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Scientific Representation and
Theoretical Equivalence
James Nguyen*y

In this article I connect two debates in the philosophy of science: the questions of sci-
entific representation and both model and theoretical equivalence. I argue that by paying
attention to how a model is used to draw inferences about its target system, we can de-
fine a notion of theoretical equivalence that turns on whether models license the same
claims about the same target systems. I briefly consider the implications of this for
two questions that have recently been discussed in the context of the formal philosophy
of science.
1. Introduction. Here is one question: in virtue of what do models repre-
sent their target systems? Or more specifically, in virtue of what do models
represent their target systems in a way that allows us to reason about target
systems via reasoning about their models? Here is another: under what con-
ditions are two scientific theories (whatever they are) equivalent? Despite
the heated debates surrounding these questions, investigations into how
they relate (e.g., how insights from one can be used in the context of another)
are rare, if not nonexistent. This is surprising. If scientific theories are, in
some sense, composed of models that represent the world, then investigating
how models from two distinct theories represent would seem to have impli-
cations on whether the theories are equivalent. I investigate these implica-
tions here.
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REPRESENTATION AND EQUIVALENCE 983
In section 2 I provide some context by briefly outlining each of the ques-
tions mentioned above. In section 3 I argue that what I take to be the most
promising accounts of scientific representation provide a natural sense in
which two models have the same ‘representational content’ and that such
content is a function on facts about models combined with interpretational
schema from these facts to claims to be imputed onto their target systems. I
generalize this to the representational content of theories. In section 4 I dis-
cuss the impact of introducing these model fact to target claim schema into
an account of model and theoretical equivalence. I point out two implica-
tions: first, how we should understand Weatherall’s (forthcoming) recent at-
tempt to diffuse the hole argument with reference to the representational ca-
pacities of Lorentzian manifolds and, second, how recent attempts to provide
formal accounts of theoretical equivalence should be understood (Halvorson
2012, 2016; Barrett and Halvorson 2016; Weatherall 2016a, 2016b). The
overall purpose of this article is to encourage a dialogue between philoso-
phersworking on formal aspects of scientific theories and philosopherswork-
ing on more general questions concerning scientific representation.

2. Representation and Equivalence

2.1. Representation. Scientific models represent their target systems.
This much is uncontroversial. How they do so is not. Two popular views
are that scientific models are, in some sense, intended copies of their target
systems. For the likes of Giere (2004) and Weisberg (2013), model users
intend that their models are similar (in the relevant respects, to the appro-
priate degree) to their targets. If they are so similar, then the model is an ac-
curate representation of its targets, at least with respect to the intended fea-
tures and to the appropriate degree. For the likes of van Fraassen (2008) along
with, perhaps,1 French and his collaborators (e.g., Da Costa and French 2003;
French 2003, 2014; Bueno and French 2011), models are mathematical struc-
tures, and model users intend them to be appropriately morphic to their target
systems or data gathered from them. If such a morphism exists, then the mod-
els are accurate representations of their targets, at least with respect to the
structural features of the target covered by the morphism in question.

Both approaches face serious challenges (Suárez 2003; Frigg 2006). And
accounts of scientific representation that diverge from the copy-making ac-
counts have emerged as attractive alternatives (Hughes 1997; Suárez 2004;
Contessa 2007; Frigg 2010). According to Hughes’s (1997, S328) “DDI”
account, models denote their targets and allow model users to perform dem-
1. I say ‘perhaps’ because they express reservations regarding whether user intentions
should be built directly into an account of scientific representation (French 2003; Bueno
and French 2011).
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onstrations on models, whose results are then interpreted in terms of their
target systems. Suárez (2004, 773) submits that models represent their tar-
gets only if their representational force “points” toward their targets and
they allow competent model users to draw inferences about their targets. Con-
tessa (2007, 57–58) argues that models denote their targets and that parts
of models are interpreted as (purported) parts of their targets. Frigg (2010,
126–32) agrees about denotation and adds that models come with keys that
allow users to “translate” model facts into target claims.

Although there are important differences between these ‘interpretational’
accounts, for my current purposes what is important is that they all agree
that the primary purpose of scientific models is to license inferences about
their target systems, and the way they do this is a function on model facts
(Hughes’s demonstration, the premises of Suárez’s inferences, the model
part of Contessa’s interpretation, and the arguments of Frigg’s keys) com-
bined with intentional acts of model users interpreting these facts in terms
of their target systems (Hughes’s and Contessa’s interpretations, Suárez’s
inferential schema used, and Frigg’s keys). I do not argue for them here;
I want to explore their insights for questions that invoke the representational
capacities of scientific models.

2.2. Equivalence. When are two scientific theories, T1 and T2, equiva-
lent? This, obviously, depends on what scientific theories are. If they are
sets of formulas, formalized in an appropriate language, then they are log-
ically equivalent if and only if (iff) their semantic closures are identical. But
this requires that they are formulated in the same signature and thus might
be too strict a criterion. Alternatively, they are definitionally equivalent iff
for each term in the signature of T1, a sentence can be constructed defining
it in terms of the signature of T2, and mutatis mutandis for each term in the
signature of T2, and the result of adding the respective definitions to each the-
ory provides two expanded theories that are logically equivalent (Glymour
1970; see also Barrett and Halvorson 2016).

Alternatively, if two theories are construed as collections (in a sense to be
specified below) of models, then an alternative approach is required. Hal-
vorson (2012) provides three options available to someone who wants to de-
fine theoretical equivalence in this context. Two theories T1 and T2, con-
strued as sets of models, are theoretically equivalent iff (a) T1 and T2 have
the same cardinality, (b) there is a pointwise isomorphism between T1 and
T2 (i.e., a bijection f such that for each model M ∈ T1, f (M ) 5 M 0, where
M 0 ∈ T2, andM andM 0 are isomorphic), or (c) T1 5 T2. Only b is remotely
plausible, but it requires specifying the sense in whichM andM 0 can be iso-
morphic to each other (see Halvorson 2012; Glymour 2013; Lutz 2017, for
useful discussions about this and whether it can be done without reference
to a linguistic signature).
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REPRESENTATION AND EQUIVALENCE 985
Halvorson (2012, 2016) has also recently suggested an exciting third sense
in which theories can be seen as theoretically equivalent.2 This can be applied
in cases in which theories are construed linguistically or as collections of
models. The idea in both cases is to take theories to be categories consisting
of objects (formulas, models) and arrows (deductive relationships, homomor-
phisms, or elementary embeddings). Two theories T1 and T2 thus construed are
categorically equivalent iff there is a functor F from T1 to T2 such that F is full,
faithful, and essentially surjective.

Although there are clear differences between these approaches, what is
important to note is that all of them focus on the formal features of the the-
ories (construed as sets of models or formulas or categories) in question.3

3. Representational Equivalence. The accounts of how models represent
discussed in section 2.1 can be used to provide an account of equivalence
that diverges (at least prima facie) from the accounts outlined in section 2.2.
However, this divergence should not be taken to indicate an essential ten-
sion between those accounts and the one outlined below (which I take to sup-
plement rather than supplant the formal investigation). My aim in this article
is more modest: I only hope to show the benefit of keeping interpretive ques-
tions in mind when thinking about theoretical equivalence.

We begin by considering how two models can be equivalent with respect
to their representational content. I suggest that this has two individually nec-
essary and jointly sufficient conditions. First,M andM 0 have the same target
system(s). Although this seems obvious, even this condition may bemissed if
one focuses solely on the formal properties of the models in question. As van
Fraassen (2014, 278) points out, we should not rule out cases in which two
models satisfy the same equation but one of them is targeted at gas diffusion
and the other at temperature distribution through time. Or we can consider
models that satisfy an inverse square law, but one targets gravitational inter-
action between two massive bodies, and the other electrostatic interaction be-
tween two charged points. Whether two models have the same target systems
already depends on factors beyond the formal properties of the models in
question.
2. This idea has been applied to specific instances of theoretical equivalence by Rosen-
stock, Barrett, and Weatherall (2015) and Weatherall (2016a, 2016b).

3. Rosenstock et al. (2015) and Weatherall (2016a, 2016b) do refer to ‘empirical equiv-
alence’ in addition to the formal relations between theories construed as categories, but
their emphasis is still on the latter. Moreover, the sort of equivalence I am considering
here goes beyond equivalence of empirical content (Sklar [1982] provides a useful dis-
cussion of the relationship between empirical and theoretical equivalence). I am grateful
to Jim Weatherall for drawing my attention to this.
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In addition to having the same target system(s) two models need to ‘tell
us the same things’ about those systems in order to be equivalent. In the
accounts of representation discussed previously, this gets cashed out as
M and M 0 licensing the same conclusions about those systems, where the
set of conclusions licensed by a model M depends on (1) facts about M
and (2) the interpretational schema used by the model user (or community
thereof ). An interpretational schema can be thought of as a function that
takes model facts to target claims.4 This function does not have to include
every fact about M in its domain, nor does it have to be a (proposed)
morphism or specified similarity relation betweenM and its target system(s).

A crucial implication of this is that in order to define, and use, an inter-
pretational schema between model facts and claims to be imputed onto a
target system, we need to be able to access facts about the model. It is no
good to have a schema that says ‘if the model is such and such, then it rep-
resents its target as such and such’ without being able to determine the truth
of the antecedent. Since if a ‘model’ is not used to infer things about its tar-
get, then it is not really a model. This is the lesson we learn from both the
‘intended copy making’ and the interpretational accounts of scientific rep-
resentation discussed above. As I discuss below, this has important impli-
cations for what adherents to the semantic view of theories should take
models ‘to be’.

So in order to be equivalent with respect to their representational content,
two models, via their interpretational schema, have to license the same con-
clusions about the same target systems:
4. I u
of the
morp
egory

se sub
Model equivalence: two models M and M 0 are equivalent with respect to
their representational content iff (i) M and M 0 have the same targets and
(ii) they license the same claim about those targets via their interpretational
schema.
Assuming that, in some sense, theories should be thought of as collections
(possibly categories) of models, this can be generalized to account for the-
oretical equivalence well:
Theoretical equivalence: Two theories T and T 0 are representationally
equivalent iff for each claim about a target licensed by a model of T there
is a model of T 0 that licenses the same conclusion about the same target
se ‘model facts’ liberally. These can include things like ‘object a is in the extension
relation Ri’, ‘R1 and R2 are the only relations defined on the model’, or ‘there is a
hism between the model and some other model in the theory considered as a cat-
’.
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under the same circumstances and (ii) mutatis mutandis for every claim
about a target licensed by a model of T 0.5
This seems so easy that one might object that these definitions cannot be
informative. Of course whether two theories or models are equivalent de-
pends on whether they ‘tell us’ the same things about the same target sys-
tems; working out when this is the case is precisely the point in investigat-
ing the notion of theoretical equivalence.

This objection misses the point. First, the condition that two models have
the same target system(s) requires a detailed investigation into what estab-
lishes the representational relationship (e.g., denotation or ‘representational
force’) between models and their targets. But this does not depend on the
formal properties of models alone, and as a fact of the matter, some models
target some systems, and others do not. Although the question of whether
two models have the same targets seems like an obvious one, it places a
substantial condition on the notions of equivalence defined above.

Second, whether two models license the same claims about a given target
system depends, at least on the accounts outlined above, on the interpreta-
tional schema associated with the models. The notion of an interpretational
schema is defined in the abstract: a function from model facts to target
claims. Understanding how a specific model, or theory, works will require
a detailed investigation into the relevant model facts and the details of the
schema itself (how does it associate model facts with target claims?).

The point is that, if we are interested in notions of equivalence that are
stated at such a level of generality as to apply to diverse scientific fields,
then our conditions on equivalence best be stated at the appropriate level
of generality. I think the conditions above are stated at the appropriate level
and, moreover, are substantial enough that the question of whether they are
met in any particular case is nonvacuous and requires detailed investigation
into the scientific practice associated with the case.

The resulting accounts of equivalence go beyond formal investigations.
They provide a standard of equivalence that is sensitive to the pragmatic
features of using models to represent the world. I think this is how it should
be. To co-opt van Fraassen’s (2014) example, an account of model equiv-
alence that focused purely on the formal aspects of models would be anal-
ogous to an account of aesthetic equivalence that focused purely on the ma-
terial constitution of works of art. Of course, in some sense, what makes the
Mona Lisa the Mona Lisa is determined by facts about how oil paint is dis-
tributed across a specific block of wood. But this does not suffice to estab-
is way of approaching theoretical equivalence has much in common with Coffey
). The current discussion builds on his by emphasizing how recent discussions of
tific representation lead to a similar conclusion.
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lish the representational content of the picture. Moreover, a copy of the pic-
ture, an object with the same oil-on-wood facts, would only be equivalent
(in the sense of representing the same subject in the same way) to the Mona
Lisa if the same interpretational schema was used to interpret it. If, for ex-
ample, the copy was demonstrated in the context of a forgery class, then it
could be interpreted in a very different manner delivering very different facts
about the world.

Having said that, I do not take my proposed accounts of equivalence to
be in competition with the formal accounts of theoretical equivalence. In
one sense they might be taken to address different questions: one concern-
ing the technicalities of formal equivalence, the other an interpretive ques-
tion concerning representational equivalence. But I take it that the former
question is not motivated by technical considerations alone. The underlying
idea seems to be that once we have established an account of formal equiv-
alence, then this can be put to work to help answer the interpretive question.
This idea can be seen in the likes of North (2009) and Curiel (2014) who
disagree about whether Lagrangian or Hamiltonian mechanics is most ap-
propriate for representing classical systems. My claim here is simply that
to fully answer the interpretive question, in addition to the question of for-
mal equivalence, we should keep interpretational schema, and coincidence
with respect to target systems, in mind.

4. Fruitful Dialogue. In this section I discuss how paying attention to the
fact that models have to be interpreted when thinking about whether they
are equivalent will prove fruitful in contexts in which their representational
capacities are important.

4.1. Weatherall and the Hole Argument. The hole argument runs as
follows. Take a Lorentzian manifold, a model from general relativity. This
is a structure of the form hM, gabi, where M is a four-dimensional differ-
entiable manifold and gab a Lorentz-signature metric tensor. We suppose
thatM has a Cauchy surface S and a time orientation. Take an open region
U to the time-like future of S, and let w :M→M be a diffeomorphism that
is the identity forM\U but is not the identity for U. Using the push forward
of w to define a new metric tensor, w* gab, we have two isometric Lorentzian
manifolds hM, gabiand hM, w* gabi. We can now ask about what these struc-
tures represent. The problem arises if we take the following conditions to
hold: hM, gabi and hM, w* gabi both represent a space-time ST, but
hM, gabi represents ST accurately, and hM, w* gabi does not. This sub-
stantivalist position introduces indeterminism into general relativity because
we can suppose that both models are accurate representations of the past
(i.e., the area of space-time represented by the “past” of S, in the sense de-
termined by the time orientation), and yet they represent the future in in-
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REPRESENTATION AND EQUIVALENCE 989
compatible ways (they cannot both be accurate representations thereof ).
Someone who denies the substantivalist position takes it that if two isomet-
ric Lorentzian manifolds represent the same space-time, then they do so equally
accurately.

In an attempt to diffuse this argument, Weatherall (forthcoming) argues
that as long as we are careful in how we understand how mathematical struc-
tures like Lorentzian manifolds represent, we can resist the idea of two Lo-
rentzian manifolds such that one accurately represents ST and the other does
not. To do so he invokes the premise that “interpretations of our physical the-
ories should be guided by the formalism of those theories . . . [and] . . . insofar
as they are so guided, we need to be sure that we are using the formalism cor-
rectly, consistently, and according to our best understanding of the mathemat-
ics” (2). He further claims that “if a particular mathematical model may be
used to represent a given physical situation, then any isomorphic model
may be used to represent that situation equally well” (4).6 Applying this ob-
servation to the Lorentzian manifolds defined above, we arrive at the follow-
ing conclusion: “once one asserts that spacetime is represent[ed] by a Lo-
rentzian manifold, one is committed to taking isometric spacetimes to have
the capacity to represent the same physical situations, since isometry is the
standard of isomorphism given in themathematical theory of Lorentzianman-
ifolds” (15).

One way of interpreting this claim in the terminology of this article is
that if two isometric Lorentzian manifolds represent the same physical sit-
uations, then one accurately represents that situation iff the other does. Un-
der this reading, the argument runs as follows:

1. If two modelsM andM 0 represent the same target system(s) T, then if
M and M 0 are equivalent in the sense specified by the mathematical
theory of M and M 0, then M and M 0 are equally accurate representa-
tions of T (premise)

2. hM, gabi and hM, w* gabi are equivalent (isometric) in the sense spec-
ified by the mathematical theory of Lorentzian manifolds (premise)

3. hM, gabi and hM, w* gabi both represent ST (suppose)
4. hM, gabi and hM, w* gabi are equally accurate representations of ST

(from 1, 2, and 3)
6. To clarify terminology here, I interpret Weatherall as claiming that if a particular math-
ematical model is used to represent a given physical situation, then any isomorphic model
that also represents that physical situation may do so equally accurately. I sharply distin-
guish between ‘represent’ and ‘accurately represent’, but I think this is what Weatherall
has in mind.
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Premises 2 and 3 are uncontroversial. Premise 2 is a mathematical fact, and
the idea that both hM, gabi and hM, w* gabi represent ST seems benign.7

We might, however, put pressure on premise 1. To do so it is worth un-
packing what it means for two models to be equally accurate representa-
tions of T. According to the interpretational accounts of scientific represen-
tation, this amounts to them licensing the same conclusions about T, which
depends on the interpretational schema used to generate claims about T
from facts aboutM andM 0. In this framework the assumption underpinning
premise 1 is that since hM, gabi and hM, w* gabi are isometric they should
be interpreted in the same way. That is, given that they are isometric, we
should restrict the domain of the interpretation schemas to the facts that they
share and map these facts to the same claims about ST.

I think this claim is true, but only in contexts in which all we care about
are the isometric invariant facts about ST. But as Roberts (2014) notes, if
this argument is supposed to block the hole argument, then it must be the
case that the disagreement between the substantivalist and her interlocutor
cannot be formulated: “In particular [this] prohibits isometric Lorentzian
manifolds from [accurately] representing distinct physical situations for any
purpose whatsoever, not even to express manifold substantivalism for the pur-
poses of reductio. It is this presumption, that isometric Lorentzian manifolds
represent the same situation equally well ‘for all purposes,’which is supposed
to prohibit the (reductio) hypothesis that two isometric spacetimes can ever
[accurately] represent different things” (6).

We are now in a position to deny premise 1. The claim is that (supposing
thatM andM 0 represent the same target system(s) T ) if M andM 0 are equiv-
alent in the sense specified by the mathematical theory of M and M 0, thenM
and M 0 are equally accurate representations of T in all contexts and for all
purposes. But this requires that since hM, gabi and hM, w* gabi are isometric,
any way of interpreting themmust deliver the same claims about ST. And this
need not be true. Even the very same structure can be interpreted in oneway in
one context and another way in another.

A familiar example illustrates this. Suppose that you are in London at-
tempting to navigate using the tube map. Someone familiar with the tube
map will adopt an interpretational schema toward the map that includes the
7. To avoid confusion, sometimes the debate is stated in terms of whether “isometric
Lorentzian manifolds represent the same physical situations” (Earman and Norton
1987, 520), but I take it that we are supposed to interpret this claim as ‘if isometric
Lorentzian manifolds represent the same physical situations, then they do so equally ac-
curately’. Once an account of scientific representation is adopted in which models rep-
resent only if model users use them to do so, then the claim that any of the infinite struc-
tures isometric to hM, gabi, including those never considered by anyone, represents ST
becomes implausible.
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REPRESENTATION AND EQUIVALENCE 991
map’s topological facts in its domain but no metric facts (of the map).
Someone unfamiliar with the tube map may adopt an interpretational schema
that includes these metric facts as well. Under the former, the map is an ac-
curate representation of London with respect to its topological properties and
remains silent with respect to its metric ones. Under the latter, the map is an
accurate representation of London with respect to its topological properties
and inaccurate with respect to its metric ones. There is a clear sense in which
the very same object—the tube map—can be associated with different inter-
pretational schema, such that under one it is an inaccurate representation
(with respect to metric facts about London) and under another it is not (in vir-
tue of remaining silent about them). Requiring that equivalent, let alone iden-
tical, mathematical structures be associated with the same interpretational
schema is too demanding, and thus premise 1 is false.

Weatherall (forthcoming, sec. 5) seems sensitive to this objection. He
states that in order to makes sense of the claim that isometric Lorentzian
manifolds differ with respect to their representational accuracy the substan-
tivalist “needs to stipulate what the additional structure might be and why
we should think it matters. And it is difficult to see how this could be done
in a mathematically natural or philosophically satisfying way [footnote omit-
ted]” (16–17). I take it that ‘additional structure’ here refers to facts about
hM, gabi and hM, w* gabi that are not preserved by the isometry, facts that
would have to appear in the domain of the substantivalist’s interpretation
schemas associated with them (such facts do exist, hM, gabi and hM, w* gabi
are not the same mathematical object by construction). But under this read-
ing, what Weatherall’s argument establishes is as follows. Although in the
context of doing relativistic physics hM, gabi and hM, w* gabi will be inter-
preted in the same way, in the context of the hole argument, the substan-
tivalist needs to specify the facts in which hM, gabi and hM, w* gabi come
apart and how, via the claims they are associated with by their respective
interpretational schemas, they allow for one to represent ST accurately while
the other does not. When phrased like this, Weatherall’s argument is recast
as challenge for the substantivalist, rather than ‘blocking’ the hole argument
per se.8

4.2. Formalism and the Pragmatics of Representation. I hope to have
shown that thinking about interpretational schemas associated with models,
rather than focusing solely on their formal properties, will allow us to prop-
erly appreciate arguments that turn on how they represent. I now briefly dis-
8. I am grateful to Jim Weatherall for confirming in personal communication that this is
his current position. One might argue that this ‘blocks’ the hole argument as traditionally
understood. I do not take a stand on this issue.
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cuss how the notion of theoretical equivalence I introduced in section 3 re-
lates to those outlined in section 2.2.

My point in this subsection concerns what ‘models’ should be taken to
be in the context of thinking about theoretical equivalence in terms of the
formal properties of models associated with theories. Recall the claim that
an object (mathematical structure) is a scientific model only if it is used as
such, and this requires offering an interpretational schema from model facts
to target claims. In order to generate such a schema, model users have to ac-
cess facts about their models. In the case of physical models, like the Phillips-
Newlyn machine (Morgan 2012, chap. 5), this is relatively straightforward.
In the case of mathematical models, less so. Facts about mathematical struc-
tures have to be determined in some way; they are not self-evident. One (but
maybe not the only) way to think about how this is done is in terms of the
deductive closure of the axioms that are used to pick them out. In the first-
order case, since the logic is sound and complete, two sets of axiomsA and
B have the same deductive closure iff they are satisfied by the same class of
structures S. This allows us to identify the ‘theory’ with S itself and ignore
the axioms used to pick them out as alternative ‘intrinsic characterizations’
of the same theory (French and Saatsi 2006).

But this approach breaks down once we move to higher-order theories.
Since (e.g.) second-order logic is not complete, there exist alternative axi-
omatizations of the same class of structures that have different deductive clo-
sure. Corcoran (1980) provides the following example of two alternative cat-
egorical (in the model-theoretic sense) axiomatizations of hN, si.

Let L be a first-order language with identity including a constant ‘0’ and
a monadic function ‘s’. AugmentLwith a single monadic second-order var-
iable P. Then let T 5 f(P0 ∧ 8 x(Px→ Psx))→ 8 yPy, 8 x 8 y(sx 5 sy→
x 5 y), 8 x(sx ≠ 0)g. The set of sentences T is categorically satisfied by
hN, si, where the interpretation function takes ‘0’ to 0 and ‘s’ to the suc-
cessor function.9 It is a categorical characterization of the natural numbers.
Let T 0 5 f(P0 ∧ 8 x(Px→ Psx))→ 8 yPy, 05 0, ::: , sn05 sn0, 0 ≠ s0, ::: ,
sn0 ≠ sm0}for all n, and m ∈ N such that n ≠ m. Corcoran (1980) shows that
T is also categorically satisfied by hN, s i (with the same interpretation func-
tion as before).

Although T is incomplete (it does not prove all sentences satisfied by
hN, si), we can still use it to derive all sorts of interesting sentences that
are satisfied by that structure. The set of sentences T 0, however, cannot even
prove basic arithmetical truths. For example, T 0 ⊬ 8x(sx ≠ 0) since there is
9. Notice that an ‘interpretation function’ is a very different thing from an ‘interpretation
schema’. The former is a function from syntax to structure; the latter a function from
model facts to target claims.
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no finite derivation from the axioms in T 0 to this sentence.10 But this means
that these alternative axiomatizations provide access to different facts about
the same mathematical structure. And since the inferences that hN, si licenses
about a target system depend on the facts about hN, si to which we have
access, this means that under different axiomatizations hN, si could license
different inferences about its target system(s). Which means that hN, si un-
der one axiomatization is not, in general, equivalent with respect to its rep-
resentational content to hN, si under another. As Corcoran puts it: “[there is
a] vast difference between characterizing an interpretation [structure] and
axiomatising its set of truths” (1980, 204).

As a corollary, a theory consisting of the singleton fhN, sig should not be
identified with the structure (or set containing the structure) itself, at least
from a representational perspective, since under different axiomatizations
the structure licenses different inferences.11

This generates a problem for the adherent of the semantic view of theo-
ries, and I take it to be a serious problem rather than “tilting at windmills”
(van Fraassen 2014, 279). Suppose one identified a theory as a class of mod-
els. Of course, to present such a theory, one will have to use language. And,
if you like, models can be associated with an interpretation function for the
language used to present them. So isomorphisms between models in differ-
ent theories can be defined straightforwardly in terms of the relations and
functions that interpret the same syntactic symbols. This avoids the issues
raised by Halvorson (2012). The question, however, is what attitude we
should adopt to the formulas that are used to present these models.

Glymour writes: “to be at all plausible, the semantic view must distin-
guish between the content of a theory (its class of models) and the means
of characterizing that class—the theory expressed in some language” (2013,
288). But then the content of a theory is identified with the class of models,
and the theory, as expressed in a language used to present this class, is ac-
corded the role of presenting theoretical content, rather than being included
in it. I think that the above example shows that even this position is unten-
able in the context in which higher-order logics are used. If theoretical con-
tent somehow depends on representational capacity, and representational
capacity somehow depends on the interpretational schema, and this some-
10. What governs ⊢ in second-order logic is contentious, but the result holds for any
sound recursive system of deductions in the language under consideration. All this ob-
servation relies on is that ⊢ does not allow for infinite proofs. Since scientists do not have
the time for them, this seems justified to me.

11. And the matter will not be improved if we consider theories as categories of struc-
tures since hN, si is the same under both axiomatizations. This category is straightfor-
wardly categorically equivalent to itself. But, for the aforementioned reason, the infer-
ences that this category licenses about target systems depends on the axiomatization
used to pick it out.
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how depends on model facts we can access, then it remains that we cannot
guarantee that the interpretational schema associated with hN, si under one
axiomatization is also applicable to hN, si under another axiomatization.
Sometimes we can present a class of models without being able to access
all of the truths satisfied by those models. And these truths correspond to
potential elements in the domain of interpretational schema. So it is not only
that language must be used to present a class of models, but the language
used to present that very class of models can constrain the interpretational
schema available and therefore the representational content of the theory.
Presentation matters, and it should be accorded a proper role even in a for-
mal account of theoretical equivalence.

5. Conclusion. Mathematical structures, and models more generally, do
not represent without some sort of intentional act of model users associating
model facts with target claims. Once this aspect of scientific representation
is made explicit, we are able to ask how it affects questions that rely on how
models represent. I have argued that, at least under one way of reading it,
Weatherall’s recent attempt to dissolve the hole argument requires too strong
a restriction on how we associate interpretational schema with mathematical
structures. I have also suggested that formal approaches to theoretical equiv-
alence could be augmented by investigating the interpretational schema asso-
ciated with mathematical models and, moreover, that once we pay due heed
to the limitations of how we present classes of models, the linguistic presen-
tations themselves can be included in a theory’s ‘theoretical content’.
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