 (Hansen, Jones, & Budge, 2010; Hansen 

& Joshi, 2008). 

Table 2.3 

Descriptive statistics for task performance across Waves 3 and 4 (z-scores, 

unweighted data) 

Wave Test Measure N Max Min Mean SD 

Three       

 
BAS II- Pattern 
Construction 

12,099 2.95 -3.12 0 1.00 

 
BAS II- Naming 
Vocabulary 

12,099 2.34 -3.25 0 1.00 

Four       

 
BAS II- Pattern 
Construction 

12,099 2.44 -3.05 0 1.00 

 BAS II- Word Reading 12,099 1.86 -3.16 0 1.00 

 NFER PiM 12,099 2.42 -1.88 0 1.00 

Note. BAS II = British Ability Scales II; NFER PiM= National Foundation for Educational 

Research Progress in Mathematics 
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2.3.2 Performance differences based on gender and SES  

2.3.2.1 Gender differences 

Independent t-tests were carried out to identify differences in task performance 

based on gender. As shown in  

Table 2.4, the results indicated that there was a significant difference in performance 

between males and females for all tasks. The mean score for females exceeded that 

for males on all tasks with the exception of mathematics performance where male 

scores were above those of females. These results should be viewed in light of the 

relatively small effect sizes reported for all t-tests. Cohen described values of d below 

0.2 as small effects (Cohen, 1988; 1992). Hence, the magnitude of Cohen’s d observed 

in Table 2.4, ranging from 0.053 to 0.177, suggests that the reported differences in 

performance of males and females on academic and cognitive measures are relatively 

small. 

Table 2.4 

Gender differences in cognitive and mathematics task performance (z-scores, 

weighted data). 

Test Measure Gender Statistics 

 Male (n = 6079) Female (n = 6020) 
Test 

statistic  
Effect 
size 

 Mean SD Mean SD T value 
Cohen’s 

D 

Wave 3       

BAS II- Pattern 
Construction 

-.09 1.04 .09 0.94 -9.81** 0.177 

BAS II- Naming 
Vocabulary 

-.01 1.01 .05 0.95 -3.18** 0.057 

Wave 4       

BAS II- Pattern 
Construction 

-.04 1.04 .02 0.96 -3.09** 0.058 

BAS II- Word 
Reading 

-.05 1.05 .10 0.92 -8.60**  0.154 

NFER PiM .01 1.04 -.04 0.95 2.97** 0.053 
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Note. * indicates p < .05, ** indicates p < .01, all n’s are based on unweighted data. 

BAS II = British Ability Scales II; NFER PiM = National Foundation for Educational 

Research Progress in Mathematics 

2.3.2.2 SES differences 

One-way ANOVAs with SES as a between participant factor (5 levels: 5 equal-sized 

income quintiles) demonstrated significant differences in cognitive and mathematics 

performance across income levels. As shown in Figure 2.1, significant differences in 

performance across income groups were reported for all tasks as follows: Word 

Reading (Wave 4), F (4, 12320) = 268.18, p < .001, ηp
2 = .075; Pattern Construction 

(Wave 4), F (4, 12320) = 146.05, p < .001, ηp
2 = .050; NFER PiM (Wave 4), F (4, 12320) 

= 197.93, p < .001, ηp
2 = .058; Naming Vocabulary (Wave 3), F (4, 12320) = 291.96, p 

< .001, ηp
2 = .096; and Pattern Construction (Wave 3), F (4, 12320) = 120.28, p < .001, 

ηp
2 = .036). Post-hoc tests revealed significant differences between all SES groups (p’s 

< .010). However, the effect sizes (ηp
2 ) reported can be classified as small (Cohen, 

1988). 

 

Figure 2.1. Cognitive and mathematics task performance across SES groups. Note. 

SES groups are income quintiles (z-scores, weighted data) 
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2.3.3 Associations between mathematics and cognitive measures 

Bivariate correlations between mathematics performance scores at 7 years (NFER 

PiM) and all cognitive measures are shown in Table 2.5. There were medium to strong 

correlations between mathematics and all cognitive measures. As defined by Cohen 

(1988) correlations between .3 and .5 can be defined as having a medium to large 

effect. Word Reading at Wave 4 had a larger correlation with NFER PiM scores, r 

(12099) = .53, p < .001, followed by Pattern Construction scores at both Wave 4, r 

(12099) = .48, p < .001, and Wave 3, r (12099) = .43, p < .001. There were significant 

differences (p < .001) between these correlations (measured using t-statistics). 

Table 2.5 

Correlations between mathematics and cognitive measures (z-scores, unweighted 

data) 

 Wave 4 Wave 3 

 
Measure 

BAS II-Pattern 
Construction 

BAS II-
Word 

Reading 

BAS II- 
Naming 

Vocabulary 

BAS II- 
Pattern 

Construction 

Wave 
4 

NFER PiM .48 .53 .39 .43 

BAS II- Pattern 
Construction 

 .33 .32 .56 

BAS II- Word 
Reading 

  .37 .35 

Wave 
3 

BAS II- Naming 
Vocabulary 

   .33 

Note. All correlations were significant at the p < .001 level, unweighted N = 12,099. 

BAS II = British Ability Scales II; NFER PiM = National Foundation for Educational 

Research Progress in Mathematics 

2.3.4 Regression analyses 

2.3.4.1 Model 1 

The results of all models are summarised in Table 2.6. Model 1 sought to determine 

the contribution of spatial ability to the variation in mathematics achievement while 
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controlling for other known or possible predictors of mathematics ability including 

language skills, gender, age, ethnicity and SES. This model is the most conservative. 

Word Reading at Wave 4 and Naming Vocabulary at Wave 3 were both included as 

language measures, accounting for language skills across two time points. Spatial 

measures included Pattern Construction scores at both Wave 3 and Wave 4. As the 

correlations between language and mathematics scores at Wave 4 were greater than 

those between spatial skills and mathematics performance (see Table 2.5), language 

measures were added to the model before spatial measures.  

Overall, the model accounted for 42.4% of the variation in mathematics scores at 7 

years. The demographic measures entered in step 1 including gender, age at Wave 4, 

ethnicity and SES accounted for 7.3% of the variation, adjusted R2 = .073, F (11, 

11667) = 85.13, p < .001, while the language measures added in step 2 accounted for 

26.3% of the variation, adjusted R2 = .336, F (13, 11665) = 456.54, p < .001. The spatial 

measures entered in step 3 accounted for an additional 8.8% of the variation, even 

after accounting for all other predictors, adjusted R2 = .424, F (15, 11663) = 575.01, p 

< .001. No significant interactions between gender and spatial skills, or SES and spatial 

skills were reported in step 4 (p > .05 for both). All variables, with the exception of 

ethnic group, were significant predictors in the final model. The b values, t-statistics 

and effect sizes indicated that Word Reading,  = .35, t (11663) = 42.67, p < .001, ηp
2= 

.135, and Pattern Construction,  = .26, t (11663) = 13.50, p < .001, ηp
2 = .015, at Wave 

4 had the most significant impact on predicting mathematics achievement at Wave 

4.  

2.3.4.2 Model 2 

Model 2 explored the role of spatial skills as a predictor of mathematics when 

controlling for demographic factors only. As seen in Model 1, the demographic 

measures accounted for 7.3% of the variation in mathematics. Spatial scores at 

Waves 3 and 4 were entered simultaneously in step 2 and accounted for 22.6% of the 

variation, adjusted R2 = .299, F (13, 11665) = 384.30, p < .001. The language measures 

entered in step 3 explained an additional 19.8% of the variation, adjusted R2 = .424, 
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F (15, 11663) = 575.01, p < .001. All spatial and language measures were significant 

predictors in this model (p’s < .001, ηp
2’s > .017).  

2.3.4.3 Model 3 

Model 3 explored the variation in mathematics achievement predicted by cognitive 

measures at Wave 3 only. Overall, the model accounted for 27.7% of the variation in 

mathematics scores at 7 years, with demographic measures accounting for 7.3% of 

this variation. Based on the magnitude of correlations between Wave 3 measures and 

mathematics achievement (see Table 2.5), spatial scores were added to the model 

before language scores. The spatial measure accounted for 15.4% of the variation in 

mathematics, adjusted R2 = .227, F (12, 11666) = 287.00, p < .001, while the language 

measure accounted for an additional 5.0% of the variation, adjusted R2 = .277, F (13, 

11665) = 344.47, p < .001. The b values, t- statistics and effect sizes suggest that 

Pattern Construction makes the most significant impact on predicting mathematics 

achievement,  = .34, t (11665) = 39.89, p < .001, ηp
2 = .120, followed by Naming 

Vocabulary,  = .26, t (11665) = 28.26, p < .001, ηp
2 = .064.  

2.3.4.4 Model 4 

Finally, Model 4 explored the variation in mathematics achievement predicted by 

cognitive measures at Wave 4 only. The final model accounted for 40.1% of the 

variation in mathematics scores at 7 years, with demographic measures accounting 

for 7.3% of this variation. Spatial skills were entered in step 2 accounting for 19.2% 

of the variation in mathematics, adjusted R2 = .266, F (12, 11666) = 352.83, p < .001, 

while the language measure added in step 3 accounted for an additional 13.5% of the 

variation, adjusted R2 = .401, F (13, 11665) = 601.43, p < .001. Word Reading made 

the most significant impact on predicting mathematics achievement,  = .41, t 

(11665) = 51.29, p < .001, ηp
2 = .184, followed by Pattern Construction scores,  = .33, 

t (11665) = 28.26, p < .001, ηp
2 = .133.  

2.3.4.5 Additional Information 

For all models, the assumptions of normality were met. Outliers were defined as any 

individuals falling outside three standard deviations of the mean for at least one of 
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the continuous variables in a given model. In Models 1 and 2, 396 cases were 

identified as outliers (3.3% of the sample). In Model 3, 289 cases (2.4% of the sample) 

and in Model 4, 141 cases (1.2% of the sample) were identified as outliers. All outliers 

were included as they account for very small proportions of the sample population 

and do not significantly influence the findings reported. In addition, there was no 

justifiable reason to exclude these cases as it is likely that they reflect natural 

variation in the population.  
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Table 2.6 

General linear models predicting mathematics achievement at 7 years (weighted data) 

Model 1  B SE t p Partial η2 F df p 
Adj. 
R2 

∆ Adj. R2 

Step 1             

SES (income 
quintiles) a 

Lowest  -0.11 0.02 -4.40 < .001 .002 85.13 11, 11667 < .001 0.073  

Second  -0.11 0.02 -4.47 < .001 .002      

 Third -0.07 0.02 -2.86 .004 .001      

 Fourth -0.10 0.02 -4.25 < .001 .002      

Ethnicity b White 0.02 0.07 0.26 .794 0      

 Mixed 0.04 0.08 0.55 .583 0      

 Indian -0.01 0.09 -0.10 .918 0      

 Pakistani, 
Bangladeshi  

-0.05 0.08 -0.62 .536 
0      

 Black, Black 
British 

-0.10 0.08 -1.27 .204 
0      

Gender Male 0.14 0.01 10.12 < .001 .009      

Age  -0.05 0.01 -6.81 < .001 .004      
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Model 1 cont.  B SE t p Partial η2 F df p 
Adj. 
R2 

∆ Adj. R2 

 
Step 2 

           

Word Reading 
(W4)  

 0.35 0.01 42.67 < .001 .135 456.54 13, 11665 < .001 0.336 0.263 

Naming 
Vocabulary 
(W3) 

 0.12 0.01 14.77 < .001 .18      

Step 3            

Pattern 
Construction 
(W4) 

 0.25 0.02 13.50 < .001 .015 575.01 15, 11663 < .001 0.424 0.088 

Pattern 
Construction 
(W3) 

 0.13 0.01 14.33 < .001 .017      

Step 4             

Gender* 
Pattern 
Construction 
(W4) 

 -0.01 0.01 -0.35 .727 0 431.63 20, 11658 < .001 0.424 0 

SES* Pattern 
Construction a 
(W4) 

Lowest -0.01 0.02 -0.38 .701 0      

Second  0.01 0.02 0.53 .600 0      

 Third  -0.03 0.02 -1.38 .169 0      

 Fourth 0.02 0.02 0.92 .358 0      
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Model 2  B SE t p Partial η2 F df P Adj. R2 ∆ Adj. R2 

Step 1             

As seen for model 1c       85.13 11, 11667 < .001 0.073  

Step 2            

Pattern Construction 
(W4) 

 0.25 0.01 28.12 < .001 .063 384.30 13, 11665 < .001 0.299 0.226 

Pattern Construction 
(W3) 

 0.13 0.01 14.32 < .001 .017      

Step 3            

Word Reading (W4)   0.12 0.01 14.79 < .001 .018 575.01 15,11663 < .001 0.424 0.198 

Naming Vocabulary 
(W3) 

 0.35 0.01 42.66 < .001 .135      

Model 3            

Step 1             

As seen for model 1c       85.13 11, 11667 < .001 0.073  

Step 2            

Pattern Construction 
(W3) 

 0.34 0.01 39.89 < .001 .120 287.00 12, 11666 < .001 0.227 0.154 

Step 3            

Naming Vocabulary 
(W3) 

 0.26 0.01 28.26 < .001 .064 344.47 13, 11665 < .001 0.277 0.050 



   

 
  

9
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Note. aThe reference category is highest SES quintile, bThe reference category is other ethnic group, cThe parameter estimates for the 

demographic measures entered in step 1 varied very subtly for each of Models 1-4, due to differences in the predictors included in each of the 

models. The exact parameter estimates for step 1 of each model are available on request. W3 = Wave 3; W4 = Wave 4 

 

 

Model 4  B SE t p Partial η2 F df p Adj. R2 ∆ Adj. R2 

Step 1            

As seen for model 1c  0.41 0.01 51.29 < .001 .184 85.13 11, 11667 < .001 0.073  

Step 2            

Pattern Construction 
(W4) 

 0.33 0.01 28.26 < .001 .133 352.83 12, 11666 < .001 0.266 0.192 

Step 3            

Word Reading (W4)  0.41 0.01 51.29 < .001 .184 601.43 13, 11665 < .001 0.401 0.135 
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2.4 Discussion  

Intrinsic-dynamic spatial skills explained a significant proportion of the variance in 

mathematics achievement in the early primary school years, above that explained by 

other demographic factors, or language skills alone. Based on a sample of over 12,000 

participants, these findings add substantial support for both a concurrent and 

longitudinal role of spatial skills for general mathematics achievement. They also 

extend previous findings by assessing mathematics using a more comprehensive 

measure of mathematics than calculation skills alone (Gundersen et al., 2012). The 

results of this study also extend previous longitudinal findings in pre-school 

populations and older children (Casey et al., 2015; Verdine et al., 2014; Zhang et al., 

2014) to children in the early primary school years. This study demonstrates that 

spatial skills at 5 years explain a unique proportion of the variance in mathematics 

achievement at 7 years, in middle childhood. Owing to the design of the study, it was 

also possible to investigate shared variation between spatial and language measures. 

By comparing models that include and exclude language skills, the true proportion of 

variation in mathematics explained by spatial skills could be estimated. This value is 

predicted to fall between the more conservative 8.8% result and the more liberal 

22.6% result, generated by models that either include or exclude shared variance 

with language skills respectively. 

Further analyses highlighted the individual and unique contributions of Wave 3 

measures at 5 years and Wave 4 measures at 7 years to the variation in mathematics 

outcomes at 7 years (Wave 4). In both models, spatial skills explained a substantial 

proportion (over 15%) of the variation in mathematics performance at 7 years. The 

findings of this study are particularly applicable to the classroom, as this study 

included a classroom-based, standardised measure of mathematics (the NFER PiM), 

for the first time. This test includes items on a range of mathematical skills required 

by children in the UK classroom including questions on numbers, shapes, 

measurement and data handling (NFER, 2004), thus increasing the generalisability of 

these findings to real-world contexts. It is also interesting to note that the profile of 

associations between spatial versus language predictors and mathematics 

achievement at Wave 4, contrasts with that seen for Wave 3. Based on the observed 
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b values, t-statistics and effect sizes, language at 7 years is a stronger predictor of 

mathematics when compared to spatial skills. In contrast, at 5 years, spatial skills are 

a stronger predictor of subsequent mathematics achievement at 7 years, when 

compared to language skills. Although this pattern of findings may be due to the 

different language measures used in the two waves, it may also suggest that while 

language skills are stronger concurrent predictors of mathematics, spatial skills are 

stronger longitudinal predictors of mathematics achievement. While spatial skills do 

have an important concurrent role in mathematics performance, these findings 

highlight particular longitudinal connections between spatial skills and mathematics 

performance between 5 and 7 years, in the context of language measures. Previous 

findings show that spatial skills may be more important for novel mathematics tasks 

compared to practiced, automatic mathematics skills (Ackerman, 1988; Uttal & 

Cohen, 2012). At 5 years, children in the UK begin formal schooling and thus are faced 

with large amounts of new mathematics material. The findings of this study are 

consistent with the notion that children with strong spatial skills at 5 years are better 

able to learn novel mathematical concepts, which in turn impacts their later 

mathematics performance. This finding is particularly interesting as it highlights a 

particular, positive role for early spatial skill training for later mathematics 

achievement.  

Another notable finding was the difference in performance on the Pattern 

Construction task between Wave 3 and Wave 4. While this may reflect the test-retest 

reliability of the Pattern Construction task, previous test-retest correlations of .88 

have been reported for this measure (Elliott, Smith, & McCulloch, 1997). Another 

explanation for these differences is that the sample in this study may have differed 

from the standardisation sample for the Pattern Construction Task at Wave 3 or Wave 

4. Alternatively, performance differences seen in Pattern Construction scores across 

waves may reflect the malleability of spatial skills in middle childhood. As the spatial 

scores calculated account for age, the findings suggest that other environmental 

factors or experiences, aside from age-dependent developmental change alone, may 

influence spatial development between 5 and 7 years. These factors may include 

developmental strategy change or environmental factors such as early schooling 
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experiences, exposure to technology or gaming (Office of Communications [Ofcom], 

2015; Spence & Feng, 2010). Identifying these factors could improve understanding 

of individual differences in spatial skills.  

The study demonstrated that both gender and income were significantly associated 

with differences in task performance across all measures investigated. In line with 

other studies such as Byrnes and Wasik (2009), the findings show that children from 

higher SES backgrounds outperformed their lower SES counterparts consistently 

across all tasks. Gender differences were also reported such that females 

outperformed males in all test measures except for mathematics achievement where 

male performance was above that of females. It is important to recognise that the 

effect sizes of these findings were very small, suggesting that although gender 

differences in performance may exist, the size of these differences may be negligible. 

Nonetheless, the findings do highlight a slight female advantage in spatial task 

completion. This contrasts with previous studies in which males (in the pre-school 

and primary school years) have been reported to outperform females on a range of 

spatial measures (e.g., Carr et al., 2008; Casey et al., 2008; Casey, Pezaris, & Nuttall, 

1992; Johnson & Meade, 1987; Levine et al., 1999; Levine, Vasilyeva, Lourenco, 

Newcombe, & Huttenlocher, 2005). Thus, the findings add to a growing body of 

literature challenging the existence of a significant male advantage in spatial 

cognition in young children (Alyman & Peters, 1993; Halpern et al., 2007; Lachance & 

Mazzocco, 2006; LeFevre et al., 2010; Manger & Eikeland, 1998; Neuburger, Jansen, 

Heil, & Quaiser-Pohl, 2011). 

Beyond main effects of gender and SES on task performance, the results do not 

suggest differential relations between spatial and mathematics skills for children of 

different genders or those in different SES groups. No significant interactions were 

reported between gender and spatial thinking, nor SES and spatial thinking, in 

predicting mathematics outcomes. Given the size of the sample tested in this study, 

these findings offer convincing support that spatial and mathematics skills are 

associated similarly across different demographic groups, and that targeting future 

training studies to distinct SES groups or to males or females specifically is not 

necessary.  
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2.4.1 Strengths and limitations 

An important strength of the study was the use of large-scale, general population 

data, which ensured the generalisability of the findings to children in the UK. The 

nature of the sampling protocol employed in the MCS enhances the generalisability 

of the results reported, due to the inclusion of participants from a range of SES 

backgrounds. However, the use of secondary data to answer novel research 

questions is dependent on the availability of suitable test measures. While the MCS 

dataset provides an excellent resource for the examination of the relationship 

between intrinsic-dynamic spatial skills and mathematics achievement at 7 years, 

these findings cannot be generalised beyond the intrinsic-dynamic sub-domain to 

other spatial sub-domains. Another limitation of using the MCS dataset was the lack 

of a mathematics achievement measure at Wave 3. Without mathematics 

achievement scores at Wave 3, it was not possible to run a cross-lagged panel 

correlation to assess whether early mathematics abilities are predictive of later 

spatial skills, as well as whether earlier spatial skills influence later mathematics 

outcomes. Similarly, it was not possible to measure what cognitive skills predicted 

mathematics gains over time. The results reported here are also limited to children 

in the UK school system. Owing to differences in school environments cross-

culturally, further research is needed to establish whether these findings have 

international generalisability.  

In support of the results reported in this chapter, previous findings indicate that 

intrinsic-dynamic spatial tasks may be particularly useful to mathematics as they 

require the accurate completion of mental transformations. For example, it has been 

proposed that intrinsic-dynamic spatial skills can also be applied in the completion of 

mathematics tasks including measurement tasks, lines of symmetry tasks, and 

equations that are presented in atypical formats (Bruce & Hawes, 2015; Mix & Cheng, 

2012). Strong intrinsic-dynamic spatial skills may be useful for certain mathematics 

tasks of this type as they may allow children to cognitively manipulate aspects of a 

given task, for example, by folding shapes or re-arranging the order of equations. 

While associations between other sub-domains of spatial thinking and mathematics 

are less well understood, there is some indication that different spatial sub-domains 
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may be particularly important for different mathematics tasks at different 

developmental ages (Mix et al., 2016). For example, extrinsic tasks such as spatial 

scaling may be particularly important for the ordinal comparison of numbers (Mix, 

Prather, Smith, & Stockton, 2014) and the use of a mental number line (Dehaene et 

al., 1993). In Chapter 3, the findings reported here are extended beyond intrinsic-

dynamic skills, to explore associations between mathematics and intrinsic-static, 

extrinsic-static and extrinsic-dynamic spatial skills. Similarly, while this study focused 

on associations between spatial and mathematics skills at 5 and 7 years only, in 

Chapter 3 these results are extended by testing associations between spatial and 

mathematical thinking across development in primary school children aged 6 to 10 

years.  

2.4.2 Conclusion 

In this chapter, significant associations between intrinsic-dynamic spatial skills and 

mathematics achievement are reported, such that spatial task performance at both 

5 and 7 years can explain a significant proportion of variation in mathematics scores 

at 7 years, above that described by socio-demographic or language measures. This 

suggests the potential of training early intrinsic-dynamic spatial skills as a novel 

method of improving classroom-based mathematics achievement. The use of this 

type of training is explored in Chapter 4.   
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Chapter 3 The developmental relations between spatial cognition 

and mathematics in primary school children 

3.1 Introduction  

Building on the findings outlined in Chapter 2 and acknowledging the neurological, 

behavioural and linguistic evidence that spatial thinking is not a unitary construct (see 

section 1.2.2), this study sought to measure developmental and individual differences 

in spatial thinking across each of Uttal et al.'s (2013) spatial categories. As previously 

outlined, these categories are founded on two dimensions, distinguishing skills as 

being intrinsic or extrinsic along one dimension, and as being static or dynamic along 

the other. In the study outlined in this chapter, a carefully selected task was used to 

examine each of Uttal et al.’s (2013) spatial sub-domains: intrinsic-static, intrinsic-

dynamic, extrinsic-static and extrinsic-dynamic sub-domains. The role of each 

individual spatial sub-domain in explaining mathematics outcomes was explored.  

Despite a bias towards studies investigating the role of intrinsic-dynamic spatial skills 

for mathematics, there is some evidence from studies of older children that other 

spatial sub-domains may impact on mathematics outcomes. As outlined in section 

1.4, there is cross-sectional evidence that intrinsic-static spatial skills are correlated 

with mathematics performance at 10 and 11 years (.37 < r < .42) (Markey, 2010; Tosto 

et al., 2014). Intrinsic-static spatial skills at both 3 and 7 years are also significant 

longitudinal predictors of mathematics at 10 years (.31 < r < .49) (Carr et al., 2017; 

Casey et al., 2015; Zhang et al., 2014). These findings suggest that associations 

between spatial and mathematics skills in the primary school years are not limited to 

the intrinsic-dynamic spatial domain. However, there is a need for more detailed 

investigation to elucidate whether spatial-mathematical associations are consistent 

across all spatial sub-domains, at all ages. Further refining the findings in this field 

would facilitate a better understanding of not just if, but why significant correlations 

are often reported between spatial and mathematical constructs. 

As outlined in section 1.4.2, findings on spatial-mathematical associations do not 

suggest a simple linear coupling between spatial and mathematical cognition (Fias & 
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Bonato, 2018). Consistent with the multi-dimensionality of both spatial and 

mathematical thinking, it has been proposed that some spatial skills may contribute 

to some mathematics skills and not others, and some spatial skills may not have a 

role in mathematics performance (Fias & Bonato, 2018). While the Mental Number 

Line was historically proposed to explain all observed associations between spatial 

and mathematical constructs (Barsalou, 2008; Lakoff & Núñez, 2000), this model does 

not fit with evidence that there are differential associations observed between 

specific spatial and mathematical sub-domains (Mix et al., 2016; 2017). Therefore, it 

has been proposed that not all spatial-mathematical associations can be explained in 

the same way, and as outlined in section 1.4.2, a range of theoretical explanations 

have been proposed for specific spatial-mathematical relations.  

First, it has been proposed that extrinsic-static spatial task performance may rely on 

intensive quantification skills (proportional reasoning) and is thus expected to 

correlate with mathematics tasks that may also require proportional reasoning, e.g., 

number line estimation and approximate number comparisons (Newcombe, Levine, 

& Mix, 2015; Newcombe, et al., 2018; Rouder & Geary, 2014). Second, active 

processing including mental visualisation and manipulation of objects has been 

proposed as a requirement for intrinsic-dynamic and extrinsic-dynamic spatial tasks 

(Lourenco et al., 2018; Mix et al., 2016). Consequently, performance on these spatial 

sub-domains are expected to correlate with mathematics tasks requiring the mental 

manipulation or organisation of numbers, e.g., to ground abstract concepts in 

complex mathematical word problems, to complete missing term problems, or to 

solve multidigit calculations (Lourenco et al., 2018). Third, form perception is 

theoretically useful for intrinsic-static spatial tasks when distinguishing shapes from 

more complex backgrounds (Newcombe & Shipley, 2015). Intrinsic-static spatial tasks 

are therefore expected to correlate with mathematics activities that require the use 

of symbols or charts (Landy & Goldstone, 2007; 2010; Mix and et al., 2016). Based on 

these theoretical explanations for specific spatial-mathematical relations 

(proportional reasoning, mental visualisation and form perception), the a priori 

prediction for this study is that certain spatial sub-domains will be differentially 

associated with different mathematics outcomes.  
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As outlined in 1.2.3.5, there is evidence that spatial performance across each of Uttal 

et al.'s (2013) spatial sub-domains improves with developmental age (Newcombe et 

al., 2013). Comparison of spatial performance across studies suggests that there may 

be subtle differences in the developmental profiles of different spatial sub-domains. 

For example, success on intrinsic spatial tasks has been reported at a younger age (3 

to 4 years) than extrinsic spatial tasks (5 to 6 years) (Frick et al., 2013; Frick et al., 

2014a; Frick & Newcombe, 2012). However, no one study includes multiple measures 

of spatial thinking at consecutive developmental stages. Therefore, comparative 

findings should be interpreted cautiously as comparing spatial development across 

different sub-domains and across different studies, is hindered by the varying 

populations and testing paradigms used. This gap in the literature is addressed in this 

study. The development of, and associations between, different aspects of spatial 

thinking across 5 consecutive age groups in the primary school years (6, 7, 8, 9 and 

10 years) are investigated for the first time.  

Developmental differences in spatial-mathematical relations are also investigated in 

this chapter. It is hypothesised that some spatial-mathematical relations are stronger 

at specific developmental ages. Recent findings from Mix et al. (2016; 2017) provided 

a first-step to this understanding by showing age specific spatial-mathematical 

relations, such that intrinsic-dynamic spatial skills were significant predictors of 

mathematics at 6 years only, while VSWM was a significant predictor at 11 years only. 

This may reflect a developmental transition in the spatial skills that are important for 

mathematics. As described in Chapter 2, the role of spatial skills may be greater for 

novel mathematics tasks compared to automatic mathematics skills (Ackerman, 

1988; Uttal & Cohen, 2012; Young et al., 2018). Alternatively, as the mathematical 

content that children are exposed to varies across school years, and spatial-

mathematical associations are proposed to be specific to certain spatial tasks and 

mathematical content, this may lead to developmental variation in observed spatial-

mathematical associations (Mix et al., 2016). The developmental relations between 

spatial and mathematics skills across consecutive age groups in middle childhood are 

explored in this chapter.  
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The selection of mathematics measures for inclusion in this study was driven by von 

Aster and Shalev's (2007) model of numerical cognition (further details in 1.3.2). This 

model proposes that individuals have an innate ANS to measure approximate 

representations of numerical magnitude in the brain (Cordes et al., 2001; Feigenson 

et al., 2004). Through development individuals are proposed to acquire a symbolic 

number system to represent symbolic numerals (Le Corre & Carey, 2007). While the 

exact process, by which the ANS might give rise to the symbolic number system is 

unknown, these systems are proposed to act as a platform for the development of 

other mathematical skills such as multi-digit calculation, word problem solving, 

algebra, measurement and data handling skills (Barth et al., 2005; Butterworth, 1999; 

Feigenson et al., 2004; Piazza, 2010; Träff, 2013). The study presented in this chapter 

investigates the role of spatial skills for mathematics across each of von Aster and 

Shalev's (2007) components of numerical thinking. This study includes a measure of 

both ANS and symbolic number skills, in addition to a standardised mathematics 

measure that identifies more complex mathematical skills including multi-digit 

calculation, missing term problems, fractions, etc. The inclusion of a standardised 

mathematics measure, reflective of the range of skills and competencies that are 

required in the mathematics classroom, also increases the practical implications of 

the findings. More specifically, the NFER PiM was chosen as this test is specifically 

designed to reflect the UK mathematics curriculum. Additionally, age-appropriate 

forms of the test and age-based standardised scores (based on a UK-based 

population) were available for each of the age groups included in this study (NFER, 

2004). The investigation of the relations between spatial and mathematical skills 

outlined in this chapter also controls for other known predictors of mathematics 

performance including gender (Halpern et al., 2007) and language skills (LeFevre et 

al., 2010; Moll et al., 2015). 

The study presented in this chapter has three aims. The first aim is to provide a 

developmental profile of spatial thinking in consecutive age groups from 6 to 10 

years. The inclusion of consecutive age groups in this study provides strong acuity of 

this developmental change. Previous studies highlight preliminary evidence of subtle 

differences in developmental profiles of spatial thinking across spatial sub-domains 
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(Frick et al., 2013; Frick et al., 2014a). The inclusion of a range of spatial measures in 

this study, allows direct comparison of the developmental profiles of each of the sub-

domains in the Uttal et al. (2013) typology. The second aim is to compare the roles 

of different spatial sub-domains in explaining mathematics performance, controlling 

for gender and language skills. Based on the aforementioned theoretical explanations 

for specific spatial-mathematical relations (proportional reasoning, mental 

visualisation and form perception), the a priori prediction for this study is that 

different spatial sub-domains will be differentially associated with mathematics 

outcomes. The third aim is to explore differences in spatial-mathematical relations 

from the ages of 6 to 10 years. It is hypothesised that some spatial-mathematical 

associations are age-dependent. There is evidence for a developmental transition in 

the spatial skills that are important for mathematics, which is proposed to occur in 

middle childhood (Mix et al., 2016; 2017). This study aims to refine the timing of this 

developmental transition. 

3.2 Materials and Methods 

3.2.1 Participants 

The sample size for this study was determined using GPower. Power analysis was 

based on the largest possible regression model which included three control variables 

(age, vocabulary scores and gender), four spatial predictors and four age*spatial task 

interaction terms (see section 3.4.2). Based on the study presented in Chapter 2 

which also explored the role of spatial thinking as a predictor of mathematics, a 

medium to large effect size was expected (f2 = .217). To achieve power of 0.8, it was 

calculated that 78 participants were required. This study included 155 children across 

five age groups. Participants were drawn from a culturally diverse, London-based 

school with a 19% eligibility for free school meals which is slightly above the national 

average of 11% (UK Department for Education, 2017b). The age and gender of the 

participants in the study are shown in Table 3.1.  
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Table 3.1 

Demographic features of the study sample 

3.2.2 Spatial skills assessed, and measures used 

3.2.2.1 Disembedding (intrinsic-static sub-domain)  

To assess disembedding the CEFT was used. The CEFT is a measure of intrinsic-static 

spatial ability and measures the ability to dis-embed information from a larger 

context (Witkin et al., 1971). The task was delivered in accordance with the 

administration guidelines (Witkin et al., 1971). Participants were required to locate a 

target shape embedded within a more complex, meaningful picture. The task was 

presented as two blocks in a fixed order. Within each block, participants were 

introduced to a reference target shape (house and tent shape for Blocks A and B 

respectively). For each block, participants first completed 4 discrimination trials 

during which they were required to identify the target shape from a selection of other 

similar shapes. Discrimination trials were repeated until participants correctly 

answered two items in succession. Following this, participants completed two 

practice trials (Block A) or a single practice trial (Block B) in which they were required 

to locate the target shape within a more complex picture and to outline the target 

shape with their finger (see Figure 3.1). Performance feedback was given for practice 

trials. Participants repeated each practice trial until successfully locating the target 

shape. Practice trials were followed by 11 and 14 experimental trials, for Block A and 

Block B respectively. As for practice trials, participants were required to locate the 

target shape within more complex pictures. No feedback was given for experimental 

trials. As per the guidelines, for the first three experimental trials in each block, the 

Age group Sample size % Male Age years (mean ± SD) 

6 years 30 53.3 6.0 ± 0.34 

7 years 31 41.9 7.0 ± 0.29 

8 years 32 56.3 8.0 ± 0.28 

9 years 31 45.2 9.0 ± 0.33 

10 years 31 51.6 10.0 ± 0.33 
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reference shape was visible to the participant. From the fourth trial, the reference 

target shape was hidden from view. Only participants failing all trials in Block A did 

not progress to Block B. The task finished when participants failed five consecutive 

trials within Block B. Performance was measured as percentage accuracy (Min: 0%; 

Max: 100%). This was based on the maximum possible score (i.e., 28) and not the 

total number of trials completed by the participant. 

 

Figure 3.1. Example stimulus from the CEFT 

3.2.2.2 Mental rotation (intrinsic-dynamic sub-domain) 

Mental rotation skills were measured using The Mental Rotation Task, a 

computerised measure of intrinsic-dynamic spatial ability. The protocol and stimuli 

were modified from Broadbent, Farran and Tolmie (2014). In each trial participants 

were asked to identify which of two monkey images located above a horizontal line, 

matched the target monkey image below the line. As shown in Figure 3.2, the images 

above the line included a mirror image of the target image, and a version of the target 

image rotated by a fixed degree from the target image. Participants completed four 

practice trials at 0° followed by 36 experimental trials. Only participants achieving at 

least 50% in the practice trials were deemed to understand the task instructions and 

continued to complete the experimental trials. Experimental trials were randomly 

presented and included equal numbers of clockwise and anti-clockwise rotations at 

45°, 90° and 135° (eight trials for each degree of rotation), eight trials at 180° and 
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four trials at 0°. Prior to analysis, performance scores on clockwise and anti-clockwise 

trials for each degree of rotation was combined (i.e., all 90° and -90° trials were 

collapsed). Participants used labelled keys on the left and right of the computer 

keyboard to respond. Percentage accuracy was recorded (Min: 0%; Max: 100%).  

 

Figure 3.2. Sample item from the Mental Rotation Task (135° anti-clockwise trial) 

3.2.2.3 Spatial scaling (extrinsic-static sub-domain) 

A novel spatial scaling task was specifically designed as an extrinsic-static spatial task 

for use in this study. Further details pertaining to the design of this task have been 

published in Gilligan, Hodgkiss, Thomas, and Farran (2018). In this task, participants 

were required to use a printed “Pirate map” with a target to identify a corresponding 

onscreen referent map from four options (one correct and three distractor maps). 

Model maps were either the same size as the onscreen referent maps or were scaled-

up versions of the referent maps (see Figure 3.3). In each trial, participants were 

encouraged to respond as quickly and accurately as possible by manually pressing 

one of the maps on the touch screen laptop to indicate their answer. Following each 

trial, a fixation dot appeared on screen allowing the experimenter time to turn the 

page on the A3 flip chart and present the next trial. The task was presented as three 

blocks of six experimental trials preceded by two practice trials with a scaling factor 

of 1 (both the model and referent maps measured 8cm x 8cm). Feedback was given 

for practice trials. If incorrect, participants were asked to repeat the trial until the 
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correct answer was selected. Only participants correctly answering at least one of the 

two practice items on their first attempt continued to participate in the experimental 

blocks. Between each block, the task instructions were repeated. Participants 

received no feedback on their performance during experimental trials.  

Scaling factor varied by experimental block and was determined as the difference in 

the relative size of the referent and model maps with respect to the participant. 

Scaling factor was set at 1, 0.5 and 0.25, i.e., model maps measured 8cm x 8cm, 16cm 

x 16cm and 32cm x 32cm, for trials at a scaling factor of 1, 0.5 and 0.25 respectively. 

Referent maps measured 8cm x 8cm in every trial. These scaling factors equated to 

trials in which the lengths of the referent maps were the same size, one half the size, 

and one quarter the size of the model map, relative to the participant. Blocks were 

presented in order of increasing scaling factor. Within each block, the overall area of 

the maps, and by extension the scaling factor, did not change. However, the density 

of the grid on which targets were presented was varied. This led to a corresponding 

difference in the visual acuity of the maps. As shown in Figure 3.4, half of the trials in 

each block were presented using a 6 x 6 square grid (requiring gross-level acuity) 

while the remaining targets were presented using a 10 x 10 square grid (requiring 

fine-level acuity). The targets displayed on each map were methodically selected to 

ensure a balance of left and right-side targets. No targets were selected in the outer 

columns or rows of each grid.  

As outlined, for each trial four onscreen referent maps were presented including one 

correct map (i.e., the scaled (or unscaled) correspondent of the model map) and 

three distractor maps. As shown in Figure 3.5, the distractor maps displayed: a 

vertical distractor which displayed the target one row directly above or below the 

correct target (A), a horizontal distractor which displayed the target one column 

directly to the left or right of the correct target (B), and a diagonal distractor in which 

the target was positioned at one of the four diagonal positions relative to the correct 

target (C). The onscreen position of the correct map relative to the three distractor 

maps was randomised across trials with the correct map appearing in each quadrant 

of the screen with equal frequency. Performance on the task was measured as 

percentage accuracy (Min: 0%; Max: 100%). 
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Figure 3.3. Relative position of model (left) and referent (right) maps relative to the 

participant, in the Spatial Scaling Task 

Figure 3.4. Sample spatial scaling targets for trials requiring gross level acuity (left) 

and fine level acuity (right) 
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Figure 3.5. Position of distractor targets in the Spatial Scaling Task. Note. A indicates 

a vertical distractor, B indicates a horizontal distractor, C indicates a diagonal 

distractor 

3.2.2.4 Perspective taking (extrinsic-dynamic sub-domain) 

The Perspective Taking Task was included as a measure of extrinsic-dynamic spatial 

thinking and was taken from Frick et al. (2014b). Participants were required to 

identify which of four photographs had been taken from the perspective of a 

photographer, based on a 3-D or pictorial representation of the photographer in an 

arrangement. Participants completed four practice trials with real, 3-D objects and 

play-mobil characters holding cameras (to denote photographers). For each practice 

trial, participants were shown a photograph and were asked to identify which, if 

either, of the play-mobil photographers had taken the photograph. Participants 

confirmed their answers by standing up and looking over the shoulders of the 

photographers. Feedback was given for practice trials. If unsuccessful, participants 

were given sufficient attempts to correctly complete each practice trial. Participants 

were required to successfully answer all practice trials before moving to the 

computer-based experimental trials. In each of 18 experimental trials, participants 

were presented with a stimulus picture including a photographer and several objects 

in a spatial arrangement (see Figure 3.6). Participants were asked to select which of 

four photographs best represented the photograph that the photographer in the 

stimulus picture had taken from where they were standing. Complexity was 

introduced by increasing the number of objects in the stimulus picture (one, two or 
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four objects). Trials also differed in the angular difference between the participant 

and the photographer. Participants completed equal numbers of trials in which they 

were positioned at 0°, 90° and 180° from the photographer respectively. Participants 

completed two trials for each complexity and angle combination. Trial order was 

fixed such that the angular difference changed between adjacent trials. The character 

acting as a photographer and the objects (colour, shape, relative position) were also 

changed between trials. Percentage accuracy was recorded (Min: 0%; Max: 100%). 

 

Figure 3.6. Sample trial from the Perspective Taking Task (2 items at 90°) 

3.2.3 Mathematics ability measures 

3.2.3.1 NFER Progress in Mathematics   

The NFER PiM was administered as a measure of standardised mathematics 

performance. As outlined in Chapter 2, the NFER PiM test is an assessment of 

mathematics achievement designed to address the National Mathematics Curriculum 

in England, Wales and Northern Ireland (NFER, 2004). The test series includes items 

assessing number, algebra, data handling, shape, space and measures. Age-

appropriate NFER PiM tests were administered to each age group of participants as 

per the test guidelines (NFER, 2004). Age-based standardised scores with a mean of 

100 and a standard deviation of 15, were used in all analyses (Min: 69; Max: 141).  
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3.2.3.2 Approximate Number System Task 

A dot comparison task was used to measure ANS skills in this study. This 

computerised task was taken from Gilmore, Attridge, De Smedt, and Inglis (2014). In 

each trial participants were required to compare and identify the more numerous of 

two dot arrays (see Figure 3.7). Each set of dot arrays was presented for 1500ms (or 

until a key press) and was followed by a fixation dot. Participants used labelled keys 

on the left and right of the computer keyboard to respond. Only participants who 

achieved at least 50% on the practice trials (eight trials) continued to the 64 randomly 

presented experimental trials. The quantity of dots in each comparison array ranged 

from 5 to 22. The ratio between the dots in each array varied between 0.5, 0.6, 0.7 

and 0.8, with approximately equal numbers of trials assessing each of these ratios. 

This ratio effect is characteristic of performance on ANS tasks, and reduced 

performance is typically observed as the ratio between item sets approaches 1. For 

example, participants are expected to have higher performance when comparing 5 

to 10 dots (a ratio of 0.5) than when comparing 5 to 6 dots (a ratio of approximately 

0.8) (Barth, Kanwisher, & Spelke, 2003; Gilmore et al., 2014). The colour of the more 

numerous array (red or blue), in addition to the size and the density of dot 

presentation, were counterbalanced between trials. Task performance was 

measured as percentage accuracy (Min: 0%; Max: 100%).  

It is noteworthy that performance on ANS tasks can be measured using several 

different metrics including performance accuracy, Weber fractions and the numerical 

ratio effect (NRE) for accuracy or reaction time (Inglis & Gilmore, 2014). Measuring 

ANS performance using the Weber fraction (w) assumes that when an individual is 

presented with an array of n dots, they form a representation of the dots that follows 

a normal distribution (with mean n and standard deviation w) (Inglis & Gilmore, 

2014). However, there is evidence that the use of the Weber fraction leads to highly 

skewed distributions and that this metric has low test-retest reliability (Inglis & 

Gilmore, 2014). Additionally, this metric is highly sensitive to context and differs with 

task and stimulus properties (DeWind & Brannon, 2016). Furthermore, there is 

evidence that the Weber Fraction is highly correlated with performance accuracy on 

ANS measures, which poses the question as to what additional information the 
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Weber fraction provides, beyond performance accuracy scores. For the NRE, scores 

are calculated as the slope of the line created by plotting an individual’s accuracy 

against the ratio of dots being compared (or alternatively plotting response times 

against the ratio of dots being compared) (Gilmore, Attridge & Inglis, 2011). However, 

there is also evidence that the NRE has poor test-retest reliability and that this 

outcome does not correlate with either accuracy or Weber fraction measures of ANS 

performance (Inglis & Gilmore, 2014). Taken together, and as advocated in several 

other papers (e.g., Inglis & Gilmore 2014; Guillaume & Van Rinsveld, 2018), 

performance accuracy was used as the outcome measure in this study.  

 

Figure 3.7. Sample dot arrays from the ANS Task 

3.2.3.3 Number line estimation  

The paper-based Number-Line Estimation Task used to assess symbolic numerical 

representation in this study was adapted from Siegler and Opfer (2003). Two trial 

types were included, number estimation (NP) and position estimation (PN) trials. As 

shown in Figure 3.8, for NP trials, participants were presented with a target number 

and were asked to estimate its location on a number line by drawing a straight line 

(hatch mark) through the number line at their selected location. As shown in Figure 

3.8, for PN trials participants were presented with a vertical hatch mark on a number 

line and were asked to estimate what number was represented by the mark. This task 

was comprised of three blocks. Within each block participants completed two 

practice trials (one NP and one PN) followed by eight experimental trials (equal 

numbers of NP and PN trials presented alternately). Performance on NP and PN trials 
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were collapsed across blocks. Blocks differed in the number line range presented. As 

per the Siegler and Opfer (2003) method, the number line in Block B ranged from 0-

100 (numbers included 2, 3, 6, 18, 20, 24, 42, 50, 67, 71) and the number line in Block 

C ranged from 0-1000 (numbers included 2, 6, 18, 24, 71, 230, 250, 390, 500, 810). In 

this study, Block A with a range of 0-10 was added to reduce floor effects in younger 

children who may be less familiar with larger numbers (numbers included 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10). 

Trial order was fixed and increased in difficulty. Participants began with Block A, 

followed by Block B and Block C. The numbers included in each block were chosen to 

enhance the identification of children’s use of logarithmic and linear models and to 

minimize the impact of content knowledge (e.g., 50 is one half of 100). Similarly to 

other studies, there was over-sampling of numbers below 20 (Friso-van den Bos et 

al., 2015; Laski & Siegler, 2007). As outlined in section 1.3.2 performance was 

measured using PAE scores (Min: 0%; Max: 100%) and curve estimation (R2
LIN scores; 

Min: 0; Max: 1). As the results were broadly similar for these measures, only R2
LIN 

scores are reported in this chapter. Similar patterns of performance, with smaller 

effects, were found for PAE scores (see Appendix B). Participants were given the 

opportunity to complete all blocks. However, the 0-10 block was considered an age 

specific measure, and was analysed, at 6 and 7 years only. For each block where a 

participant’s mean PAE scores for the practice trials were greater than 15%, or where 

participants failed to answer at least 80% of items, they were excluded from analysis 

for this block. For the 0-1000 block, only four participants at 6 years were eligible for 

inclusion, hence this age group was excluded from analysis.  
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Figure 3.8. Sample items from the Number Line Estimation Task. Number to Position 

trials are shown above and Position to Number trials are shown below  

3.2.4 Receptive Vocabulary Measure 

The British Picture Vocabulary Scale (III) (BPVS) was administered as a measure of 

receptive vocabulary (Dunn, Dunn, Styles, & Sewell, 2009). Given that vocabulary is 

highly correlated with IQ (Sattler, 1988), the BPVS-III also acted as an estimate of 

general IQ. As per the administration guidelines, participants were asked to select 

which of four coloured pictures, best illustrated the meaning of a given word. Raw 

scores were used in analysis (Min: 0; Max: 168).  

3.2.5 Procedure  

Prior to the commencement of this study, ethical approval was granted by the UCL, 

IOE Department of Psychology and Human Development. A Disclosure and Barring 

Service Clearance Certificate for any researchers working on data collection was 

attained through UCL. With school permission, opt-out consent forms were sent to 

all parents/guardians. Prior to taking part, all participants were given an age-

appropriate verbal description of the study and were informed that they could 

withdraw from the study at any time. The confidentiality and anonymity of their 

identifying information and task scores were emphasised. Participants were offered 

the opportunity to ask any questions and each individual participant was asked for 

verbal consent to participate. 
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The tasks used in this study were part of a larger test battery investigating 

associations between spatial thinking, mathematics and science achievement. For 

completeness, the full set of tasks comprising the procedure is described, but those 

not relevant to this thesis are not discussed in detail. Each participant completed a 

battery of mathematics, science, spatial and language measures, across four test 

sessions. In each session, mathematics tasks were completed prior to spatial tasks, 

to avoid possible mathematics improvements due to spatial training effects (Cheng 

& Mix, 2014). Beyond this stipulation, the order of task presentation within each 

session was randomised with equal numbers of participants completing each task 

order. During Session 1, a one-hour classroom-based session, the NFER PiM Test and 

the Number-Line Task (for children aged 8, 9 and 10 years only) were completed. 

Session 2, a 35-minute session, was completed in the school’s computer suite in 

groups of 8 children, supervised by a minimum of two researchers. For computerised 

tasks, Hewlett Packard computers with a screen size of 17 inches were used. Children 

completed mathematics measures (the ANS Task, the Child Math Anxiety 

Questionnaire [CMAQ] [not discussed here] and the Number-Line Task [children aged 

7 and younger]) and spatial measures (the Mental Rotation Task and a folding task 

[not discussed here]). Equal numbers of children completed each of the task orders 

shown in Table 3.2.  

Table 3.2 

Task orders for session 2 

Order A Order B Order C Order D 

Number Line Number Line Number Line Number Line 

CMAQ ANS CMAQ ANS 

ANS CMAQ ANS CMAQ 

Rotation  Folding Folding Rotation 

Folding  Rotation Rotation Folding 
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In session 3, participants were tested individually in a quiet room using a 13-inch 

Hewlett Packard touch-screen laptop. This session lasted 45 minutes. One 

mathematical task, a Spontaneous Focus on Number (SFON) Task [not discussed 

here] was completed at the beginning of the session. This was followed by spatial 

tasks (the Perspective Taking Task, the CEFT and the Scaling Task) and language tasks 

(the BPVS and a spatial language task [not discussed here]). Task order was 

randomised between participants such that each spatial and language task was 

completed in each position of the test battery with equal frequency, and the order of 

task presentation was not fixed. Each participant was presented with one of the five 

task orders shown in Table 3.3. For older students, a science assessment was also 

completed in a fourth session. For more details on the relations between spatial 

ability and science performance see Hodgkiss, Gilligan, Tolmie, Thomas, and Farran 

(2018). All computer-based measures were designed and implemented using the 

programme Open Sesame.  

Table 3.3 

Task orders for Session 3  

Position Order A Order B Order C Order D Order E 

1 SFON SFON SFON SFON SFON 

2 Scaling 
Embedded 

figures 
Perspective 

taking 
Spatial 

language 
BPVS 

3 
Perspective 

taking 
Spatial 

language 
BPVS Scaling 

Embedded 
figures 

4 
Spatial 

language 
BPVS 

Embedded 
figures 

Perspective 
taking 

Scaling 

5 
Embedded 

figures 
Scaling 

Spatial 
language 

BPVS 
Perspective 

taking 

6 BPVS 
Perspective 

taking 
Scaling 

Embedded 
figures 

Spatial 
Language 

3.2.6 Data analysis  

The results of this study are presented in two parts. In Part A, descriptive statistics 

are presented including information on above chance performance on individual 

tasks, and the influence of features of task design on task performance. 
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Developmental differences and gender differences in spatial and mathematics task 

performance are also investigated. In Part B, the relations between spatial and 

mathematical thinking are explored. 

Due to school absences and technical errors, 10 participants had missing scores for a 

single task in the battery (the proportion of missing data was 0.9%). Missing data was 

distributed as follows: the CEFT (one participant); the Perspective Taking Task (two 

participants); the NFER PiM Test (two participants); the ANS Task (five participants); 

the Number Line Task (one participant) and; the BPVS (two participants). For all 

measures except for the Number Line Estimation Task, all participants successfully 

completed the practice trials and proceeded to the experimental trials. Failure to 

complete a sufficient number of trials, or to achieve less than 15% error in the 

practice trials, led to the exclusion of 24, 19 and 17 participants on the 0-10, 0-100 

and 0-1000 blocks of the Number Line Estimation Task respectively. However, as 

discussed further in section 3.5.4, there are no well recognised methods for 

determining floor or ceiling performance on number line estimation tasks. Therefore, 

the exclusion criterion used to measure whether participants understood the aims of 

the Number Line Estimation Task in this study, may have been overly conservative. 

The cut-off score (< 15% error) applied may have led to the exclusion of lower 

performing participants from the sample, i.e., participants who understood the task 

aims but had poor performance. The results should be interpreted in light of this 

limitation.  

Due to missing data for some tasks, the desired participant numbers were not 

achieved for all models. Post-hoc power analysis was completed to determine the 

achieved power for each model. Except for the 0-10 Number Line Estimation Task 

(Model 3), all models achieved a power level greater than .919, which is above the 

suggested power level of 0.8 (Cohen, 1988). The results for the 0-10 Number Line 

Estimation Task should be interpreted cautiously due to the relatively low power of 

this model (0.754) (see Table 3.4).  

For all measures, performance across age groups was explored graphically. For 

measures in which a ceiling (or floor effect) was suspected, one sample t-tests were 
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completed against ceiling (or floor) performance. However, no significant floor or 

ceiling effects were found. Parametric analysis was completed as tests of normality 

indicated that all measures were broadly normal, and for most measures (except for 

the Number Line Estimation Task) there was no significant skewness or kurtosis. The 

accepted range was defined as ± 2.56 (Field, 2013). Furthermore, the overall sample 

size (N = 155), and the sample sizes in each age group (n ≥ 30 for all) were sufficiently 

large for the Central Limit Theorem to apply (Field, 2013). For overall performance, 

across all age groups, there were no outliers for any measures. For performance split 

by age groups there was a relative absence of outliers, except for two high performers 

on the NFER PiM test (one male and one female aged 9 years), one low performer on 

the BPVS (one male aged 6 years), six low performers on 0-10 Number Line Estimation 

block (three males aged 6 years), five low performers on the 0-100 Number Line 

Estimation block (two females and one male aged 6 years, one male aged 7 years and 

one female aged 9 years), two low performers on the 0-1000 Number Line Estimation 

block (one female aged 9 years). All outliers were retained as they were deemed to 

reflect normal variation in the population.  

Table 3.4 

Post-hoc power analysis for regression models  

Model N Effect size f2 Power 

Model 1 155 .292 .999 

Follow up: Younger age group 61 .528 .997 

Follow up: Older age group 94 .275 .988 

Model 2 155 .173 .992 

Model 3 48 .252 .754 

Model 4 136 .125 .919 

Model 5 108 .408 .999 

Follow up: Younger age group 83 .327 .986 

Follow up: Older age group NA NA NA 
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3.3 Results Part A: Descriptive statistics 

All results reported in Part A are based on complete case data only. Any participant 

with missing data for a given task was excluded from analysis for that task.  

3.3.1 Gender differences  

Gender differences in spatial and mathematics performance were investigated using 

Bonferroni adjusted t-tests to account for multiple comparisons (alpha levels of .004 

[.05/13]). Where Levene’s test was violated, the results for unequal variances were 

reported. As shown in Table 3.5 , there were no significant gender differences for any 

of the spatial measures or the BPVS (p > .05). For unadjusted p-values, significant 

differences favouring males were reported for both the 0-100 (p = .025, d = 0.383) 

and the 0-1000 (p = .007, d = 0.518) block of the Number Line Estimation Task. These 

differences were not significant when the results were adjusted for multiple 

comparisons (alpha level = .004). However, to ensure that the influence of gender 

was not overlooked, gender was included as a control variable in subsequent 

regression analysis for the 0-100 and 0-1000 blocks of the Number Line Estimation 

Task.  
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Table 3.5 

Gender differences in performance on spatial, mathematics and language measures 

(unadjusted p values) 

Test Measure  
(n-males, n-females) 

Gender Statistics 

 Male Female 
Test 

statistic 
Sig 

Effect 
size 

 Mean SD Mean SD T  P   D 

Spatial Measures        

Disembedding (77,77) 47.48 18.43 42.65 17.60 1.67 .097 0.268 

Mental Rotation 
(77,78) 

72.65 17.80 70.86 20.58 0.84 .401 0.135 

Spatial Scaling (77,78) 57.07 20.10 52.64 20.22 1.37 .173 0.220 

Perspective Taking 
(76,77) 

56.81 20.47 58.28 20.84 0.43 .671 0.068 

Mathematics Measures       

NFER PiM  
Standard Score (76,77) 

97.57 14.75 97.19 15.28 0.16 .875 0.025 

ANS Task (74,76) 60.97 13.39 61.98 14.25 0.45 .650 0.073 

No. Line 10 R2 
LIN (20,28) .88 .16 0.89 0.11 0.35 .725 0.072 

No. Line 100 R2 
LIN 

(66,70) 
.89 .15 0.82 0.20 2.27 .025 0.383 

No. Line 1000 R2 
LIN 

(50,58) 
.87 .17 0.74 0.31 2.64 .007 0.518 

Language measure       

BPVS Raw Score (74,76) 95.85 21.91 95.91 22.09 0.02 .987 0.003 

Note. NFER PiM = National Foundation for Educational Research Progress in 

Mathematics; ANS = Approximate Number System; No. Line = Number Line; R2
LIN = 

Linear response patterns; BPVS = British Picture Vocabulary Scale  

3.3.2 Spatial task performance  

3.3.2.1 Disembedding (intrinsic-static sub-domain) 

To explore differences in disembedding skills across age groups, a one-way ANOVA 

was completed with age as a between participant variable (5 levels: 6, 7, 8, 9, 10 
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years). For this, and all other ANOVA analyses described in this section, where 

Mauchly’s Test of Sphericity was violated, Huynh-Feldt corrected values were 

reported. Age had a statistically significant effect on disembedding ability, F (4, 149) 

= 15.51, p < .001, ηp
2 = .294. Tukey post-hoc comparisons indicated that while 

performance did not differ significantly between 6 and 7 years (p = .682), these 

younger age groups had significantly lower performance than all older ages (p’s < 

.002). No significant differences in performance between children aged 8 to 10 years 

were found (p’s > .577). To allow comparison of performance on different spatial 

measures across age groups, performance on all spatial tasks including disembedding 

is summarised and displayed in Figure 3.12. 

3.3.2.2 Mental rotation (intrinsic-dynamic sub-domain) 

One sample t-tests were used to explore whether performance was above chance at 

each degree of rotation (0°, 45°, 90°, 135°and 180°) for each age group (6, 7, 8, 9, 10 

years). Chance was set at 50% as there were two possible response options in each 

trial. At 6 years, performance was not significantly above chance on trials at 135°, t 

(29) = - .98, p = .337, d = - 0.178, or at 180°, t (29) = -1.10, p = .281, d = -0.200. At 7 

years, performance was not above chance on trials at 180°, t (30) = .43, p = .667, d = 

0.078. For all other degrees of rotation, above chance performance was reported at 

6 and 7 years (p’s < .003, d’s > 0.580). This suggests that children aged 6 and 7 years 

understood the task aims as they could complete trials at smaller degrees of rotation. 

For those aged 8, 9 and 10 years, above chance performance was reported for all 

degrees of rotation (p’s < .001, d’s > .0.950). For more details see Appendix C. 

To investigate the effect of age and degree of rotation on task performance, a two-

way ANOVA was completed with age group as a between participant variable (5 

levels: 6, 7, 8, 9, 10 years) and degree of rotation as a within participant variable (5 

levels: 0°, 45°, 90°, 135°,180°). Age had a significant effect on performance accuracy, 

F (4, 150) = 16.64, p < .001, ηp
2 = .307. Tukey post-hoc comparisons indicated that 

performance at 6 years was significantly lower than all older age groups including 

those aged 7 years (p’s < .035). At 7 years, performance was lower than all older age 

groups including those aged 8 years (p’s < .019). No significant differences in 
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performance between children aged 8 to 10 years were found (p’s > .949). Mental 

rotation performance across age groups is displayed in Figure 3.12. 

A significant main effect of degree of rotation was reported, F (4,600) = 47.96, p < 

.001, ηp
2 = .242. As shown in Figure 3.9, this was best explained using a linear contrast, 

such that performance decreased with increasing degree of rotation, F (1,150) = 

121.27, p < .001, ηp
2 = .447. This was also supported by Bonferroni corrected pairwise 

comparisons (p < .008 between all degrees of rotation). A significant interaction 

between degree of rotation and age group was also reported, F (16,600) = 2.34, p = 

.004, ηp
2 = .059. Follow-up one-way repeated measures ANOVA’s, for each age group, 

found a significant effect of degree of rotation, (p’s < .002) that was best described 

by a linear contrast (p’s < .005). The interaction between degree of rotation and age 

group was driven by differences in the effect sizes reported for different age groups. 

The degree of rotation effect was largest at 6 years (ηp
2 = .686) and 7 years (ηp

2 = 

.519). The effect sizes were smaller for those aged 8 (ηp
2 = .350), 9 (ηp

2 = .233) and 10 

years (ηp
2 = .380). Overall these performance patterns are in line with other studies 

of mental rotation, such that there is reduced performance for trials at higher 

degrees of rotation (Kosslyn et al., 1990).  

 

Figure 3.9. Performance on the Mental Rotation Task across different degrees of 

rotation and different age groups 
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3.3.2.3 Spatial scaling (extrinsic-static sub-domain) 

One sample t-tests were used to investigate above chance performance at each 

scaling factor (1, 0.5, 0.25) for each age group (6, 7, 8, 9, 10 years). As each trial 

included four possible response options, chance was set at 25%. Above chance 

performance on the Spatial Scaling Task was reported for all scaling factors, for all 

age groups (p’s < .005, d’s > 0.557).  

A 3-way ANOVA was completed with scaling factor (3 levels: 1, 0.5, 0.25) and visual 

acuity (2 levels: gross, fine) as within participant factors, and age group (5 levels: 6, 

7, 8, 9, 10 years) as a between participant factor. There was a significant effect of age 

group on performance, F (4, 150) = 17.07, p < .001, ηp
2 = .313. Tukey post-hoc tests 

indicated no significant differences in performance between any consecutive age 

groups. At 6 years, performance was significantly lower than those at 8, 9 and 10 

years (p < .001), but not at 7 years (p = .298). At 7 years performance was lower than 

at 9 and 10 years (p < .001) but not 8 years (p = .105). There was a marginally 

significant difference in performance between children at 8 and 10 years, favouring 

the older group (p = .054). No significant differences in performance between 

children aged 8 and 9 years (p = .396) or between children aged 9 and 10 years were 

found (p = .874). Differences in performance on the Spatial Scaling Task across age 

groups are displayed in Figure 3.12. 

There was also a significant main effect of scaling factor, F (2, 300) = 15.80, p < .001, 

ηp
2= 0.950. Bonferroni corrected pairwise comparisons indicated significantly higher 

performance for unscaled relative to scaled trials (p < .001 for both a scaling factor of 

0.5 and 0.25). No significant difference between trials at a scaling factor 0.5 and 0.25 

was reported (p = 1.00). A significant main effect of visual acuity was also found, F (1, 

150) = 146.99, p < .001, ηp
2 = 0.495, with lower accuracy for trials requiring fine level 

acuity relative to gross level acuity. There was a significant interaction between 

scaling factor and visual acuity, F (2, 300) = 11.52, p < .001, ηp
2= 0.071. Two follow-up 

repeated measures one-way ANOVAs were completed for trials requiring fine level 

acuity and trials requiring gross level acuity respectively. As shown in Figure 3.10, for 

gross level acuity, no significant effect of scaling factor was found, F (2, 308) = .20, p 
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= .821, ηp
2= .001. A significant effect of scaling factor was reported for fine level 

acuity, F (2, 308) = 24.18, p < .001, ηp
2= .136. There was significantly higher 

performance on unscaled trials relative to trials at a scaling factor of 0.25 (p < .001) 

and a scaling factor of 0.5 (p < .001). There was no difference in performance between 

trials at a scaling factor of 0.25 and 0.5 (p = 1.00). No significant interactions with age 

were reported for scaling factor or visual acuity (p’s > .117, ηp
2’s < .048).  

  

Figure 3.10. Performance accuracy on the Spatial Scaling Task across trials at different 

scaling factors and different levels of acuity 
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One sample t-tests were used to investigate whether participants in different age 

groups (6, 7, 8, 9, 10 years) performed above chance on trials at different angles (0°, 

90°, 180°). As each trial in this task had four possible response options, chance was 
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.001, d’s > 0.688) but not for those at 6 years, t (28) = 2.00, p = .06, d = 0.371, or 7 

years, t (30) = 1.46, p = .154, d = 0.263.  

To investigate the effects of age, angle and complexity on perspective taking 

performance, a 3-way ANOVA was completed with angle (3 levels: 0°,90°, 180°) and 

complexity (3 levels: 1,2,4 objects) as within-participant factors and age group (5 

levels: 6, 7, 8, 9, 10 years) as a between-participant factor. A significant effect of age 

group was reported, F (4, 148) = 12.17, p < .001, ηp
2 = .248. Games-Howell post-hoc 

tests indicated that there were no significant performance differences between any 

consecutive age groups (p’s > .05). Performance at 6 years was lower than at 8 years 

(p = .008), 9 years (p < .001) and 10 years (p < .001). However, there was no significant 

difference in performance at 6 and 7 years (p = .698). At 7 years performance was 

significantly lower than at 9 and 10 years (p < .001 for both). There was no significant 

difference in performance at 7 and 8 years (p = .214). At 8 years, performance was 

not significantly different to performance at 9 years (p = .443) or 10 years (p = .061). 

Similarly, there was no significant difference in performance at 9 and 10 years (p = 

.905). These age-based differences in performance on the Perspective Taking Task 

are outlined in Figure 3.12. 

Significant main effects of angle, F (2, 296) = 223.67, p < .001, ηp
2 = .602, and 

complexity, F (2, 296) = 18.80, p < .001, ηp
2 = .113, were found. As shown in Figure 

3.11, Bonferroni corrected pairwise comparisons indicated that performance on 0° 

trials was significantly higher than performance on both 90° and 180° trials (p < .001). 

However, no significant difference in performance was seen for trials at 90° and 180° 

(p = 1.00). Pairwise comparisons also indicated a reduction in performance as the 

number of objects included in the task increased. As demonstrated in Figure 3.11, 

participants did significantly better on trials with only one object compared to trials 

with two or four objects (p < .001 for both). There was also higher performance for 

trials with two compared to four objects (p = .028).  

No significant interactions between age, angle or complexity were reported (p’s > 

.070, ηp
2’s < .049). The expected performance patterns were observed for this task, 

i.e., the patterns of performance are consistent with other studies of perspective 
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taking where performance is lower for trials that are not presented at 0° and trials 

with greater numbers of objects (Frick et al., 2014b). 

 

Figure 3.11. Performance accuracy on the Perspective Taking Task across different 

angle and complexity conditions 

3.3.3 Summary of the development of spatial skills 

To summarise, age-based differences were reported for all four of Uttal et al.’s (2013) 

spatial sub-domains. The post-hoc comparisons reported suggest slight differences in 

the developmental progression of different skills. As shown in Figure 3.12, 

performance on disembedding and mental rotation improved rapidly before 8 years. 

However, for scaling and perspective taking improvements were more gradual, with 

no significant differences in performance between consecutive age groups. This 

information is presented in table format in Appendix D. 
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Figure 3.12. Spatial task performance across development 

3.3.4 Mathematics performance  
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years, t (31) = 6.39, p < .001, d = 1.129; 9 years, t (30) = 7.79, p < .001, d = 1.397; 10 

years, t (26) = 7.57, p < .001, d = 1.549.  

To investigate the distance effect (ratio between the two dot arrays presented) and 

the effect of age group on performance, a two-way ANOVA was completed with 

distance (4 levels: 0.5, 0.6, 0.7, 0.8) as a within-participant factor and age group (5 

levels: 6, 7, 8, 9, 10 years) as a between-participant factor. A significant effect of age 

group on ANS performance was reported, F (4, 145) = 14.28, p < .001, ηp
2 = .283. 

Games-Howell post-hoc tests indicated that performance at 6 years was significantly 

lower than performance at 7 years (p = .012), 8, 9 and 10 years (p’s < .001). There was 

no significant difference in performance at 7 years and 8 years (p = .078). However, 

performance at 7 years was significantly lower than at 9 and 10 years (p < .001). No 

other significant differences in performance accuracy between at 8, 9 and 10 years 

were reported (p’s > .733) (see Table 3.7). 

A significant distance effect was found, F (3, 345) = 68.84, p < .001, ηp
2 = .322. 

Bonferroni comparisons indicated significant differences between all ratios (p < .001) 

except for ratios of 0.5 and 0.7 (p = .568). Distance effects are characteristic of tasks 

of this type (Buckley & Gillman, 1974; Dehaene et al., 1990; Moyer & Landauer, 

1967). Thus, the expected performance patterns were observed for this task 

suggesting typical performance on the ANS task for the population of children 

included in this study.  

3.3.4.3 Number line estimation 

As outlined in section 3.2.3.3, all results reported in the chapter are based on R2
LIN 

scores. Similar results were found when PAE was used as the outcome variable. These 

results are reported in Appendix B. 

For each block of the Number Line Estimation Task, curve estimation was used to 

calculate linear (R2
LIN) and logarithmic response patterns (R2

LOG). For each block, the 

value of linear and logarithmic response patterns were compared for each individual. 

For all blocks, these simple comparisons indicated that a higher percentage of 

participants had estimates that were best described by described by a linear 



 
 

130 
 

compared to a logarithmic function (i.e., the participant had a higher R2
 LIN score 

compared to R2
 LOG score) (see Table 3.6). Thus, linear estimates (R2

LIN values) were 

used as the outcome variable in all subsequent analysis (Simms et al., 2016).  

Table 3.6 

Percentage of participants demonstrating linear estimates across different blocks of 

the number line task (sample size shown in brackets) 

Range  6 Years 7 Years 8 Years  9 Years 10 Years Total 

0-10 82.61 (23) 84.0 (25) NA NA NA 83.33 (48) 

0-100 47.6 (21) 71.4 (28) 84.4 (32) 90.0 (30) 92.0 (25) 78.7 (136) 

0-1000 NA 31.8 (22) 73.3 (30) 71.0 (31) 92.0 (25) 68.5 (108) 

 

Age-based differences in performance were investigated for each block of the 

Number Line Estimation Task individually. The 0-10 block of the task was analysed at 

6 and 7 years only. An independent t-test indicated significant differences in R2
LIN 

estimates between 6 and 7 years, t (46) = .38, p = .709, d = 0.112. As described in 

Table 3.7, the differences were due to higher accuracy at 7 years.  

As significant gender differences were reported for the 0-100 block of the Number 

Line Estimation Task, a two-way ANOVA was completed with age (5 levels: 6, 7, 8, 9, 

10 years) and gender (2 levels: male, female) as between participant variables. As 

shown in Table 3.7, there was a significant effect of age group, F (4, 126) = 14.52, p < 

.001, ηp
2 = .315. This was explored using Games-Howell post-hoc tests. At 6 years, 

R2
LIN estimates were significantly lower than at 8, 9 and 10 years (p < .001). No 

significant difference in performance between 6 and 7 years was found (p = .165). At 

7 years R2
LIN estimates were significantly lower than at 10 years (p < .001) but not at 

8 years (p = .101) or 9 years (p = .067). No significant differences in performance were 

reported between 8, 9 and 10 years (p’s > .599). No significant interaction between 

gender and age group was found, F (4, 126) = 0.47, p = .759, ηp
2 = .015. 
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R2
LIN estimates for the 0-1000 block of the Number Line Estimation Task were only 

considered for participants aged 7 and older. As significant gender differences were 

reported for the 0-1000 block, a two-way ANOVA was completed with age (4 levels: 

7, 8, 9, 10 years) and gender (2 levels: male, female) as between participant variables. 

There was a significant effect of age, F (3, 100) = 9.49, p < .001, ηp
2 = .222. Games 

Howell post-hoc tests indicated significantly lower scores at 7 years compared to 8 

years (p = .026), 9 years (p = .015) and 10 years (p < .001). At 8 years performance 

was significantly lower than at 10 years (p = .046) No significant differences in 

performance were reported between 8 and 9 years (p = .991) or 9 and 10 years (p = 

.106) (see Table 3.7). There was a significant interaction between gender and age 

group, F (3, 100) = 3.18, p = .027, ηp
2 = .087. Follow up one-way ANOVAs investigating 

differences in performance across age groups were completed for males and females 

respectively. For males, no main effect of age was found, F (3, 46) = 1.23, p = .308, 

ηp
2 = .074. For females, there was a main effect of age, F (3, 54) = 10.57, p < .001, ηp

2 

= .370. Games Howell post hoc tests indicated significant differences in performance 

between girls at 7 and 9 (p = .018), 7 and 10 (p < .001), and 8 and 10 years (p = .042).  

3.3.5 Language performance  

To explore age-based differences in performance on the BPVS, a one-way ANOVA was 

completed with age group as a between participant measure (5 levels: 6, 7, 8, 9, 10 

years). A main effect of age group was found, F (4, 148) = 26.28, p < .001, ηp
2 = .415. 

As described in Table 3.7 the results showed improved performance with increasing 

age. Tukey post-hoc comparisons indicated significantly lower performance at 6 years 

compared to 8, 9 and 10 years (p < .001) but not compared to 7 years (p = .141). 

Performance at 7 years was significantly lower than at 9 and 10 years (p < .001) but 

not 8 years (p = .080). At 8 years there was significantly lower performance than at 

10 years (p < .001) but not at 9 years (p = .184). No significant difference in 

performance between 9 and 10 years was found (p = .239).  
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Table 3.7 

Descriptive statistics for mathematics and language task performance across age groups 

Task Metric 6 Years 7 Years 8 Years 9 Years 10 Years 

       

ANS Task Accuracy Mean ± SE 47.85 ± 1.14 56.55 ± 1.76 64.31 ± 2.24 69.05 ± 2.45 69.10 ± 2.22 

 Max 57.81 78.69 89.06 89.06 92.19 

 Min 34.38 43.75 43.75 40.63 45.31 

No. Line 10 R2 
LIN Mean ± SE 0.88 ± .03 0.89 ± .02    

 Max 0.99 0.99 NA NA NA 

 Min 0.32 0.56    

No. Line 100 R2 
LIN Mean ± SE 0.66 ± .04 0.79 ± .03 0.90 ± .03 0.91 ± .03 0.96 ± .01 

 Max 0.95 0.97 1.00 1.00 1.00 

 Min 0.23 0.34 0.39 0.30 0.72 

No. Line 1000 R2 
LIN Mean ± SE  0.57 ± .07 0.82 ± .04 0.83 ± .04 0.94 ± .02 

 Max NA 1.00 1.00 1.00 1.00 

 Min  0.11 0.20 0.28 0.28 

BPVS Standard Score Mean ± SE 75.27 ± 2.76 85.45 ± 2.99 96.61 ± 2.66 106.16 ± 3.75 115.20 ± 2.94 

 Max 102 129 126 139 147 

 Min 42 35 61 64 73 
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Note. NFER PiM = National Foundation for Educational Research Progress in Mathematics; ANS = Approximate Number System; R2
LIN = Linear 

response patterns; No. Line = Number Line; BPVS = British Picture Vocabulary Scale 
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3.4 Results Part B: Spatial-Mathematical Relations 

As no individual participant was missing data for more than one task, and to optimise 

power, missing values for overall task performance were replaced by mean scores on 

that task for a participant’s age group. To investigate the effect of mean replacement 

of missing data, all regression analyses were repeated using pairwise deletion (see 

section 3.4.2.7). Comparable results were reported.  

3.4.1 Associations between task performance on different measures  

Pearson correlations were used to investigate the relative associations between 

measures and to inform regression models. The results of bivariate correlations 

between all measures are outlined in Table 3.8. Significant correlations at the p < .001 

level were reported between performance accuracy scores for all spatial measures. 

For mathematics measures, the NFER PiM test and the ANS Task were significantly 

correlated with all spatial measures and the BPVS (p < .001). The 0-100 and 0-1000 

blocks of the Number Line Estimation Task were significantly correlated with the 

spatial measures and the BPVS, with the exception that the 0-1000 task was not 

correlated with mental rotation (p = .080). For the 0-10 block of the Number Line 

Estimation Task significant associations were found for spatial scaling (p = .034) and 

the 0-100 block of the Number Line Estimation Task (p < .001) only.  
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Table 3.8 

Correlations between test measures 

 Spatial Measures Mathematics Measures BPVS 

 2 3 4 5 6 7 8 9 10 

1. Disembedding .29*** .45*** .44*** .35*** .36*** .09 .47*** .43*** .38*** 

2. Mental Rotation  / .46*** .39*** .33*** .44*** -.079 .33*** .17*** .49*** 

3. Spatial Scaling  / .52*** .52*** .59*** .31* .52*** .51*** .59*** 

4. Perspective Taking   / .30*** .43*** -.01 .40*** .31*** .45*** 

5. NFER PiM    / .37*** .10 .35*** .34*** .52*** 

6. ANS Task      / .14 .40*** .25*** .46*** 

7. No. Line 10 R2 
LIN (n = 48)     / .54*** .42 .09*** 

8. No. Line 100 R2 
LIN (n = 136)     / .37*** .47*** 

9. No. Line 1000 R2 
LIN (n = 108)      / .41*** 

10. BPVS          / 

 

Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. Unless otherwise stated N = 155 and percentage accuracy scores are reported. 

NFER PiM = National Foundation for Educational Research Progress in Mathematics; ANS = Approximate Number System; R2
LIN = Linear response 

patterns; No. Line = Number Line; BPVS = British Picture Vocabulary Scale
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3.4.2 Information on collinearity 

Collinearity was assessed using Tolerance and VIF scores (Field, 2013). Collinearity 

statistics indicated appropriate Tolerance and VIF scores for all regression models, 

where a cut off of > 0.2 was used for Tolerance scores (Menard, 1995) and a cut off 

of < 10 was used for VIF scores (Myers, 1990) (see Table 3.9 and Table 3.10). 

Table 3.9 

Co-linearity analysis for each of the main regression models  

Predictors Metric Model 1 Model 2 Model 3 Model 4 Model 5 

Age (months) Tol 0.42 0.43 / 0.47 0.54 

 VIF 2.39 2.30 / 2.11 1.85 

BPVS Tol 0.49 0.49 / 0.55 0.62 

 VIF 2.03 2.03 / 1.82 1.62 

Gender Tol / / / 0.93 0.92 

 VIF / / / 1.07 1.09 

Disembedding Tol 0.66 0.66 0.80 0.67 0.53 

 VIF 1.52 1.51 1.25 1.49 1.89 

Mental Rotation Tol 0.69 0.69 0.71 0.57 0.68 

 VIF 1.45 1.45 1.41 1.75 1.47 

Spatial Scaling Tol 0.52 0.53 0.59 0.72 0.85 

 VIF 1.91 1.89 1.69 1.39 1.18 

Perspective Taking Tol 0.58 0.63 0.80 0.54 0.58 

 VIF 1.73 1.60 1.25 1.84 1.73 

Age*Mental 
Rotation 

Tol 0.87    / 

 VIF 1.15    / 

Age*Spatial 
Scaling 

Tol     0.62 

 VIF     1.61 

Age* 
Disembedding 

Tol     0.63 

 VIF     1.59 

Note. BPVS = British Picture Vocabulary Scale; Tol = Tolerance 
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Table 3.10 

Co-linearity analysis for each of the follow-up regression models  

Predictor Metric 
Model 1: Mental 

Rotation 
Model 5: Scaling & 

Disembedding 

  Younger Older Younger Older 

Age (months) Tol 0.746 0.76 0.688 / 

 VIF 1.340 1.32 1.454 / 

BPVS Tol 0.745 0.71 0.763 / 

 VIF 1.342 1.41 1.311 / 

Gender Tol / / 0.897 / 

 VIF / / 1.115 / 

Disembedding Tol 0.773 0.91 0.754 / 

 VIF 1.293 1.09 1.327 / 

Mental Rotation Tol 0.656 0.83 0.741 / 

 VIF 1.525 1.21 1.349 / 

Spatial Scaling Tol 0.664 0.71 0.820 / 

 VIF 1.507 1.42 1.219 / 

Perspective Taking Tol 0.828 0.64 0.629 / 

 VIF 1.208 1.57 1.590 / 

Note. BPVS, British Picture Vocabulary Scale, Tol, Tolerance 

3.4.3 Identifying predictors of mathematics outcomes 

Hierarchical regression models were completed for each mathematical outcome. 

These models investigated the proportion of mathematical variation explained by 

spatial skills after accounting for other known predictors of mathematical 

performance including language ability (the BPVS) and age. Gender was included as 

a control variable for mathematics tasks for which significant gender differences were 

reported (see section 3.3.1). All predictors were converted to z-scores prior to entry 

into the regression models. For all models, the control variables were added in step 

1. In step 2, the spatial measures were entered together, as there was no strong 

evidence as to which skills might best predict different aspects of mathematical 

performance. In step 3 interaction terms between age and each spatial skill were 
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added using forward stepwise entry. Only significant interactions were retained in 

the final models. The results reported in Table 3.11 to Table 3.15 reflect the 

regression statistics (b, SE, ß, t and p) for the final models (i.e., when all predictors 

had been entered). For all regression analyses, adjusted r2 values are reported. 

3.4.3.1 Model 1: Identifying predictors of standardised mathematics performance  

Model 1 sought to determine the contribution of different spatial skills to the 

variation in standardised mathematics performance, as measured using the NFER 

PiM. As shown in Table 3.11, the final model accounted for 42.6% of the variation in 

mathematical achievement, adjusted R2 = .282, F (3, 152) = 31.28, p < .001. In step 1, 

the control variables including age1 and language ability were added to the model 

accounting for 28.2% of the variation. In step 2, the spatial measures were added to 

the model, uniquely predicting an additional 12.4% of the variation, Δ adjusted R2 = 

.124, F (7, 148) = 18.58, p < .001. Finally, in step 3 interaction terms between each 

spatial skill and age were entered into the model. Only the interaction between 

mental rotation and age was retained. This accounted for an additional 2.0% of the 

variation in standardised mathematics performance, Δ adjusted R2 = .020, F (8, 147) 

= 17.32, p < .001. Taken together, age, language ability, spatial scaling, disembedding 

and the interaction term between mental rotation and age, were all significant 

predictors of mathematics achievement in the final model.  

The interaction was further explored graphically by plotting standardised 

mathematics scores against mental rotation scores for each age group (see Figure 

3.13). The graph indicated a difference in the relationship between measures at 6 and 

7 years compared to 8, 9 and 10 years. The sample was divided accordingly, and the 

regression analysis was re-run using younger (6 and 7 years; n = 60) and older groups 

(8, 9 and 10 years; n = 93) respectively. As shown in Table 3.11, the patterns reported 

for both age groups were broadly similar to the overall model, with spatial scaling 

                                                      
1 Although year-group based standardised scores were used for the NFER PiM task, 

these scores were standardised across an entire academic year group. As such, exact 

age (in months) on day one of testing was also included as a predictor, to account for 

age-based variability within each year group 
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and disembedding identified as important predictors in both models. However, for 

younger participants mental rotation approached significance (p = .058) and the ß 

values were similar for mental rotation (ß = .20) compared to disembedding (ß = .22) 

and spatial scaling (ß = .27). This pattern was not present for the older group, where 

a non-significant ß value was reported for mental rotation (ß = -.13). 

3.4.3.2 Model 2: Identifying predictors of ANS performance  

Model 2 investigated the role of spatial skills in explaining ANS performance. The final 

model explained 40.4% of the variation in ANS skills. As before, the control variables 

were entered in step 1 and explained 32% of ANS variation, adjusted R2 = .320, F (3, 

152) = 37.16, p < .001. The four spatial measures were added in step 2, accounting 

for an additional 8.4% of the variation, Δ adjusted R2 = .084, F (7, 148) = 18.37, p < 

.001. Interaction terms between each spatial skill and age were entered in step 3. No 

interactions with age were retained in the final model. As shown in Table 3.12, spatial 

scaling and age were significant predictors in the final model.  

3.4.3.3 Model 3: Identifying predictors of 0-10 number line estimation 

performance  

In Model 3 the role of spatial skills as a predictor of R2 LIN values on the 0-10 Number 

Line Estimation Task was explored. The control variables including gender were 

added in step 1, which led to a negative adjusted R 2 value (-3.6%). Hence, these 

variables were removed, and the regression was re-run. In the revised model, the 

spatial tasks were added to the model in step 1, explaining 12.6% of the variation, 

adjusted R2 = .126, F (5, 43) = 2.70, p = .043. Interaction terms between each spatial 

skill and age were entered in step 3, however none were retained in the final model. 

The final model accounted for 12.6% of the variation. Spatial scaling and rotation 

were the only significant predictors (see Table 3.13).  

3.4.3.4 Model 4: Identifying predictors of 0-100 number line estimation 

performance  

Model 4 explored the role of spatial skills in explaining R2 
LIN performance on the 0-

100 Number Line Estimation Task. The control variables were added in step 1 and 

accounted for 32.9% of the variation, adjusted R2 = .329, F (4, 132) = 23.08, p < .001. 
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In step 2 spatial skills accounted for an additional 5.6% of the variation, Δ adjusted R2 

= .056, F (8, 128) = 13.05, p < .001. None of the interaction terms added in step 3 

were retained in the model. As shown in Table 3.14, the final model accounted for 

38.5% of the variation. Disembedding and spatial scaling were significant predictors 

in the final model.  

3.4.3.5 Model 5: Identifying predictors of 0-1000 number line estimation 

performance  

Model 5 explored the contribution of spatial skills to R2 
LIN scores on the 0-1000 

Number Line Estimation Task. The control variables including gender added in step 1 

explained 28.3% of the variance in task performance, adjusted R2 = .283, F (4, 104) = 

15.08, p < .001. The spatial skills added in step 2 accounted for an additional 8.6% of 

the variation, Δ adjusted R2 = .086, F (8, 100) = 9.93, p < .001. In step 3 interaction 

terms between each spatial skill and age were added. The interaction between age 

and spatial scaling was retained an explained an additional 6.6% of the variation, Δ 

adjusted R2 = .066, F (9, 99) = 11.32, p < .001. The interaction between age and 

disembedding was also retained, explaining 2.4% of the variation, Δ adjusted R2 = 

.024, F (10, 98) = 11.09, p < .001. The final model outlined in Table 3.15 explained 

45.9% of the variation on the 0-1000 block of the Number Line Estimation Task. Age, 

language ability, gender, spatial scaling, disembedding and the interaction terms 

(between spatial scaling and age, and disembedding and age) were significant 

predictors in the final model. The interactions were explored graphically (see Figure 

3.13). For both spatial scaling and disembedding, the figure indicated a linear 

relationship with number line estimation performance at 7, 8 and 9 years. However, 

there was no linear relationship between these spatial skills and number line 

performance at 10 years. The graphs indicated that this might be due to ceiling 

performance on the 0-1000 block of the Number Line Estimation Task at 10 years. 

Alternatively, these differences may have been driven by differences in strategy use 

for the 0-1000 Number Line Estimation Task at 10 years. Regardless of their origins, 

given the different performance patterns at 10 years compared to all other age 

groups, it was not deemed appropriate to include all age groups in a single analysis. 

Therefore, the sample was divided into a younger group (7, 8 and 9 years; n = 83) and 
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older group (10 years: n = 25). As shown in Table 3.15, spatial scaling and 

disembedding were significant predictors for the younger group. For the older group, 

the sample size was too small to complete regression analysis. Instead correlations 

were used to show that there was no significant association between spatial scaling 

(r = -.16) or disembedding (r = -.30) and 0-1000 number line estimation at 10 years. 

The limitations of this analysis are outlined in the discussion. 



  

 
 

1
4

2
 

Table 3.11 

Regression Model 1: Factors predicting standardised mathematics achievement (NFER PiM) (N = 155) 

Model 1 b SE ß t p F df p Adj. R2 ∆ Adj.R2 

Step 1           

Age (months) -6.90 1.41 -0.46 -4.88 < .001 31.28 152 < .001 .282  

BPVS 7.32 1.30 0.49 5.62 < .001      

Step 2           

Disembedding 3.10 1.13 0.21 2.75 .007 18.58 148 < .001 .406 .124 

Mental Rotation 0.25 1.10 0.02 0.22 .824      

Spatial Scaling 5.13 1.26 0.34 4.06 < .001      

Perspective Taking 0.77 1.20 0.05 0.64 .523      

Step 3           

Mental Rotation*Age -2.26 0.92 -0.16 -2.45 .015 17.32 147 < .001 .426 .02 
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Follow Up: Younger Group b SE ß t P F df p Adj. R2 ∆ Adj.R2 

Step 1           

Age (months) 2.40 3.36 0.07 0.71 .478 22.42 58 < .001 .417  

BPVS 7.29 1.83 0.38 3.99 < .001      

Step 2           

Disembedding 4.45 1.87 0.22 2.37 .021 15.40 54 < .001 .590 .173 

Mental Rotation 3.07 1.59 0.20 1.93 .058      

Spatial Scaling 4.56 1.70 0.27 2.68 .010      

Perspective Taking -1.61 1.77 -0.08 -0.91 .369      

Follow Up: Older Group b SE ß t p F df p Adj. R2 ∆ Adj.R2 

Step 1           

Age (months) -5.47 2.41 -0.22 -2.26 .026 14.28 91 < .001 .222  

BPVS 7.19 1.72 0.41 4.19 < .001      

Step 2           

Disembedding 3.03 1.41 0.19 2.15 .034 9.78 87 < .001 .403 .181 

Mental Rotation -2.40 1.62 -0.13 -1.48 .142      

Spatial Scaling 5.19 1.72 0.30 3.01 .003      

Perspective Taking 2.08 1.59 0.14 1.31 .194      
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Table 3.12 

Regression Model 2: Factors predicting ANS performance (N = 155) 

Model 2 b SE ß t p F df p R2 ∆ R2 

Step 1  
     

     

Age (months) 2.56 0.83 0.29 3.08 .002 37.16 152 < .001 .320  

BPVS 0.03 0.78 0.00 0.04 .969      

Step 2           

Disembedding -0.09 0.68 -0.01 -0.13 .893 18.37 148 < .001 .404 .084 

Mental Rotation  0.74 0.66 0.08 1.11 .267      

Spatial Scaling 3.11 0.76 0.35 4.12 < .001      

Perspective Taking 0.55 0.69 0.06 0.79 .429      
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Table 3.13 

Regression Model 3: Factors predicting R2
LIN scores on the 0-10 Number Line Estimation Task (n = 48) 

Model 3 b SE ß t p F df p R2 

Step 1  
     

    

Disembedding 0.00 0.03 0.02 0.12 .902 2.70 43 .043 .126 

Mental Rotation  -0.05 0.02 -0.36 -2.20 .033     

Spatial Scaling 0.08 0.03 0.55 3.11 .003     

Perspective Taking -0.03 0.03 -0.20 -1.34 .188     

 

 



  

 
 

1
4

6
 

Table 3.14 

Regression Model 4: Factors predicting R2
LIN scores on the 0-100 Number Line Estimation Task (n = 136) 

Model 4 b SE ß t p F df p R2 ∆ R2 

Step 1  
     

     

Age (months) 0.04 0.02 0.19 1.94 .054 23.08 132 < .001 .329  

BPVS 0.03 0.02 0.15 1.65 .101      

Gender -0.05 0.03 -0.13 -1.93 .056      

Step 2           

Disembedding 0.03 0.02 0.19 2.29 .023 13.05 128 < .001 .385 .056 

Mental Rotation  0.00 0.01 0.02 0.22 .825      

Spatial Scaling 0.04 0.02 0.23 2.52 .013      

Perspective Taking 0.00 0.02 0.01 0.17 .867      
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Table 3.15 

Regression Model 5: Factors predicting R2
LIN scores on the 0-1000 Number Line Estimation Task (n = 108) 

Model 5 b SE ß t p F df p R2 ∆ R2 

Step 1            

Age (months) 0.10 0.03 0.30 3.10 .002 15.08 104 < .001 .283  

BPVS 0.05 0.03 0.18 2.02 .046      

Gender -0.08 0.04 -0.15 -2.08 .040      

Step 2           

Disembedding 0.07 0.03 0.25 2.59 .011 9.93 100 < .001 .369 .086 

Mental Rotation  -0.02 0.02 -0.06 -0.77 .441      

Spatial Scaling 0.09 0.03 0.33 3.52 < .001      

Perspective Taking 0.01 0.02 0.04 0.50 .616      

Step 3           

Scaling*Age -0.09 0.03 -0.27 -2.99 .004 11.32 99 < .001 .435 .066 

Step 4           

Disembedding*Age -0.06 0.03 -0.21 -2.31 .023 11.09 98 < .001 .459 .024 
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Follow Up: Younger Group b SE ß t p F df p Adj. R2 ∆ Adj.R2 

Step 1            

Age (months) 0.05 0.05 0.11 1.04 .300 11.269 79 < .001 .273  

BPVS 0.05 0.03 0.17 1.72 .089      

Gender -0.12 0.05 -0.22 -2.41 .018      

Step 2           

Disembedding 0.07 0.03 0.23 2.30 .024 8.712 75 < .001 .397 .124 

Mental Rotation  0.00 0.03 -0.01 -0.10 .924      

Spatial Scaling 0.09 0.03 0.31 2.85 .006      

Perspective Taking 0.00 0.03 0.00 0.05 .961      

 

Note. B = unstandardized coefficient; SE = Standard Error; ß = standardised coefficient; NFER PiM = National Foundation for Educational Research 

Progress in Mathematics; ANS = Approximate Number System; R2
LIN = Linear response patterns; BPVS = British Picture Vocabulary Scale
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Figure 3.13. Significant interactions between age and spatial skills 
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3.4.3.6 Regression results using pairwise deletion 

To ensure that mean replacement of missing data did not influence the results 

reported, each of the regression models reported above, was repeated using pairwise 

deletion. As shown in Table 3.16 the performance patterns when pairwise deletion 

was used were very similar to the patterns reported when mean replacement of 

missing data was used. For the 0-100 block of the Number Line Estimation Task, there 

was a slight difference in which predictors were significant in the final model, when 

pairwise deletion was used (BPVS, Scaling-age interaction) compared to mean 

replacement (gender). For all other models, the significant predictors were the same 

regardless of whether pairwise deletion or mean replacement was used.  
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Table 3.16 

Comparison of outcomes of regression analyses based on pairwise deletion and mean 

replacement of missing data 

 Pairwise Deletion  Mean Replacement 

 Adj R2 N 
Significant 
predictors 

Adj R2 N 
Significant 
predictors 

Model 1       

Step 1 .293   .282   

Step 2 .418   .406   

Step 3 .436 147 
Age, BPVS, Scaling, 

Disembedding, 
Age*Rotation 

.426 155 
Age, BPVS, Scaling, 

Disembedding, 
Age*Rotation 

Model 2       

Step 1 .332   .320   

Step 2 .422 144 Age, Scaling .464 155 Age, Scaling 

Model 3       

Step 1 .150 45 Rotation, Scaling .126 48 Rotation, Scaling 

Model 4       

Step 1 .354   .329   

Step 2 .416   .385   

Step 3 .434 132 
Age, BPVS, 

Disembedding, 
Scaling, Scaling*age 

NA 136 
Age, gender, 

Disembedding, 
Scaling 

Model 5        

Step 1 .300   .283   

Step 2 .401   .369   

Step 3 .486   .435   

Step 4 .509 103 

Age, BPVS, Gender, 
Disembedding, 

Scaling, 
Scaling*age, 

Disembedding*age 

.459 108 

Age, BPVS, Gender, 
Disembedding, 

Scaling, 
Scaling*age, 

Disembedding*age 
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3.5 Discussion 

In this study, spatial skills were identified as significant predictors of several 

mathematics outcomes, even after controlling for other known predictors of 

mathematics. The results highlight improvements in spatial task performance across 

development from 6 to 10 years. As discussed further below, developmental 

differences in spatial-mathematical relations are also evident such that some spatial 

tasks have a role for mathematics at all ages (spatial scaling and disembedding) while 

others have age specific effects (mental rotation). The study was completed with a 

population of children aged 6 to 10 years. The results reported provide the first 

known evidence on spatial-mathematical relations across consecutive age groups in 

primary school children.  

3.5.1 Overview of findings 

Addressing its first aim, this study provides developmental profiles for each of Uttal 

et al.'s (2013) spatial sub-domains from 6 to 10 years, showing that performance on 

all four spatial sub-domains improves with developmental age. Although not all 

between group comparisons were significant, for most tasks, other than mental 

rotation, there were increases in performance until 10 years. For mental rotation, 

performance plateaued at 8 years. These developmental patterns are consistent with 

findings from previous studies that explore the development of individual spatial sub-

domains (Frick et al., 2013; Frick et al., 2014a). The current study also found subtle 

differences in the development of extrinsic compared to intrinsic spatial skills. For 

extrinsic spatial tasks (the Spatial Scaling Task and the Perspective Taking Task), there 

were no significant differences in performance between consecutive age groups. This 

suggests a gradual, steady increase in performance accuracy between 6 and 10 years 

that can best be observed by comparing children across a wide age range. In contrast, 

for the intrinsic measures (the CEFT and the Mental Rotation Task) there was 

significantly lower performance at 6 and 7 years compared to 8 years, with large gains 

in accuracy in the early primary school years and slower development thereafter. This 

study extends the current understanding of spatial development, as most previous 

studies are based on children under 8 years (Frick et al., 2013; 2014a).  
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These differing developmental patterns between intrinsic and extrinsic spatial skills 

are interesting for two reasons. First, they lend support to the intrinsic vs. extrinsic 

distinction in Uttal et al.’s (2013) model of spatial thinking. The results reported here 

suggest that these two spatial categories (intrinsic vs. extrinsic) may have differing 

developmental patterns, which may suggest that they are distinct constructs. This is 

supported by a recent CFA study by Mix et al. (2018) who also found stronger 

evidence for the intrinsic vs. extrinsic, compared to the static vs. dynamic distinction 

of spatial thinking. Second, as outlined further in the next section, some spatial-

mathematical relations are age-dependent. A developmental transition in the role of 

intrinsic tasks, for mathematics, is proposed to occur at approximately 8 years. This 

rapid development of spatial thinking in the early primary school years may explain 

the age-dependent associations that are reported between some intrinsic spatial 

tasks and mathematics (both in this chapter and elsewhere, e.g., Mix et al., 2016). In 

short, before 8 years there appears to be substantial development of spatial thinking, 

particularly of intrinsic spatial skills. However, after 8 years, developmental 

improvement in spatial task performance is smaller and for some tasks such as the 

Mental Rotation Task, performance levels out.  

Addressing the second aim, the findings reported indicate a significant role for spatial 

skills in predicting mathematical outcomes. For some spatial sub-domains, their role 

in predicting mathematics was consistent across age groups. Spatial skills explained 

12.4% of general mathematics performance with disembedding (intrinsic-static sub-

domain) and spatial scaling (extrinsic-static sub-domain) identified as significant 

predictors. For the ANS task, although spatial skills predicted 8.4% of the variation in 

performance, spatial scaling (extrinsic-static sub-domain) was the only significant 

spatial predictor. In contrast, spatial skills explained 12.6%, 5.6% and 8.6% of the 

variation on the 0-10, 0-100 and 0-1000 blocks of task respectively. Spatial scaling 

(extrinsic-static sub-domain) was a significant predictor for all three blocks of the 

Number Line Estimation Task. The study addressed its second aim, to provide 

evidence that different spatial sub-domains are differentially associated with 

mathematics outcomes. 
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Addressing its third aim, the findings of this study demonstrate age-dependent 

effects and indicate that for some spatial skills, their role in predicting mathematics 

changes through development. A role of mental rotation (intrinsic-dynamic sub-

domain) in predicting standardised mathematics outcomes was found at 6 and 7 

years only. Furthermore, mental rotation was a significant predictor of 0-10 number 

line estimation, which was completed at 6 and 7 years only. For the 0-100 and 0-1000 

blocks of the Number Line Estimation Task, mental rotation was not a significant 

predictor for any age groups. These findings are consistent with Mix et al. (2016; 

2017) and suggest a transition in the spatial skills that are important for mathematics, 

which occurs in middle childhood at approximately 7 to 8 years (Mix et al., 2016; 

2017). Here, this transition is defined by a reduction in the role of mental rotation 

(intrinsic-dynamic spatial skills) for mathematics performance. As discussed further 

in section 3.5.2, successful performance on mental rotation tasks requires mental 

visualisation. Therefore, these performance patterns may reflect a reduction in the 

use of mental visualisation strategies in the completion of mathematics tasks at 

approximately 8 years.  

For the 0-1000 Number Line Estimation Task (the most difficult of the three blocks of 

the Number Line Estimation Task) age-dependent performance patterns were also 

found. Static tasks including spatial scaling and disembedding were important 

predictors at 72, 8 and 9 years. No significant correlations were reported between 

these spatial skills and 0-1000 number line performance at 10 years. These findings 

may reflect another developmental shift in the role of spatial skills for mathematics 

performance. As suggested by Mix et al. (2016; 2017) at 10 years individuals may rely 

more heavily on verbal or VSWM strategies for mathematics performance, in place 

of spatial strategies. However, the correlations reported here at for children at 10 

years should be interpreted with caution, as they do not control for other predictors 

of number line performance. Further research is required to confirm these results.  

                                                      
2 Children at 6 years were not included in analysis of the 0-1000 Number Line 

Estimation Task  
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Taken together, these results support multi-dimensional models of spatial thinking 

(Buckley, Seery, & Canty, 2018). The four spatial predictors included in this study, 

measuring each of Uttal et al.’s (2013) four theoretically motivated spatial sub-

domains, were found to have varying roles in explaining mathematics outcomes. As 

outlined in Chapter 2, previous studies of primary school children have typically 

explored associations between intrinsic-dynamic spatial tasks and mathematics. The 

results of this study highlight the importance of other spatial sub-domains in 

explaining mathematics outcomes, particularly spatial scaling (extrinsic-static sub-

domain). The failure of some previous studies to find significant spatial-mathematical 

associations may reflect the limited spatial sub-domains assessed, or the age of the 

participants tested (Carr et al., 2008).  

3.5.2 Mechanisms of spatial-mathematical associations 

Spatial scaling was a significant predictor of all mathematics measures in this study. 

In line with Möhring et al. (2015) shared proportional reasoning requirements are 

highlighted here, as a likely underlying mechanism explaining these findings. For the 

Number Line Estimation Task, there is a clear role for proportional reasoning. For 

example, 28 can be positioned on a 0-100 number line with relatively high accuracy 

by dividing the line into 4 portions. For standardised mathematics performance, 

there are a range of mathematics topics that may require proportional reasoning 

such as reasoning about fractions or completing area and distance questions. For the 

ANS Task, proportional reasoning can be used to compare the ratios of the dot arrays 

presented. Importantly, the relations between spatial scaling and ANS performance 

reported in this study suggest that associations between scaling and mathematics are 

not caused by a symbolic number mechanism such as the Mental Number Line, as 

symbolic number representations are not required for dot comparison in the ANS 

Task. Taken together, these findings support the proposal that proportional 

reasoning is the underlying shared cognitive mechanism between spatial scaling and 

mathematics skills.  

Disembedding was a significant predictor of both number line estimation and 

standardised mathematics performance. These associations may be attributable to 
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shared form perception demands of these tasks. As outlined in section 1.4.2, for 

standardised mathematics, form perception is theoretically useful for distinguishing 

symbols and digits, interpreting charts, and completing multistep calculations (Mix 

and et al., 2016; Landy & Goldstone, 2007; 2010). For the Number Line Estimation 

Task and other mathematics tasks, form perception is required for the identification 

of numeric symbols and for interpreting and using visual diagrams. 

Finally, mental rotation was a significant predictor of mathematics outcomes for 

younger participants only. For both standardised mathematics and the 0-10 block of 

the Number Line Estimation Task, mental rotation played an important role at 6 and 

7 years. This suggests that there may be a developmental transition in the role of 

intrinsic-dynamic spatial skills for mathematics at approximately 7 to 8 years. Mental 

rotation is proposed to require active processing including mental visualisations 

(Lourenco et al., 2018; Mix et al., 2016). Hence, the findings reported here suggest 

that younger children may use mental models to visualise problems, including 

mathematics problems. For example, mental visualisations may be used to represent 

and organise complex word problems or mathematical relationships (Huttenlocher 

et al., 1994; Laski et al., 2013; Thompson et al., 2013). However, these results suggest 

that the use of mental visualisation strategies in mathematics is less common in older 

age groups. As children get older, they may learn new strategies for completing 

mathematics tasks, such as WM or verbal strategies, rendering mental visualisation 

strategies redundant. Older children may rely on mental visualisations less, as the 

mathematical problems that they are required to complete may not require them. 

Alternatively, mental visualisations may be more useful for novel mathematics tasks 

compared to automatic mathematics skills (Ackerman, 1988; Uttal & Cohen, 2012; 

Young et al., 2018). The tasks presented here may have been more novel for children 

in the younger age groups, thus they may have resorted to mental visualisation to 

solve them. For older children for whom the tasks were more familiar, other 

strategies such as memory strategies may have been used.  

As outlined at the start of this chapter, the Perspective Taking Task was also 

hypothesised to recruit mental visualisations. However, this task was not a significant 
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predictor of any of the mathematics outcomes in this study. These findings highlight 

an important distinction between different types of mental visualisations based on 

the frame of reference being transformed. This is supported by both behavioural and 

neuro-imaging evidence in adults. Hegarty et al., (2006) found that object 

transformation ability and viewer/perspective transformation ability form two 

distinct spatial factors in adults. There is also evidence that these differing skills 

recruit distinct but overlapping neural systems (Broadbent et al., 2014). For example, 

there is evidence that visual perspective taking leads to greater activation of parieto-

occipital areas compared to object-based rotation tasks (Zacks, Vettel, & Michelon, 

2003). In the current study, it is proposed that different mental transformation 

abilities (object and viewer/perspective transformations) are differentially associated 

with mathematics in children. Object-based transformations such as those required 

for mental rotation and other intrinsic-dynamic spatial tasks are important for 

mathematics. However, allocentric viewer transformations (requiring imagined self-

movement) as required for perspective taking and other extrinsic-dynamic spatial 

tasks are not, at least for the age-range measured. This is an important distinction, 

particularly for the design of training studies targeting mental visualisation skills.  

The findings in this study provide evidence for the proposal that there are different 

explanations underpinning spatial-mathematical associations, depending on the 

mathematical and spatial sub-domains assessed (Fias & Bonato, 2018).  

3.5.3 The role of control variables  

This study highlights associations between language skills and mathematics 

performance. Accounting for spatial ability and the other control variables, 

vocabulary remained a significant predictor of standardised mathematics 

performance, and the most difficult 0-1000 Number Line Estimation Task. These 

results are consistent with previous findings that language skills are a significant 

longitudinal predictor of general mathematics achievement in the pre-school and 

primary school years, even after controlling for spatial ability (see Chapter 2 and 

LeFevre et al., [2010]). The results are also consistent with findings that for primary 

aged children language is a significant predictor of achievement in other STEM 
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domains such as science, even after controlling for spatial thinking (Hodgkiss et al., 

2018). Taken together the evidence suggests that language and spatial skills have 

distinct relations to mathematics, and STEM performance more broadly.  

There were no significant differences in performance between males and females on 

any of the spatial tasks included in the study. Historically, other studies have reported 

a male advantage in spatial task performance in childhood (e.g., Carr et al., 2008; 

Casey et al., 2008). Like the findings of Chapter 2, the results of this study add to the 

literature arguing that the spatial performance of girls and boys is equivalent (e.g., 

Halpern et al., 2007; LeFevre et al., 2010). In the domain of mathematical cognition, 

a significant male advantage was found for the 0-100 (d = 0.383) and 0-1000 (d =0 

.518) blocks of the Number Line Estimation Task. No gender differences were 

reported for the other mathematics tasks. This is consistent with previous studies 

that have also reported mixed findings on gender differences in mathematics skills. 

Some studies such as the study presented in Chapter 2 report evidence for gender 

differences in mathematics performance (Halpern et al., 2007; Penner & Paret, 2008) 

while others have found no significant gender bias for mathematics (Lindberg et al., 

2010). The findings reported in this study highlight the task specific nature of 

mathematical performance differences. The findings suggest that the mathematics 

outcomes used across previous studies may account for the variable results reported.  

3.5.4 Future directions and limitations  

In summary, spatial skills were significant predictors of performance across all 

mathematics measures, explaining approximately 5 to 14% of the individual variation 

in performance. However, interpretation of the findings reported in this chapter must 

be weighed against the methodological limitations of the study, particularly 

limitations with the Number Line Estimation Task. Due to time constraints, 

performance scores for each block of the Number Line Task were each based on a 

relatively small number of trials. The results reported here would be strengthened by 

a replication study using a number line measure with a greater number of trials. 

Second, in this study, performance was collapsed across NP and PN trials of the 

Number Line Estimation Task. This assumes that similar cognitive processes are 
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recruited for these item types. Although no significant differences in performance 

between NP and PN items were found in this study, future research is needed to 

investigate the impact of item type on number line estimation. Third, as outlined in 

section 3.4.2.5, for the 0-1000 block of the Number Line Estimation Task, ceiling 

performance may have been reached at 10 years. However, as outlined in section 

3.2.6, one sample t-tests indicated that performance at 10 years was significantly 

below ceiling on this task. These findings suggest that one-sample t-tests against 

ceiling performance are not a good method of measuring ceiling performance on 

number line estimation tasks. New methods of establishing floor and ceiling 

performance on number line tasks are required. These methods should incorporate 

both R2
LIN and PAE measurements. Determining cut-off points for floor and ceiling 

effects should be completed through the collaboration of experts in the field. It 

should be informed by establishing age-based standardised scores of number line 

estimation (both R2
LIN and PAE performance) across number line ranges. This would 

allow determination of a. the individual variation on number line performance that 

is expected within age groups, b. based on the variances observed, what range 

number line tasks are suitable for different age groups of participants. Age-based 

standardised scores would allow the identification of outliers, e.g., participants 

scoring more than two standard deviations above (ceiling performance) or below 

(floor performance) the mean for their age on a given block of the number line task.   

There was also insufficient power to complete the desired analysis for the 0-1000 

block of the Number Line Estimation Task at 10 years. Hence, the results reported for 

the 0-1000 block of the Number Line Task at 10 years do not control for age or gender. 

Using a larger sample of children at 10 years, these findings should be replicated. 

Similarly, the results for 0-10 number line estimation were also slightly under 

powered and should be replicated. Despite the weaknesses outlined above, the 

findings in this study are strengthened by the fact that the patterns of performance 

reported are consistent with other studies of spatial-mathematical relations in 

children of different ages (Mix, 2016; 2017).  

Although charting the development of spatial skills is not the main aim of this thesis, 

the results reported in this chapter provide insights into the development of different 
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spatial sub-domains across middle childhood. However, these findings are not 

withstanding limitations. The inferences made based on post-hoc comparisons 

should be interpreted cautiously. Although significant developmental differences are 

reported, there is also substantial individual variation in spatial task performance 

with age-groups. The cross-sectional design used in this study does not allow for the 

comparison of individual performance patterns across time. The findings in this 

domain would be enhanced by longitudinal research following a single cohort across 

the ages of 6 to 10 years. Furthermore, the results reported for extrinsic-dynamic 

spatial skills may have be influenced by the relatively high cognitive load of the 

Perspective Taking Task used in this study. The complexity of the task instructions 

may have influenced performance for younger children. Furthermore, beyond spatial 

skills, successful performance on this task may require attention, inhibition, memory 

skills and switching between different levels of representation. Therefore, the spatial 

performance scores reported for this task may be heavily influenced by other 

cognitive abilities. The results reported for extrinsic-dynamic skills in this study would 

be strengthened by replication using other extrinsic-dynamic tasks such as navigation 

tasks.   

Finally, the causal inferences that can be drawn from the results reported in this 

chapter are limited. Although the findings provide important insights on the 

specificity of associations between spatial and mathematical sub-domains, at specific 

ages, the direction of these associations are undefined. For example, it is unknown 

whether spatial skills influence mathematics outcomes, whether mathematical skills 

influence spatial thinking or whether there is a bidirectional relationship between the 

skills. Having established the associations between spatial and mathematical 

thinking, the next logical step is to explore the causal relationship between these 

variables using training. The causal relationship between spatial and mathematical 

thinking is addressed in Chapter 4. The mechanisms underpinning spatial-

mathematical relations suggested in this chapter also provide a platform from which 

the training study in Chapter 4 is designed. 
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3.5.5 Conclusion 

This study extends previous findings by comparing the role of Uttal et al.'s (2013) four 

spatial sub-domains in predicting mathematics outcomes. Overall, spatial skills 

explained 5 to 14% of the variation across three mathematics performance measures, 

beyond other known predictors of mathematics. Spatial scaling (extrinsic-static sub-

domain) was a significant predictor of all mathematics outcomes, across all ages, 

highlighting its importance for mathematics in middle childhood. Other spatial sub-

domains were differentially associated with mathematics in a task and age-

dependent manner. For example, mental rotation (intrinsic-dynamic sub-domain) 

was a significant predictor of mathematics at 6 and 7 years only, which suggests that 

at approximately 8 years of age there is a transition period regarding the spatial skills 

that are important for mathematics. This study emphasises the importance of 

choosing theoretically motivated, task and age sensitive targets for spatial training, 

to elicit transfer of training gains. The effects of such training on both spatial and 

mathematics outcomes, are explored in Chapter 4.   
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Chapter 4 Effective spatial training for near-transfer to spatial 

performance and for far-transfer to a range of mathematics skills at 8 

years 

4.1 Introduction  

The results reported in Chapter 3 suggest that training spatial thinking could confer 

benefits for both spatial and mathematics outcomes. There are mixed findings on the 

transfer of training gains (to untrained skills) in other cognitive domains such as WM 

(for a review see Melby-Lervåg et al., 2016). However, far transfer of training gains 

may be constrained by an understanding of the underlying cognitive mechanisms of 

training targets. It is proposed that the task and age-dependent explanations for 

spatial-mathematical associations outlined in Chapter 3, strengthen the likelihood of 

achieving far transfer of gains from spatial to mathematics domains in the training 

study outlined in this chapter. The study outlined in this chapter sought to investigate 

the impact of spatial training on the spatial skills targeted in training (near transfer), 

un-trained spatial skills (referred to here as intermediate transfer) and mathematics 

skills (far transfer).  

4.1.1 Rationale for the study 

The proposal that spatial training interventions can improve mathematical ability in 

children is supported by evidence that spatial ability is malleable, and that there are 

significant associations between spatial and mathematics skills in childhood. Spatial 

thinking is one aspect of cognition that appears to be particularly amenable to change 

through intervention (Baenninger & Newcombe, 1989; Uttal et al., 2013). Uttal et al. 

(2013) reported an effect size of almost one half a standard deviation for training 

studies that compared spatial training to control conditions (Hedges G = .47). The 

effect size increased to 0.61 (Hedges G) when the analysis was limited to studies of 

children under 13 years (n = 53 studies). This demonstrates particular malleability of 

spatial thinking in childhood. There is also convincing evidence that spatial and 

mathematical thinking are associated longitudinally in childhood. Spatial thinking at 

3 years, measured using the TOSA, predicted 27% of the variation in mathematics 
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problem solving at 5 years (Verdine et al., 2014). Similarly, as outlined in Chapter 2, 

Pattern Construction skills at 5 years explained 8.8% of the variation in mathematics 

performance at 7 years. 

There is convincing evidence that spatial-mathematical relations are specific to 

certain spatial and mathematics tasks and that spatial-mathematical relations differ 

across development (Fias & Bonato, 2018). In Chapter 3, spatial scaling was reported 

to be the strongest spatial predictor of standardised mathematics performance at 6 

to 10 years when compared to perspective taking, disembedding and mental 

rotation. Mental rotation had an age-dependent role at 6 to 8 years only. Similar age-

dependent findings were reported by Mix et al. (2016; 2017) who found that mental 

rotation was a significant predictor of mathematics performance at 6 years but not 

at 9 or 11 years. Taken together, the selection of spatial sub-domains for training 

studies should reflect the facts that a) not all spatial skills are equally associated with 

all mathematics outcomes and b) spatial-mathematical associations are 

developmentally sensitive. 

This study included participants aged approximately 8 years. As outlined above, there 

is evidence of significant spatial-mathematics relations at this age (see Chapter 3). 

Furthermore, as described in the next section, this age range overlapped with other 

spatial training studies that investigated transfer of gains to mathematics (Cheng & 

Mix, 2014; Hawes et al., 2015). Additionally, children of this age were deemed old 

enough for independent computer-based training.  

4.1.2 Transfer of spatial training gains to mathematics  

As outlined in section 1.4.2, few studies have investigated transfer of gains from 

spatial training (with no mathematical component) to mathematical skills. Significant 

gains have been reported in both mental rotation performance (near transfer) and 

mathematical calculation skills (far transfer) following 40-minutes of mental rotation 

training at 6 to 8 years (Cheng & Mix, 2014). For mathematical calculation, gains were 

found for missing term arithmetic problems only. In a similar mental rotation training 

study, Hawes et al. (2015) failed to replicate these findings and reported no far 

transfer of spatial training gains in children of the same age.  
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As outlined in Chapter 1, these differing results may be explained by several factors. 

First, individual and group training were delivered by Cheng and Mix (2014) and 

Hawes et al. (2015) respectively. Without the direct supervision of a researcher, 

reduced engagement with training may have contributed to the results of the Hawes 

et al. (2015) study. The role of motivational factors including participant engagement 

in training is explored further in section 4.1.4. Second, post-testing was delivered 

immediately following training by Cheng and Mix (2014), while Hawes et al. (2015) 

delivered post-testing one week after training. Thus, caution must be taken in 

assuming that the gains reported by Cheng and Mix (2014) are durable. Third, the 

training method differed between the two studies. Hawes et al. (2015) used implicit 

instruction. Points were awarded for correct trials, but no instructions were given to 

explain correct (or incorrect) answers. In contrast, Cheng and Mix (2014) used explicit 

instruction by giving participants physical manipulatives (mirroring those included in 

the onscreen trials) and instructing them to move the shapes to check their answers.  

Differences in the training modes used in the above two studies reflect a broader 

distinction between explicit and implicit instruction types. Both explicit and implicit 

instruction fall into the broader category of direct training (i.e., they involve task 

specific training). In this study, implicit instruction is defined as instruction in which 

students are not aware of learning and use their experiences to construct an 

understanding. In contrast, for explicit instruction, the instructor plays a key role in 

explaining concepts to students and the student is aware of the skill or knowledge 

being taught. There is mixed evidence regarding the effectiveness of explicit and 

implicit instruction in learning more generally (Kirschner, Sweller, & Clark, 2006). 

However, no known spatial training studies compare the efficacy of implicit and 

explicit instruction. Most studies of children have demonstrated the effectiveness of 

spatial training using implicit training, for example, where participants complete task 

practice with feedback (Uttal et al., 2013). Instructional videos are one tool that can 

be used to deliver explicit instruction. There is evidence that viewing an instructional 

video of successful task completion can improve subsequent performance in number 

line estimation and spatial cross-sectioning in adults (Cohen & Hegarty, 2014; 

Gallagher-Mitchell, Simms, & Litchfield, 2018). The success of instructional videos 
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may be attributable to observational learning (Castro-Alonso, Ayres, & Paas, 2014; 

Paas & Sweller, 2012). In particular, for spatial thinking, instructional videos may 

activate the mirror neuron system as individuals imagine movements (Rizzolatti & 

Sinigaglia, 2010; Tettamanti et al., 2005). From a practical perspective, instructional 

videos could offer a novel, practical method of introducing spatial thinking into the 

classroom. This study compared the efficacy of explicit and implicit spatial instruction 

for the first time.  

4.1.3 The selection of training targets  

The findings reported in Chapter 3 emphasise the importance of choosing 

theoretically motivated, task and age sensitive, targets for spatial training. Mental 

rotation and spatial scaling were targeted for training in this study. These skills have 

previously been associated with mathematics achievement in children aged 6 to 8 

years. Furthermore, as investigated in Chapter 3, underlying cognitive mechanisms 

have been proposed that may explain associations between these spatial skills and 

mathematics outcomes (e.g., Mix et al., 2016; 2017).  

In Chapter 3 spatial scaling was highlighted as a particularly useful target for spatial 

skill training as it was a significant predictor of mathematics across a range of 

outcomes (.23 < β < .55). Here we propose two reasons to explain these associations. 

First, there is a proposed underlying mechanism (proportional reasoning) linking 

certain mathematics tasks (e.g., number line estimation and ANS performance) to 

spatial scaling. Based on this proposal, there is no theoretical reason to predict that 

spatial scaling would be associated with all mathematics tasks, particularly those with 

no proportional reasoning requirements, e.g., multi-digit calculation. Second, in 

spatial scaling tasks participants are required to compare two differently scaled 

spaces (i.e., it is an extrinsic-static task). However, in the context of an individual 

object, scaling can also be viewed as an object transformation, i.e., expanding or 

contracting an object (Newcombe & Shipley, 2015). Object transformations like this 

are required in intrinsic-dynamic spatial tasks. In this way, spatial scaling tasks may 

elicit both proportional reasoning and mental visualisation, two underlying cognitive 

processes that are required for different mathematics tasks.  



 

166 
 

The results of Chapter 3 also highlight mental rotation and disembedding as potential 

spatial training targets for some but not all aspects of mathematics at certain ages. 

In this study, mental rotation was selected as a training target for two main reasons. 

First, there is a proposed underlying mechanism explaining associations between 

mental rotation and mathematics outcomes. Specifically, mental rotation is proposed 

to elicit active processing, including mental visualisation and manipulation of objects 

(Lourenco et al., 2018; Mix et al., 2016). Thus, mental rotation training may have 

benefits for mathematics tasks requiring the mental manipulation or organisation of 

numbers. The second reason mental rotation was selected as a training target in this 

study was so that meaningful comparisons could be made between this study and 

previous studies in this domain, all of which administered mental rotation training. 

Although for practical reasons it was not chosen as a training target in this study, 

future research could also explore the effects of training disembedding skills on 

mathematics outcomes.  

4.1.4 Motivational factors in training studies 

One original aspect of this study is that it controlled for motivational factors including 

engagement with, and expectations of, spatial training. These factors may explain the 

mixed successes reported in previous cognitive training studies (Green et al., in press; 

Strobach & Karbach, 2016). As outlined by Green et al. (in press) there is a lack of 

research into the role of expectation effects in driving gains in cognitive training, and 

how best to measure them. Also referred to as placebo effects, expectation effects 

occur when the expectation that a training programme (intervention) will work, 

induces gains, independent of training content (Green et al., in press). While studies 

assessing the placebo effect are common in medicine (e.g., Finniss, Kaptchuk, Miller, 

Benedetti, 2010), only a small number of training studies in the domain of cognitive 

psychology, explore the influence of expectation effects. For example, despite 

completing identical cognitive training, Foroughi, Monfort, Paczynski, McKnight, and 

Greenwood (2016) reported gains in an adult placebo group following recruitment 

using a suggestive flyer that eluded to gains following cognitive training, but no gains 

were reported in a control group who were recruited with a non-suggestive flyer. This 

suggests that gains were due to the suggestive recruitment method and not the 
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training itself. Furthermore, adults who believe that intelligence is malleable have 

better academic and cognitive outcomes (Dweck, 2000), in addition to larger gains in 

intelligence tests following WM training (Jaeggi, Buschkuehl, Shah, & Jonides, 2014). 

Despite evidence for expectation effects in adults, no known studies explore 

expectation effects of cognitive training in child populations.  

The neural underpinnings of expectation effects are unknown. Gains associated with 

expectation effects may lead to changes in brain plasticity or may merely improve 

test-taking (Green et al., in press). For studies aiming to design training paradigms 

that generate optimum gains for participants, harnessing the power of expectation 

effects may be a valuable mechanism for cognitive enhancement (Green et al., in 

press). However, from a mechanistic perspective, expectation may act as a confound 

in cognitive training studies (Foroughi et al., 2016). Even in studies with an active 

control group, there is no guarantee that expectations of training will be equivalent 

across groups. Completing blinded interventions in cognitive psychology is difficult 

and participants are often aware that they are in the active control or treatment 

group respectively. This may influence their expectations of training. Thus, failure to 

control for differences in expectations is perceived by some to be a fundamental 

design flaw in training studies (Boot, Simons, Stothart, and Stutts, 2013). By 

controlling for expectation effects, the causal inferences made in this cognitive 

training study are enhanced (Boot et al., 2013).  

Engagement with training and compliance with training protocols is another factor 

that may influence the outcomes of cognitive training (Hawes et al., 2015). It has been 

shown that participants who persist with WM training are more likely to improve 

(Shah, Buschkuehl, Jaeggi, & Jonides, 2012), and those who show higher levels of 

engagement with WM training are more likely to exhibit training gains (Jaeggi et al., 

2014). Both the intrinsic motivation of individuals and extrinsic motivational features 

of a given training paradigm influence task engagement (Jaeggi et al., 2014). Previous 

research on intrinsic motivation in classroom learning shows that “academic engaged 

time” or “time on task” is a significant predictor of children’s academic outcomes 

(Berliner, 1979; Denham & Lieberman, 1980). For extrinsic motivation, design 

elements of game-based training such as displaying prizes, certificates or high scores 
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on screen, can increase motivation to complete training and improve engagement 

(Holmes, Gathercole, & Dunning, 2009; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; 

Katz, Jaeggi, Buschkuehl, Stegman, & Shah, 2014; Wang, Zhou, & Shah, 2014). Overall, 

differences in the degree to which participants engage in training, may influence the 

reported success of training paradigms. By measuring and controlling for participant 

engagement, the rigour of this study is substantially stronger. It was possible to 

determine the extent to which cognitive training gains are attributable to training 

over and above differences in participant engagement. 

In short, there is evidence that expectations of, and engagement with, training may 

influence training outcomes, and that the inclusion of an active control group is 

insufficient as a control measure for these effects. The inclusion of an active control 

group as a control for motivational factors assumes that, both training and control 

conditions are equally engaging, and that participants are unaware of which 

treatment condition they are in. These assumptions weaken the conclusions of 

training studies. Controlling for expectation and engagement effects in this study 

strengthens the causal inferences made.  

4.1.5 Causality and training studies  

Most cognitive training studies are founded on reports of significant correlations 

between the skill being trained, and the skill to which transfer is expected. However, 

as outlined in section 1.4.3, despite strong correlations between cognitive and 

academic skills, far transfer of training gains from cognitive training such as WM 

training to academic outcomes is not always observed (e.g., Melby-Lervåg et al., 

2016). To move from correlation studies to designing meaningful interventions there 

is a need to explore more deeply what a correlation between two factors might 

indicate. For example, significant positive correlations have been reported between 

performance on mathematical arithmetic tasks and mental rotation in pre-school 

children (e.g., Verdine et al., 2014). As outlined by Reichenbach (1956), these 

correlations may be explained by various causal models, the most basic of which are 

outlined overleaf : 
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a) Mental rotation performance is a cause of arithmetic performance 

b) Arithmetic performance is a cause of mental rotation performance  

c) A common cause exists between both arithmetic and mental rotation, e.g., 

attention or a genetic factor 

Failure to find transfer of training gains from mental rotation training to arithmetic 

performance may be because the causal relationship between these factors is best 

explained by models b or c above. In this way, training studies offer insight into the 

causal relationships between cognitive factors, moving beyond correlational findings. 

Determining a direction of causality between cognitive skills is challenging. The 

current study provides some of the first evidence on the causal relationship between 

spatial skills (mental rotation and spatial scaling) and mathematics outcomes.  

Although it is not the main focus of this study, it is also important to consider the role 

of development in associational studies of cognitive skills. If spatial skills have a causal 

role in arithmetic performance, developmental timing may also be a factor. Consider 

the correlations between arithmetic and mental rotation described above. On one 

hand, mental rotation may play a role in the execution of arithmetic tasks. For 

example, when presented with equations in non-prototypical formats, individuals 

may mentally rotate these equations to a more favourable orientation. If this is the 

case one would expect that mental rotation training would improve subsequent 

arithmetic performance. The impact of spatial training on the execution of 

mathematics skills is investigated in this study. On the other hand, significant 

correlations between mental rotation and arithmetic may reflect a role for mental 

rotation in the acquisition and learning of new arithmetic material (Mix et al., 2016). 

In this case, one would not expect that mental rotation training would lead to 

immediate gains in arithmetic performance, unless participants were asked to learn 

new arithmetic skills. The current study does not explore the effect of spatial training 

on the acquisition of new mathematics skills.  
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4.1.6 Current study  

The study presented in this chapter compared explicit and implicit instruction 

methods for training spatial skills in children aged 8 years. It explored transfer of 

spatial training gains to other spatial and mathematical domains. Explicit instruction 

was delivered using instructional videos, which were specifically designed for use in 

this study. To identify the causal relationship between spatial and mathematical 

thinking, the spatial training intervention used in the study was not embedded within 

a mathematical context. The choice of spatial scaling and mental rotation as spatial 

training targets was supported by both theoretical and behavioural evidence. The 

effectiveness of the intervention was assessed in the context of near, intermediate 

and far transfer of gains, whilst also controlling for expectation and engagement 

effects.  

4.2 Materials and Methods 

4.2.1 Participants  

The sample size for this study was determined using GPower. Based on the studies 

presented in Chapter 2 and Chapter 3 which also explored the roles of spatial thinking 

for mathematics, a medium effect size was expected (f = .25). The power analysis was 

based on the largest ANOVA in this study. This included two between participant 

variables, training mode (2 levels: explicit, implicit) and training type (mental 

rotation, spatial scaling, literacy), and one within participant variable, time (2 levels: 

pre-training, post-training). To achieve power of 0.8, power analysis indicated that a 

minimum of 158 participants were required. As the study design included data 

collection at two-time points, it was anticipated that there would be some participant 

drop-off between Time 1 and Time 2. Therefore, the sample size was increased to 

account for possible attrition of the sample. Participants were 250 children from six 

primary schools across London, UK. All participants were in Year 3 (Mage = 8.09 years, 

SD = .41 years). The proportion of males (48%) and females (52%) was approximately 

equal. 
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4.2.2 Study Design  

The UCL, IOE Department of Psychology and Human Development granted ethical 

approval for this study. Upon receiving school permission, opt-out consent forms 

were sent to all parents/guardians requesting permission for children to take part in 

this study. Furthermore, prior to taking part, all participants were also given an age-

appropriate verbal description of the study and were informed that they could 

withdraw from the study at any time. All researchers involved in data collection held 

a Disclosure and Barring Service Clearance Certificate.  

The study used a randomised, controlled, pre-post training design. All participants 

completed an identical battery of tasks one week pre- training ± 1 day (Time 1), and 

immediately post-training (within 5 minutes) (Time 2). All tasks and training 

procedures were computer-based and were delivered using Gorilla, an online testing 

platform (www.gorilla.sc). Participants were randomly assigned to one of six training 

groups using the randomisation function on the Gorilla platform. The task battery 

included two spatial measures, assessing mental rotation and spatial scaling 

respectively. These measures were included as potential targets of near transfer 

(spatial tasks trained on) and of intermediate transfer (untrained spatial tasks). Three 

mathematics measures were included as potential targets for far transfer (missing 

term problems, a number line estimation task and a geometry task). 

To assess the role of motivational factors, two participant engagement measures, a 

pre-training expectations of training measure and a post-training engagement with 

training measure, were also administered. The order of task presentation for pre- and 

post-testing was randomised across participants. Participants completed testing in 

their school IT suites in groups of 6 to 8 participants supervised by at least one (but 

usually two) researchers. Sessions 1 and 2 were 45 and 60 minutes respectively, with 

breaks. All task instructions were incorporated into the Gorilla platform and were 

presented to participants using earphones. Participants moved through the task 

battery at their own pace. Motivational screens were presented at fixed intervals to 

encourage participants. These screens were presented independently of 

performance.  
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4.2.3 Training Procedures 

Training groups differed by training mode (explicit vs. implicit) and training type 

(mental rotation vs. spatial scaling vs. control). Participants in explicit training 

conditions received explicit instruction of how to complete the task presented. As 

shown in Table 4.1, approximately equal numbers of participants were allocated to 

each group. For both implicit and explicit instruction, training lasted between 3 and 

4 minutes. For implicit instruction, the length of training was dependent on each 

participants’ performance (i.e., the speed taken to complete the items). For some 

participants in the implicit instruction group, training lasted up to 6 minutes.  

Table 4.1 

Number of participants in each training group 

Training Type Training Mode 

 Explicit Implicit Total 

Mental Rotation  44 42 86 

Spatial Scaling  41 43 84 

Control  41 39 80 

Total 126 124 250 

 

4.2.3.1 Explicit Instruction 

Three of the training groups viewed instructional videos that provided explicit task 

instructions. Two groups watched videos with spatial content, while the control 

group watched a video on word reading. The videos were specifically designed for 

use in this study using Vyond (www.vyond.com). All non-training content was 

uniform across videos, e.g., the characters, storyline and narration. The videos can be 

accessed using the links provided below. Group 1 viewed the instructional mental 

rotation video. Participants in this group were given a description and viewed eight 

examples of mental rotation (see Figure 4.1 for a screenshot). For more details go to 

https://youtu.be/18iyRsvtGAQ. Group 2 viewed the instructional scaling video, in 

which a description of spatial scaling, and eight examples of spatial scaling were 

http://www.vyond.com/
https://youtu.be/18iyRsvtGAQ
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shown (see Figure 4.2 for a screenshot). For more details go to 

https://youtu.be/grhxFEqgz51. For Group 3, the control video was shown. 

Participants watched eight examples of word-picture matching, in which the 

onscreen characters selected the correct picture to match a given word (see Figure 

4.3 for a screenshot). Participants allocated to the control group did not view any 

spatial instruction. For more details go to https://youtu.be/qDmgRR2RLyE.  

 

Figure 4.1. Screenshot taken from the instructional video of mental rotation (explicit 

instruction) 

 

Figure 4.2. Screenshot taken from the instructional video of spatial scaling (explicit 

instruction) 

https://youtu.be/grhxFEqgz51
https://youtu.be/qDmgRR2RLyE
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Figure 4.3. Screenshot taken from the control instructional video (explicit 

instruction) 

4.2.3.2 Implicit Instruction 

The three implicit training groups completed task practice with computer-based 

feedback. For each trial, participants were shown an onscreen tick or cross indicating 

the accuracy of their response. For incorrect trials, participants were given the 

opportunity to repeat the trial until they had selected the correct answer (all tasks 

had two possible response options). Participants were not given any explicit 

instruction on how to complete the trials. Participants moved to the next trial when 

the correct response was selected. For implicit training, two groups completed spatial 

tasks (the same tasks presented at pre and post testing), while the control group 

completed a word reading task. The number of trials included in implicit training was 

determined as the approximate number of trials that could be completed in the same 

length of time as the instructional videos described in 4.2.3.1. This was established 

through piloting. Group 4 completed implicit mental rotation training and were 

presented with 30 trials of the Mental Rotation Task on which they received feedback 

(further details of this task are outlined in 4.2.4.1). Group 5 completed implicit spatial 

scaling training comprising of 24 trials of the Spatial Scaling Task (further details of 

this task can be found in 4.2.4.2). Feedback was given for each trial. Group 6 

completed implicit control training. These participants completed 30 trials of a word-

picture matching task in which they were asked to match a word to one of two 
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pictures by using labelled keys on the keyboard (see Figure 4.4). This was a reading 

task requiring minimal spatial skills. Feedback was provided. 

 

Figure 4.4. Sample trial from the control training task (implicit instruction) 

4.2.4 Tasks and Measures 

4.2.4.1 Mental Rotation Task  

The Mental Rotation Task used in this study was similar to the task described in 

Chapter 3. In the current study, as this task was completed at least twice by each 

participant, modifications were made with the aim of improving participant’s interest 

in the task. The monkey images used as stimuli in Chapter 3, were replaced with five 

other animal stimuli (dog, horse, zebra, elephant and lion) taken from Neuburger et 

al. (2011). All images covered an approximately equal surface area with equal 

numbers of animals facing the left and right side respectively. 

In each trial of the Mental Rotation Task participants were required to identify which 

of two animal images located above a horizontal line matched the target image below 

the line. As shown in Figure 4.5, the images above the line included a mirror image of 

the target image, and a version of the target image rotated by a fixed degree from 

the target image. Participants used labelled keys on the computer keyboard to 

respond. Trials were separated by a fixation dot displayed for 500 milliseconds. 

Participants completed four practice trials at 0° where feedback was provided. For 

incorrect trials, participants were given the opportunity to answer the trial again. 
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Only participants achieving at least 50% in the practice trials, on their first attempt, 

continued to the 40 experimental trials. In practice, all participants achieved above 

50% in the practice trials. The practice trials were followed by 40 experimental trials. 

No feedback was given for experimental trials at pre or post testing. The experimental 

trials included equal numbers of clockwise and anti-clockwise rotations at 45°, 90° 

and 135° (eight trials for each degree of rotation), and eight trials at 180° and 0°. For 

all analysis, performance on clockwise and anti-clockwise trials was collapsed (i.e., all 

90° and - 90° trials were collapsed). The order of trial presentation was randomised 

for each participant. Trials were also counter balanced. Equal numbers of correct 

answers were presented on the left and right-hand side of the screen respectively. 

Each animal stimulus was presented at each degree of rotation with equal frequency. 

Percentage accuracy was recorded. 

 

Figure 4.5. Sample item from the Mental Rotation Task (45° anti-clockwise trial) 

4.2.4.2 Spatial Scaling Task 

The Spatial Scaling Task designed for use in Chapter 3 was not suitable for use in this 

study as it was not entirely computer-based. Thus, a computer-based measure was 

required. The Spatial Scaling Task used in this study was modified from Möhring et 

al. (2016). In each trial participants were shown two 1D images of a circular space (a 

farmer’s field) containing a target (an egg). Participants were asked to identify 

whether the eggs in the two fields were in the same position or in different positions 
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(see Figure 4.6). For half of the trials, the targets were presented in the same position 

in both fields (match trials). For the remaining trials, the position of the target in one 

field was adjusted by 2cm (to the left or right) relative to the second field (mismatch 

trials). Participants responded using labelled keys on the computer keyboard. All 

trials were separated by a fixation dot displayed for 500 milliseconds. Participants 

completed six practice trials during which feedback was given and no time limit was 

imposed. The practice trials included 1 match and 1 mismatch trial at a scaling factor 

of 1, 0.625 and 0.375 respectively. Only participants achieving at least 50% in the 

practice trials continued to the experimental trials. In practice all participants 

achieved over 50% accuracy in the practice trials. The practice trials were followed 

by 72 randomly presented experimental trials. For pre and post testing no feedback 

was given for experimental trials. In line with the original protocol from Möhring et 

al. (2016), each trial was displayed for 5 seconds. Experimental trials differed by the 

location of the target on the horizontal axis, and by scaling factor. Six different target 

positions were included, a modification from the original study where 15 positions 

were used. Scaling factor was manipulated by keeping the size of one space constant 

while expanding the size of the second. In this way six scaling factors were included 

(1, 0.875, 0.75, 0.625, 0.5, and 0.375). Performance was measured as percentage 

accuracy. 

 

Figure 4.6. Sample mismatch trial at a scaling factor of 0.875 from the Spatial 

Scaling Task, taken from Möhring et al. (2016). 
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4.2.4.3 Missing Term Problems  

The Missing Term Problems included in this study were modified from Hawes et al. 

(2015). For each item participants were required to complete the missing number(s) 

in a simple mathematical equation (see Figure 4.7). This task included 2 practice items 

where the solutions were shown after participants submitted an answer. Following 

this, 21 test items were displayed. No solutions were shown for these items. Test 

items included the original 18 items from Hawes et al. (2015) and three additional, 

low-difficulty items that were added to the task after piloting to alleviate floor effects. 

Items were presented in order of increasing difficulty and a time limit of 25 seconds 

was allocated to each test item. Approximately equal numbers of addition vs. 

subtraction items, and single vs. multi-digit numbers were included. The position of 

the missing box was also balanced across items. Performance on this task was 

measured as percentage correct.  

 

Figure 4.7. Sample Missing Term Problem 

4.2.4.4 Number Line Estimation Task  

Similarly to Chapter 3, a number line estimation task was used to measure symbolic 

numerical representations. The method of this task was adapted from Chapter 3, in 

order to address some of the limitations outlined in section 3.5.4. As this study had a 

relatively narrower age range of participants, compared to the sample of participants 

in Chapter 3, a 0-100 range number line was deemed suitable for all participants. 

Using a 0-100 scale, neither floor nor ceiling effects in performance were expected 
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for children at 8 years. One limitation of the number line protocol used in Chapter 3 

was the small number of trials administered for each block of the task. To address 

this limitation, the Number Line Estimation Task in this study included 30 trials on a 

number line ranging from 0-100. A second limitation of the protocol used in Chapter 

3 was the use of both NP and PN type items. To reduce any possible confounding 

effects of item type (NP or PN), and in line with other studies that measure number 

line estimation in children (e.g., Simms et al., 2016), all trials included in the Number 

Line Estimation Task in this study were NP items.   

 As shown in Figure 4.8, for each item, participants were presented with a target 

number and were asked to estimate its location on a number line by using the mouse 

cursor to click on the number line at their selected location. For practice items (n = 

2), solutions (50, 20) were shown onscreen after participants attempted an answer. 

No solutions were given for experimental items (n = 30). The target numbers included 

in the experimental items of the task (2, 6, 7, 13, 16, 19, 24, 27, 28, 35, 37, 38, 42, 46, 

49, 54, 58, 59, 61, 63, 67, 71, 74, 79, 82, 83, 86, 91,92, 95) were taken from Gallagher-

Mitchell, Romero-Rivas, Rodriguez-Cuadrado, and Dackermann (2017) . The order of 

experimental items was randomised. Performance was measured using PAE scores 

and curve estimation (see section 1.2.2).  

 

Figure 4.8. Sample item from the Number Line Estimation Task 

4.2.4.5 Geometry Task 

A geometry task was designed for use in this study. It was based on the statutory 

geometry learning requirements for Year 2 students in the UK (UK Department for 
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Education, 2013). The task included two item types, Shape Items and Symmetry 

Items. For Geometry Shape Items, participants were shown an image of a shape and 

were asked to select the correct number of sides (or faces) on the shape from four 

possible response options (see Figure 4.9). Participants completed a single practice 

item using a 2-D shape on which they were given feedback. All participants 

successfully completed this item. Geometry Shape Items differed in the 

dimensionality of the images shown and included six 2-D shapes and six 3-D shapes. 

Performance was measured as percentage accuracy collapsed across all items.  

For each Geometry Symmetry Item, a target shape was displayed on screen and 

participants were asked to select which of four possible response options was the 

mirror image of the target shape (see Figure 4.10). Participants completed a single 

practice trial in which they received feedback. All participants successfully completed 

this item and continued to ten, randomly presented experimental items. For each 

item, the distractor images included a match error, a shape error and a symmetry 

error (see Figure 4.10). For match errors, the distractor was identical in both shape 

and position to the target shape (a). For shape errors, the distractor was in the correct 

position, however the shape was not a mirror of the target image, but another similar 

shape (b). Finally, for symmetry errors the distractor was the correct shape, but was 

in an incorrect position (c). Performance accuracy was recorded.  

 

Figure 4.9. Sample Geometry Shape Item 
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Figure 4.10. Sample Geometry Symmetry Item. Note. a) match error, b) shape error, 

c) symmetry error, d) correct answer 

4.2.4.6 Expectations of the effectiveness of training  

Prior to the delivery of training, all participants were asked a single question, 

measuring their expectations of the effectiveness of training, “We are going to be 

playing some games. How much do you think the games will help you with your 

maths?”. The question was displayed alongside an onscreen scale (see Figure 4.11). 

Participants responded by selecting a point on the scale using the mouse cursor. 

Participant’s responses were coded as 1-12 based on the onscreen position selected. 

A score of 1 was allocated for responses that indicated low expectations of training 

while a score of 12 was allocated for responses that indicated high expectations of 

training. 



 

182 
 

 

Figure 4.11. Response scale for measuring expectations of the effectiveness of 

training 

4.2.4.7 Participant Engagement Questionnaire 

A participant engagement questionnaire was delivered following training to assess 

participant’s enjoyment of, and engagement with, the training that they had 

received. This questionnaire was specifically designed for use in this study. As shown 

in Table 4.2, the questionnaire included four questions, the phrasing of which varied 

slightly based on the type of training delivered. Each question was presented 

alongside an onscreen scale (see Figure 4.12). Participants responded to each 

question by selecting a point on the scale using the mouse cursor. Participant’s 

responses were coded as 1-12 based on the onscreen position selected. A score of 1 

was allocated for responses that indicated low engagement while a score of 12 was 

allocated for responses that indicated high engagement. Participants were awarded 

an overall engagement score, an average of their scores across all four questions 

(items were reverse coded where necessary).  

 

 



 

183 
 

Table 4.2 

Items included in the Participant Engagement Questionnaire  

 

 

Figure 4.12. Sample scale from the Participant Engagement Questionnaire 

4.2.5 Data treatment 

The a priori power analysis for this study was based on a medium effect. In practice, 

the results of this study had small to medium effect sizes. Post-hoc power analysis 

indicated that the majority of the analyses achieved a power level higher than 0.8, 

the suggested level for adequately powered studies (Cohen, 1988). The only 

exception to this was the Number Line Estimation Task, for which a power level of 

0.68 was reported. The results of this study should be interpreted in light of the low 

power reported for this task.  

Due to technical errors, school disruptions and absences, data for a single task was 

lost for nine participants at Time 1 and for 15 participants at Time 2. For task analysis 

Item  Explicit Training  Implicit Training  

1 How much did you enjoy the video? How much did you enjoy the game? 

2 How exciting was the video? How exciting was the game? 

3 
How easy was it to understand the 
video? 

How easy was it to understand the 
game? 

4 
How much effort did it take to watch 
the video? 

How much effort did it take to play 
the game? 
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at Time 1, missing data were replaced using mean replacement. For analysis of 

training effects, there was no replacement of missing data. Participants were 

excluded from analysis for any tasks for which their data were missing.  

For all measures, performance across age groups was explored graphically. For 

measures in which a ceiling (or floor effect) was suspected, one sample t-tests were 

completed against ceiling (or floor) performance. No significant floor or ceiling effects 

were found. Tests of normality indicated that most measures had broadly normal 

distributions. The main exception to this was performance on the Number Line 

Estimation Task, which was skewed. Boxplots were used to investigate outliers. At 

Time 1, there were two outliers for the Spatial Scaling Task (one high performer in 

the implicit spatial scaling training group and one low performer in the implicit 

control group). There were also outliers for number line estimation performance. 

These are likely attributable to the skewed levels of performance on this task. All 

outliers were deemed to reflect normal variation in the population and were 

retained. As all groups were large enough for the central limit theorem to apply (n’s 

> 30) (Field, 2013), parametric analyses were used.  

4.3 Results  

4.3.1 Performance at Time 1 

4.3.1.1 Overall task performance at Time 1 

Unless otherwise stated all Time 1 analysis was based on the 250 participants in the 

overall sample, i.e., analysis at Time 1 is collapsed across training types and training 

modes. At Time 1, mean scores were used to replace missing data. Although the 

participant engagement measure was completed during session 2, this measure was 

completed prior to training. Thus, it can be considered a pre-training measure and it 

is included in Time 1 analysis. Descriptive information for performance on each of 

the tasks included in this study is shown in Table 4.3. 
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Table 4.3 

Descriptive statistics at Time 1 

Measure Descriptive Statistics 

 Mean SE SD Min Max 

Mental Rotation 59.00 0.99 15.64 25.00 100 

Spatial Scaling  54.00 0.54 8.54 23.61 79.17 

Missing Term Problems  56.42 1.56 24.68 0.00 100 

Number Line R2
 LIN  0.93 0.01 0.08 0.63 1.00 

Number Line PAE 0.10 0.01 0.06 0.03 0.30 

Geometry Shape Items 63.73 1.05 16.54 16.67 100 

Geometry Symmetry Items 54.36 2.08 32.94 0 100 

Expectations (mean rating 0-12) 9.47 0.23 3.64 0 12.00 

Note. Unless otherwise stated all results reported are percentage accuracy scores 

4.3.1.2 Spatial task performance at Time 1 

One sample t-tests were used to investigate above chance performance for both the 

Mental Rotation Task and the Spatial Scaling Task. For both tasks, each trial included 

two possible response options, therefore chance was set at 50%. For the Mental 

Rotation Task, participants performed above chance on 0° trials, t (249) = 19.34, p < 

.001, d = 1.223; 45° trials, t (249) = 15.06, p < .001, d = 0.952; 90° trials, t (249) = 9.77, 

p < .001, d = 0.618; and 135° trials, t (249) = 2.74, p = .012, d = 0.174. For trials at 180° 

performance was not above chance, t (249) = -.03, p = .975, d = - 0.002. For the Spatial 

Scaling Task above chance performance was reported for all scaling factors. This 

included: a scaling factor of 1, t (249) = 4.20, p < .001, d = 0.266; a scaling factor of 

0.875, t (249) = 5.31, p < .001, d = 0.336; a scaling factor of 0.75, t (249) = 4.26, p < 

.001, d = 0.310; a scaling factor of 0.625, t (249) = 5.24, p < .001, d = 0.332; a scaling 

factor of 0.5, t (249) = 4.20, p < .001, d = 0.266, and; a scaling factor of 0.375, t (249) 

= 3.20, p < .001, d = 0.202. As participants performed above chance at most degrees 

of rotation, and at all scaling factors, this suggests that they understood the aims of 

the tasks.  



 

186 
 

One-way ANOVA analyses were used to investigate the effects of degree of rotation 

(5 levels: 0°, 45°, 90°, 135°, 180°) and scaling factor (6 levels: 1, 0.875, 0.75, 0.625, 

0.5, 0.375) on mental rotation and spatial scaling performance respectively. For the 

Mental Rotation Task, the results indicated a significant main effect of degree of 

rotation, F (4, 996) = 87.578, p < .001, ηp
2 = .260. As shown in Figure 4.13, these 

differences were best explained by a linear contrast. Performance decreased with 

increasing degree of rotation, F (1,249) = 180.51, p < .001, ηp
2 = .420. This 

performance pattern was also supported by Bonferroni pairwise comparisons. 

Significant differences in performance were reported between each degree of 

rotation (p’s < .001) except for 135° and 180° (p = .050). In contrast, as shown in Figure 

4.14, no significant main effect of scaling factor was reported for the Spatial Scaling 

Task, F (5, 1245) = .747, p = .589, ηp
2 = .003. These patterns of performance are similar 

to those reported in previous studies for mental rotation and spatial scaling 

respectively (Broadbent, 2014; Frick & Newcombe, 2012). 

Figure 4.13. Performance on the Mental Rotation Task at Time 1 across different 

degrees of rotation 
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Figure 4.14. Spatial Scaling performance at Time 1 across different scaling factors 

4.3.1.3 Mathematics task performance at Time 1 

Responses on Missing Term Problems and the Number Line Estimation Task were 

open ended. As such, it was not possible to calculate above chance performance for 

these measures. Instead, for Missing Term Problems, participants who did not score 

higher than 10% at Time 1, were not deemed to understand the task aims and were 

excluded (n = 14). For the Number Line Estimation Task participants who didn’t 

attempt at least 75% of items, or participants with a mean PAE score higher than 15% 

for practice items were also excluded (n = 0). For this task, the value of linear and 

logarithmic response patterns were compared for each individual. These simple 

comparisons demonstrated that 74% of participants had estimates that were best 

described by a linear compared to a logarithmic function (i.e., the participant had a 

higher R2
 LIN compared to R2

 LOG score). Therefore, linear estimates (R2
 LIN) were used 

as the outcome measure in all subsequent analysis (Simms et al., 2016).  

For the Geometry Task, a paired samples t-test was used to investigate the effect of 

item type on task performance (2 levels: Shape Items and Symmetry Items). There 

was a significant difference in performance between Geometry Shape Items (63.73 ± 

1.05) and Geometry Symmetry Items (54.36 ± 2.08), t (1,249) = 4.34, p < .001, d = 

0.295. Based on this difference, Symmetry Items and Shape Items were considered 
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separately in all subsequent analysis. One sample t-tests were used to explore above 

chance performance on each item type. As both item types included four possible 

response options, chance was set at 25%. Participants performed above chance on 

both Shape Items, t (249) = 37.04, p < .001, d = 2.342, and Symmetry Items, t (249) = 

14.09, p < .001, d = 0.891.  

4.3.2 Gender differences in task performance at Time 1 

Independent T-tests (controlling for multiple comparisons [0.05/8 = 0.006]) were 

used to explore gender differences in task performance at Time 1. Where 

homogeneity of variance could not be assumed, the results for unequal variances 

were reported. As shown in Table 4.4, males had significantly lower PAE on the 

Number Line Estimation Task compared to females, t (148) = 3.15, p = .002, d = 0.401. 

No other significant gender differences were reported (p’s > .05, d’s < .261). Thus, 

gender was included as a control variable when investigating the effects of training 

on the Number Line Estimation Task only.  
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Table 4.4 

Gender differences in task performance at Time 1 

Test Measure Gender Statistics 

 
Male 

(n = 121) 
Female 

(n = 129) 
Test 

statistic 
Effect 
size 

 Mean SD Mean SD T D 

Mental Rotation  60.38 16.05 57.76 15.19 0.74 0.09 

Spatial Scaling  54.76 7.53 53.28 9.36 1.37 0.17 

Missing Term Problems  59.71 24.57 53.34 24.47 2.05 0.26 

No. Line Estimation R2
LIN .09 .05 .11 .06 3.15 0.40 

No. Line Estimation PAE .94 .07 .92 .08 1.44* 0.18 

Geometry Shape Items 62.81 15.59 64.60 17.39 0.85 0.11 

Geometry Symmetry Items 53.55 33.83 55.12 32.19 0.37 0.05 

Expectations 9.13 3.86 9.79 3.39 1.45 0.18 

Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. R2
LIN = linear 

response; PAE = Percentage Absolute Error; No. Line = Number Line 

4.3.2.1 Differences in task performance across training groups at Time 1 

To confirm that there were no significant performance differences between groups 

at Time 1, a two-way ANOVA was completed for each task. Training mode (2 levels: 

explicit vs. implicit) and training type (3 levels: mental rotation vs. spatial scaling vs. 

literacy) were included as between participant variables.  

No significant differences in task performance across training types were reported 

for: the Mental Rotation Task, F (2, 244) = 2.43, p = .090, ηp
2 = .020; the Spatial Scaling 

Task, F (2, 244) = 1.77, p = .173, ηp
2 = .014; Missing Term Problems, F (2, 244) = 2.32, 

p = .100, ηp
2 = .019; PAE scores on the Number Line Estimation Task, F (2, 244) = 0.01, 

p = .920, ηp
2 = .000; R2

LIN scores on the Number Line Estimation Task, F (2, 244) = 0.01, 

p = .991, ηp
2 = .000; Geometry Shape Items, F (2, 244) = 0.376, p = .687, ηp

2 = .003, or; 

Geometry Symmetry Items, F (2, 244) = 0.34, p = .709, ηp
2 = .003.  
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Similarly, no significant effect of training mode was reported for: the Mental Rotation 

Task, F (1, 244) = 0.02, p = .890, ηp
2 = .000; the Spatial Scaling Task, F (1, 244) = 1.07, 

p = .303, ηp
2 = .004; Missing Term Problems, F (1, 244) = 0.68, p = .410, ηp

2 = .003, PAE 

scores on the Number Line Estimation Task, F (1, 244) = 0.49, p = .613, ηp
2 = .004; R2

LIN 

scores on the Number Line Estimation Task, F (1, 244) = 0.48, p = .490, ηp
2 = .002; 

Geometry Shape Items, F (1, 244) = 1.45, p = .230, ηp
2 = .006 or; Geometry Symmetry 

Items, F (1, 244) = 4.05, p = .060, ηp
2 = .015. 

To assess differences in expectations of training across groups, a two-way ANOVA 

was also completed with training mode (2 levels: explicit vs. implicit) and training 

type (3 levels: mental rotation vs. spatial scaling vs. literacy) as between participant 

variables. There were no differences in expectations of training across training 

modes, F (1, 244) = 3.25, p = .072, ηp
2 = .013, or training types, F (2, 244) = 0.27, p = 

.763, ηp
2 = .002. 

4.3.2.2 Associations between measures at Time 1  

Pearson bivariate correlations were completed between all Time 1 measures. This 

allowed for the investigation of whether the observed associations between spatial 

and mathematics skills, that have been demonstrated in previous studies (e.g., Mix 

et al., 2016) and which form the rationale for the training paradigm used in this study, 

were present. Significant correlations were reported between all tasks, except for 

performance on Geometry Shape Items which was not correlated with accuracy on 

the Mental Rotation Task, r (249) = .09, p = .147 (Table 4.5). Expectations of the 

effectiveness of training were not correlated with any behavioural measures. For the 

Number Line Estimation Task, the correlations reported between the two number 

line outcome measures (PAE and R2
LIN scores), and all other tasks, were similar. 

However, it was hypothesised that spatial scaling training would lead to improved 

proportional reasoning skills, which would subsequently reduce PAE scores, i.e., 

enabling participants to position estimates more accurately. Scaling training was not 

predicted to influence participants’ understanding of symbolic number, i.e., R2
LIN 

scores. Therefore, results based on PAE scores are reported in this chapter. However, 

patterns of performance for R2
LIN scores were broadly similar (see Appendix E).
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Table 4.5 

Correlations between tasks at Time 1 

 Spatial Tasks Mathematics Tasks Expectations 

 1 2 3 4 5 6 7 8 

1. Mental Rotation / .28*** .29*** - .21*** .25*** .09 .23*** .06 

2. Spatial Scaling   / .35*** -.30*** .33*** .16* .26*** .04 

3. Missing Term Problems   / -.49*** .53*** .30*** .42*** -.02 

4. No. Line PAE   / -.83*** -.25*** -.33*** .01 

5. No. Line R2 
LIN     / .22*** .31*** -.02 

6. Geometry Shape Items    / .18*** .01 

7. Geometry Symmetry Items      / -.03 

8. Expectations        / 

Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. R2
LIN = linear response; PAE = Percentage Absolute error; No. Line = Number 

Line
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4.3.3 Performance at Time 2 

4.3.3.1 Near and intermediate transfer of gains  

In the investigation of training effects, there was no mean replacement of data. 

Participants were excluded from analysis for any tasks for which they were missing 

data at Time 1 (n = 9) or Time 2 (n = 15). Participants scoring higher than 95% on a 

given task at Time 1, were deemed to have reached ceiling level performance on the 

task and were excluded from training analysis for that task only. This included two 

participants for the Mental Rotation Task, nine participants for the Missing Term 

Problems, ten participants for the Geometry Shape Items and 18 participants for the 

Geometry Symmetry Items.  

Multivariate Analysis of Variance (MANOVA) tests were used to investigate training 

effects across near, intermediate and far transfer measures. Time was included as a 

within participant variable (2 levels: pre-training, post-training). Training mode (2 

levels: explicit, implicit) and training type (3 levels: mental rotation, spatial scaling, 

literacy) were included as between participant variables. Where sphericity could not 

be assumed, Greenhouse- Geisser values were reported. Significant interactions 

were explored with paired t-tests. It has been argued that the power of training 

studies can be increased by analysing results using ANCOVA tests with post-training 

scores as the dependent variable and pre-training scores as a covariate (Van 

Breukelen, 2006). Therefore, the analysis reported in this section were repeated 

using ANCOVA with time one scores as a covariate. Comparable results were reported 

(see Appendix F).  

4.3.3.1.1 Mental Rotation  

For the Mental Rotation Task, there was a significant main effect of time. There was 

significantly higher performance at Time 2, F (1, 237) = 21.87, p < .001, ηp
2 = .084. This 

finding was best explored within the context of the significant interaction found 

between time and training type, F (2, 237) = 6.88, p < .001, ηp
2 = .055. As shown in 

Figure 4.15, t-tests indicated a significant improvement in performance accuracy 

following mental rotation training, t (83) = 5.49, p < .001, d = 0.581 (near transfer) 

and spatial scaling training, t (79) = 2.30, p = .024, d = 0.263 (intermediate transfer). 
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No significant improvement in performance accuracy was reported following control 

training, t (78) = 0.21, p = .837, d = 0.019. No other main effects or interactions with 

time were reported (p’s > .05, ηp
2’s < .005). 

 

 

Figure 4.15. Mental Rotation accuracy at Time 1 and Time 2 for different training 

types. Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. SE = 

Standard Error 

4.3.3.1.2 Spatial Scaling  

A significant main effect of training type was found, with higher overall performance 

for the spatial scaling training group compared to the other training groups, F (2, 232) 

= 8.28, p < .001, ηp
2 = .067. This was best explored in the context of the significant 

interaction between time and training type, F (2, 232) = 6.25, p = .002, ηp
2 = .051 (see 

Figure 4.16). T-tests indicated significant performance gains following spatial scaling 

training only, t (76) = 3.99, p < .001, d = 0.450 (near transfer). No significant gains 

were reported following mental rotation training, t (80) = 0.04, p = .972, d = 0.004, or 

control training, t (79) = 0.70, p = .485, d = 0.088. There were no other main effects 

or significant interactions with time (p’s > .05, ηp
2’s < .005). 
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Figure 4.16. Spatial scaling accuracy at Time 1 and Time 2 for different training 

types. Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. SE = 

Standard Error  

4.3.3.2 Far transfer of gains  

4.3.3.2.1 Missing Term Problems  

A significant interaction between time and training type was found, F (2, 209) = 4.58, 

p = .011, ηp
2 = .042 (see Figure 4.17). T-tests indicated a significant improvement in 

accuracy following mental rotation training only, t (69) = 2.73, p < .008, d = 0.241 (far 

transfer). No significant improvements were reported following spatial scaling 

training, t (74) = 1.30, p = .197, d = 0.117, or control training, t (69) = 0.73, p = .466, d 

= 0.067. There were no other significant main effects or interactions with time (p’s > 

.05, ηp
2’s < .009). 
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Figure 4.17. Percentage Correct on Missing Term Problems at Time 1 and Time 2 for 

different training types. Note. * indicates p < .05, ** indicates p < .01, *** indicates 

p < .001. SE = Standard Error  

4.3.3.2.2 Number Line Estimation  

As a significant gender effect was reported for PAE scores at Time 1, gender was 

included as a between participant variable. However, no significant main effect or 

interactions with gender were reported for this task (p’s > .05, ηp
2’s < .014). Hence, 

gender was removed, and the analysis was repeated. A significant main effect of time 

was reported, F (1,237) = 5.86, p = .016, ηp
2 = .024. This finding was best explored 

within the context of the interaction between time and training type. As shown in 

Figure 4.18, there was a significant interaction between time and training type, F (2, 

237) = 6.05, p = .002, ηp
2 = .054. T-tests indicated a significant reduction in error 

following spatial scaling training, t (79) = 2.12, p = .037, d = 0.172 (far transfer). No 

significant difference in performance was found following mental rotation training, t 

(82) = 1.91, p = .060, d = 0.222. However, a significant increase in error was reported 

following control training, t (79) = 3.01, p = .003, d = 0.360. No other main effects or 

significant interactions with time were reported (p’s > .05, ηp
2’s < .005). As outlined 

in section 4.3.2.2, similar analysis was completed for R2
LIN performance. The patterns 
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of performance across time and training type were comparable to PAE scores (see 

Appendix E).  

 

Figure 4.18. PAE on the Number Line Estimation Task at Time 1 and Time 2 for 

different training types. Note. * indicates p < .05, ** indicates p < .01, *** indicates 

p < .001. SE = Standard Error 

4.3.3.2.3 Geometry Task 

For Geometry Shape Items there were main effects of time, F (1, 219) = 12.93, p < 

.001, ηp
2 = .056, training mode, F (1, 219) = 6.39, p = .012, ηp

2 = .028, and training type, 

F (2, 219) = 3.25, p = .041, ηp
2 = .029. These main effects were best explored in the 

context of the interactions reported below. There was a significant interaction 

between time and training type for Geometry Shape Items, F (2, 219) = 3.82, p = .022, 

ηp
2 = .034 (see Figure 4.19). T-tests indicated significant gains in performance 

accuracy following mental rotation training, t (75) = 2.93, p = .004, d = 0.308 (far 

transfer), and spatial scaling training, t (75) = 3.70 p < .001, d = 0.314 (far transfer). 

There were no significant gains following control training, t (72) = 0.21, p = .833, d = 

0.024. There was also a significant interaction between time and training mode for 

Geometry Shape Items, F (1, 219) = 5.95, p = .016, ηp
2 = .026 (see Figure 4.20). There 

was a significant improvement in performance following implicit training, t (104) = 

4.41, p < .001, d = 0.351, but not explicit training, t (116) = 0.85, p = .395, d = 0.069. 
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No significant three-way interaction between time, training mode and training type 

was reported, F (2, 219) = 1.60, p = .204, ηp
2 = .014. For Geometry Symmetry Items, 

all groups had improved performance between Time 1 and Time 2, F (1, 213) = 40.30, 

p < .001, ηp
2 = .159. However, there were no other main effects or significant 

interactions with time (p’s > .05, ηp
2’s < .013).  

 

Figure 4.19. Accuracy on Geometry Shape Items at Time 1 and Time 2 for different 

training types. Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001.  

 

Figure 4.20. Accuracy on Geometry Shape Items at Time 1 and Time 2 for different 

training modes. Note. * indicates p < .05, ** indicates p < .01, *** indicates p < .001 
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4.3.3.3 Motivational factors 

4.3.3.3.1 Expectations of training 

A MANOVA was completed with training mode (2 levels: explicit, implicit) and training 

type (3 levels: mental rotation, spatial scaling, literacy) as between participant 

variables and expectations of training as the dependent variable. There were no 

significant differences in self-reported expectations of training for participants in 

different training mode conditions, F (1, 244) = 3.25, p = .072, ηp
2 = .013, or training 

type conditions, F (2, 244) = 0.27, p = .763, ηp
2 = .002. Multivariate analysis of 

covariance (MANCOVA) was used to explore whether individual participant gains on 

each outcome measure were predicted by expectations of training. A separate 

MANCOVA was completed for each training type (mental rotation, spatial scaling and 

control) and each training mode (explicit and implicit). Time was included as a 

between participant variable and expectation score was included as a covariate. 

There were no significant interactions between participant expectations of training 

and time for any of the training types (p’s > .05, ηp
2’s < .033) or any of the training 

modes (p’s > .05, ηp
2’s < .012).  

4.3.3.3.2 Participant engagement with training  

A MANOVA was completed with training mode (2 levels: explicit, implicit) and training 

type (3 levels: mental rotation, spatial scaling, literacy) as between participant 

variables and self-reported engagement levels as the dependent variable. There was 

a significant difference in engagement across training types, F (2, 244) = 3.37, p = 

.036, ηp
2 = .027. Bonferroni pairwise comparisons indicated significantly higher 

engagement levels following control training compared to spatial scaling training (p 

= .034). There was no main effect of training mode on engagement, F (1, 244) = 1.81, 

p = .180, ηp
2 = .007. There was a significant interaction between training type and 

training mode on engagement, F (2, 244) = 3.30, p = .039, ηp
2 = .026. For explicit 

training there were no differences in engagement across training types, F (2, 123) = 

0.56, p = .573, ηp
2 = .009. For implicit training there was an effect of training type, F 

(2, 121) = 5.42, p = .006, ηp
2 = .082. As highlighted in Figure 4.21, post-hoc Bonferroni 
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tests indicated significantly higher engagement following control training compared 

to spatial scaling training (p = .004).  

 

Figure 4.21. Self-reported levels of engagement following training across training 

modes and training types. Note. * indicates p < .05, ** indicates p < .01, *** indicates 

p < .001. SE = Standard Error 

4.4 Discussion  

The results of this study support previous correlational findings on spatial-

mathematical relations and provide insight into the causal relationships between 

different aspects of spatial and mathematical thinking. It was demonstrated that 

training mental rotation skills and, for the first time, training spatial scaling skills, led 

to gains in spatial and mathematical thinking at 8 years. These gains were present 

following explicit and implicit instruction. Spatial training gains had near, 

intermediate, and far transfer effects. Spatial thinking is therefore one cognitive 

domain in which transfer of cognitive training gains is possible. The gains reported 

reflect the importance of choosing developmentally sensitive, theoretically 

motivated training targets. 
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4.4.1 Near, intermediate and far transfer of gains 

Near transfer: Mental rotation and spatial scaling training led to significant gains in 

mental rotation (d = 0.581) and spatial scaling (d = 0.450) respectively. These findings 

are consistent with previous evidence that spatial skills are malleable in children 

(Uttal et al., 2013). Previous studies typically investigated the malleability of mental 

rotation or other spatial tasks that elicit mental visualisation (Uttal et al., 2013). 

However, this is the first known study to show the malleability of spatial scaling in 

children. 

Intermediate transfer: Significant gains in mental rotation were reported following 

spatial scaling training (d = 0.263) providing evidence of intermediate transfer of 

spatial scaling training to an untrained spatial task. These findings are consistent with 

those of Uttal et al. (2012) who found that spatial training transferred to other 

untrained spatial tasks (Hedges G = .48). However, Uttal et al. (2013) reported that 

intermediate transfer was not evident in all studies and was more likely to occur 

where longer training sessions were included. The short training sessions used in this 

study (3-5 minutes) may explain why no intermediate transfer was reported following 

mental rotation training. As outlined in 4.1.3, one reason for transfer from spatial 

scaling training to mental rotation performance may be that spatial scaling training 

elicited mental visualisation, which is also required for mental rotation tasks.  

Far transfer: Participants who completed mental rotation training had significant 

accuracy gains on Missing Term Problems (d = 0.241). These findings of far transfer 

of gains are consistent with the findings of Cheng and Mix (2014) who demonstrated 

that explicit mental rotation training led to gains in performance accuracy on a similar 

task. As outlined in Chapter 3, Cheng and Mix (2014) propose that these findings are 

due to the fact that children solve arithmetic problems of this type by mentally 

rotating the terms presented, i.e., by restructuring the equation in a more 

prototypical format. For example, 4 + __ = 9, can be mentally rotated to generate the 

equation __= 9 – 4. However, this mental manipulation would require a relatively 

advanced understanding of calculation rules, i.e., that a plus becomes a minus when 

it is moved across the equals sign. Alternatively, children may use mental 
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visualisations to represent these equations pictorially. This equation could be solved 

by visualising 4 blocks in one group and 9 blocks in another, and counting the 

difference between the groups (Lourenco et al., 2018). In this study, no significant 

difference in the efficacy of explicit and implicit mental rotation instruction was 

found. This contrasts the findings of Hawes et al. (2015) who did not report gains on 

Missing Term Problems following implicit mental rotation training. This highlights 

other factors, such as participant engagement during training, as possible 

explanations for the results reported by Hawes et al. (2015). 

For the Number Line Estimation Task, a significant reduction in error was reported 

for children who completed spatial scaling training (d = 0.222). This far transfer of 

gains from spatial scaling to number line estimation may be explained by the fact that 

both tasks require proportional reasoning. If a child was asked to place the number 

27 on a number line ranging from 0 to 100, they might reason that 27 is close to 25, 

which is one quarter of 100. By accurately dividing the number line into quarters, a 

child could place the number 27 on a number line, with relatively high accuracy 

(Newcombe et al., 2015; 2018; Rouder & Geary, 2014). Proportional reasoning is also 

required when comparing two spaces of different sizes (Newcombe et al., 2018). 

Alternatively, the Mental Number Line may be responsible for associations between 

spatial scaling and number line estimation. As outlined in section 1.3.2, this is the 

concept that numbers are represented spatially in the brain with smaller numbers on 

the left and larger numbers on the right (Barsalou, 2008; Lakoff & Núñez, 2000). 

Children may scale between a mental number line and the physical number line 

presented in number line estimation tasks (Dehaene, 1997; Fischer, 2003). Whilst 

spatial scaling has been associated with number line estimation in a number of 

studies (e.g., Mix et al., 2016), this is the first to show that spatial scaling training 

leads to improvements in number line estimation. An unexpected increase in error 

was reported following control training (d = 0.360). This could not be explained by 

motivational factors. Further investigation is needed to understand this effect.  

Performance on the Geometry Task differed across item types. Gains on Geometry 

Symmetry Items were reported across time, but no effects of training mode or 

training type were found. Thus, effects in the experimental training conditions did 
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not differ from those in the control conditions. This suggests significant practice 

effects for this task. In contrast, there was far transfer of training gains from both 

mental rotation (d = 0.308) and spatial scaling (d = 0.314), to Geometry Shape Items. 

From a theoretical perspective, children might use mental visualisation (also used in 

mental rotation tasks and possibly used in spatial scaling tasks) to picture and rotate 

the shapes presented to count the number of sides (faces) on the shape. Improved 

spatial scaling skills may have enabled participants to better use proportional 

reasoning to answer shape items. Instead of counting each individual side (face), 

participants may have first, segmented the shapes presented (all of which were 

symmetrical) into halves or thirds, then counted the sides (faces) in a single segment, 

and finally multiplied this to account for all segments.  

4.4.2 Explicit vs. implicit instruction 

For Geometry Shape Items there was a main effect of training mode. Gains were 

reported following implicit (d = 0.351) but not explicit (d = 0.069) instruction. 

Furthermore, there were no interactions with training type, i.e., those in 

experimental training conditions did not differ from those in the control condition.  

Therefore, gains following implicit instruction may be explained by the mode of 

feedback used in the delivery of implicit compared to explicit training. For Geometry 

Shape Items, participants were asked to count the number of sides (faces) on a shape. 

Errors can easily be made on this task if participants mistakenly count the same side 

(face) twice or if participants forget where on the shape they started counting. The 

use of a checking strategy may improve performance on this task, i.e., checking 

answers and repeating trials to confirm answers before submitting a response. The 

implicit instruction delivered in this study included feedback. Participants were 

required to carefully select responses and revise incorrect responses, thus modelling 

an effective self-monitoring (checking) strategy. This implicit instruction may have 

subsequently increased the likelihood of participants revising and rechecking their 

answers on the Geometry Task prior to submitting a response, which may in turn 

have increased task accuracy. 
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For all other measures, there were no main or interaction effects reported for 

training mode (explicit vs. implicit instruction). This suggests that explicit and implicit 

spatial instruction are largely similar in eliciting near, intermediate and far transfer of 

gains. These findings have importance given the practical considerations of delivering 

explicit and implicit instruction in the classroom. The delivery of instructional videos 

in a group context offers an easily implementable method of improving spatial 

thinking that does not require one-to-one student interaction or advanced IT facilities 

(such as a laptop for every student). This mode of instruction offers a feasible, cost-

effective way of spatialising the primary school classroom.  

4.4.3 Motivational Factors  

There were no significant differences in participants’ expectations of training across 

different training modes (ηp
2 = .013) or training types (ηp

2 = .002). There were no 

significant interactions between expectations and performance gains following 

training for any tasks. The similarities in expectations reported across groups and lack 

of significant interactions between expectations and performance gains, increase the 

reliability of the causal inferences made in this study (Boot et al., 2013).  

For engagement, there were no differences reported for explicit training between 

training types. For implicit training, there was significantly higher engagement for 

participants in the control group compared to those who completed spatial scaling 

training. Participants who received implicit spatial scaling instruction completed 

additional trials of the Spatial Scaling Task, a task that they had previously completed 

as a pre-test at Time 1. For the implicit control group, the task completed was new, 

i.e., not completed at pre-test. As such, participants who completed spatial scaling 

training may have found their training less engaging as it was not novel. Although a 

significant difference in engagement was found for implicit instruction, the direction 

of the difference shows that the performance gains reported for spatial and 

mathematics skills were not attributable to engagement with training alone. As 

control training did not lead to training effects on any of the outcome measures, 

levels of engagement did not superficially align with training effects. 



 

204 
 

4.4.4 Implications, future directions and limitations 

This study provides some of the first evidence that the association between spatial 

and mathematical performance reflects a causal influence of spatial ability on 

mathematics performance. The findings determine that the observed correlations 

between spatial and mathematical thinking cannot be solely explained by a common 

cause acting on both variables. The causal inferences drawn are further strengthened 

by the fact that this study controlled for motivational factors. Thus, it was possible to 

determine the extent to which cognitive training gains are attributable to training, 

over and above differences in participant engagement and expectation. Although a 

priori power analysis were completed, the results should be interpreted in light of 

the low power achieved for the ANOVA completed using the Number Line Estimation 

Task. Due to the relatively small effect size of this result, the power of this analysis 

was 0.68, below the recommended level of 0.8 (Cohen, 1988). Future research should 

replicate these findings using a larger sample.  

A second limitation of this study was the short interval (2 minutes) between training 

and post-testing. The training completed in this study may have led to priming of 

certain strategies for task completion, and not conceptual change. However, even if 

this is the case, this is useful knowledge for teachers, given that priming led to 

enhanced performance on some mathematics tasks. From the results reported, it is 

not known whether training gains persisted. Further research is needed to investigate 

the durability of these gains. Importantly, the findings of other studies suggest that 

there is durability of spatial training gains. Uttal et al. (2013) compared spatial 

training studies with post-testing immediately following training, to studies that wait 

days, weeks or even months until post-testing. Uttal et al. (2013) found that spatial 

training gains were durable and that the timing of post-testing did not significantly 

influence the size of training gains reported following spatial training. Although 

priming cannot be ruled out, similarly to Cheng and Mix (2014), this study 

demonstrates shared cognitive processing in the completion of spatial and 

mathematics tasks, that is subject to modification through training. By extension, it 

is hypothesised that the gains reported following training in this study are not merely 

attributable to priming.  
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Due to the short interval between training and post-testing, findings that spatial 

training improves mathematics outcomes, suggest that spatial skills play a role in the 

execution of mathematics tasks. That is not to say that spatial skills are not important 

in the acquisition of novel mathematical skills (Mix et al., 2016). However, in this 

study the time difference between training and post-testing was too short for new 

mathematics skills to be learnt. Thus, transfer of gains in this study suggests that 

spatial skills are useful in the completion of mathematics tasks. To investigate this 

research question further, future studies should investigate the long term effects of 

spatial training on the acquisition of new mathematics skills.  

Third, this study did not investigate dosage effects, i.e., whether differences in the 

duration of training or the number of training sessions influenced training gains. In 

this study, the dosage of training for both explicit instruction (3 to 4 minutes) and 

implicit instruction (3-6 minutes) was relatively short. This demonstrated that even 

short bouts of spatial training can lead to large transfer of gains to untrained domains. 

Future research is needed to explore whether the size of training gains is influenced 

by longer training sessions, or by repeated training over a series of training sessions.  

4.4.5 Conclusion 

This study demonstrated near, intermediate and far transfer of gains to both spatial 

and mathematical domains, following training in mental rotation and spatial scaling 

training at 8 years. Not only do these findings highlight the malleability of spatial 

skills, they also call attention to spatial ability as one domain in which cognitive 

training can lead to transfer effects. Explicit and implicit instruction led to similar 

gains in spatial and mathematical domains (except for geometry items). This 

emphasises the potential of explicit instruction as a practical means of eliciting far 

transfer of spatial training gains in the primary school classroom. The findings also 

highlight the importance of ensuring that the choice of cognitive training be 

determined by an understanding of the underlying cognitive mechanisms of training 

targets. In this study, mental visualisation was proposed as an underlying cognitive 

mechanism for mental rotation training, and proportional reasoning was proposed 

as an underlying cognitive mechanism for spatial scaling training. The gains reported 
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highlight the importance of choosing task and age sensitive targets for spatial 

training. In turn, evidence from this training study clearly demonstrates the causal 

contribution of cognitive processes to mathematical cognition that was previously 

only inferred based on correlational evidence.   



 

207 
 

Chapter 5 General Discussion 

5.1 Thesis Overview 

Studies in adult and pre-school populations have reported a significant role for spatial 

thinking in mathematics outcomes (Verdine et al., 2014; Wai et al., 2009). However, 

few studies have attempted to assess transfer of spatial training gains to 

mathematics in children, and those that have report mixed success (Cheng & Mix, 

2014; Hawes et al., 2015; Lowrie et al., 2017). Most studies do not address the fact 

that spatial and mathematical thinking are multi-dimensional constructs (Uttal et al., 

2013; von Aster & Shalev, 2007). Therefore, variations in the efficacy of training 

studies, and differences in spatial-mathematical associations reported across studies, 

may be attributable to differences in the measures used across studies. It is unlikely 

that all spatial and mathematical sub-domains are related to the same degree and 

fine-scaled evaluation of spatial skills and their relations to particular mathematical 

sub-domains is an essential precursor to identifying effective training approaches. 

Findings to date are also limited by the fact that few studies explore the relationship 

between spatial and mathematical thinking in primary school children, even though 

spatial-mathematical relations may vary through development. Exploring the 

developmental aspects of the relationship would facilitate a better understanding of 

not just if, but why significant correlations are often reported between spatial and 

mathematics constructs. This understanding would increase the likelihood of 

developing successful training interventions and would enable determination of the 

causal relationship between different spatial and mathematical sub-domains.  

The experimental studies presented in this thesis aimed to elucidate the relations 

between spatial and mathematical skills across development from 6 to 10 years. As 

previous literature in this domain does not suggest a linear coupling of all spatial and 

mathematical skills, the aims of this thesis were to provide detailed developmental 

profiles of spatial-mathematical associations, across a range of different spatial and 

mathematical sub-domains, accounting for other known predictors of mathematics. 

Throughout this thesis, the role of different spatial skills as predictors of mathematics 

was compared by classifying spatial skills using the Uttal et al. (2013) typology of 
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spatial thinking. To enhance the practical applications of the findings, the role of 

spatial skills for mathematics was explored in the context of each of von Aster and 

Shalev's (2007) mathematical sub-domains (Chapter 3), and in the context of 

classroom-based mathematics performance (Chapter 2).  

To explore differences in spatial-mathematical relations across developmental age, 

the role of spatial skills for mathematics outcomes was investigated from both 

longitudinal (Chapter 2) and cross-sectional (Chapter 3) perspectives. The importance 

of spatial thinking at the age at which children first begin primary school (5 years) was 

investigated (Chapter 2), as well as the role of spatial thinking throughout primary 

school, from 6 to 10 years (Chapter 3). Differences in the associations between spatial 

and mathematical skills for children of different genders and those in different SES 

groups were also assessed (Chapter 2). The findings of Chapter 2 and 3 provide 

detailed information on the nature of spatial-mathematical associations in primary 

school children. These outcomes formed the basis on which a spatial training 

intervention was developed (Chapter 4). The study presented in Chapter 4 compared 

the use of explicit and implicit instruction for training spatial skills at 8 years, and 

investigated the transfer of spatial training gains to other spatial and mathematical 

domains. This served to not only determine the malleability of spatial thinking in 

primary school aged children, but also to shed light on the causal relationship 

between specific spatial and mathematical outcomes.  

This discussion chapter provides an overview of the main results reported in the 

experimental chapters of this thesis and outlines the theoretical conclusions drawn 

from these findings. The discussion considers the profiles of spatial task performance 

presented across Chapters 2 to 4 from a developmental perspective, in the context 

of the Uttal et al. (2013) typology of spatial thinking. The findings on spatial-

mathematical relations reported in Chapters 2 to 4 are discussed. In particular, the 

discussion outlines the selectivity of the reported relations to specific spatial and 

mathematical sub-domains, and the sensitivity of the reported relations to 

developmental age. Arguments are put forward to support proportional reasoning, 

active processing and form perception, as three underlying mechanisms that may 

explain the observed spatial-mathematical relations. Expanding on the associational 
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findings reported in Chapter 2 and Chapter 3, inferences are made on the causal 

relationship between spatial and mathematics skills, based on the results of the 

spatial training study presented in Chapter 4.  

In this discussion the emerging conclusions are framed in the context of their 

theoretical, educational and economic implications. Finally, the limitations of this 

research are considered, and future research directions and emerging questions are 

explored. 

5.2 Overview of findings  

The findings of this thesis provide clarification of the associations between spatial 

and mathematical skills in childhood. Each chapter provides complementary insights 

into different aspects of the spatial-mathematical relationship.  

Chapter 2 fine-tunes the current understanding of the complex relationship between 

spatial, mathematical and vocabulary skills. Without controlling for IQ, previous 

studies have been unable to elucidate whether there is a direct relationship between 

spatial and mathematical skills or whether these associations are attributable to the 

overlapping language demands of the tasks used, or to IQ (Alloway & Alloway, 2010; 

Mayes et al., 2009). Although language skills are a blunt measure of IQ, by comparing 

models that include and exclude language skills as predictors of mathematics, it was 

possible to estimate the true proportion of variation in mathematics explained by 

spatial skills in childhood. Spatial skills at 5 and 7 years explained between 8.8% 

(conservative result) and 22.6% (more liberal result) of the variation in mathematics 

achievement, based on models that included or excluded shared variance with 

language skills respectively. The models exploring spatial-mathematical relations in 

Chapter 2 also controlled for demographic factors including gender, ethnicity and 

SES. For the first time, it was determined that spatial thinking remains a significant 

predictor of mathematics, even after controlling for these demographic factors. 

Taken together, given the large-scale, generalisable nature of the study population in 

Chapter 2, it can be concluded with some confidence that observed spatial-

mathematical associations in childhood do not merely reflect the underlying IQ 
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demands of the tasks used, or differences in the demographic profiles of the 

participants tested. 

The longitudinal design of the study in Chapter 2 allowed investigation of the role of 

spatial thinking for mathematics over an important developmental age range, the age 

at which children first enter formal schooling. This study provides the first evidence 

that intrinsic-dynamic spatial skills are significant concurrent and longitudinal 

predictors of general mathematics achievement at 5 and 7 years respectively. When 

compared to language ability, spatial skills were a weaker concurrent predictor of 

mathematics at 7 years. In contrast, spatial skills at 5 years were a stronger 

longitudinal predictor of mathematics than language skills. This suggests a particular 

longitudinal connection between spatial skills and mathematics performance, which 

may reflect the fact that intrinsic-dynamic spatial skills have a greater role for 

mathematical outcomes at earlier stages in development. This finding is interesting 

as it highlights a specific, positive role for early spatial skill training for later 

mathematics achievement. It supports previous findings that spatial thinking plays a 

greater role for the acquisition of new mathematics skills, compared to practiced 

ones (Ackerman, 1988; Uttal & Cohen, 2012). At 5 years, children in the UK begin 

formal schooling and thus are faced with large amounts of new mathematics 

material. The findings of this study support the concept that children with strong 

spatial skills at 5 years are better able to learn new mathematical concepts, which in 

turn influences their later mathematical performance.  

These findings were extended in Chapter 3 to investigate the continuing role of 

spatial thinking for mathematics throughout the later primary school years. In this 

chapter, developmental profiles of spatial thinking across each of Uttal et al.’s (2013) 

spatial sub-domains were provided for children in consecutive age groups from 6 to 

10 years. Performance accuracy increased across all spatial sub-domains with 

increasing age, with some subtle differences between intrinsic skills (disembedding 

and mental rotation) and extrinsic skills (spatial scaling and perspective taking). 

Intrinsic spatial skills showed rapid early development that slowed after age 8, and 

for some tasks (mental rotation) started to plateau. Extrinsic skills showed more 

gradual development that was reflected by a steady increase in performance from 6 
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to 10 years with no significant differences in performance between consecutive age 

groups. These profiles for children across the primary school years are the first 

charting spatial development across each of Uttal et al.’s (2013) sub-domains in 

children of this age. Detailing the developmental trajectories of each spatial sub-

domain is informative to establishing an understanding of the relational structure of 

these skills. It also provides a set of benchmarks against which spatial development 

in atypical populations, and the development of other tasks (including both spatial 

and other cognitive tasks), can be compared. These developmental findings should 

also be interpreted in the context of the individual differences that were reported in 

spatial task performance at all ages. Environmental, biological and cultural factors 

may explain the differences in spatial task performance reported between children 

of the same age. 

Having identified the developmental trajectories of these spatial skills, the role of 

each of Uttal et al.’s (2013) spatial sub-domains as predictors of mathematics were 

compared. Given the role of language skills in explaining mathematics outcomes that 

was outlined in Chapter 1, the models presented in this chapter also controlled for 

language ability. Overall, spatial skills explained 5 to 14% of the variation across three 

mathematics performance measures (standardised mathematics skills, ANS skills and 

number line estimation skills). Spatial scaling (extrinsic-static sub-domain) was 

identified as a particularly important predictor of all mathematics outcomes while 

disembedding (intrinsic-static sub-domain) was also a predictor of standardised 

mathematics performance. It is worth noting that there are few spatial scaling tasks 

suitable for administration to a wide age range of children in middle childhood. The 

Spatial Scaling Task designed for use in Chapter 3 of this thesis offers the first age-

appropriate measure of spatial scaling for children aged 6 to 10 years. The study 

presented in Chapter 3 also found that some spatial-mathematical relations were 

developmentally sensitive and showed variation across age groups from 6 to 10 

years. Mental rotation (intrinsic-dynamic spatial skill) was a predictor of standardised 

mathematics performance and 0-10 number line estimation at 6 and 7 years only. For 

the 0-1000 Number Line Estimation task, spatial scaling and disembedding were 

significant predictors at 7, 8 and 9 years, but not at 10 years. However, this was 
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possibly due to ceiling effects in performance at 10 years and should be interpreted 

cautiously. Taken together, some spatial skills were significant predictors of 

mathematics across all age groups while others predicted mathematics outcomes in 

a task and age specific manner.  

The findings of Chapters 2 and 3 were used to inform the design of the spatial training 

study presented in Chapter 4. Given the role of spatial scaling for mathematics across 

different tasks and age groups, this skill was chosen as a training target. The reported 

associations between mental rotation and mathematics in younger children, its use 

in previous studies, and the proposed theoretical explanations of associations 

between mental rotation and mathematics, made it suitable to be included as a 

training target. In this study, spatial training in both mental rotation and spatial 

scaling was administered and was effective in eliciting near transfer of gains. Spatial 

scaling training led to gains in spatial scaling performance, while mental rotation 

training led to gains in mental rotation performance. Although previous findings 

suggest that spatial thinking (intrinsic-dynamic sub-domain) is malleable in childhood 

(Uttal et al., 2013), these findings demonstrate, for the first time, the malleability of 

spatial scaling in children of this age. Intermediate transfer was reported from spatial 

scaling training to mental rotation performance; however, no similar transfer was 

reported between mental rotation training and spatial scaling performance. Far 

transfer of gains from spatial training to mathematics was task dependent. Mental 

rotation training led to gains in Missing Term Problems, spatial scaling training led to 

gains in accuracy on the Number Line Estimation Task, and both types of spatial 

training (mental rotation and spatial scaling) led to accuracy gains on Geometry 

Shape Items.  

In Chapter 4, the effectiveness of implicit and explicit instruction as methods of 

training spatial thinking were compared. For most outcomes (except for the 

Geometry Task), there was no difference in the effectiveness of implicit (practice with 

feedback) compared to explicit instruction (instructional videos). For Geometry 

Shape Items, only implicit instruction rendered significant gains. No difference 

between implicit and explicit instruction was found for the spatial measures, Missing 

Term Problems or the Number Line Estimation Task. The study outlined in Chapter 4 
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provides some of the first evidence that explicit instruction using instructional videos 

can lead to improvements in spatial thinking with some transfer to mathematical 

domains. From a practical perspective, the instructional videos designed for use in 

this thesis, offer an easily implementable way of introducing spatial thinking into the 

classroom.  

This training study is the first to explore the transfer of spatial training gains to 

mathematics while also controlling for motivational factors. There were no between 

training group differences in participants’ expectations of training (measured pre-

training). For implicit training, engagement was higher for participants in the control 

group compared to those who completed spatial scaling training (measured post-

training). However, as outlined in Chapter 4, control training did not lead to training 

effects. Therefore, levels of engagement did not align with training effects and cannot 

explain the gains reported. In summary, spatial training led to near (to the specific 

spatial skills trained), intermediate (to untrained spatial skills) and far (to 

mathematics domains) transfer of gains. These gains were broadly similar for explicit 

and implicit instruction, except for Geometry Shape Items. Furthermore, the gains 

reported could not be attributed to motivational factors.  

5.3 Theoretical conclusions  

Overall, this thesis offers convincing evidence that spatial and mathematical thinking 

are associated. The complementary perspectives presented in each chapter provide 

refinement of the current understanding of spatial-mathematical relations leading to 

three main theoretical conclusions. First, relations between spatial and mathematical 

skills are sub-domain specific. Second, associations between spatial and mathematics 

skills are sensitive to developmental age. Third, spatial skills have a causal role in 

mathematical performance. Several other secondary conclusions can also be drawn 

from the findings presented in this thesis. These conclusions relate to the role of 

demographic and gender differences in spatial thinking, and the degree to which 

spatial skills uniquely explain mathematics performance, when considered in the 

context of language ability. Each of these conclusions are discussed in turn.  
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5.3.1 Specificity of spatial-mathematical relations 

It has previously been argued that a single underlying cognitive mechanism, such as 

the Mental Number Line, explains all spatial-mathematical relations (Barsalou, 2008; 

Lakoff & Núñez, 2000). If this were the case, one would expect that different spatial 

skills would be similarly predictive of mathematics outcomes, as each association 

would be underpinned by the same process. This pattern of performance is not 

supported in this thesis, as not all spatial sub-domains were associated with 

mathematics to the same degree (Chapter 3). Furthermore, spatial training did not 

lead to uniform transfer of gains to all mathematics domains (Chapter 4) as would be 

expected if a single process underpinned all spatial-mathematical relations. For 

example, mental rotation training did not confer benefits for the Number Line 

Estimation Task and spatial scaling training was not beneficial for Missing Term 

Problems. Due to the reported selectivity of spatial-mathematical relations and the 

task specific transfer of spatial training gains to mathematics, no single known 

explanation is sufficient to explain the relationship between spatial and 

mathematical thinking. Instead, it is proposed that the underlying cognitive processes 

governing observed spatial-mathematical associations differ across mathematical 

and spatial sub-domains. Proportional reasoning, active processing, and form 

perception, are proposed as candidate mechanisms that may explain the spatial-

mathematical relations reported in this thesis. For other spatial and mathematics 

skills, differing underlying mechanisms may be responsible. These conclusions are not 

intended to dispute the existence of a mental number line, but imply that no single 

known explanation, including the Mental Number Line, can explain the sub-domain 

specific results reported here and in other similar studies (Mix et al., 2016).  

The thesis findings emphasise that spatial scaling (extrinsic-static sub-domain) is a 

particularly strong predictor of mathematics skills, accentuating the need to 

understand the mechanisms of this specific spatial-mathematical association. The 

findings support the theoretical prediction that proportional reasoning is the shared 

mechanism underpinning relations between spatial scaling and mathematics. As 

previously outlined, proportional reasoning is the ability to encode intensive 

quantities such as proportions or ratios. In spatial scaling tasks, proportional 
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reasoning is required to assess the relative distances between two differently sized 

spaces (Newcombe et al., 2018). In this thesis, spatial scaling was only associated with 

mathematics skills that are also proposed to have proportional reasoning 

requirements. For the ANS Task, proportional reasoning facilitates ordinal 

comparisons of quantities. Mapping numbers onto a number line, which is a non-

discrete (intensive) way to represent numbers, also requires proportional reasoning. 

For general mathematics achievement, proportional reasoning may be required for a 

range of tasks including reasoning about fractions and reading graphs. However, 

proportional reasoning is not theoretically useful for mathematics tasks that use 

extensive (exact) quantities such as the Missing Term Problems outlined in Chapter 

4. In support of this, spatial scaling training did not lead to gains in Missing Term 

Problems. The patterns of performance reported in this thesis reflect and support 

these theoretical predictions, lending support to proportional reasoning as the 

candidate mechanism underpinning the role of spatial scaling for mathematics in 

childhood populations.  

Active processing using mental visualisations was theoretically proposed as the 

underlying cognitive mechanism explaining relations between spatial tasks that 

require transformations, and mathematics outcomes. Intrinsic-dynamic spatial tasks 

including the Pattern Construction Task (Chapter 2) and the Mental Rotation Task 

(Chapters 3 and 4), and extrinsic-dynamic spatial tasks including the Perspective 

Taking Task (Chapter 3), each rely on mental transformations. Significant associations 

were found between the Pattern Construction Task (Chapter 2) and the Mental 

Rotation Task (Chapter 3), and standardised mathematics performance. It is 

proposed that within standardised mathematics tests, several items may be 

answered by using mental visualisation strategies. Questions presented as word 

problems may be solved using mental visualisation to imagine and cognitively 

manipulate the problem in pictorial format. Similarly, in multi-step mathematics 

problems, mental visualisations may be used to plan the steps needed to solve a given 

question. Mental rotation skills were also associated with performance on Missing 

Term Problems (Chapter 4). As outlined in Chapter 4, for Missing Term Problems, 
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children may use mental visualisations to represent the equations presented 

pictorially.  

Mental rotation performance was not a significant predictor of other mathematics 

outcomes including number line estimation and ANS skills, which are not 

theoretically predicted to recruit mental visualisation strategies (Chapter 3). The 

findings in this thesis provide evidence for the theoretical prediction that mental 

visualisations underpin associations between some spatial and mathematics tasks. 

However, it is noteworthy that not all tasks that require mental visualisation were 

significant predictors of mathematics. There were no significant associations 

between the Perspective Taking Task and mathematics skills. Thus, it is concluded 

that there are distinctions between the roles of different types of mental visualisation 

for mathematics. The implications of these findings are that object-based 

transformations such as those required for mental rotation are important for 

mathematics, while mental visualisations requiring imagined self-movement (e.g., 

perspective taking) do not appear to underpin spatial-mathematical relations. This 

distinction should be considered in the design of training studies targeting mental 

visualisation skills. 

Finally, form perception, the ability to distinguish shapes from a more complex 

background or to break more complex pictures into parts, was also predicted to 

explain associations between certain spatial and mathematics tasks. This prediction 

was supported in this thesis by the finding that disembedding skills (intrinsic-static 

sub-domain) predicted both number line estimation and standardised mathematics 

performance (Chapter 3). Form perception is theoretically useful for identifying 

shapes and symbols, which is required for disembedding tasks like the CEFT. In the 

Number Line Estimation Task, form perception is also required for identifying 

numbers, in addition to interpreting demarcations on the number line itself (e.g., 

start and end points). For standardised mathematics, it is proposed that form 

perception skills allow individuals to distinguish symbols, such as + and × symbols, 

interpret charts and graphs, and understand the spatial relations between symbols 

and numbers in multi-digit numbers. The significant associations described between 
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disembedding and certain mathematics tasks implies that form perception is an 

underlying mechanism that explains spatial-mathematical relations. 

5.3.2 Developmental sensitivity of spatial-mathematical associations  

This thesis has demonstrated that spatial thinking plays an important role for 

mathematics on entry into formal education and continues to be a significant 

predictor of mathematics across consecutive age groups in the primary school years. 

There is also reason to believe that the role of some spatial sub-domains as a 

predictor of mathematics varies through development from 6 to 10 years. As 

demonstrated in Chapter 2, intrinsic-dynamic spatial skills are a stronger longitudinal 

predictor (at 5 years) of later mathematics outcomes (at 7 years) when compared to 

language skills. However, this is not the case at age 7. Although it cannot be 

determined definitively, this suggests that the relative role of intrinsic-dynamic skills, 

compared to language skills, may be greater in younger childhood. Furthermore, as 

outlined in Chapter 3, mental rotation (intrinsic-dynamic sub-domain) is a predictor 

of mathematics for younger children (6 and 7 years) but not older children (8, 9, 10 

years). Again, this suggests that the relative role for intrinsic-dynamic spatial skills in 

explaining mathematics outcomes decreases with age. These findings can be 

interpreted in light of other studies in this domain. Mix et al. (2016; 2017) also 

reported differential associations between spatial and mathematics skills at different 

ages and highlighted an age-specific role for mental rotation at 6, but not at 9 or 12 

years. Taken together, it can be concluded that there is a developmental transition 

period during which there is a change in the impact of spatial skills on mathematics 

ability. Although the exact timing of this period is likely to vary between children, it 

is proposed to occur between the ages of 7 and 8.5 years, and is defined by a 

reduction in the role of intrinsic-dynamic spatial skills for mathematics performance.  

These findings may be explained in several ways. First, certain spatial skills may play 

a greater role for the completion of novel, compared to practiced mathematics skills 

(Ackerman, 1988; Uttal & Cohen, 2012). As described above, intrinsic-dynamic spatial 

skills are proposed to require mental visualisation processes. These processes may 

be particularly useful in providing scaffolding during the learning of novel 
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mathematical concepts. In the early primary school years, children are presented 

with substantial amounts of new mathematical material, compared to later years. 

Children with strong mental visualisation skills (reflected by high performance on 

intrinsic-dynamic spatial tasks) may apply these skills when learning novel 

mathematical concepts, which in turn may improve their mathematics performance. 

Second, through development, children may acquire new, more efficient strategies 

for learning and completing mathematics tasks. For example, children may rely more 

on memory techniques, or WM strategies, rendering the use of mental visualisation 

strategies redundant. Finally, the use of mental visualisation strategies may be 

constrained to certain sub-components of mathematics. As children get older, the 

types of mathematical concepts and tasks that they are required to learn and 

complete, may not be amenable to the use of mental visualisation. Having strong 

mental visualisation capabilities would not be expected to enhance an individual’s 

ability to rote learn mathematical times tables for example, something that may be 

required in the later primary school years. To conclude, there is evidence that some 

spatial skills, particularly intrinsic-dynamic skills, have a particularly important role 

for mathematics in the early primary school years. However, there is evidence that 

this role decreases with developmental age.  

5.3.3 Causal role of spatial skills on mathematics  

The positive impact of spatial training on both spatial tasks and mathematical sub-

domains provides evidence for a causal influence of spatial thinking (mental rotation 

and spatial scaling) on mathematics performance in children (see Figure 5.1). This 

conclusion is further strengthened by the fact that the training study outlined in this 

thesis controlled for motivational factors including expectations of, and engagement 

with training. Therefore, the training gains reported are not attributable to 

motivational factors alone. 

 This causal relationship between spatial skills and mathematics can be inferred 

because a manipulation in one variable (spatial skill) led to changes in the other 

variable (mathematics skill) (Pearl, 2000). It may be argued that a common cause such 

as a genetic influence, IQ, language skills or other cognitive skills such as WM may be 
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influential for both spatial and mathematics outcomes. However, the findings 

reported in Chapter 4 indicate that the observed correlations between spatial and 

mathematical thinking cannot solely be explained by a common cause acting on both 

variables. As shown in Figure 5.1, without a direct cause between spatial and 

mathematical thinking, intervening on spatial skills would not lead to changes in 

mathematical outcomes. Thus, while a common cause such as a general cognitive 

factor or neural features may also exist between spatial and mathematical thinking 

(Oberauer, 2016), this study identified a specific, direct causal effect of spatial skills 

on mathematics performance.  

Furthermore, these findings do not preclude a causal role of mathematical thinking 

on spatial skills, i.e., a bidirectional relationship (feedback loop) may exist between 

spatial and mathematical thinking. From a practical perspective, finding novel 

methods of improving mathematical thinking in children is an educational priority 

(National Audit Office UK, 2018) and this study aimed to determine the causal effect 

of spatial skills on mathematics. However, to establish whether a bidirectional 

relationship exists between spatial and mathematics skills, future research is needed 

investigating the effects of training mathematics skills on spatial performance.  

 

Figure 5.1. The causal relationship between spatial and mathematical thinking. 

Note. Established and speculative causal relations are shown in orange and grey 

respectively. 
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5.3.4 Other theoretical conclusions  

Although not a primary aim of this thesis, the results reported further extend the 

current understanding of whether there is variation in spatial skill across different 

demographic groups and between children of different genders. In Chapter 2, 

significant differences in spatial task performance at both 5 and 7 years were 

reported for children in different SES groups (income-based quintiles). Those from 

higher SES backgrounds outperformed their lower SES counterparts. Small to 

medium sized effects were reported. One factor that may contribute to these 

differences is that children from lower SES households may engage less regularly in 

spatial-related play, as they may have fewer resources and opportunities to do so. 

This may reduce their spatial experiences and subsequently lower their spatial task 

performance. This proposal is supported by work completed during the course of this 

PhD, in parallel with this thesis, that shows that children from lower SES groups have 

less regular engagement in early numeracy activities (including spatial activities such 

as block building) (Clerkin & Gilligan, 2018). Taken together, children from lower SES 

backgrounds have reduced spatial performance that may be attributable to early 

childhood experiences of spatial and numerical play. Further research is required to 

explore this hypothesis. It is also noteworthy that there were no significant 

interactions between SES and spatial skills in predicting mathematics outcomes. This 

suggests that although there are differences in spatial abilities across SES groups, the 

relationship between spatial and mathematical skills does not differ across groups. 

This shows that spatial skills are similarly important predictors of mathematics for 

children from high and low SES groups, a fact, as outlined later, that has important 

implications for the design of training studies. 

It has remained an issue of debate whether there are gender differences in spatial 

ability in childhood. Many studies have outlined a male advantage in spatial task 

performance in the pre-school and primary school years (e.g., Carr et al., 2008; Casey 

et al., 2008). However, these differences may be attributable to gender biases in the 

types of tasks traditionally used to measure spatial thinking. More recently, and in 

contrast with previous findings, other studies have reported no significant male 

advantage on spatial measures (e.g., LeFevre et al., 2010; Manger & Eikeland, 1998; 



 

221 
 

Neuburger et al., 2011). All three experimental chapters in this thesis investigated 

the role of gender differences in spatial thinking. For the majority of tasks 

administered as part of this thesis, there were no significant gender differences in 

spatial performance. The only significant gender differences reported for spatial task 

performance favoured females (Chapter 2), and the effect sizes for these differences 

were small. Given the diversity of spatial tasks assessed, and the age range of children 

tested, the findings reported in this thesis add considerable weight to the argument 

against a male advantage in spatial thinking in childhood. Moving beyond a main 

effect of gender on spatial thinking, Chapter 2 also explored differences in the 

predictive role of spatial thinking for mathematics for boys and girls. Based on a 

nationally representative sample of children in the UK, the findings showed no 

interaction between spatial thinking and gender in predicting mathematics skills. This 

shows that spatial skills are similarly important predictors of mathematics for boys 

and girls, which as outlined for different SES groups above, has important 

implications for designing training studies.  

Taken together, findings in this thesis provide evidence that individual variation in 

spatial thinking is greater than the variation explained by gender differences. This 

emphasises a need to move beyond gender-focused approaches to understanding 

differences in spatial thinking. Instead, possible targets for future intervention 

studies include the role of home-based experiences in the development of spatial 

skills. For example, the role of early play with spatial toys (Jirout & Newcombe, 2015; 

Ramani, Zippert, Schweitzer, & Pan, 2014) and the influence of exposure to spatial 

language (Pruden, Levine, & Huttenlocher, 2011). There is a need to elucidate what 

other factors, both genetic and environmental, shape the development of early 

spatial abilities.  

This thesis also disentangles the relative roles of spatial and language skills in 

explaining mathematics outcomes. Although no measures directly measuring IQ were 

administered in this thesis, IQ is bluntly estimated by exploring shared variation 

between spatial, mathematics and language skills. It has been suggested previously 

that shared variance between these skills may be underpinned by their shared IQ 

demands (Alloway & Alloway, 2010; Mayes et al., 2009). In Chapter 2, it is apparent 
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that some variation in mathematics is attributable to shared variance between spatial 

and language skills. This shared variation may be due to the overlapping IQ demands 

of the tasks used. It is also evident that spatial thinking explains unique variation in 

mathematics ability beyond language skills. This variation is unlikely to be 

attributable to IQ demands, as if it were, it would also be anticipated to overlap with 

language skills. These findings are interpreted to conclude that observed spatial-

mathematical associations in childhood do not simply reflect underlying IQ demands 

of the skills measured. This is further supported by the study in Chapter 3, which 

showed that spatial skills continue to explain a significant proportion of the variation 

in mathematics outcomes even after controlling for language skills. The findings 

identify the distinct and overlapping contributions that language and spatial skills 

play in explaining mathematics achievement, highlighting an important role for both 

skills.  

5.4 Implications  

5.4.1 Educational implications 

The evidence presented in this thesis strongly advocates for spatialisation of primary 

school mathematics curricula. Unfortunately, as outlined by Davis et al. (2015), 

mathematics curricula do not typically focus on spatial thinking. The current UK 

mathematics curriculum at Key Stage 2 explicitly refers to spatial thinking only once, 

in reference to the representations of large numbers (UK Department for Education, 

2013). Hence, the findings reported here suggest that there is a need for 

spatialisation of the primary school classroom such that children are taught how to 

read diagrams and graphs, encouraged to sketch and draw, exposed to spatial 

language, and given hands-on opportunities to manipulate and explore with 3D 

materials (Newcombe, 2013). Enhancing spatial thinking in children may have both 

direct and indirect benefits for attainment. Given the ease with which they can be 

delivered, the findings from this thesis highlight the potential of instructional videos 

(explicit instruction) as a practical tool for spatialising the classroom.  

In the Programme for International Student Assessment (PISA) study, an 

international assessment of mathematics, reading and science, at 15 years students 
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in England (where the studies presented in Chapters 2, 3 and 4 were completed) 

perform at the international average (Jerrim & Shure, 2016). The mathematics scores 

of children in England have not increased significantly since 2006, which is worrying 

given that significant gains have been reported for other European countries over the 

same period of time, e.g., Portugal (Jerrim & Shure, 2016). In the most recent wave 

of the Trends in International Mathematics and Science Study (TIMSS), at 10 years 

students in England performed above the international average in mathematics. 

However, they had lower performance on the Geometry, Shapes and Measures sub-

domain compared to other mathematics content domains including Number and 

Data Display (Greany et al., 2016). At 14 years, performance on the Geometry sub-

domain was also significantly lower than overall mathematics performance (Greany 

et al., 2016). Comparable findings were reported for other countries in the UK. These 

findings are noteworthy as they highlight geometry and shape sub-domains of 

mathematics as mathematical content areas that children in the UK find challenging. 

Superficially, there are clear links between geometry sub-domains, where there is an 

emphasis on space and shape, and spatial skills. This supports the argument for 

targeting spatial thinking as a means of increasing mathematics attainment in the UK.  

The introduction of spatial training and the use of spatial tools in mathematics 

classrooms may be a novel way of improving mathematics performance on 

international assessments, particularly in space and shape related domains. Other 

collaborative work completed during this PhD also highlighted a role of spatial 

thinking for science outcomes. More specifically, mental folding (an intrinsic-dynamic 

spatial task suitable for older children) predicted physics and chemistry outcomes, 

spatial scaling predicted chemistry and biology outcomes, and disembedding 

predicted chemistry outcomes, for children at 8 to 11 years (Hodgkiss et al., 2018). 

Although further research is required to elucidate the causal relations between 

spatial thinking and science, given the associations reported in Hodgkiss et al. (2018), 

it is possible that training spatial skills may also have benefits for science outcomes. 

Therefore, integrating spatial thinking into STEM classrooms may offer a novel way 

of improving students’ academic outcomes in mathematics and science. Beyond 

direct benefits to individual student outcomes, raising mathematics and science 
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attainment using spatial thinking may in turn improve the national standard of 

mathematics and science performance on an international stage. 

As outlined in Chapter 2, no significant interactions were reported between gender 

and spatial thinking, nor SES and spatial thinking, in predicting mathematics 

outcomes. Given the size of the sample tested in Chapter 2, these findings offer 

convincing evidence that there are not differential relations between spatial and 

mathematics skills for children of different genders or for those in different SES 

groups. This suggests that targeting future training studies to distinct SES groups, or 

to males or females specifically, is not necessary. Thus, while there is evidence that 

the relations between spatial and mathematical skills are developmentally sensitive 

(Chapter 3), spatial-mathematical relations appear to be consistent across 

demographic groups. As such, it is proposed that the benefits of spatial training are 

not limited to specific sub-groups of children. From an educational perspective, this 

greatly enhances the ease with which spatial training tools can be designed and 

tested. It also increases the practicality of introducing spatial thinking into the 

classroom.  

Taken together, the findings presented in this thesis have implications for educational 

outcomes at both an individual level and a national level. This thesis proposes that 

spatial training be introduced into the primary school classroom for all children as a 

means of improving spatial and mathematical thinking. The extended benefits of this 

may be an increase in student attainment on international mathematics assessments. 

There is some cross-sectional evidence that spatial training may also confer benefits 

to science domains.  

5.4.2 Economic and societal implications 

Outside the classroom, improving mathematics (and other STEM outcomes) may 

have a wider economic impact. As outlined in Chapter 1, many employers report 

difficulties recruiting suitably qualified STEM graduates (CBI, 2013) and improving 

STEM skills is a pressing economic priority (CEBR, 2015). Figures from the National 

Audit Office UK (2018) estimated 1.5 million STEM recruitment shortages in 2018, 

where employers were unable to hire suitable STEM employees. This shortfall 
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emphasises a) a need to increase the number of individuals pursuing STEM careers, 

and b) a need to increase the quality of the mathematics and STEM skills of students 

entering and graduating STEM courses. One initiative that has been taken to combat 

the growing demand for STEM graduates has been to fund mathematics-focused 

interventions in primary schools. The UK Department for Education has invested £55 

million into Maths Hubs in the UK (National Audit Office UK, 2018). Much of this 

funding has gone towards teaching “Maths Mastery” in schools. However, spatial 

thinking is not a key element of “Maths Mastery” and, as outlined in this thesis, 

engagement with and improvement of spatial thinking may lead to significant gains 

in mathematics. The transfer of spatial training gains highlighted in this thesis 

supports the use of spatial training in mathematics instruction. Although there is a 

need to replicate and extend these findings with larger samples, spatial training, such 

as that proposed in Chapter 4, may improve the quality of STEM graduates with 

consequent improvements for the STEM industry.  

Beyond its role in education, spatial thinking is a valuable skill in everyday life. As 

outlined in Chapter 1, spatial thinking is required for a range of everyday activities 

such as stacking shelves, navigating around a shopping centre, parking a car and 

assembling furniture. However, for the vast majority of everyday skills that require 

spatial thinking, no formal training is provided (National Research Council of the 

National Academies, 2006). Spatial thinking plays a significant role in everyday 

activities that have health and safety implications, such as driving a car and operating 

machinery. Spatial training using simple instructional videos, as demonstrated in this 

thesis, may be an effective way to improve the accuracy of everyday spatial skills, 

which may have significant economic and societal impact, beyond its role in 

education.  

5.5 Limitations and future directions 

The results of this thesis should be interpreted in the context of their limitations, and 

the scope for future research. The study reported in Chapter 2 highlighted the value 

of using secondary data sets to explore cognitive development longitudinally. This 

study addressed recent appeals for wider utilisation of data from large-scale studies, 
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particularly with regard to “articles exploring important aspects of the teaching and 

learning environment” (Lenkeit, Chan, Hopfenbeck, & Baird, 2015). This study draws 

attention to the wealth of educational and cognitive information that can be found 

in the MCS study. For international comparisons, future studies should use other 

large-scale studies such as the TIMSS and PISA studies. While these studies 

predominantly focus on educational achievement (including mathematics 

achievement), they also include cross-national psychological and sociological data 

suitable for investigating other influences on mathematical performance. As 

previously outlined, one example is the study by Clerkin and Gilligan (2018) which 

explored the role of pre-school numeracy play (including spatial play) on 

mathematics achievement and attitudes towards mathematics using the TIMSS data 

set.  

The findings reported in Chapter 2 were limited in that they were isolated to a single 

age range of children. Using the Pattern Construction scores (intrinsic-dynamic sub-

domain) investigated in Chapter 2, and the Spatial Working Memory task, the only 

spatial measure included in Wave 5 (age 11) of the MCS, future studies might link 

spatial skills in the primary school years with mathematics achievement at secondary 

school and beyond. Furthermore, while the MCS dataset enabled examination of the 

relationship between intrinsic-dynamic spatial skills and mathematics achievement 

at 7 years, the findings were limited to a single spatial sub-domain. This reflects one 

of the major limitations of using secondary data to answer novel research questions; 

the availability of suitable test measures. To expand these findings beyond the 

intrinsic-dynamic sub-domain there is a need for a) smaller cross-sectional studies 

such as that described in Chapter 3 and, b) the inclusion of a wider range of spatial 

measures in a large-scale, longitudinal project.  

The study presented in Chapter 3 was the first to explicitly compare the role of Uttal 

et al.’s (2013) four sub-domains of spatial thinking in explaining mathematics 

outcomes. However, despite including all of Uttal et al.’s (2013) sub-domains, the 

study is limited in that it focuses on small-scale spatial thinking only. Small-scale 

spatial thinking involves table-top tasks, where there is no need for whole-body 

movement or for changing location (Broadbent, 2014). Future work might extend 
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these findings to include large-scale spatial processes which require movement and 

observations from a number of vantage points, e.g., using real world or virtual 

navigation tasks (Kuipers, 1978; 1982). Furthermore, the study presented in Chapter 

3 was the first to explore associations between spatial and mathematics skills in 

children aged 6 to 10 years, across each of Uttal et al.’s (2013) sub-domains, using a 

cross-sectional approach. However, the findings could be strengthened by 

longitudinal research following a single cohort of participants through development 

from 6 to 10 years.  

In Chapter 4, it was shown that training spatial skills leads to near, intermediate and 

far transfer to mathematics. The duration of the spatial training delivered in this 

study was relatively short, demonstrating that even short bouts of spatial training 

lead to transfer of training gains to mathematics. However, this study did not 

investigate dosage effects, and future research is needed to investigate whether the 

amount of training delivered influences the size and durability of training gains. This 

study was also limited by the short interval between training and post-testing. On 

one hand, regardless of the durability of gains, the results demonstrated shared 

cognitive processing between spatial and mathematics skills, which was modified 

through intervention. Thus, this study led to the identification of a causal effect of 

spatial thinking on mathematics. On the other hand, it is possible that the gains 

reported in this study were due to priming of certain strategies for task completion, 

and not conceptual change. Hence, prior to national rollout of spatial training in the 

classroom, more research is needed to investigate the durability of spatial training 

gains in children. Training studies including neuroimaging could also be used to 

investigate whether neurophysiological changes occur during training. However, 

based on other studies investigating spatial training in adults, durability of spatial 

training gains in children are anticipated (Uttal et al., 2013). In short, even if the 

findings reported for spatial training reflect a priming effect, the results of this study 

have significant practical applications for teachers, given that priming enhanced 

performance on mathematics performance. Transfer of gains from spatial training to 

mathematical skills may reflect both priming and conceptual change. These two 
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processes are necessarily inter-linked, as it is not possible to prime a process that you 

have not yet developed.  

While most previous spatial training studies are based on mental rotation (or similar 

spatial tasks) (Uttal et al., 2013), the study presented in Chapter 4 demonstrated an 

important role for other spatial sub-domains, particularly spatial scaling. Mental 

rotation and spatial scaling were selected as training targets in this study, as these 

tasks specifically relate to mathematics outcomes at 8 years (Mix et al., 2016; 2017). 

However, future studies should explore whether spatial training using age 

appropriate targets might confer benefits to spatial and mathematics performance 

in older children, for example by training visuo-spatial thinking which has been 

associated with mathematics outcomes at 11 years (Mix et al., 2016;2017) 

respectively. Furthermore, given cross-sectional evidence that the role of spatial 

thinking extends beyond mathematics to other STEM domains (Hodgkiss et al., 2018; 

Wai et al., 2009), future studies could explore transfer of spatial training gains to 

performance in other STEM subjects.  

Finally, although Chapter 2 and Chapter 3 control for the role of language skills (IQ), 

the results of this thesis did not control for other cognitive demands including 

working memory and executive functions, which may also contribute to associations 

between spatial and mathematical tasks (e.g., Gilmore et al., 2013; Hawes et al., 

2017). However, previous studies suggest that spatial skills show specificity in 

predicting STEM outcomes (Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 2017; Wai 

et al., 2009). Factor-analysis studies also suggest that spatial-mathematical 

associations cannot be explained by other cognitive factors alone (Bailey, 2017). This 

evidence suggests that observed spatial-mathematical relations are not merely a 

reflection of other cognitive factors although, to confirm this, the study completed in 

Chapter 3 could be repeated controlling for other cognitive systems including WM, 

attention and executive functions.  

5.6 Conclusion 

The findings of this thesis elucidated and refined the relations between spatial and 

mathematical skills across development from 5 to 10 years. Spatial thinking was 
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identified as a unique predictor of mathematics, distinct from language ability. Spatial 

scaling (extrinsic-static spatial skill) was highlighted in this thesis as a particularly 

strong predictor of mathematics, which is amenable to change through training, and 

leads to far transfer of training gains to mathematics. Disembedding was also a 

significant predictor of mathematics for some outcomes. That associations between 

spatial and mathematics skills are sensitive to developmental age also clearly 

emerged from the thesis. Mental rotation and pattern construction skills (intrinsic-

dynamic sub-domain) were found to be stronger predictors of mathematics in 

younger children.  

Including the first known study to control for motivational factors, the thesis allowed 

determination of the causal effect of spatial skills on mathematical performance. 

Training spatial skills led to near, intermediate and far transfer of gains and explicit 

instruction using specifically designed instructional videos was identified as a way of 

delivering spatial training in a classroom-based setting. The theoretical, educational 

and economic implications of the findings of the thesis are significant and emphasise 

the importance and value of developing novel ways to enhance the spatial skills of 

primary school aged children. Focusing on this area will serve to improve the 

mathematics skills of these children and will better equip them for a changing society 

in which mathematics and other STEM skills are becoming more important. This is a 

goal worth pursuing. 
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Appendices 

Appendix A  

The table below shows the mapping of spatial categories from previous models onto 

the Uttal et al. (2013) model of spatial skills (adapted from Uttal et al. 2013). A 

description of each task is included below the table.   

Uttal et al. 
sub-

domain 
(2013)  

Description 
Examples of 

measures 

Linn & 
Petersen 

(1985) 
Carroll (1993) 

Intrinsic 
and static  

Perceiving 
objects, paths, 
or spatial 
configurations 
amid distracting 
background 
information 

Embedded 
Figures tasksA, 
flexibility of 
closureB 

Spatial 
visualization 

Visuospatial 
perceptual 
speed 

Intrinsic 
and 
dynamic 

Piecing together 
objects into 
more complex 
configurations, 
visualizing and 
mentally 
transforming 
objects, often 
from 2-D to 3-D, 
or vice versa. 
Rotating 2-D or 
3-D objects 

Form BoardC, 
Block DesignD, 
Paper FoldingE, 
Mental CuttingF, 
Mental 
Rotations TestG, 
Cube 
ComparisonH, 
Perdue Spatial 
Visualization 
TestI, Card 
Rotation TestJ  

Spatial 
visualization, 
mental 
rotation 

Spatial 
visualization, 
spatial 
relations/spee
ded rotation 

Extrinsic 
and static  

Understanding 
abstract spatial 
principles, such 
as horizontal 
invariance or 
verticality  

Water-LevelK, 
Water ClockL, 
Plumb-LineM, 
Cross-BarN, Rod 
and Frame 
TestO 

Spatial 
perception 

Not included 

Extrinsic 
and 
dynamic 

Visualizing an 
environment in 
its entirety from 
a different 
position 

Piaget’s Three 
Mountains 
TaskP, 
Guildford-
Zimmerman 
spatial 
orientationQ 

Not included Not included 
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A Embedded Figures Tasks: Tasks of this type require identification of the spatial 

configuration of one object against a distracting background (Ekstrom, French, 

Harman, & Dermen, 1976; Okamoto et al., 2015; Witkin & Goodenough, 1981; 

Witkin, Otman, Raskin, & Karp, 1971). 

B Flexibility of Closure Tasks: These tasks require participants to identify whether a 

series of complex drawings contain a more simplistic figure (Thurstone and Jeffrey, 

1984).  

C Form Board: In tasks of this type participants are shown an image in several 

disarranged parts and must determine which of several other pictures shows the 

pieces together, e.g., Minnesota Paper Form Board (Likert, 1970) 

D Block Design: In block design tasks participants are shown a pattern and are asked 

to recreate the pattern by rearranging individual blocks  

E Paper Folding: In paper folding tasks participants are shown an image of a piece of 

paper that has been folded. They are asked to determine what the paper would look 

like unfolded (e.g., Ekstrom, French, & Harman, 1976).  

F Mental Cutting: In tasks of this type participants are shown a figure and a cut to the 

figure along a given plane. They must choose the resulting cross-section from a series 

of choices.   

G Mental Rotations Test: Participants are asked to determine which images are 

rotated versions of a target image (e.g., Vandenberg & Kuse, 1978). 

H Cube Comparison: In this type of task participants are shown images of two cubes 

with different letters and numbers on each face. The participant must determine 

whether the images could be of the same cube (Ekstrom, French, & Harman, 1976).  

I Purdue spatial Visualisation Test: Participants are shown a reference object 

(unrotated) and the object again after undergoing a rotation. They are then shown a 
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target object and are asked to determine what the target object would like if it 

underwent the same rotation (Guay, 1977). 

J Card Rotation Test: In this task participants are presented with a target 2-D image 

and must determine which of five other images are a rotated version of the target 

image (Ekstrom, French, & Harman, 1976). 

K Water-Level Test: Participants must draw a horizontal line in a tilted bottle or select 

which image, from a selection of images, shows a horizontal line in a titled bottle 

(e.g., Harris, Hanley, & Best, 1978).  

L Water Clock Test: Participants are shown a water clock tilted at different angles. 

They must determine how water will move from one compartment of the clock to 

the other. They are also asked to identify the water level in the bottom compartment 

when it is filled to one third of its capacity (Roberts & Chaperon, 1989).  

M Plumb-line Test: Participants must determine how a vertical line (i.e., a hanging light 

bulb) would look when hanging from the roof of a van, on a hill (Liben, 1978). 

N Cross-bar Test: This task is similar to the water-level task. Participants are asked to 

identify which image shows a cross bar that is parallel to a horizontal plane, when the 

crossbar is attached to a movable rod (McGillicuddy-De Lisi, De Lisi & Youniss, 1978). 

O Rod and Frame Test: In this test, participants must position a rod vertically in a frame 

that is oriented (Witkin, Dyk & Faterson, 1962).  

P Piaget’s Three Mountains Task: Participants are seated in front of a model of three 

distinct mountains (of different sizes and with distinguishable features). A doll is 

positioned at different positions around the model and participants are asked to 

determine which photograph shows what the doll can see (Piaget & Inhelder, 1976). 

Q Guilford-Zimmerman Spatial Orientation Task: This task measures spatial 

orientation. Participants are required to identify the position of a boat that would 

give rise to a particular view of a landscape (Guilford & Zimmerman 1948). 
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Appendix B 

Number line estimation analysis using PAE scores (Chapter 3) 

Only children at 6 and 7 years completed the 0-10 block of the Number Line 

Estimation Task. No significant difference in performance was reported between 

these age groups, t (46) = .57, p =.570, d = 0.160. For the 0-100 block of the task, a 

significant effect of age on PAE scores was reported, F (4,131) = 17.86, p < .001, ηp
2 = 

.293. This could be explained by a linear contrast (p < .001). Games-Howell post-hoc 

tests indicated that error scores at 6 years were significantly higher than at 9 or 10 

years (p < .001 for both). At 7 years, error scores were also significantly higher than 

at 9 (p < .005) and 10 years (p < .001). This pattern as also seen at 8 years, with 

significantly higher error compared to the two older age groups (p < .001 for both). 

There was no difference in error scores at 9 and 10 years (p = .411). For the 0-1000 

block of the Number Line Estimation Task only participants aged 7 and older were 

included. There was a significant effect of age, F (3,104) = 9.48, p < .001, ηp
2 = .215, 

best explained by a linear contrast (p < .001). Games-Howell post-hoc tests indicated 

lower PAE scores at 10 years compared to all other groups including children at 7 

years (p = .008), 8 years (p = .020) and 9 years (p = .041). No other significant group 

differences were found (p > .065).
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Table S1.  

Factors predicting PAE scores on the 0-10 Number Line Estimation Task (n = 48) 

 

 

 

 

 

 

 

 

 

 b SE ß t p F df p R2 

Step 1  
     

    

Disembedding -0.03 0.02 -0.20 -1.27 .212 1.95 43 .119 .075 

Mental Rotation  0.03 0.02 0.21 1.29 .204     

Spatial Scaling -0.04 0.02 -0.38 -2.06 .045     

Perspective Taking 0.02 0.02 0.12 0.78 .438     
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Table S2: 

Factors predicting PAE scores on the 0-100 Number Line Estimation Task (n = 136) 

 

 b SE ß t p F df p R2 ∆ R2 

Step 1  
     

     

Age (months) -0.03 0.01 -0.28 -2.87 .005 24.33 132 < .001 .341  

BPVS -0.02 0.01 -0.16 -1.73 .087      

Gender 0.02 0.01 0.09 1.33 .186      

Step 2           

Disembedding -0.01 0.01 -0.11 -1.26 .209 12.24 128 < .001 .368 .017 

Mental Rotation  0.01 0.01 0.06 0.72 .471      

Spatial Scaling -0.02 0.01 -0.17 -1.89 .062      

Perspective Taking -0.01 0.01 -0.09 -1.04 .300      
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Table S3.  

Factors predicting PAE scores on the 0-1000 Number Line Estimation Task (n =108) 

 b SE ß t p F df p R2 ∆ R2 

Step 1  
     

     

Age (months) -0.07 0.02 -0.33 -3.05 .003 11.03 104 < .001 .220  

BPVS -0.02 0.02 -0.10 -0.97 .334      

Gender 0.05 0.03 0.15 1.85 .067      

Step 2           

Disembedding -0.01 0.02 -0.03 -0.32 .748 6.94 100 < .001 .280 .060 

Mental Rotation  0.02 0.02 0.12 1.35 .181      

Spatial Scaling -0.06 0.02 -0.33 -3.32 < .001      

Perspective Taking -0.03 0.01 -0.16 -1.68 .096      

Step 3           

Scaling*Age 0.06 0.02 0.30 3.07 .003 7.77 99 < .001 .336 .136 



 

 
 

2
3

7 

 

Note. For all regression models, b = unstandardized coefficient; SE = Standard Error; ß = standardised coefficient; ANS = Approximate Number 

Sense; NFER PiM = National Foundation for Educational Research Progress in Mathematics; BPVS = British Picture Vocabulary Scale 

 

Follow Up: Younger Group b SE ß t p F df p Adj. R2 ∆ Adj.R2 

Step 1            

Age (months) -0.06 0.03 -0.20 -1.72 .090 7.09 79 < .001 .182  

BPVS -0.01 0.02 -0.06 -0.51 .614      

Gender 0.06 0.03 0.19 1.84 .070      

Step 2           

Disembedding -0.02 0.02 -0.09 -0.79 .430 4.96 75 < .001 .253 .071 

Mental Rotation  0.02 0.02 0.09 0.84 .402      

Spatial Scaling -0.05 0.02 -0.27 -2.24 .028      

Perspective Taking -0.02 0.02 -0.12 -1.11 .269      
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Appendix C  

 

 

Figure S1. Percentage accuracy on the Mental Rotation Task at different degrees of 

rotation across age groups (Chapter 3)
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Appendix D 

Table S4. 

Spatial task performance (percentage accuracy) across development (Chapter 3) 

Task Metric 6 Years 7 Years 8 Years 9 Years 10 Years 

       

Disembedding Mean ± SE 30.62 ± 2.28 35.87 ± 2.40 50.88 ± 2.91 50.71 ± 2.86 56.52 ± 3.22 

 Max 56.00 64.00 88.00 92.00 84.00 

 Min 4.00 16.00 20.00 20.00 20.00 

Mental Rotation Mean ± SE 52.40 ± 2.89 66.43 ± 3.31 78.52 ± 2.86 80.85 ± 2.39 77.42 ± 3.73 

 Max 87.50 100.00 100.00 100.00 100.00 

 Min 12.50 31.25 46.88 50.00 6.25 

Spatial Scaling Mean ± SE 37.78 ± 2.55 46.24 ± 3.51 56.77 ± 3.48 64.34 ± 2.85 68.46 ± 2.66 

 Max 83.33 94.44 94.44 88.89 94.44 

 Min 11.11 16.67 27.48 38.89 38.89 

Perspective Taking Mean ± SE 43.68 ± 2.52 48.75 ± 2.93 57.99 ± 3.14 66.48 ± 3.76 71.15 ± 3.66 

 Max 77.78 88.89 94.44 100.00 100.00 

 Min 16.67 22.22 27.78 27.78 38.89 
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Appendix E 

Number line estimation analysis using R2
LIN scores (Chapter 4) 

A MANOVA was completed with time as a within participant variable (2 levels: pre-

training, post-training). Training mode (2 levels: explicit, implicit) and training type (3 

levels: mental rotation, spatial scaling, literacy) were included as between participant 

variables. Training analysis for R2
LIN scores on the Number Line Estimation Task found 

no significant effect of training mode, F (1,237) = 0.06, p = .815, ηp
2 = .001, or training 

type, F (2,237) = 2.83, p = .061, ηp
2 = .023. However, the main effect of training type 

did approach significance. Viewing scores across Time 1 and Time 2, there was a 

reduction in the function of fit of R2
LIN scores for the control group, and a slight 

increase in the function of fit of R2
LIN scores for those completing spatial scaling 

training. No significant interaction between training type and training mode was 

reported, F (1,237) = 0.14, p = .869, ηp
2 = .001. 
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Appendix F 

Assessing training effects using ANCOVA analysis with baseline performance as a 

covariate (Chapter 4) 

As outlined in 4.3.3, one-way ANCOVAs with baseline performance as a covariate, can 

be used to explore training effects in studies with pre-post training designs. To 

investigate the effect of training on task performance, ANCOVAs were completed for 

each task in the test battery. Training mode (2 levels: explicit, implicit) and training 

type (3 levels: mental rotation, spatial scaling, literacy) were included as between 

participant variables. Post-training scores (Time 2) were included as the dependent 

variable and pre-training scores (Time 1) were included as a covariate.  

Consistent with the MANOVA results in section 4.3.2, there was a main effect of 

training type for: the Mental Rotation Task, F (2,236) = 4.96, p = .008, ηp
2 = .040; the 

Spatial Scaling task, F (2,231) = 12.09, p < .001, ηp
2 = .094; Missing Term Problems, F 

(2, 208) = 3.85, p = .023, ηp
2 = .036; PAE scores on the Number Line Estimation Task, 

F (2,236) = 7.29, p = .001, ηp
2 = .058, and; Geometry Shape Items, F (1,218) = 4.91, p 

= .008, ηp
2 = .043. All significant differences between groups mirrored those reported 

in section 4.3.2. Consistent with the results reported in section 4.3.2, there was no 

main effect of training type for Geometry Symmetry Items, F (2,212) = 0.55, p = .877, 

ηp
2 = .005. As seen in Appendix B, there was also no main effect of training type on 

R2
LIN scores on the Number Line Estimation Task, F (2,237) = 2.14, p = .121, ηp

2 = .018. 

For training mode, there was a significant main effect for Geometry Shape Items, F 

(2,212) = 0.55, p = .877, ηp
2 = .005. This favoured implicit instruction. No other main 

effects of training mode were found for: the Mental Rotation Task, F (1,236) = 0.01, 

p = .969, ηp
2 = .001; the Spatial Scaling task, F (1,231) = 2.28, p = .133, ηp

2 = .010; 

Missing Term Problems, F (1, 208) = 2.43, p = .120, ηp
2 = .012, Geometry Symmetry 

Items, F (2,212) = 0.15, p = .701, ηp
2 = .001, and; PAE scores on the Number Line 

Estimation Task, F (1,236) = 2.99, p = .085, ηp
2 = .013. There were no significant 

interactions between training type and training mode for any task (p’s > .391; ηp
2’s < 

.008).  
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