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Abstract

The oracle problem remains one of the key challenges in software testing,

for which little automated support has been developed so far. This thesis anal-

yses the prevalence of failed error propagation in programs with real faults to

address the oracle placement problem and introduces an approach for iterative

assessment and improvement of the oracles.

To analyse failed error propagation in programs with real faults, we have

conducted an empirical study, considering Defects4J, a benchmark of Java

programs, of which we used all 6 projects available, 384 real bugs and 528

methods fixed to correct such bugs. The results indicate that the prevalence of

failed error propagation is negligible. Moreover, the results on real faults differ

from the results on mutants, indicating that if failed error propagation is taken

into account, mutants are not a good surrogate of real faults. When measuring

failed error propagation, for each method we use the strongest possible oracle

as postcondition, which checks all externally observable program variables.

The low prevalence of failed error propagation is caused by the presence of

such a strong oracle, which usually is not available in practice. Therefore,

there is a need for a technique to assess and improve existing weaker oracles.

We propose a technique for assessing and improving test oracles, which

necessarily places the human tester in the loop and is based on reducing the

incidence of both false positives and false negatives. A proof showing that

this approach results in an increase in the mutual information between the

actual and perfect oracles is provided. The application of the approach to

five real-world subjects shows that the fault detection rate of the oracles after

improvement increases, on average, by 48.6%. The further evaluation with

39 participants assessed the ability of humans to detect false positives and

false negatives manually, without any tool support. The correct classification

rate achieved by humans in this case is poor (29%) indicating how helpful

our automated approach can be for developers. The comparison of humans’

ability to improve oracles with and without the tool in a study with 29 other

participants also empirically validates the effectiveness of the approach.
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Impact Statement

The research work presented in this thesis is beneficial to the improve-

ment of software quality and could have impacts on both software engineering

research and industry.

Testing is the most common activity performed to validate software sys-

tems. In testing, the test oracle is the artifact that checks the validity of the

obtained results, i.e. determines whether a software under test executes cor-

rectly. The effectiveness of the testing process is strongly dependent on the

choice of test oracle.

The oracle problem is a well-known problem in both research and industry.

However, while in most of the research literature there is an assumption that

oracles are available, the applicable oracles are not described. In the current

industrial practice of software testing, the oracle is often a human being. As

the oracles manually generated by humans are costly and unreliable, there is

a need for techniques to support developers in this task to ensure high testing

quality while reducing the testing costs.

This thesis proposes an iterative approach for oracle assessment and im-

provement which places the developer in the loop of the process. We conducted

experiments with real developers who had years of industrial experience to

evaluate our approach. The results of our experiments show that developers

using our tool achieve a higher quality oracles than the developers improving

the oracles manually.

Testing is effective when it uncovers faults in the code. One of the reasons

of hidden faults is the presence of failed error propagation, a case when the

faulty statement is executed, the program transitions into an infectious state,

but without propagating to the output. The majority of existing studies have

analysed failed error propagation on programs with synthetic faults. In con-

trast, our empirical study used Java programs with real faults. Therefore, our

results are indicative of real world scenarios and are more meaningful for the

industrial community. The implications of our empirical study (presented in

Section 3.5) have relevant suggestions for both practitioners and researchers.
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1 Introduction

Testing is an essential activity in software engineering. Conceptually, it is a

simple process: we run the software using some specified input, observe the

software’s execution, and decide if the execution appears to be correct. How-

ever, testing embraces a variety of activities, techniques and actors, and poses

many complex challenges, especially with the pervasiveness and criticality of

software growing ceaselessly. Several artifacts are involved in the testing pro-

cess, including the set of test inputs to be run, the test oracle, or method for

determining the correctness of the software, the software or program to be

tested, and the specification the software is intended to implement [96].

Testing research, however, is predominately focused on determining what

test data to use, e.g., creation and evaluation of test coverage criteria or auto-

matic test generation tools. But no matter what coverage criterion is used, we

need to know whether a given program executes correctly on a given input, as

a test execution for which we are not able to discriminate between success or

failure is useless. This corresponds to the so-called ”oracle”, ideally, a magical

method that provides the expected outputs for all possible test cases; more of-

ten, a hardcoded assertion that can emit a pass/fail verdict over the observed

test outputs [13].

In the absence of oracles, only ”general” properties such as null pointer

dereferencing, array bound errors, and program crashes can be checked. The

criticality of the oracle problem, i.e. the problem of determining the correctness

of a program’s behaviour when tested [77], has been very early raised in the

literature [105, 25, 86]. However, little attention has been paid to it in research

and in practice few alternatives still exist to manually checking the program’s

output.

If the program under test has been developed following design-for-test prin-

ciples, there will be a detailed, and possibly formal, specification of intended

behaviour. In these situations, there is an automatable test oracle to which

a testing tool can refer to check outputs. In case a full specification for the
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program under test does not exist, one may construct a partial test oracle that

can check outputs for some inputs.

The so-called sampling oracle approach [45], which selects set of values

based on some criteria, can be applied in this case. Boundary values, mid-

points, minima and maxima are examples often chosen when testing. Once

such values are selected, an oracle that provides the expected results for each

of them should be created.

Another approach is the use of metamorphic testing [60, 19], a testing ap-

proach that uses metamorphic relations, i.e. the properties of the software

under test represented in the form of relations among inputs and outputs

of multiple executions. If exact results for a few inputs are available, these

metamorphic relations can be used to do checks for the other inputs. The

availability of simple relations is a key factor for the applicability of this ap-

proach.

When direct verification is not applicable, redundant computations [3] or

pseudo-oracle [25, 106], i.e. testing one implementation against another, can

be used instead. The second implementation could be performed by another

development team or using another algorithm. For example, in case of search-

ing algorithms, a binary search program could easily be tested by comparing

the result with a linear search. In industry, this technique is often applied in

regression testing, where the current version of the program is tested against

its previous release to test the parts of the software which should not have

been changed.

Despite the variety of test oracles, there is a common process that consists of

few main steps that can be used to characterise and classify the different kinds

of oracles [83]: (1) identifying the source of information for deriving the oracle,

(2) recognising the program behaviour to be checked, (3) translating the source

of information and the program behaviour into forms that can be checked

against each other, and (4) executing the oracle. Strictly speaking, any test

oracle needs some kind of human effort, since oracles rely on information about

the expected behaviour of the system. Even if we assume the availability of full
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formal specifications, they should be created by the software designers. In case

of sampling oracle, the expected output should be generated for each input in

the sampled set. For the heuristic oracle, metamorphic relationships should be

identified by the developers. To be able to perform redundant computations,

the alternative implementation of the program by other developers should be

available.

However, for many systems and most testing as currently practiced in in-

dustry, the tester does not have the luxury of formal specifications. Therefore,

many organisations today depend on a human oracle. As a result, the tester

faces the daunting task of manually creating oracles or manually improving

any available partial ones. These are expensive and error-prone tasks. Unfor-

tunately, methods for supporting humans in performing them are not common.

Therefore, to achieve better quality of testing, we need a concerted effort to

find ways to support developers in writing their oracles and in improving the

already existing weak oracles.

1.1 Problem Statement

Oracle performance depends on two properties: completeness and soundness.

Completeness means that all correct program states are accepted by the oracle

and it raises an alarm only for faulty states, therefore it has no false alarms

(i.e. no false positives). Soundness means that all faulty program states are

rejected by the oracle, so there are no missed faults (i.e. no false negatives).

Indeed, we don’t want that test failures pass undetected, but on the other

side we don’t want either to be notified of many false positives, which waste

important resources.

One of the widely-attributed sources of failures passing undetected (pres-

ence of false negatives) is driven by the possibility of failed error propagation

(FEP): a fault may corrupt the program’s internal state, yet this corruption

fails to propagate to any point at which it is observed. A large amount of

work [5, 112, 104, 59, 66, 73, 114, 67, 7] analyses the prevalence of failed error

propagation in different subject programs by introducing faults into programs
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using mutants or seeded faults, to simulate real faults. While the reported

rate of failed error propagation varies in each study, it is always significant.

Traditional test oracles are defined only on the outputs of test executions.

The occurrence of failed error propagation in presence of such oracles can be

caused by two different scenarios. In the first scenario, the fault actually affects

the output of the test execution, but the existing output oracle is not strong

enough and therefore can not observe a corrupted execution state, hence failing

to report an error. To address these scenario there is a need in technique that

will assess the existing weak oracle and provide support to the developer for

its improvement.

In the second scenario, the fault does not affect the output of the execution,

which implies that there is a need for internal oracles that will check the

inner states of the program. A benefit of checking values internally would be

knowing as soon as possible whether the program has entered into an erroneous

state. This raises an oracle placement problem, i.e. the problem of finding the

subset of program points that has the minimum size and that maximises the

fault exposure probability of the oracles placed at the selected program points.

The selection of optimal placement points for oracles has not been thoroughly

investigated so far (with the exception of the preliminary idea described in a

short ESEC/FSE-NIER paper [111]).

The recent research on oracle problem focuses on the automated generation

of test case assertions [30, 78] and dynamic program invariants [27]. However,

these synthesised assertions and program invariants are not oracles because

they encode the observed behaviour observed of the program under test rather

than the intended behaviour. To use them as test oracles, it is necessary to

identify the incorrect ones (i.e. to perform oracle assessment) and then fix

the them (i.e. to perform oracle improvement). This process requires human

intervention, as to perform these actions it is necessary to understand what

the system is supposed to do. While the quality of human input is crucial

in these cases, only two works [81, 95] have studied the performance of the

humans in the oracle assessment and improvement process. The first study
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[81] uses CrowdSourcing to verify test case assertions, while in the second one

[95] developers assess whether invariants generated by Daikon [27] are correct

or incorrect. The results of the studies contradict each other: the second study

indicates that human testers are not good at identifying correct test oracles,

while the first one indicates that human testers can reliably identify correct

test oracles and fix incorrect ones.

The work by Nguyen et al. [99] analyses mined specifications such as data

invariants, temporal invariants and finite state automata, and demonstrates

that they have a high false positive rate (around 47%). There are a few works

that propose metrics to assess existing oracles, such as checked coverage [89] or

the presence of unused inputs and brittle assertions [47]. While these metrics

are indicative of the oracle’s quality, they do not support the developer in the

oracle improvement process.

Overall, developers face the daunting task of ensuring that the oracles

they use in the testing process are complete and sound. To support them in

this process, a further investigation of oracle placement and oracle strength

is required, so as to ensure that failures do not pass unnoticed. An approach

that would automatically assess oracles, i.e. detect false positives and false

negatives in them, and will guide the developers in the oracle improvement

process should be created.

1.2 Objectives

The objectives of this thesis are as follows:

• Analyse failed error propagation in methods with real faults and in meth-

ods where faults are introduced by mutations. What is the prevalence

of failed error propagation? Is its occurrence dependent on the nature

of the faults used? Is there a need of internal oracles to prevent failed

error propagation? Assuming postconditions with optimal strength are

available, can they prevent failed error propagation?
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• Define a theoretical framework to assess oracle quality and formalise the

oracle improvement process.

• Investigate methods to identify false positives and false negatives in ora-

cles. How can we test an oracle to check if it can expose all the faults it

is supposed to expose? How can we generate counterexamples showing

that an oracle is violated in cases where it is supposed to hold?

• Analyse whether developers are good in detecting false positives and false

negatives in the oracles manually.

• Analyse whether developers are good in improving oracles with false

positives and false negatives manually.

• Empirically investigate whether the identified methods for false positive

and false negative detection lead to the creation of better oracles and

whether the generated counterexamples are helpful for developers in the

oracle assessment and improvement process.

1.3 Structure of the Thesis

The remainder of the thesis is organised as follows:

Chapter 2 provides a comprehensive review of the literature that is most

relevant to this thesis. The chapter starts with a summary of the early works

that introduced and defined the term ”oracle”. It then reviews the previous

research related to automated oracles taking the form of test case assertions

and program invariants. Finally, it discusses the works related to oracle place-

ment problem, such as the PIE framework and the existing studies on failed

error propagation.

Chapter 3 presents our empirical study which analyses failed error propa-

gation in Java programs with real faults. We describe our experimental proce-

dure, where we measure different types of failed error propagation in methods

with real faults. We compare this results against these results obtained from

20



the methods where faults are injected by mutation operators. We also com-

pare unit-level failed error propagation to the system-level one. We report the

results of qualitative analysis on the nature of FEP in case of real faults and

mutations and provide the implications of this work for testing research.

Chapter 4 introduces our proposed approach for oracle improvement and

assessment. We present theoretical definitions of oracle quality, soundness,

completeness, false positives and false negatives. Then we describe our it-

erative improvement process, the approach we use to identify false positives

and false negatives and the implementation of the approach in form of a tool

called OASIs. Finally, we present a formal model of oracle improvement using

information theory.

Chapter 5 describes our extensive evaluation of the oracle assessment

and improvement approach. First, we describe the evaluation on 5 different

subjects and 3 different types of initial oracles, where the role of human in the

loop was played by the author of the thesis. We report the number of iterations

required to improve all three types of initial assertions and the increase in

fault detection as a result of this improvement. We also compare the fault

detection of oracles improved using our approach to the fault detection of

test case assertions generated by automated test case generators. Then, we

provide details on the second part of the evaluation which assessed the ability

of humans to detect false positives and false negatives manually (without using

OASIs). 39 participants including both students and professional developers

were involved in this study. We report users’ correct classification rate and

analyse parameters affecting their performance. We also provide information

on which type of oracle deficiencies is harder for them to detect and what are

the most commonly occurring misclassification types in the assessment process.

The last part of the evaluation, which involved 19 participants, compares the

improvement of the oracles using our approach with the manual improvement.

Here, the metric of comparison is the quality of the final improved assertions

using each approach. Moreover, the characteristics of the iterative process

such as number of iterations, detected oracle deficiencies, time spent on each
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iteration, are reported for each participant who played the role of the human

in the loop.

Chapter 6 provides the conclusions derived from the work presented in

this thesis and the plans for future work.
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2 Literature Review

Studied since the late 1970s, the research literature on test oracles is a relatively

small part of the research literature on software testing. However, in recent

years test oracles and techniques to automatically generate test oracles have

attracted a lot of attention and have witnessed an impressive growth.

This chapter reviews the work related to the oracle problem in software test-

ing and most relevant to the thesis. First, the existing surveys on oracles are

summarised. Then, an overview of the definitions of oracles and the attempts

at formalisation of the oracle problem are provided. The review continues with

the existing research on the two most widely used forms of oracles: test case

assertions and specifications, considering in particular automated specification

mining. Finally, it discusses the existing works on failed error propagation and

the oracle placement problem.

2.1 Surveys on Oracle Problem

Five large surveys on topics related to oracles have been conducted till now.

In 2001, Baresi and Young [8] presented a survey where they have grouped or-

acle systems based on implementation approaches (e.g., embedded assertions,

execution log analyzers) and on the kinds of specifications they accept (e.g.,

interface specifications, design models, property- and model-based specifica-

tions of externally visible behavior). The main highlights of the paper are

that (1) there is a need to bridge the gap between the concrete entities and

specification entities when oracles are based on more abstract descriptions of

program behavior; (2) oracle systems are usually ”partial”, i.e. they reject

only some of incorrect behaviors; (3) while in an ideal oracle system, oracles

would be orthogonal to test case selection, in reality it is more practical to

determine acceptable behaviors for limited classes of test cases.

In 2009, Shahamiri et al. [90] performed a comparative analysis among

six categories of test oracles: N-Version Diverse Systems and M-Model Pro-

gram Testing; Decision Table; IFN (Info Fuzzy Network) Regression Tester; AI
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(Artificial Intelligence) Planner Test Oracle; ANN (Artificial Neural Network)

- Based Test Oracle; and Input/output Analysis Based Automatic Expected

Output Generator. The authors compare these approaches in terms of their

limitations and capabilities to automate oracle activities. The study concludes

with two important messages. First, there are no existing techniques to com-

pletely automate the oracle process in non-regression testing with reasonable

cost and reliability. Second, there is still no unique approach to automate all

different kinds of oracle activities in any possible circumstances.

Oliveira et al. [76] used evidence from a pool of about 300 studies directly

related to test oracles and presented a classification of test oracles based on

a taxonomy that considers their source of information and notations. Based

on this classification, they performed a quantitative analysis to highlight the

shifts in the evolution of research on test oracles. Exploring geographical and

quantitative information, they analysed the maturity of this field using co-

authorship networks among published studies. Further, they determined the

most prolific authors and their countries, main conferences and journals, sup-

porting tools, academic efforts, and conducted a comparative analysis between

academia and industry.

The survey by Pezze and Zhang[83] focuses on test oracles with partic-

ular attention to their automation. First, the survey presents the timeline

showing main milestones in the evolution of the research on test oracles in

chronological order. Then the authors identify main steps to characterise the

different kinds of oracles: (1) identifying the source of information for deriving

the oracle, (2) recognising the program behavior to be checked, (3) translating

the source of information and the program behavior into forms that can be

checked against each other, and (4) executing the oracle. Based on these steps,

test oracles are classified according to the required information and different

forms of checkable oracles (i.e. oracles expressed in a form directly checkable

during the system execution). The conclusion of the survey highlights that

the precision of automatically generated oracles depends on the information

used for the generation. The role of the human is specifically underlined by
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stating that ”the increasing availability of techniques to generate automatic or

semi-automatic oracles may change the role of humans who may be required to

provide different forms of information to increase the effectiveness of automatic

generation techniques and the precision of automated oracles”.

Barr et al. [9] have constructed a repository of 694 publications on test

oracles and related areas. They analysed research trends on this topic by

dividing oracles into four categories: when test oracles can be specified, when

test oracles can be derived, when they can be built from implicit information

and when there is no automatable oracle available. The results of the survey

show that test oracles are difficult to construct, so oracle reuse is an important

problem that merits attention, and while some work has begun on using test

oracles as the measure of how well the program has been tested, more work is

needed in this area.

Overall, these surveys provide wide range of structured information on dif-

ferent oracle taxonomies, multiple aspects of oracle automation and detailed

summarisation of research trends. Moreover, they give an insight into the ex-

isting challenges in automated oracle generation, underlining that constructing

oracles, defining/improving the precision of these oracles and investigating the

role of humans in the automation process are important future research direc-

tions.

2.2 Formalisation of Oracles

The term ”test oracle” was first introduced in William Howden’s seminal work

in 1978 [105] and is defined as the mechanism ”that can be used to define the

correctness of test output”. To clarify the definition, the author notes that

the most common test oracle is the comparision of output variables or traces

of selected program variables for a given set of inputs. This process can be

formally or informally defined. Formally defined oracles may consist of tables

of values, algorithms for hand computation or formulae in the predicate calcu-

lus. Informally defined oracles are often simply the ability of the programmer

to recognize correct output. In more theoretical terms, the author describes
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a test oracle for a program P as a source of information about a hypothetical

correct program P ∗.

In 1982 Weyuker and Davis [25][106] introduced the term ”oracle assump-

tion” - the belief that tester is routinely able to determine whether or not the

test output is correct. They investigate the reasonableness of this assumption

and conclude that in practice quite often it is impossible to define a complete

and totally reliable oracle for all SUTs, thus introducing the notion of ”non-

testable program”. Given the impossibility of defining an ideal oracle, the

authors discuss two possible options: ”pseudo-oracles” and ”partial oracles”.

A pseudo-oracle is an independently produced program intended to fulfill the

same specification as the original program. The two programs, which are to be

produced in parallel by totally independent programming teams, are run on

identical sets of input data, and the results are compared. The partial oracle

is available in the cases when the tester is not in the possession of ideal oracle,

but is not completely unaware of what the answer is. Frequently the tester is

able to state with assurance that a result is incorrect without actually knowing

the correct answer.

In 1992 Richardson et al. [86][85] defined test oracle as a mechanism that

has two components: the oracle information specifies what constitutes correct

behavior, while oracle procedure verifies test execution results with respect to

the corresponding oracle information.

The work by Hoffman [45][46] is one of the first to recognise the complex

nature of oracles. It introduces a list of the main characteristics of oracles that

might be measured when relating an oracle to the Software Under Test (SUT):

completeness of information, accuracy of information, usability, maintainabil-

ity, complexity, temporal relations and cost. The accuracy of information of an

oracle corresponds to the types of errors it might produce: miss actual wrong

value and/or flag correct data as an error.

In 2011, Staats et al. [96] proposed a theoretical analysis that included test

oracles in a revisitation of the fundamentals of testing. They extend Gourlay’s
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[37] approach and define a testing system as a collection (P, S, T,O, corr, corrt)

where:

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• O is a set of oracles

• corr ⊆ P × S

• corrt ⊆ T × P × S

Here, the predicate corr implies that p is correct with respect to s for

p ⊆ P, s ⊆ S. Of course, the value of corr(p, s) is generally not known, so

this predicate is just theoretical and used to explore how testing relates to

correctness. The predicate corrt ⊆ T ×P × S defines correctness with respect

to a test t ⊆ T and holds if and only if the specifications holds for program p

when running test t. Using corrt, authors introduce the definition of complete,

sound and perfect oracle.

Moreover, they introduce two oracle comparison metrics : power and PROB-

BETTER. The first metric states that an oracle o1 has a power greater than

oracle o2 with respect to a test set TS (written o1 ≥TS o2) for program p and

specification s if: ∀t ∈ TS, o1(t, p) =⇒ o2(t, p). In other words, if o1 fails

to detect a fault for some test, then so does o2. Oracle o1 is stated to be

more powerful than o2 for test set TS ( o1 >TS o2) if: ∀t ∈ TS, o1(t, p) =⇒

o2(t, p) ∧ ∃t′ ∈ TS, qo1(t′, p) ∧ o2(t′, p). In other words, o1 ≥TS o2 and for

some test t′ ∈ TS, o1 detects a fault where o2 fails to detect a fault. The

PROBBETTER (PB) metric provides probabilistic comparison of two oracles.

Thus, oracle o1 is PB than oracle o2 with respect to a test set TS, written as

o1PBTSo2, for program p if for a randomly selected test t ⊆ T , o1 is more likely

to detect a fault than o2. An oracle o1 is universally PB than o2 if o1PBTo2,

where T is the entire set of tests that can be run against p.
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Another formalisation of test oracle is in the previously mentioned survey

by Barr et al. [9], which contains a section that presents definitions to establish

a lingua franca in which to examine the literature on oracles. These definitions

of test oracle and probabilistic test oracle are provided to avoid ambiguity

throughout the survey. The authors also introduce the notion of ground truth

and then define soundness and completeness of test oracle with respect to the

notion of ground truth.

In general, only few attempts were made to formalise oracles and locate

them in the overall theoretical framework for testing. However, no theoretical

framework is defined for oracle quality and for the oracle improvement process.

2.3 Automatically Generating Oracles

The current research in automated oracles can be classified according to the

two forms of oracle being considered: test case assertions and mined speci-

fications. Synthesized test case assertions are generated by automated test

case generation tools. However, as they encode observed behaviour, they need

human input to be used as oracles. This human input is provided in different

ways in different approaches: crowdsourcing [81] , manually written test cases

[80], JavaDoc documentation [36]. The work that present tools to assess the

quality of oracles analyse the quality of test case assertions using metrics, such

as checked coverage [89] or the presence of brittle assertions and unused inputs

[47]. Another group of tools support the construction of oracles by identifying

the variables with the highest fault-detection capability.

Specification mining tools produce invariants which are used as oracles.

These invariants might be incorrect, as they are generated from source code,

so they capture the implemented, not the intended, behaviour. Thus, they

also require human intervention.

Overall, without human intervention the synthesized test case assertions

and mined specifications are not able to detect any faults related to the im-

plemented functionality and are useful mostly for regression testing. In case

human input is available, its quality is of crucial value for the proposed ap-
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proaches to work. In fact, two existing studies respectively using CrowdSourc-

ing [81] to verify test case assertions and using developers to determine user

classification effectiveness for invariants [95] contradict each other. The sec-

ond study indicates that human testers are not good at identifying correct test

oracles, while the first one indicates that human testers can reliably identify

correct test oracles and fix incorrect ones. This shows that there is a need of

more experiments analysing the performance of human testers in the oracle

improvement process.

2.3.1 Test Case Assertions

Generation of Synthesized Test Case Assertions

Automated test oracles in the form of test case assertions are implemented as

part of modern test case generators such as EvoSuite [29, 30] and Randoop [78].

These tools have the capability to synthesise test cases that include assertions.

Randoop [78] allows annotation of source code to identify observer methods

to be used for assertion generation. It classifies generated test suites as error-

revealing or expected behaviour. The error-revealing tests show that the code

violates its specification or contract. By default, Randoop checks some general

contracts on Java object’s equals, hashcode, toString, clone methods. The

expected behaviour test suite contains the test cases with assertions reflecting

the current behaviour of the program under test. While the error-revealing test

suite is able to find simple errors in the current implementation, the expected

behaviour one can be useful only for regression testing to find errors in future

implementations.

In EvoSuite [29, 30] mutation-driven generation of oracles is used. This was

originally developed as part of the tool µTest [33], which is now a component

of EvoSuite. A test case detects a mutant only if it there is a test case assertion

that can identify misbehaviour that distinguishes the mutant from the original

program. To generate such assertions for a test case, the test case should be

run against the original program and all mutants, using observers to record

the necessary information. After the execution, the traces generated by the
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observers are analysed for differences between the runs on the original program

and its mutants, and for each difference an assertion is added. Then the

number of assertions is minimised by tracing for each assertion which mutation

it kills, and finding a subset for each test case that is sufficient to detect all

mutations that can be detected with this test case.

The test case oracles generated by Randoop and EvoSuite are specific for a

single run, which makes them hard to understand because of the information

that is specific to that run and is brittle with respect to future code changes. To

overcome this problem, Fraser and Arcuri [32] present a novel approach which

converts the method sequence in traditional test cases into parameterised unit

tests (PUT) - unit tests containing symbolic pre- and postconditions charac-

terising test input and test result. The process starts with an automatically

generated concrete method sequence. Such a concrete method sequence has a

very precise but implicit precondition; this precondition is encoded in the input

objects and the setup performed on the unit under test. Similarly, the post-

condition can be interpreted as the observable state after the test execution.

These conditions are made explicit by determining all the conditions that hold

for the given states. For example, all objects are compared with each other, all

observer methods are observed, and so on. The resulting conditions overspec-

ify the test case, therefore the approach tries to get rid of as many conditions

as possible. For this, new tests are iteratively generated and executed on the

original program and versions with seeded defects, thus effectively filtering ir-

relevant preconditions and postconditions. At the end of the process, we get

a parameterised unit test that only contains the test statements, the relevant

preconditions on the inputs, and an effective test oracle. The evaluation on 5

subjects shows that PUTs are more expressive, retain only 57% of the origi-

nal statements and cover 72.6% more branches than the original concrete unit

test. However, they are more expensive, requiring several minutes per test case

generation, have 19.6% false negative rate and 8.3% false positive rate.
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Human Input for Synthesized Test Case Assertions

Automatic synthesis of test assertions is an initial step towards automatic gen-

eration of oracles. However, the synthesised assertions are not oracles because

they encode the behavior observed by executing the test case instead of the

intended behavior. To turn synthesised assertions into oracles it is necessary

to identify and fix the incorrect assertions, which can hardly be automated

as it requires human intelligence. Oracles encode the intended behavior of

the software system, so they must be provided by a human or generated from

human-provided information such as a formal specification.

One approach to deal with this problem is to use the idea of CrowdSourc-

ing. CrowdSourcing a problem consists of specifying it in the form of a Human

Intelligence Task (HIT) and making the problem available on a CrowdSourcing

platform, where registered workers can choose to complete HITs for a small

remuneration. Pastore, Mariani and Fraser [81] proposed the idea of CrowdO-

racles, where test cases with synthesized assertions are verified with respect

to the documentation and fixed by the crowd. The results show that Crow-

dOracles are a viable solution to address the oracle problem. However, to

be successful, this approach requires a qualified crowd, which is not easy to

find, monetary investment which can be high in case of a big number of test

cases and assertions, and also the existence of a good documentation for the

programs under test in order for the crowd to be able to determine right and

wrong assertions.

The works by McMinn et al. [72] and Afshan et al. [1] argue that one source

of human oracle cost is the inherent unreadability of machine-generated test

inputs, which makes test cases hard to comprehend and time-consuming to

check. The authors propose methods to extract knowledge from programmers,

source code and documentation and to incorporate it into the automatic test

data generation process to make produced test cases more realistic. The later

work by McMinn et al. [2] focuses specifically on automatically generated

string inputs. The authors present an approach in which they incorporate

a natural language model into a search-based input data generation process
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with the aim of improving the readability of generated strings. They evaluate

their approach by conducting a human study with participants recruited from

CrowdFlower2 crowdsourcing platform. The results show that 10 out of 17

test inputs generated using the proposed technique, the participants recorded

significantly faster times when evaluating inputs produced using the language

model, with medium to large effect sizes 60% of the time.

The approach proposed by Pastore and Mariani [80] to identifying the

incorrectly synthesized assertions uses the manually written test cases as the

source of human knowledge about the system. They presented a tool ZoomIn

which pinpoints the wrong assertions by comparing the executions produced

by the manual test cases to the executions produced by the automatically

generated test cases at two abstraction levels simultaneously. The first level

is code coverage, that is ZoomIn compares the statements covered by manual

and automatic tests. The second level is program variables, where ZoomIn

uses Daikon [27] to generate constraints about the values that can be legally

assigned to program variables when the manual tests are executed. These two

levels are combined according to the following intuition: the execution of an

automatic test case is likely to constitute a failure if it produces anomalous

variable values while covering a case already tested by the developers. In

practice, it is assumed that an automatic test case that follows a path similar

to one covered by a manual test case while generating anomalous variable

values is an automatic test case that reveals a failure by covering a special

untested case of an already tested functionality. For the purpose of evaluation

Apache Commons Math library and 7 real faults from it were selected and

ZoomIn was applied to the test cases generated by EvoSuite. The results

show that ZoomIn has been able to detect 50% of the analysed non-crashing

faults requiring inspection of less than 1.5% of the automatically generated

assertions. However, the process has its limitations: it requires the existence

of manual tests and the output of the tool is directly dependent on the quality

of the manual tests. Also, the empirical results are based only on one subject

2http://www.crowdflower.com
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program and a small number of real bugs, which shows that results might be

inapplicable to other types of subject programs.

The work by Goffi et al. [36] automatically generates oracles from human-

written documentation, such as Javadoc comments. They implemented the

tool Toradocu that consists of Javadoc extractor, condition translator and

oracle generator. The Javadoc extractor identifies all the Javadoc comments

that are related to exceptional behaviors. The condition translator translates

each natural-language condition into Java boolean expressions. The oracle

generator produces test oracles in the form of assertions and embeds them in

the provided test cases. The experimental evaluation of Toradocu shows that

it improves the fault-finding effectiveness of EvoSuite and Randoop test suites

by 8% and 16% respectively, and reduces EvoSuite’s false positives by 33%.

To evaluate the study they have conducted a human study with

The work by Blasi et al. [17] introduces JDoctor, which extends Toradocu

so that it produces specifications not only for exceptional behaviors, but also

for preconditions and normal postconditions. Moreover, JDoctor adds a novel

notion of semantic similarities. This handles comments that use terms that dif-

fer, despite being semantically related, from identifiers in code. In an empirical

evaluation, JDoctor achieved precision of 92% and recall of 83% in translat-

ing Javadoc into procedure specifications. The JDoctor-derived specifications

were also supplied to an automated test case generation tool, Randoop. The

results show that the specifications enabled Randoop to generate test cases

that produce fewer false alarms and reveal more defects.

Tools to Assess Quality of Test Case Assertions

In the work by Huo and Clause [47] the quality of the oracles is measured in

terms of the presence of brittle assertions and unused inputs. The technique

is based on dynamic tainting and works by tracking the flow of controlled and

uncontrolled inputs along data- and control- dependencies at runtime. Intu-

itively, controlled inputs are inputs explicitly provided by the test itself (e.g.,

constants that appear in the test method) and all other inputs are considered
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uncontrolled. When a test finishes execution, the technique uses the tracked

information to generate reports that identify brittle assertions (assertions that

check values that are derived from uncontrolled inputs) and unused inputs (in-

puts that are controlled by the test but are not checked by an assertion). These

reports are then filtered to remove false positives and presented to testers. The

experimental results on 4,000 real test cases showed that the proposed tech-

nique is able to detect 164 tests containing brittle assertions and 1,618 tests

containing unused inputs.

The work by Schuler and Zeller [89] addresses the problem of traditional

test coverage metrics not assessing the oracle quality and introduces the con-

cept of checked coverage - the dynamic slice of covered statements that actually

influence the oracle. The evaluation on 7 Java open-source projects showed

that, for all the projects, checked coverage is lower than regular coverage, with

an average difference of 24%. Furthermore, they measured how the proposed

technique is sensitive to oracle decay - that is, how oracle quality is artificially

reduced by removing checks. The results show that while all quality met-

rics decrease with oracle decay, checked coverage is more sensitive to missing

assertions.

Tools to Support Construction of Test Case Assertions

Staats, Gay and Heimdahl [94] proposed a method supporting test oracle cre-

ation, which is based on the use of mutation analysis to rank variables in

terms of fault-finding effectiveness. Evaluation on four industrial avionics sys-

tems was performed by comparing the proposed approach against two baseline

rankings: (1) the output-base approach, which uses the outputs of the system

under test as oracle data (2) simple random selection of the oracle data set.

Results show that for oracle variable size (number of variables used in the

oracle data set) smaller than the output-only oracle, the proposed approach

tends to perform relatively well compared to the output-base approach, with

improvements up to 145.8%. As the variable size grows closer in size to the

output-only oracle, the improvement decreases, but in 50% of the cases their
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approach still outperforms output-only oracle, up to 26.4%. For cases when the

test oracle grows in size beyond the output-only oracle, the relative improve-

ment again grows, with improvements of 2.2 - 45%. In case of comparison with

the random approach, every oracle generated by the proposed approach out-

performs it. However, as the experiments were made only on avionics systems,

it is questionable whether this approach is applicable to other domains such

as object-oriented unit testing. In addition, the approach can have scalability

problems due to the mutation analysis it uses.

Similarly, to support test oracle creation, Loyola et al. [61] propose a system

called Dodona that ranks program variables based on the interactions and

dependencies observed between them during program execution. Initially, a

test input is executed, and their tool Dodona monitors the relationships that

occur between variables during execution (via dataflow analysis). Following

this, Dodona ranks the relevance of each program variable using techniques

from network centrality analysis. A test engineer can then define an expected

value oracle for the given test input, confident that their effort is directed

towards aspects of the system behavior that are relevant under that input.

2.3.2 Specification Mining

Another form of automated oracles are mined specifications. The work by

Nguyen, Marchetto and Tonella [99] evaluates three types of such automated

oracles in terms of cost and effectiveness: data invariants, temporal invariants

and Finite State Automata (FSA). The following tools are used as represen-

tatives of these mined specifications: KLFA [64] for FSA oracles, Daikon [27]

for data invariants and Synoptic [15] for temporal invariants. The following

procedure is adopted for the experiment design: while a subject system P is

running, its execution is monitored to obtain traces, and different automated

oracles are inferred from those traces. Then, due to the new execution scenar-

ios, the automated oracle may report alarms when the execution violates them.

Alarms might be due to a fault that has been triggered, or they may be wrong

(false positives). The experiments were conducted on 7 Java applications from
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different domains and different size, up to 94,550 NCLoCs, and 7 real faults

from Apache Commons Collections. The results show that automated oracles

have a moderate fault detection capability: Daikon truly revealed 1 fault, while

Synoptic revealed 3 and KLFA revealed 2 faults. However, the false positive

rate of these tools is very high: around 86% for KLFA and 30% for Daikon

and Synoptic.

Unfortunately, existing approaches for inferring invariants necessarily re-

quire human intervention for two reasons. First, invariants are intended to act

as specifications, but are generated from the source code we wish to verify.

Extracting what the program should do from what the program actually does

is impossible. Second, many existing approaches are dynamic, and use only

a finite number of program traces to generate ”likely” invariants, rather than

correct invariants. Thus, if we assume that user classification effectiveness,

defined as the percentage of invariants a user correctly classifies as correct

or incorrect, is high in practice, then automatic invariant generation is a po-

tentially effective method for generating automated test oracles, and existing

results demonstrating the power of invariant generation may hold in practice.

Staats et al. [95] conducted an empirical study with 30 participants to de-

termine user classification effectiveness for invariants generated using dynamic

invariant generation, and to understand what factors lead to successful or un-

successful classification. In each study, participants were given one of three

Java classes with automatically generated invariants. Invariants were gener-

ated using Daikon, a dynamic inference tool with a strong body of supporting

research. Participants were asked to determine, for each generated invariant,

if the invariant was correct or incorrect with respect to the Java class. On av-

erage, the study participants misclassified 9.1-39.8% of correct invariants and

26.1-58.6% of incorrect invariants. Second, the factors that lead to invariant

misclassification appear surprisingly subtle. Despite examining a large num-

ber of factors, the authors were unable to clearly determine why users perform

poorly at the classification task.
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The work by Zhang et al. [113] aims to reduce the false negative rate for

Daikon and presents iDiscovery, a technique that employs a feedback loop

between symbolic execution and dynamic invariant discovery to infer more

accurate and complete invariants until a fix-point is reached. In each iteration,

iDiscovery transforms candidate invariants inferred by Daikon into assertions

that are instrumented in the program. The instrumented program is analyzed

with symbolic execution to generate additional tests to augment the initial

test suite provided to Daikon. The key intuition behind iDiscovery is that

the constraints generated on the synthesized assertions provide additional test

inputs that can refute incorrect/imprecise invariants or expose new invariants.

Therefore, when the new inputs are used to augment the previous test suite,

dynamic invariant discovery will be based on a richer set of program executions

enabling discovery of higher quality invariants. To mitigate the cost of symbolic

execution, iDiscovery provides two optimisations: assertion separation and

violation restriction. The experimental results on four Java artifacts show

that iDiscovery is able to falsify from 24% to 72% of the invariants generated

by the Daikon.

2.4 Oracle Placement

Only a few works have considered the problem of optimal oracle positioning

or placement. They mainly focused on which variables to consider in the

oracles [61, 34, 94]. The selection of optimal placement points for oracles has

not been thoroughly investigated so far, with the exception of the preliminary

idea described in a short ESEC/FSE-NIER paper [111]. On the other side, a

large body of work has been devoted to the main motivating factor for oracle

placement problem, i.e. to failed error propagation.

In this subsection we first introduce the PIE framework, which provides

the basis for understanding the process of error propagation. Then, we review

the existing studies on failed error propagation.
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2.4.1 PIE framework

Voas and Jeffrey [102] introduced a dynamic failure-based Propagation, In-

fection, Execution (PIE) framework to estimate three probabilities: 1) the

probability that a particular section of a program is executed, 2) the proba-

bility that the executed section affects the data state, and 3) the probability

that the affected data state has an effect on the program output. The authors

note that these three analyses can be made at different levels of abstraction -

programs, modules, and statements. Execution probability can be calculated

by simply running the program, and determining how often each location is

executed. Infection probability can be estimated by simulating various faults

using mutation analysis and checking whether they cause data state errors.

Propagation probability can be approximated by introducing different data-

state errors and seeing whether program’s output has changed. The infection

probability and propagation probability are calculated for each mutation and

data state error respectively.

Based on the PIE analysis’ estimates, the authors proposed a technique

called Sensitivity Analysis, which is the process of determining the sensitivity

of a location in a program. Here the word ”sensitivity” means a prediction of

the probability that a fault will cause a failure in the software at a particu-

lar location under a specified input distribution. The location’s sensitivity is

measured by multiplying the location’s execution estimate, minimum infection

estimate, and minimum propagation estimate.

The ideas presented in the paper were empirically evaluated using a single

subject program with 2000 lines of code. The experimental procedure included

100 inputs (using uniform input distribution), 25 mutations and a single func-

tion to perturb data states. The results show a significant correlation coeffi-

cient between the estimate of the probability of failure measured by random

software testing and the probability of failure predicted by the estimates of

propagation analysis and execution analysis.

The work by Voas et al. [100] introduces the notion of program testability

and defines it as the program’s ability to hide faults when the program is black-
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box-tested with inputs selected randomly from a particular input distribution.

According to this definition two programs that compute the same function may

have different testabilities. A program with a high testability readily reveals

faults, while a program with low testability is unlikely to reveal faults. The

authors note that while sensitivity is related to testability, the terms are not

equivalent. Testability encompasses the whole program and its sensitivities

under a given input distribution. Sensitivity characterises only the sensitivity

of a single location in a program. However, the program’s testability can be

defined from the collection of sensitivities over all locations. It is conservatively

estimated to be the minimum sensitivity over all locations in the program.

The authors conducted an experiment to check the hypothesis that for an

injected fault, the sensitivity for the location where the fault was injected is

always less than or equal to the resulting failure probability estimate of any

fault injected at that location. The subject program for the experiment was a

single method with just 10 lines of code. Three different faults were injected

into the program at different locations. The failure-probability estimates were

based on 10,000 inputs for the two faults injected and 10,000 inputs for the

one remaining fault. Results show that the hypothesis is supported.

The later work by Voas and Miller [101] views each location in the program

as a point where an assertion checking the internal state can be placed. The

authors advocate a middle ground between no program assertions at all (the

most common practice) and the theoretical ideal of assertions at every loca-

tion, introducing the problem of optimal oracle placement. Their compromise

is to place assertions only at locations where traditional testing is unlikely to

uncover software faults. The authors propose locations determined by sensi-

tivity analysis for the assertion placement. They have evaluated this approach

on one tiny example and the results show that adding assertion to the se-

lected locations increases propagation probability. This idea was used in later

works for determining the optimal data set for output-based oracles [94] and

for determining locations to place input-specific internal oracles [111].
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The PIE framework was also reiterated in the Reachability-Infection-Propagation

(RIP) model described in Amman and Offutt [3]. The authors provide similar

definitions of sensitivity and testability based on RIP model and consider appli-

cations of testability to common technologies. They note that object-oriented

software and web applications present special challenges for testability. For

object-oriented software the main reason is that objects encode state infor-

mation in instance variables, and access to these variables is usually indirect

because of inheritance. In web applications almost all of the infrastructure in

web applications is intended to be invisible from the client’s perspective, there-

fore accessing much of the state is impossible. On the other hand, the server

side is likely to be distributed not only across multiple hardware platforms,

but even across multiple corporate organisations. Bringing high testability to

such systems is still a research topic.

The works by Li and Offutt [57, 58] extend the traditional RIP model to

Reachability-Infection-Propagation-Revealability (RIPR) model. RIPR model

underlines that if the fault propagates to the output, but the oracle does

not check the particular portion of the state that contains erroneous value

caused by this fault, the oracle will not see the failure. That is, the test

oracle must also reveal the failure. To investigate the ability for test oracles

to reveal failures, the authors define ten new test oracle strategies that vary

in amount and frequency of program state checked for model-based systems.

They compare these strategies to baseline test oracle strategies: null test oracle

strategy (NOS), i.e. implicit oracle, and state invariant oracle strategy (SIOS),

that checks the invariants of states reached after each transition. The results of

the experiments show that using only null test oracle strategy is not enough to

reveal all the faults. However, it is also not necessary to check the entire state,

as checking partial states reveals nearly as many failures. When it comes to

the frequency of the checks, checking less frequently is as effective as checking

states more frequently.

Overall, PIE framework and sensitivity analysis include characteristics that

are similar to mutation testing. However, the goals of the two techniques are
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different. Mutation testing seeks an improved set of test data, while infection

analysis seeks to identify locations where faults are unlikely to change the data

state. Propagation analysis mutates the data state, not the code, and then

examines whether the output is affected.

Also, PIE analysis is distinct from fault-based testing because PIE analy-

sis collects information concerning the semantics of the program; fault-based

testing collects information concerning whether certain classes of faults exist

in a program. PIE analysis does not reveal the existence of faults, since cor-

rectness is not the goal of this analysis. Indeed, this technique also does not

directly evaluate the ability of inputs to reveal the existence of faults. Instead,

it identifies locations in a program where faults, if they exist, are more likely

to remain undetected during testing.

2.4.2 Studies on Failed Error Propagation

Failed Error Propagation (FEP) occurs when a test case executes the faulty

statements but no failure is triggered. The PIE model emphasises that for a

failure to be observed, the following three conditions must be satisfied: 1) the

defect is executed, 2) the program has transitioned into an infectious state,

and 3) the infection has propagated to the output.

A number of studies provide evidence of the occurrence of FEP. The mo-

tivations for these studies vary. Some of them analyse specific cases such as

propagation of error codes in file systems [39, 87, 88]. However, the major-

ity are motivated by FEP being undesirable for Coverage-Based Fault Local-

ization (CBFL) techniques [108, 10, 49]. Therefore, there is a large body

of work aiming to reduce the vulnerability of CBFL to FEP and this usu-

ally includes measuring the prevalence of FEP in the subjects of the experi-

ments [66, 67, 68, 73, 59, 112, 114].

However, all of these studies use different terms (error masking, fault mask-

ing, strong/weak coincidental correctness) and definitions to express closely re-

lated notions, or use the same term with different meanings. To make existing
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studies comparable, we unify existing terms and definitions as follows, using

the PIE framework as a well understood basis for unification:

• Coincidental Correctness (CC) occurs when a fault is executed, but is

not propagated to the output.

• Failed Error Propagation (FEP) occurs when a fault is executed, it infects

the data state, but it does not propagate to the output.

The work by Daran & Thévenod-Fosse [24] reports the experimental com-

parison of error propagation mechanisms of software errors generated by real

faults and by first-order mutations. The experiment was conducted on a single

C program (approximately 1000 lines of code) from the civil nuclear field. It

involves 12 known real faults and 24 mutations. The 12 real faults were un-

covered during authors’ previous experiments [97, 98]. The 24 mutations were

selected so that a small and various sample can be obtained. Yet, in order to

make the comparison feasible some (but not all) mutations were performed on

instructions involved in the ”fix” of the real faults. The results are reported not

across all the executions, but only for the ones where the faults have infected

the state. Among 88 of such executions, for real faults 19 (22%) propagate to

output, while 69 (78%) fail to propagate. For mutations 41 (24%) out of 169

propagate and 128 (76%) do not.

The work by Xue et al. [112] analysed the prevalence of coincidental correct-

ness on 4 Java programs from the Software Infrastructure Repository (SIR) [26].

20 different faults were hand-seeded into these programs by other researchers.

The executions to analyse for the presence of coincidental correctness were ob-

tained by running the manually-written test suites (sizes between 54 and 214)

for the subject programs. One of the hand-seeded faults did not expose any

failure, so it was excluded from the experimentation. For the remaining 19

faulty programs, results show that the percentage of coincidental correctness

is in the range from 1.2% to 22.2%, with an average of 7.4%.

The works by Masri et al. [66] and Masri & Assi [67, 68] analyse both

the occurrence of coincidental correctness and failed error propagation. Three
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releases of NanoXML and seven programs from the Siemens Suite (136 - 7646

lines of code) were used in the studies. The experiments involved 148 seeded

versions, among which 16 were derived from the NanoXML releases and 132

from the Siemens programs. As the analysis tools used in the study targeted

only Java programs, the authors manually converted the Siemens programs

from C into Java. The average rate of coincidental correctness was reported

as 56.4%. 3.5% of subjects did not exhibit any coincidental correctness, while

28.5% exhibited a high level in the range [60%, 90%] and 30% exhibited an

ultra-high level in the range [90%, 100%]. The rate of failed error propagation

is 15.7% on average. 28% of the faulty programs did not exhibit any failed error

propagation, while 13% exhibited a high level in the range of [60%, 100%].

Wang et al. [104] used three real world C programs with the sizes between

5,000 and 8,000 lines of code in their study. First, program mutations were

created for the subjects. Then these mutants were executed using the whole

test pool (between 5000 and 13585 test cases) and the ones that were not

strongly killed were excluded. After this step, for each subject program 1000

mutants were randomly sampled in proportion to the occurrence frequency of

their fault types. Results show an average of 36% coincidental correctness. The

authors report that for 27% of the mutants the rate of coincidental correctness

is over 80%. Having conducted the experiments with mutants, the authors

further validated their results using 38 real faults in one of the subjects. In

the case of real faults, the rate of coincidental correctness varies substantially

between 0.15% and 99.77%, with an average of 54%.

The study by Miao et al. [73] measures the level of coincidental correctness

in 6 C programs from the Siemens Suite. The experiments are conducted

using the subject programs injected with 115 hand-seeded faults and their

corresponding manually written test suites (sizes between 1052 and 5542).

The rate of coincidental correctness is 56% on average. For around 18% the

level of coincidental correctness is 100%, as the faulty versions not exhibiting

any failure were not excluded from the study. On the contrary, in the study

by Li & Liu [59] for each fault there is at least one failing test case. This study
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is conducted on 3 subject programs from Siemens Suite with 18 hand-seeded

faults. Results show that the rate of coincidental correctness is between 0.5%

and 44.4%, with an average of 20.4%.

Androutsopoulos et al. [5] introduce an information theoretic approach to

FEP. They introduce five different metrics, based on measures of conditional

entropy, and check whether these metrics are well-correlated with the prob-

ability of FEP. The subject programs were 17 very small programs and two

real-world projects (810 - 286000 lines of code). To obtain faulty versions of

the programs a mutation generator was used. In case too many mutants were

generated for the subject program, 100 mutants were selected randomly. As

all subject programs had numeric inputs, the Rng-Pack3 library was used to

generate the random numbers to be used as inputs. Each subject program

and each of its mutations were executed with the same 5000 inputs. The re-

sults show an average rate of 14.74% for coincidental correctness and 9.85%

for failed error propagation.

Xiong et al. [111] performed a quantitative study on how much inner oracles

can improve the fault-detection capability of existing tests. For this, they

generated mutations for subject programs and manually removed equivalent

mutants. With each test and each mutant forming a test-fault pair, they got

overall 97582 test-fault pairs. The results show that in 30.72%-69.65% of these

pairs the fault is triggered but cannot be detected by traditional oracles on

output, while these pairs can all be detected by inner oracles. This shows that

inner oracles have a significant impact on both the fault-detection capability

of tests.

Table 1 provides an overall summary of the studies on failed error prop-

agation. Column Language shows the programming language of the subject

programs. Column Fault Type shows what type of faults were analysed in the

corresponding study: synthetic mutations, faults seeded into the source code

by developers or real faults. Column # of Faults shows how many faults of

the given type were generated. FEP type shows whether the study measured

3http://www.honeylocust.com/RngPack/
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Coincidental Correctness or Failed Error Propagation, and FEP ratio shows

the average rate of CC/FEP reported in the study.

Table 1: Studies on Failed Error Propagation

Study Language Fault Type # of Faults FEP Type FEP Ratio

Daran et al. [24] C Real 12 FEP 78%

Masri et al. [66] Java, C Seeded 148 CC, FEP 56.4%, 15.7%

Masri & Assi [67, 68]

Wang et al. [104] C Mutants 3000 CC 36%

Real 38 CC 54%

Miao et al. [73] C Seeded 115 CC 56%

Li & Liu [59] C Seeded 18 CC 20.4%

Xue et al. [112] Java Seeded 19 CC 7.4%

Androutsopoulos et al. [5] C Mutants 1408 CC, FEP 4.89%, 9.85%

Xiong et al. [111] Java Mutants 137 FEP 43.4%

As we can see from the table, previous work tends to suggest that there is

a nontrivial proportion of faults that are subject to FEP. However, the ratio

of FEP varies across different studies substantially: from 7.4% to 43.4%. The

majority of these studies come from fault localisation and 4 out of 8 studies

in the table use subjects from the same Siemens Suite. The majority of the

studies use mutants or seeded faults, which are used to simulate real faults.

Two studies [24, 104] analysing real faults use a single C subject and consider

respectively 12 and 38 real faults for it. Only two previous papers considered

FEP for Java programs. However, neither of them attempted to measure FEP

on real faults.
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3 Failed Error Propagation measured on Java

Programs with Real Faults

Software faults are difficult to detect and fault removal consumes a signifi-

cant proportion of software development and evolution [11, 14]. One of the

widely-attributed sources of such difficulty is the possibility of failed error

propagation (FEP): a fault may corrupt the program’s internal state, yet this

corruption fails to propagate to any point at which it is observed [38, 84, 107].

Such non-propagating faults play the role of ‘nasty unexploded mines’: lurk-

ing undetected in software systems, waiting for that slight change in execution

environment that allows the corrupted error state to propagate, causing unex-

pected system failure.

Despite the importance of FEP, surprisingly few empirical studies in the

literature assess the extent of the problem. Empirical evidence based on a

few examples of real faults is available only for the C/C++ programming

language [12, 18, 40, 24], while for Java results have been obtained only with

mutants [68, 111], not with real faults. In the absence of robust empirical

analysis, the research and practitioner community is left with suspicions of a

silent menace of unknown proportions.

In order to bridge the gap between suspicions and empirical evidence we set

out to perform a large empirical study of FEP on real faults from Defects4J [51],

a large scale benchmark that has become the de-facto standard [52, 63, 6, 62,

65, 110, 82, 111, 91] for real faults in Java programs. Our study encompasses

all six projects in Defects4J and the associated 386 real faults.

Since the occurrence of FEP is a statistical property of a method (in fact,

it may occur in some executions and not in others), we faced the problem of

obtaining a sample of empirical data that is large enough to draw statistically

meaningful conclusions. This requires that the considered faults are executed

multiple times, in program executions that differ from each other, and that

the effects of the faults on the program state are observed along corresponding

execution points of both faulty and fixed program. We have extended the
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EvoSuite [30] test case generator to address the first problem and we have

developed our own trace alignment algorithm to address the second problem.

Our study revealed a very surprising finding: in this significant corpus of

real world bugs, the prevalence of unit-level FEP is negligible. We further ex-

perimented with seeded synthetic faults (mutants [48]), for which we observed

that unit-level FEP was found to be much more prevalent. To further analyse

the propagation of real faults we conducted experiments testing programs at

the system level rather than on unit level. Our results show that the rate

of system-level FEP with real faults is substantially higher than the rate of

unit-level FEP both with real and synthetic faults.

The primary contributions of this chapter are:

1. A large empirical study of failed error propagation in 6 different subjects

with 386 real bugs overall.

2. Comparison of FEP occurrence in programs with real faults to FEP

occurrence in programs with synthetic faults.

3. Comparison of unit-level FEP occurrence to system-level FEP occur-

rence.

3.1 Failed Error Propagation

The effectiveness of testing depends on the use of oracles that are sensitive to

any deviation from the intended program behavior and that report all such

deviations as test failures. One of the key decisions about the use of oracles

is their placement. Oracles can be placed in test cases in the form of a test

case assertion, i.e., outside the method under test (unit level testing) or at the

end of the entire system execution (system level testing); at the end of the

execution of the method under test, before the return point (acting as a post-

condition); or even internally, at any arbitrary execution point, predicating on

the intermediate program states observed during method execution.

An output oracle (i.e., a test case oracle) has limited capability to dis-

criminate between incorrect and correct method executions, since it can only
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check the value returned by the method under test and the externally observ-

able state affected by the method under test (e.g., global variables, externally

observable object states, persistent changes in the environment, output pro-

duced by the whole system execution). In a specific program execution, an

error may escape detection by an output oracle if it generates an internal state

that differs from the expected one without producing any externally visible

effect. This means it returns the expected value and it changes the externally

visible state in the expected way. Of course, in order for this to be an error,

there must be at least one execution where the error produces an externally

visible incorrect effect. Hence, output oracles can eventually detect all faults,

but they might require a lot of test cases if there is only a low probability

that the internal state differences propagate to externally visible differences.

When this happens at the unit level, we say the method is subject to external

failed error propagation (extFEP). When this happens at the system level, we

say the method is subject to system failed error propagation (sysFEP). Out-

put oracles are weak in comparison with return point or internal oracles when

external/system FEP happens.

At the unit level a return point oracle (i.e., an internal oracle placed right

before the return point) is more powerful than an output oracle because it can

predicate on the entire execution state at the return point, not just on the

externally visible state. However, return point oracles may also be subject to

FEP – in this case, called internal FEP (intFEP). In fact, in a specific pro-

gram execution, the error, which we assume as detectable externally in other

executions, might generate an internal state which differs from the expected

one, but such a difference might disappear when the execution proceeds from

the faulty statement to the return statement, where no state difference with

respect to the expected state is observed.

In the running example shown in Figure 1, consider the faulty statement

x = 3 * x, whose corresponding fixed version is x = 2 + x, and the return

point assertion at pp6. If the faulty program is executed with input x==4 (see

test0 in Figure 1), it returns 0, while the expected value is 2, which indicates
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int f(int x) {

// pp0: assert(\old(x) == x))

x = 3 * x; // fix: x = 2 + x;

// pp1: assert(\old(x) + 2 == x))

if (x > 0) {

// pp2: assert(2+\old(x) > 0 && \old(x)+2 == x))

x = x % 4;

// pp3: assert(2+\old(x) > 0 && (\old(x)+2) % 4 == x))

} else {

// pp4: assert(2+\old(x) <= 0 && \old(x)+2 == x))

x = x + 1;

// pp5: assert(2+\old(x) <= 0 && \old(x)+3 == x))

}

// pp6: assert(2+\old(x) > 0 ? \result == (2+\old(x)) % 4 :

\result == 3+\old(x));

return x;

}

void test0() { assert(f(4) == 2); } // FAIL

void test1() { assert(f(5) == 3); } // PASS

Figure 1: Code example including 7 possible internal oracle placement points,

pp0 to pp6, as well as a test case (test0) exhibiting no FEP and one with

external FEP (test1)

the fault can indeed affect an externally visible result, in some execution. If the

program is executed with input x==5, we can observe a different execution state

at program points pp1 and pp2, where we have x==15 in the faulty program,

while we expect x==7. However, at program point pp3 the same value of x is

produced by both the faulty and the fixed program: x==3. When the assertion

at pp6 is executed, no difference is observed between faulty and fixed program.

The external assertion inside test1 also does not fail.
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In the second program execution (with input x==5), the error fails to prop-

agate to the assertion at pp6 because the information about the different ex-

ecution states in the faulty and fixed programs is destroyed by the execution

of statement x = x % 4, which collapses the two different program states into

the same one, x==3. This is a case of both internal and external FEP, which

could be solved by introducing the internal assertion at pp1 or pp2.

Consider a case where external/output FEP occurs, while internal FEP

does not. Suppose we change the return type of f in the example shown in

Figure 1 to boolean and change the return expression to (x >= 0). With such

a change, test0 would pass, expecting and observing true as return value.

However, the return point assertion at pp6 would fail, since the observed value

x=0 differs from the expected value x=2.

Definition 1 (Coincidental Correctness) Given a fault f at program point

ppf , a specific method execution e containing ppf , represented as the sequence

of program points e = 〈pp0, . . . , ppn〉, is said to be subject to coincidental cor-

rectness (CC) if the faulty statement ppf does not cause a state divergence

between actual and expected execution states, s[ppf ] and s′[pp′f ].

s[ppf ] = s′[pp′f ]

Definition 2 (Internal FEP) Given a fault f at program point ppf , a spe-

cific method execution e containing ppf , represented as the sequence of program

points e = 〈pp0, . . . , ppn〉, is said to be subject to internal failed error propaga-

tion (intFEP) if execution of the faulty statement ppf causes a state divergence

between actual and expected execution states, s[ppf ] and s′[pp′f ], which is not

observable at the return statement ppn:

s[ppf ] 6= s′[pp′f ] ∧ s[ppn] = s′[pp′n]

where program points pp′f , pp
′
n correspond to ppf , ppn in the fixed program; s

and s′ indicate the execution state of faulty and fixed program respectively.

Definition 3 (External FEP) Given a fault f at program point ppf , a spe-

cific method execution e containing ppf , represented as the sequence of program
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points e = 〈pp0, . . . , ppn〉, is said to be subject to external failed error propaga-

tion (extFEP) if execution of the faulty statement ppf causes a state divergence

between actual and expected execution states, s[ppf ] and s′[pp′f ], which is not

observable outside the faulty method (extFEP):

s[ppf ] 6= s′[pp′f ] ∧ ext = ext′

where program point pp′f corresponds to ppf in the fixed program; s and s′ indi-

cate the execution state of faulty and fixed program respectively; ext represents

the values observable outside of the unit under test.

Definition 4 (System FEP) Given a fault f at program point ppf , a specific

method execution e containing ppf , represented as the sequence of program

points e = 〈pp0, . . . , ppn〉, is said to be subject to system failed error propagation

(sysFEP) if execution of the faulty statement ppf causes a state divergence

between actual and expected execution states, s[ppf ] and s′[pp′f ], which is not

observable in the output produced by the system (sysFEP):

s[ppf ] 6= s′[pp′f ] ∧ out = out′

where program point pp′f correspond to ppf in the fixed program; s and s′ indi-

cate the execution state of faulty and fixed program respectively; out represents

the values output by the system.

Figure 2: Execution points where state corruption disappears in the cases of

internal, external or system FEP

It can be easily shown that internal FEP subsumes external FEP, which in

turn subsumes system FEP (intFEP ⇒ extFEP ⇒ sysFEP). Figure 2 shows
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the three cases of FEP in graphical form. When a state corruption occurs

in the execution (red leftmost dot), it might no longer be observable in the

execution right before the return point (green dot labeled intFEP), right after

the return point (extFEP dot) or when the entire system execution is over

(sysFEP dot). Visually, the subsumption relation corresponds to the green

dot (second from left) in the figure, which propagates from left to right (i.e.,

if a state corruption disappears, it remains unobservable until the end of the

execution).

The definitions given above are tied to a particular execution of the faulty

method. We can generalize such definitions and define the probability of failed

error propagation of a method for a fault f as follows:

Definition 5 (Probability of FEP) Given a fault f at program point ppf ,

the probability of (internal/external/system) FEP is the proportion of method

executions e containing ppf that are subject to (internal/external/system) FEP

across all method executions e containing ppf :

p(FEPf ) =
| {e | ppf ∈ e ∧ e is subject to FEP} |

| {e | ppf ∈ e} |

Different types of oracles are required to prevent different types of FEP.

We call the oracle placed at an internal program point an inner oracle. One

variety of inner oracle is an oracle placed at the return points, which we call

a return point oracle. An oracle that checks the externally visible state of the

class is called a unit-level oracle. Similarly, an oracle that checks the output of

the overall system is called a system-level oracle. Inner oracles (in case of high

internal FEP), unit-level oracles (in case of low internal FEP and high external

FEP) or system-level oracles (in case of low internal FEP, low external FEP

and high system FEP) are needed to increase the fault detection capability of

test cases.

Inner oracles are the most powerful form of oracles, since they can detect

any deviation between actual and expected internal program states. However,

defining inner oracles is quite difficult for developers, especially when they need

to be placed within loops or within complex control structures. Manual oracle
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definition is supposed to be easier for return point oracles, and even simpler

for unit-level oracles, which consider only the externally visible program state.

Hence, understanding the relative strength of unit-level oracles, return point

oracles and inner oracles has major practical implications for developers. It is

also relevant for research, since generating, assessing and improving external

vs. return point vs. inner oracles involves different approaches and techniques.

3.2 Experimental Procedure

In this section, we provide the details of the procedure we have followed to

measure FEP occurrence on real faults. We first present the benchmark used

in the empirical study. To obtain statistically significant measurements we

needed large pools of inputs exercising the faulty statements. We describe the

automated test case generation approach adopted for this purpose. Then, we

describe how execution traces of faulty and fixed programs have been aligned

so as to compute state differences at corresponding program points. Finally,

we give detailed information on how the FEP measures were obtained from

the aligned traces.

3.2.1 Benchmark

To analyse FEP occurrence in programs with real faults we used Defects4J

[53][51] (version 1.1.0), a large scale database of existing faults, which contains

395 real bugs from 6 real-world Java open source projects (442 classes and

71455 SLOC per project on average).

For each bug we identify whether it is suitable for our study by checking if

its fix is a change in a method/constructor. The results show that for 9 out of

395 bugs, the fix is a change in other class members as instance/static variables,

static initialisation blocks or in the class declaration itself (as the interfaces it

implements). As this kind of bugs can not lead to FEP, we exclude these bugs

from our study. For system-level FEP rate analysis we can use only bugs from

projects with system-level functionality. This condition is satisfied for 132 bugs

from the Closure Compiler project, as the remaining 5 projects in Defects4J are
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libraries. For unit-level FEP rate analysis we exclude methods/constructors

with only one statement, as there is no possibility for internal or external FEP

in them.

Table 2 shows the projects contained in Defects4J, the number of bugs and

changed methods/constructors for each of them. In total, we have 386 bugs

and 459 methods/constructors available for unit-level FEP rate analysis and

132 bugs available for system-level FEP rate analysis.

Table 2: Defects4J Projects (M/C means Methods/Constructors)

Project Name Bugs Number of M/C

Fix in M/C All > 1 LOC All

JFreeChart 25 26 36 39

Closure Compiler 132 133 153 172

Commons Lang 62 65 73 84

Commons Math 104 106 126 146

Mockito 37 38 31 68

Joda Time 26 27 40 51

Total 386 395 459 560

3.2.2 Input Generation

As FEP might occur only for specific inputs, to estimate its probability we

need a large number of executions that cover the faulty statements.

To obtain these executions for unit-level FEP rate analysis, we extended

the EvoSuite [30] test case generator (version 1.0.5). We identify the difference

between the buggy and fixed versions of the method in terms of lines of code.

The standard line coverage criteria of EvoSuite aims at generating a test suite

that covers all lines of code. However, we need to cover only lines of code that

contain faulty statements. Moreover, we need these lines of code to be covered

multiple times, by different test cases. For this purpose, we made changes to

EvoSuite’s implementation, so as to handle the following new parameters:
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1. line list : list of lines of code to be covered by the generated test cases;

2. goals multiply : number of times each line should be covered.

In our experiments we aimed to have 1,000 different executions covering

each fault. This number of executions was judged a good balance between the

total time spent on each experiment and the resulting size of the test pool per

bug. Achieving a coverage goal results in a single execution that covers a single

line. Each bug consists of a number of lines, the lines in line list. Therefore,

we calculate the value for the parameter goals multiply by dividing 1,000 by

the size of the list provided as the line list parameter and round this number.

We run our extension of EvoSuite giving it a cumulative, maximum search

budget of 10,000 seconds (i.e., a maximum of 10 seconds per coverage goal).

Since we generate 1,000 test cases per bug and these tests are generated on

the faulty program version (as a developer would do to expose faults during

development), each bug requires a separate test generation process, executed

on a distinct program version, i.e., the one containing the considered bug.

For system-level FEP analysis, we needed inputs for Closure Compiler,

which is a tool that accepts a JavaScript file as an input, analyzes it, removes

dead code and rewrites and minimizes what’s left. We downloaded the 15

most highly trending JavaScript projects from GitHub4. Trending projects

are identified by looking at a variety of data points including stars, forks,

commits, follows, and page views and weighting them appropriately. As a

result, we got 3779 JavaScript files in total, and used these files as inputs to

our system.

3.2.3 Trace Alignment

To identify the cases of internal and external FEP, we trace both faulty and

fixed methods, and we compare the values of variables at corresponding pro-

gram points in the faulty and fixed versions of the method. In simple scenarios,

4https://github.com/trending/javascript, downloaded on 18.09.2017

55



where the fault fix requires only a change in an existing statement, the cor-

respondence between program points is trivially by position in the linearly

ordered sequence of statements, i.e., corresponding program points are pro-

gram points with the same line number. However, in more complex cases, in

which the fix requires the addition of new statements and/or the deletion of

existing statements, the statement sequences aligned by order must exclude

program points that refer to added/deleted statements. Hence, the identifica-

tion of the corresponding statements can be obtained by calculating the tree

edit distance between the Abstract Syntax Trees (AST) of faulty and fixed

methods. The tree edit distance [93] is the minimal-cost sequence of node

edit operations that transform one tree into another, where the allowed edit

operations are: CHANGE, INSERT, DELETE.

We represent the source code of faulty and fixed versions of a method as

an AST using JavaParser5 (version 2.3.1). We adapted the tree edit distance

computation algorithm described in [93] so that it works with nodes which are

objects of JavaParser’s Node type. We assign the cost of 1 to the three edit

operations (CHANGE, INSERT and DELETE) supported by the algorithm.

As a result, we get an edit sequence which converts one tree into another and

therefore a faulty method into the fixed one.

Figure 3 (a) shows an example of a simple method test(int x), which,

for the purpose of the explanation, we consider as a buggy method. Three

hypothetical fixes are shown in Figure 3 (b), (c), (d), involving respectively

the change of an existing statement, the addition of a new statement and the

deletion of an existing statement. The edit scripts automatically produced by

our implementation of the tree edit distance algorithm are shown in the right

column of the figure.

After the edit script is generated, we start the instrumentation process. For

both the buggy and fixed versions of the method we instrument the starting

program point pp0. Then we visit the nodes in the ASTs of the two methods,

according to the pseudocode of Algorithm 1 If a node is associated with the

5http://www.javaparser.org
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1 public int test(int x) {

2 //pp0 (b, c, d)

3 int y = x + 1;

4 //pp1 (b, c)

5 y = y % 4;

6 //pp2 (b, c) //pp1 (d)

7 return y; }

(a)

1 public int test(int x) {

2 //pp0

3 int y = x + 1;

4 //pp1

5 y = y % 3;

6 //pp2

7 return y; }

KEEP int y = x + 1;

CHANGE y = y % 4; to

y = y % 3;

KEEP return y;

(b)

1 public int test(int x) {

2 //pp0

3 int y = x + 1;

4 y = y * 3;

5 //pp1

6 y = y % 4;

7 //pp2

8 return y; }

KEEP int y = x + 1;

INSERT y = y * 3;

KEEP y = y % 4;

KEEP return y;

(c)

1 public int test(int x) {

2 //pp0

3 int y = x + 1;

4 //pp1

5 return y; }

KEEP int y = x + 1;

DELETE y = y % 4;

KEEP return y;

(d)
Figure 3: Buggy method (a) and hypothetical fixed versions, obtained by changing

an existing statement (b), by adding a new statement (c), or by removing an existing

statement (d)
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Algorithm 1: Program point instrumentation

1 Procedure visit(n, i)

Input:

n: AST node to be visited

i: instrumentation index

2 begin

3 if n is labeled as KEEP or CHANGE ∧ type(n) is not (RETURN

or THROW) then

4 while next(n) is labeled as DELETE or INSERT do

5 n := next(n)

6 i := i + 1

7 instrumentAfter(n, ppi)

8 else

9 visit(next(n), i)

10 if type(n) is not (FOR or WHILE) then

11 for m ∈ children(n) do

12 visit(m, i)

KEEP or CHANGE operators and if it is not of the RETURN or THROW

statement types, we instrument the program point after this node (line 7),

skipping any sequence of INSERT and DELETE nodes (lines 4-5). Otherwise,

if it is associated with the INSERT or DELETE operators, we skip the program

point and proceed with the next node (line 9). Then, if the node is not a

while or for loop, the visit proceeds recursively on the subtrees (lines 10-12).

We exclude program points within loops because of the practical difficulty of

defining oracles for the program state inside a loop.

By following this procedure, we obtain the program point correspondence

indicated within comments in Figure 3, associating program points in version

(a) with those in (b), (c), (d). The placement of program points in 〈(a),

(b)〉 is straightforward. In case of 〈(a), (c)〉, the program point before added
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statement y = y * 3 is skipped during the visit of (c) due to the while loop

at lines 4-5 in Algorithm 1. Similarly, the deleted statement y = y % 4 is

jumped over during the visit of (a). As a consequence, the program point after

y = x + 1 in (a) has no corresponding program point in (d).

3.2.4 Measuring FEP Rate

After running the generated inputs on the instrumented methods, we obtain

the values of variables at each program point, for each execution. Algorithm

2 shows how we identify whether a given execution is subject to FEP.

As shown at lines 2-3, if unit-level FEP analysis is performed and the

externally observable state is affected by the faulty execution as compared to

the fixed execution, we report no FEP. Similarly, if system-level FEP analysis

is performed and the output of the system is affected by the fault, we report

no FEP (lines 5-6). However, if the output of the system remains the same for

the faulty and fixed execution, but the externally visible state is different, we

report system-level FEP (lines 7-8). Otherwise, we check whether the state at

the program point before return is different (lines 9-10) and if it is so, we report

external FEP. If there is no external FEP, and the program points traversed

by the executions in the buggy and fixed methods are different (lines 11-12),

then internal FEP is detected – here, the executions in the faulty and the fixed

methods took different paths, so if we place an internal oracle in the buggy

method checking for the predicates in the path of the fixed execution, it would

detect the fault. In the case that all program points in the two executions

are the same, we iterate through them and report internal FEP if the state in

at least one aligned pair of them is different (lines 13-15). Finally, it is also

possible that for some inputs, the bug in the method does not lead to any

changes at all in the pair of executions being compared. This is also a case of

no FEP (line 16). The FEP value returned by the algorithm is expanded with

the addition of the subsumed values (invocation of closure in Algorithm 2).

This means for instance that if intFEP is reported for a system level analysis,

extFEP and sysFEP are also reported as true.
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Algorithm 2: Measuring FEP

Input:

type = 〈sys | unit〉: type of analysis, system-level or unit-level

out, out′: output of the system, used only for system-level analysis

ext, ext′: externally observable state after buggy/fixed methods’ executions

pp = 〈pp0, . . . , ppn〉: program points executed in fixed method

pp′ = 〈pp′0, . . . , pp′k〉: program points executed in buggy method

s, s′: state by program point in buggy/fixed methods

Result:

fepType: 〈 sysFEP | intFEP | extFEP | noFEP 〉
1 begin

2 if type = unit && ext 6= ext′ then

// s 6= s′, ext 6= ext′

3 return noFEP

4 if type = sys then

5 if out 6= out′ then

// s 6= s′, ext 6= ext′, out 6= out′

6 return noFEP

7 if ext 6= ext′ then

// s 6= s′, ext 6= ext′, out = out′

8 return closure(sysFEP, type)

9 if s[ppn] 6= s′[pp′k] then

// s 6= s′, ext = ext′

10 return closure(extFEP, type)

11 if pp 6= pp′ then

// pp 6= pp′, ext = ext′

12 return closure(intFEP, type)

13 for i ∈ [1 : n− 1] do

14 if s[ppi] 6= s′[pp′i] then

// s 6= s′, ext = ext′

15 return closure(intFEP, type)

// s = s′

16 return noFEP

where closure(FEP, type) applies the implication intFEP ⇒ extFEP ⇒
sysFEP when type = sys and intFEP ⇒ extFEP when type = unit.
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We run this algorithm for each system or method/constructor execution, as

appropriate, and then we calculate the proportion of either system-level FEP

or unit-level FEP (both internal and external) across all of the executions

that cover the considered fault, to estimate the probability of FEP for such

a fault. In this algorithm, the value of variables at each program point may

represent Java objects that need to be stored and compared with each other.

For this we use the XStream framework6 (version 1.4.9), which can serialize any

Java object without requiring their classes to implement the java.io.Serializable

interface (including private and final fields). We serialize these objects to JSON

format and consider two objects equal when their JSON representations are

the same.

3.3 Results

3.3.1 Research Questions

We have conducted a set of experiments to answer the following research ques-

tions:

• RQ1: What is the prevalence of unit-level failed error propagation with

real faults?

• RQ2: Does the prevalence of unit-level failed error propagation change

if real faults are replaced by mutants?

• RQ3: Does the prevalence of failed error propagation with real faults

change if it is measured at the system level instead of unit level?

RQ1 is the key research question that motivates this study. The answer to

this question has implications for oracle placement. It is potentially relevant for

both practitioners and researchers, since it estimates the probability of missing

/ detecting a fault depending on where oracles are placed (i.e., internally, at

return points, or externally).

6http://x-stream.github.io/

61



While, to the best of our knowledge, no previous study investigated the

occurrence of FEP on real Java faults, there are experimental results [5, 68, 111]

on FEP rate computed when mutations are used as surrogates for real faults

in both Java and C. Such results provide evidence for the occurrence of FEP

on mutants. With RQ2 we want to investigate whether results on mutants

correspond to the results obtained on real faults.

Since a system level execution typically involves a long chain of concate-

nated unit level executions, there is potentially more opportunity for a cor-

rupted state to disappear during such a system-level execution, becoming un-

detectable at the output. In RQ3 we want to check whether the prevalence of

FEP changes (and in particular, whether it increases) when we consider test

executions at the system level instead of unit level as expected.

We also report some observations obtained from a qualitative analysis per-

formed to better understand the patterns of prevalence behind FEP or no FEP,

either with real faults or with mutations, considering the root cause of each

occurrence.

3.3.2 Experimental Data

RQ1 (FEP Rate in Programs with Real Faults)

Table 3 shows a summary of the results obtained in our experiments. Col-

umn Changed Methods indicates the overall number of methods changed as

a result of a bug fix, while column Methods with TS reports the number of

methods for which our extended version of EvoSuite was able to generate a

large test suite, consisting of test cases that exercise the faulty statements.

While the target size of these test suites was 1,000 test cases, sometimes Evo-

Suite generated slightly smaller test suites in the allowed generation time (the

average test suite size is 863).

Column Number of Executions shows the overall number of executions ob-

tained as a result of running the test cases. Column Externally Detectable

shows the number of executions where the fault resulted in a program state

deviation that is observable outside of the methods. Columns Internal FEP
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Table 3: Internal and external FEP on real faults (RQ1)

Project Changed Methods Number of Externally Int Ext

Name Methods with TS Executions Detectable FEP FEP

JFreeChart 36 28 18,785 10,678 0 0

Closure Compiler 153 102 89,078 42,078 0 0

Commons Lang 73 54 35,153 24,854 0 0

Commons Math 126 92 78,489 45,065 0 0

Mockito 31 25 20,967 8,348 0 0

Joda Time 40 28 15,900 7,987 0 0

Total 459 329 258,372 139,010 0 0

and External FEP show that, among the 258,372 executions, the fault was ex-

ternally observable in 139,010 cases (53.8%). In the remaining cases (119,362

test case executions), in order for FEP to happen an internal program state

deviation, not propagated to the output, should be observed. However, this

was never the case. There was no single case where an internal state deviation

occurred, i.e. no state infection.

We have tested the statistical significance of our results, which depends on

sample size and observed values. According to the Pearson-Klopper method

for calculating binomial confidence intervals, internal/external FEP is in the

range [0:1.43−5] with mean = 0 at confidence level 95%. This means that

even if intFEP and extFEP could occur in other subjects (we might have not

observed it just by chance), their likelihood can be assumed to be very low

with high confidence.

RQ1: Our experiments show that the probability of unit-level FEP in Java

methods with real faults is extremely low.

RQ2 (FEP in Mutated Programs)

For RQ2, instead of real faults we consider faulty versions of methods ob-

tained by means of mutation analysis (i.e., we generate mutants of the fixed

63



Table 4: Methods from benchmark grouped by LOC

Project Name 2-25 26-50 51- 101- >200

100 200

JFreeChart 22 6 5 3 0

Closure Compiler 60 45 35 8 5

Commons Lang 34 16 11 12 0

Commons Math 59 22 24 16 5

Mockito 25 6 0 0 0

Joda Time 26 12 2 0 0

Defects4J methods). As we need a large test suite for each mutant and the

number of mutations generated per method can be high, we did not conduct

this analysis on all the methods available in the benchmark. Instead, we

sampled the methods based on their lines of code. We divided methods into 5

groups: 2-25 LOC, 26-50 LOC, 51-100 LOC, 101-200LOC, > 200LOC. Table 4

shows the number of methods in each group for each project. We randomly se-

lected one method from each group for each project and we generated mutants

for the selected representative using Major [50] (version 1.1.6) and applying

all the mutation operators available in this tool. Then, among the generated

mutations, we selected only strongly killable mutants, to avoid the inclusion

of equivalent mutants. In fact, an internal state deviation in an equivalent

mutant is always associated with external FEP, but this is by definition a

false positive, because the internally observed difference is not an indicator of

a fault: since the mutant is equivalent to the original program, it does not

introduce any fault into the program, so there is no fault to be detected inter-

nally at all. Hence, we conservatively measure FEP only on mutants proved

to be strongly killable by test generation. In cases when EvoSuite was unable

to generate a large test suite for any of the mutations of a method, or when

none of them is strongly killable, we randomly select another method from the

group.
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Table 5: Mutants generated.

Project Name Mutants Strongly

Killed

JFreeChart 37 25

Closure Compiler 468 350

Commons Lang 360 215

Commons Math 765 502

Mockito 28 15

Joda Time 212 18

Total 1870 1125

Table 5 shows the overall number of mutants and the number of mutants

that are strongly killable by the generated test suites. We can see from Table 6

that when we replace real faults with mutations, for 3 subjects there are cases

of both internal and external FEP. Among all 831,789 executions in these 3

subjects, 51% of faults were externally detectable. In 1.6% of executions there

was an occurrence of internal and in 3.7% of external FEP. In the remaining

cases (46.9%) the internal state was always identical to the expected one, i.e.,

the fault did not infect the execution.

According to the Pearson-Klopper method, internal FEP is in the range

[0.0159:0.0164], with mean = 0.0161, at confidence level 95%; external FEP is

in the range [0.0210:0.0216], with mean = 0.0213, at confidence level 95%.

RQ2: Mutants behave in a substantially different way than real faults when

the FEP rate is considered for Java methods: there is higher probability of

both internal and external FEP when the fault is introduced by mutation.

RQ3 (System-level FEP)

For RQ3 we have run Closure Compiler on 5,070 different JavaScript input

files, on 132 bugs of this project. For each bug, we made a run on both faulty

and fixed versions of the system and saved the pairs of outputs and method
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Table 6: Internal/external FEP on mutants (RQ2)

Project Num of Externally Int Ext

Name Execs Detectable FEP FEP

JFreeChart 25,842 6,217 0 0

Closure Compiler 320,678 180,562 2,587 4,783

Commons Lang 89,043 45,800 1,567 2,623

Commons Math 422,068 200,865 10,222 25,956

Mockito 16,284 7,321 0 0

Joda Time 15,460 8,970 0 0

Total 889,375 449,735 14,376 33,362

executions obtained. The output of Closure Compiler is also a JavaScript

file and if the output files generated are different we consider the error to be

Externally Detectable. Table 7 lists the ID of the bugs which we were able

to execute with our inputs. 22 bugs out of 132 were executed leading to an

overall number of 528 executions. For each of these 22 bugs there was at least

one execution which was externally detectable, i.e. that caused a change in the

output file generated by Closure Compiler. Overall, 424 out of 528 (80.3%)

executions were externally detectable. 60 executions (11.4%) provide evidence

of FEP occurring for 4 different bugs. For 8 executions (1.5% of all executions)

of Bug 1 we observed unit-level internal and external FEP. This bug affects

neither the externally observable state of the class nor the final output of the

system. However, it causes the program states in faulty and fixed versions to

differ, which is evidence of both internal and external FEP. During the unit-

level analysis our test case generator was not able to generate any test cases

for this bug, therefore no unit-level FEP was reported in RQ1.

According to the Pearson-Klopper method for calculating binomial confi-

dence intervals, system-level FEP is in the range [0.0878:0.1438], with mean =

0.1136, at confidence level 95%.
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Table 7: System-Level FEP on real faults (RQ3)

Closure Num of Externally Sys Int Ext

Bug ID Execs Detectable FEP FEP FEP

1 20 12 8 8 8

4 15 5 8 0 0

8 200 159 41 0 0

13 36 24 0 0 0

16 15 10 0 0 0

20 22 22 0 0 0

21 4 4 0 0 0

22 4 4 0 0 0

29 1 1 0 0 0

34 13 10 0 0 0

50 1 1 0 0 0

52 13 13 0 0 0

56 2 2 0 0 0

60 5 5 0 0 0

62 57 50 0 0 0

63 57 50 0 0 0

87 23 12 3 0 0

115 3 3 0 0 0

116 4 4 0 0 0

127 14 14 0 0 0

131 9 9 0 0 0

133 10 10 0 0 0

Total 528 424 60 8 8
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RQ3: The prevalence of FEP changes when we test programs at the system

level instead of unit level: 11.4% of the overall executions provide evidence

of system-level FEP, which is substantially higher than the probability of

unit-level FEP, both with real faults and with mutants.

3.4 Qualitative Analysis: Factors Affecting FEP

To understand the reasons behind the absence of FEP in programs with real

faults and their existence in the mutations, we performed a qualitative analysis

on all the 384 bugs from the Defects4J benchmark and the mutations generated

by Major. For methods from Defects4J, we manually compared the buggy

version of the methods with the fixed version and analysed the bug fixes. As

a result of this analysis we identified two main classes of explanations for the

absence of FEP: (1) the fix of the bug affects the output directly; (2) the state

change resulting from the fix is such that it always propagates to the output.

In case (1), clearly both internal and external FEP are impossible, since all

state deviations are immediately returned to the unit-level oracle. In case (2),

the state change propagates to the output because the computation performed

between the fault and the return statement does not “squeeze” the state (i.e.,

it never collapses correct and incorrect values into the same value, as happens

e.g. with statement x = x % 4 in Figure 1).

During manual analysis, one commonly occurring fix pattern was a change

in the return statement of a method. For example, in Figure 4 the bug is at line

6 and the fix is as indicated within a comment at line 7. As this fix changes the

return statement directly, it is not possible to observe any difference between

the fixed and buggy versions at some internal point in the method, so no FEP

can be observed in such cases. Another typical pattern for a bug fix is the

addition of an if statement containing return or throw statements inside. In

Figure 5 the bug is fixed by adding the if statement at lines 7-12. So whenever

this if statement is executed, the method will return the object produced by

the invocation at line 11. If this differs from the object generated by the faulty
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1 public Complex divide(double divisor) {

2 if (isNaN || Double.isNaN(divisor)) {

3 return NaN;

4 }

5 if (divisor == 0d) {

6 return NaN;

7 //return isZero ? NaN : INF;

8 }

9 if (Double.isInfinite(divisor)) {

10 return !isInfinite() ? ZERO : NaN;

11 }

12 return createComplex(real / divisor,

13 imaginary / divisor);

14 }

Figure 4: Commons Math Bug 46

version at line 14, the difference will be definitely observable by unit-level

oracle. If it does not differ, we have coincidental correctness, but no FEP.

To quantify this class of FEP, we considered the edit scripts generated for

trace alignment and used JavaParser to identify the following cases: (1) when

the edit script contains a CHANGE operator which changes one return state-

ment into another; or, (2) when the edit script contains an INSERT operator

which adds an if statement containing a return or throw statement inside.

Table 8 reports the number of occurrences of both cases. As we can see, in

32% of the methods the bug fix includes these type of changes.

Another typical pattern preventing the occurrence of FEP is when a state

change resulting from a bug fix always propagates to output. In Figure 6

the bug is at lines 5-6 and the fix is as indicated at lines 7-8. If the buggy

statement is executed, it might cause a difference in the value of the chiSquare

variable. However, whenever this happens, this difference of value is ensured to

always propagate to the return statement of the method, hence being externally
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1 public static LocalDate fromDateFields(Date date) {

2 if (date == null) {

3 throw new IllegalArgumentException

4 ("The date must not be null");

5 }

6

7 //if (date.getTime() < 0) {

8 // GregorianCal cal = new GregorianCal();

10 // cal.setTime(date);

11 // return fromCalendarFields(cal);

12 // }

13

14 return new LocalDate(

15 date.getYear() + 1900,

16 date.getMonth() + 1,

17 date.getDate());

18 }

Figure 5: Joda Time Bug 12

observable. When there is no difference, we have coincidental correctness, but

no FEP.

Table 9 shows the number of bugs for each project where this scenario

holds. These cases were identified performing manual analysis on the bug

fixed. Overall, it happens in 13% of the bugs.

As the results for RQ2 show, when real faults are replaced with mutants,

there is evidence of FEP. To analyse the reasons behind that, we investigated

mutants which lead to the occurrence of internal and external FEP. In Figure 7

we have method getInitialDomain(double p) and two mutations for it, mut0

at line 3 and mut1 at line 6, generated by Major. In case of mut0, whenever

the if condition at line 7 is true, variable ret is reassigned a new value. So,

while the values of ret at method’s return and program point pp ret in the

buggy and fixed method are the same, they are different at program point
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Table 8: Fixes affecting the output directly

Project Fixed Return If

Methods Change Addition

JFreeChart 39 11 3

Closure Compiler 172 21 13

Commons Lang 88 17 10

Commons Math 146 28 28

Mockito 76 28 7

Joda Time 51 9 6

Total 572 114 67

Table 9: Fixes directly propagating to output

Project Name Bugs Fix visible at output

JFreeChart 25 8

Closure Compiler 131 14

Apache Commons Lang 61 4

Apache Commons Math 104 17

Mockito 37 1

Joda Time 26 4

Total 384 48

pp1, which indicates the presence of internal FEP. Actually, the assignment

at line 8 “squeezes” the information associated with variable ret, which is no

longer available at the return point and externally.

For mut1, when the if statement at line 7 is false in the original, fixed

program, variable ret keeps its initial value equal to 0.0. However, the value of

variable d at program point pp ret might be different from 0.0, since any value

lower than or equal to 2.0 makes the if condition false. So we may observe two

different values for variable d at program point pp ret in original vs. mutated
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1 public double getChiSquare() {

2 double chiSquare = 0;

3 for (int i = 0; i < rows; ++i) {

4 final double residual = residuals[i];

5 chiSquare += residual * residual *

6 residualsWeights[i];

7 //chiSquare += residual * residual /

8 // residualsWeights[i];

9 }

10 return chiSquare;

11 }

Figure 6: Commons Math Bug 65

program, while in both versions the value of ret is the same, i.e., 0.0. This is

a clear case of external FEP.

The conclusion from our qualitative analysis of FEP in mutants is that the

effect of mutation operators on the program state and on the propagation of

incorrect program states is substantially different from the effect of real faults.

3.5 Implications

The empirical results presented in this chapter have relevant implications for

practitioners and researchers:

Inner oracles The absence of internal FEP when real faults are considered

for Java units (classes) indicates that internal oracles do not have higher fault

detection capabilities than return point or unit-level oracles when performing

unit testing of classes. Rather than attempting to include assertions about

the internal execution state, Java developers might better invest their time

to strengthen the assertions that check the program state at return points or

within test cases. In fact, if such assertions are sufficiently strong to capture

any deviation from the expected execution state, they will miss no fault that

manifests itself internally, because the internal state deviation tends to reach
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1 protected double getInitialDomain(double p) {

2 double ret = 0.0;

3 //mut0: double ret = 1.0;

4 //pp1

5 double d = getDenominatorDegreesOfFreedom();

6 //mut1: d = 0.0;

7 if (d > 2.0) {

8 ret = d / (d - 2.0);

9 }

10 //pp_ret

11 return ret;

12 }

Figure 7: Commons Math Bug 95

them. Researchers interested in Java faults should focus on techniques to

improve the oracles that can be defined at return points or within test cases,

because these can be made equally effective as internal oracles.

The non-negligible occurrence of FEP at the system level indicates that

checking the overall output of a system might be not enough and that probes

for the intermediate computations should be inserted into the test case ex-

ecution to avoid that the effects of faults disappear when proceeding to the

computation of the overall system output. While such intermediate oracles

can still be based on post conditions or test case assertions, and do not require

the observation of internal execution states, they might represent a challenge

for system level testing. In fact, at this testing level the system is usually

considered as a black box, whose intermediate steps are not visible. Accord-

ing to our results, monitoring and checking such intermediate steps is quite

important for avoiding system FEP.

Post-conditions The programming by contract method prescribes that ev-

ery method be equipped with pre-conditions, post-conditions and invariants.

This approach to programming offers several benefits, among which are the
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following possibilities: to formally express the specifications that each method

must satisfy, in a way that is machine interpretable; to reuse the oracle across

test cases; to document a method in an unambiguous way. One may question

what part of the execution state should be checked in a post-condition. In fact,

at return points the whole internal state of the method under test is accessible.

According to our results, the absence of internal FEP indicates that checking

the externally visible effects of a method execution is enough to expose faults

as soon as they corrupt the execution state. It is unlikely that the effort to

create internal oracles will be beneficial for early fault exposure. Rather, post-

conditions at return points can be focused on the externally visible effects of

the execution, disregarding the inner details. This is consistent with the pro-

gramming by contract paradigm, where only the externally visible contract is

typically specified.

Subsystem testing The higher prevalence of failed error propagation at

system level over unit level might indicate that testing subsystems of the soft-

ware in isolation could make it easier to expose bugs. While the effect of a

bug is externally visible in the class to which it belongs, it is not always visible

at the level of the whole system. This supports the idea of bottom-up inte-

gration testing, in which we build on unit-level results by testing higher-level

combination of units in successively more complex scenarios.

Mutants vs. real faults The software engineering community has wit-

nessed a long debate on the use of mutants as surrogate for real faults [4, 52].

Such a replacement may be valid for the purpose of evaluating the adequacy of

a test suite, owing to the high correlation between mutation score and fault de-

tection rate. We, rather, are interested in investigating the propagation of an

error to the oracle that can detect it. Our results show that such propagation

is less prevalent with mutants, while it is always successful with real faults.

Our qualitative analysis indicates that mutants corrupt the internal state dif-

ferently from real faults. In fact, the latter state corruption tends to always

generate an externally visible misbehaviour, while the former might remain
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invisible if only the external state is inspected. Hence, practitioners should

not decide where to place their oracles based on the propagation of errors as

simulated with mutants. Researchers could instead investigate mutation op-

erators that behave similarly to real faults with respect to the propagation of

the corrupted internal state to the externally visible state.

Previous work Previous work on failed error propagation tended to suggest

that there is a nontrivial proportion of faults that manifest the FEP property.

Our results differ markedly from these previous findings. One possible expla-

nation could be differences in the subjects and the types of faults. Daran et

al. [24] analysed 12 real faults in a C program with 1000 lines of code. Wang

et al. [104] analysed 38 real faults in a C program with 6000 lines of code. By

comparison the Defects4J contains 395 real faults which come from six large

Java projects. An intriguing possibility lies in the potential differences between

the two language (C vs. Java) styles; perhaps some programming languages

have inherently higher or lower failed error propagation propensity than oth-

ers. Hence, one of the implications of our findings is the pressing need for

further work on FEP in different programming languages and corpuses. Taken

together, our findings and those in the previous literature do tend to suggest

that there may be differences between different programming paradigms with

respect to error propagation behaviour, and that there are certainly differences

between unit and system level FEP. These differences clearly have implications

for software testability [16, 103], because FEP tends to inhibit testability. Such

findings may also suggest testability transformations [42, 71] that could reduce

the likelihood of failed error propagation, leading to reformulations of software

systems (e.g., by inserting probes for intermediate steps) that are inherently

more testable.

3.6 Threats to Validity

In this section we discuss potential threats to the validity of our empirical

findings. These are mostly in the external and internal validity categories.
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Threats to external validity affect the generalisation of our results. We car-

ried out our experiments on a well established benchmark for Java, Defects4J,

which includes 395 real bugs from 6 different projects. While Defects4J is

becoming de-facto a standard benchmark for Java testing, replication of our

study on further subjects beyond Defects4J would be quite important. We do

not claim generalisability to programming languages other than Java. On the

contrary, we suspect that the programming style of Java, which encourages

the decomposition of the software into small computations assigned to meth-

ods, favours the creation of code units where information is not squeezed when

propagating from inner states to the output. Other programming styles might

favour the creation of longer and more complex computational units, where

information squeezing might be more likely to occur, due e.g. to variable re-

assignments, which erase and replace the information hold by the reassigned

variables..

Threats to internal validity come from factors that could influence our

results. Among them, the most important factor that influences our conclu-

sions on the differences between real faults and mutants on FEP, is the set

of mutations that have been considered. To limit such a threat, we used a

well-established mutation analysis tool, Major. However, different tools and

different mutation operators might lead to different sets of synthetic faults.

Moreover, we have not been able to perform mutation analysis of all the buggy

methods available in Defects4J, because of the enormous computation time in-

volved, since we generate test cases for all mutants that Major produces for

each method. We have defined a sampling strategy that takes method size into

account, in order to consider representatives of the various possible method size

categories. However, this does not ensure that the results obtained on the se-

lected sample would remain exactly the same if extended to the entire dataset

of the buggy methods.

Another factor that might have influenced the results is the way we filtered

equivalent mutants from the full set of mutants generated by Major. We con-

servatively kept only killable mutants. This means that among the excluded
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mutants, some may be non equivalent and may be subject to FEP. As a con-

sequence, when mutants are considered instead of real faults, our measures

of internal/external FEP are conservatively underestimating the true values.

Even with such a conservative underestimation, we observed a non negligible

number of occurrences. Our conservative underestimation may also explain

the lower incidence of FEP on mutants in comparison with the values reported

in the literature [68, 111].

Finally, our results are potentially affected by the limitations of the test

generator used to exercise the faults. EvoSuite was indeed unable to generate

large test suites for some faults and EvoSuite might have produced larger

test suites if given additional test generation budget. To avoid that small test

suites could affect our results, we have excluded all test suite with less than 150

test cases. The test generation budget allocated to EvoSuite (10,000 seconds

per test suite) was the maximum compatible with the overall duration of the

empirical study.

3.7 Conclusions and Future Work

In this chapter we have presented empirical evidence from a large corpus of

real-world faults in Java systems that reveals a surprisingly low unit-level FEP

amongst the 386 faults studied. These empirical findings contradict earlier

work on failed error propagation and, if replicated in other fault corpuses

and/or for other languages, would have profound implications for software

testing. On the other hand, with system-level inputs we get a substantially

higher rate of FEP. This shows that when oracles are defined for an individual

Java class, postconditions that predicate on the externally observable state

or test case oracles are sufficient to detect faults as soon as they corrupt the

internal state. On the contrary, when we analyse a complete software system,

the output alone does not provide enough information to expose faults as

soon as they manifest themselves, necessitating the observation of intermediate

computation steps.
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When we turn our attention to studying the synthetic faults introduced by

program mutants (a widespread practice believed to be good at simulating real

faults), we find noticeably different behaviour at the unit level: the artificial

faults denoted by mutants do exhibit substantial FEP, unlike the real faults

we studied. While such synthetic faults may be good proxies for estimating

whether test cases that reveal them will also reveal real faults, there do appear

to be non-trivial differences in the behaviour of synthetic faults and real faults,

with respect to their error propagation in Java classes.

These findings suggest further work to investigate the prevalence of FEP in

other programming languages and bug data sets, and the need to further inves-

tigate the relationship between mutation testing and real faults. We studied

only single faults, but future work could also extend our findings to multi-

ple faults, which may have additional implications for higher order mutation

testing, one of the main motivations of which is the ability to model fault

masking.
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4 Oracle Assessment and Improvement

In this section, we introduce our approach to oracle assessment and improve-

ment that is based on search based test case generation [30, 43, 70] to identify

false positives and mutation testing [48, 53] to identify false negatives. Our

technique generates counterexamples as test cases that demonstrate incom-

pleteness and unsoundness, which the developer then uses to iteratively im-

prove the assertion oracle. The process continues until the tool is unable to

generate new counterexamples and finishes with an improved (more complete

and sound) oracle.

Our approach necessarily places the human tester in the loop, because

modifications made to the oracle to solve reported false positives and false

negatives depend on the intended program behaviour (vs. the implemented

behaviour), which we assume is known to developers through informal knowl-

edge, requirement documents and other sources of documentation.

The main contributions of this chapter are:

1. A formalisation of the oracle improvement step as a change in the mutual

information between the actual and perfect oracles and a proof that a

monotonic sequence of increases is always possible in practice.

2. A novel iterative oracle assessment and improvement approach and its

implementation.

4.1 Formal Model

4.1.1 Quality of Assertions

Let us consider a program point, pp, in some software under test (SUT), P .

Let Σ be the set of all states that can occur in P and I ⊆ Σ be the set of start

states. We denote Rpp as a set of states that reach pp via execution of P on I:

Rpp = {s | ∃i ∈ I ∧ [[P ]]pp i = s}

where [[P ]]pp i indicates the state reached at pp by executing P on i ∈ I.
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We place an assertion, 〈assert〉, at pp with the intention of using this as-

sertion as an oracle. Define

App = {s ∈ Rpp | 〈assert〉s = T}

i.e. the set of reachable states for P at pp on which the assertion is true.

Although this knowledge is generally unavailable to developers, for the sake

of the formalisation we indicate by Epp the set of states that occur at pp and are

correct (the perfect oracle). One may think of Epp as the intersection between

the set of correct states at pp for some “ghost program”[5], G, an error free

version of the software under test, and Rpp, the reachable states of the SUT:

To make a state comparison possible between the two program versions, we

assume that the differences between G and P are sufficiently small and that

pp occurs in both programs. We can drop the subscript pp and use R,E and A

when pp is clear from the context. The relationship between R, E and A at pp

can be represented in a Venn diagram as shown in Figure 8.

R

A E

reachable 
states  

in A and E

⌃

Figure 8: Relationship between R, E and A

The overall aim of the testing process is to make the software behaviour

as close as possible to the expected/intended behaviour. At the end of this
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process we will have adjusted the states of the SUT at pp so that E ∩ R is as

large as possible (and similarly for all the other program points in the SUT).

However, our focus is on the oracle improvement: improving 〈assert〉 so that

we obtain a new assertion, 〈assert〉′ for which the domain of True has as large

an overlap with E as possible, i.e. improve the size of A∩E. Ideally we would

like a new assertion such that A′∩E = A′ = E so that the states at pp on which

the new assertion is true are exactly the correct states of the ghost program.

However, the set of states that we actually have access to, and can test, are the

states of the SUT, i.e. the states in R. In terms of the relationship between

A and E these are the partitions A ∩E ∩R, (A−E) ∩R and (E −A) ∩R in

Figure 8.

The situation can be represented more simply, as in Figure 9, by taking R

as the set universe. Here, the region (A − E) ∩ R is the set of states of the

SUT which are not “correct” but on which 〈assert〉 is True, that is the set of

false negatives, while (E − A) ∩ R are the set of correct states on which the

assertion is false, that is the set of reachable false positives.

R

A E

a

db c

false negatives false positives

Figure 9: E and A limited by R
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Figure 10: The Assertion Improvement Process
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Definition 6 (False Negatives) A false negative is a reachable program state

where the given assertion is true, although such state does not belong to the set

of expected states according to the intended program behaviour.

Definition 7 (False Positives) A false positive is a reachable program state

where the given assertion is false, although such state does belong to the set of

expected states according to the intended program behaviour.

Our proposed assessment process tests oracles in terms of presence of false

positives and false negatives, which we call oracle deficiencies. The notions

of false positives and false negatives are tightly connected with the notions of

oracle soundness and completeness. An assertion 〈assert〉 is Complete iff the

correct reachable states are a subset of the states accepted by the assertion, i.e.

E ⊆ A. An assertion 〈assert〉 is Sound iff the accepted states are a subset

of the correct reachable states, i.e. A ⊆ E. Completeness implies that the

number of false positives is zero, soundness implies that the number of false

negatives is zero.

Our proposed improvement process strengthens 〈assert〉 to reduce the num-

ber of oracle deficiencies, producing a new assertion 〈assert〉′. This process is

illustrated in Figure 10: the initial assertion in diagram (1) is improved into

new assertion in diagram (2) with fewer false positives and false negatives.

The number of false negatives and false positives (in Figure 10 the sizes of b

and d respectively) are the indicators of oracle quality. In the ideal situation,

after the improvement process, we should have a Fully Correct final oracle.

However, generating fully correct oracles might be an expensive and difficult

process, as an oracle that detects all faults could be as complex as the system

under test itself. Therefore, a Partially Correct oracle might be regarded as

sufficiently adequate in practice.

Definition 8 (Full Correctness) An oracle is fully correct if it has no false

positives and no false negatives, i.e. it is both complete and sound.

Definition 9 (Partial Correctness) An oracle is partially correct if it has

no false positives, but has false negatives, i.e. it is complete, but not sound.
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Diagram (3) in Figure 10 shows a step in the improvement process where

partial correctness has been achieved. Here, the size of d is zero (no false

positives), while the size of b is not (there are false negatives). The size of

b can be quantified to indicate the level of partial correctness. Diagram (4)

in Figure 10 demonstrates the case of full correctness: both b and d has size

zero (no false positives and no false negatives), i.e. A = E. The improvement

process terminates with a more complete and sound oracle once the desired

level of either partial or full correctness has been achieved.

4.1.2 Information Theory Based Model

In what follows we consider a probability distribution on the set of states that

occur at a program point in a program. Such a probability distribution can be

formally constructed by considering the semantics of a program (e.g., Cousot

and Cousot’s reachability semantics, which is an abstract interpretation of

their partial trace semantics [21]) and then applying Kozen’s principles for

building probabilistic semantics for programming languages on the basis of

input distributions and non-probabilistic semantics [54].

Consider Rpp as above and let σ be the normalised probability distribution

on the members of R (i.e., we consider R as a random variable on the program

states that reach pp).

Let o : R→ Bool be an oracle on R. Since o induces a probability distribu-

tion on Bool from the one on R, o is a random variable on Bool. In fact any

random variable corresponds to a partition over some event space equipped

with a probability distribution [20], with a Boolean valued random variable

being simply a binary partition on the domain event space. Let OR be the set

of all possible binary partitions on R. This is also the set of all possible oracles

on R interpreted as random variables.

Suppose that we have two oracles, α, γ ∈ OR, that can observe the states

at pp and make decisions as to whether they are correct. Here, α is an ora-

cle created from an assertion by our program transformation techniques and

γ is an oracle that is ideal in the sense that it perfectly encapsulates ground
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truth knowledge about the intended, correct behaviour of the program, P (we

introduce γ to support theoretical analysis, but we do not assume that γ is

explicitly available in practice). As described before, the aim of our improve-

ment process is to make practical oracle α more similar to ideal oracle γ by

reclassifying α’s false positives and false negatives so that they align with the

decisions of γ.

An oracle improvement step either reclassifies some states that were false

positives as true negatives or reclassifies some states that were false negatives

as true positives. These two kinds of steps are quite independent of each other

and may change the labelling on different numbers of states. Each step creates

a new, improved oracle from the old one. We model these two kinds of steps

as self maps on the domain of oracles on R.

N,Π : OR → OR

Since we are using testing, i.e., a dynamic, incomplete method, the approach

is necessarily existential, that is, in each step we discover either some false

positives or some false negatives, so we interpret a self map in an existential

way. An N step converts some states incorrectly labelled by α as positive (i.e.

failures) to negative in better alignment with γ

∃s ∈ R . α(s) = F ∧ γ(s) = T ∧N(α)(s) = T

while a Π step converts false negatives to true positives.

∃s ∈ R . α(s) = T ∧ γ(s) = F ∧ Π(α)(s) = F

We model our oracle improvement process using Shannon’s information

theory [92]. With reference to the diagram in Figure 9, we interpret the regions

labelled a, b, c, d as probability masses:

a = p(α = F, γ = F) =
∑

s∈R∧α=F∧γ=F σ(s)

b = p(α = T, γ = F) =
∑

s∈R∧α=T∧γ=F σ(s)

c = p(α = T, γ = T) =
∑

s∈R∧α=T∧γ=T σ(s)
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d = p(α = F, γ = T) =
∑

s∈R∧α=F∧γ=T σ(s)

Removal of false negatives can be seen as a repartition of R so that b′ ≤ b

and a′ ≥ a and a+ b = a′+ b′, i.e. the probability of false negatives is reduced

and the probability of true positives increased by the same amount. Similarly,

removal of false positives can be seen as a repartition of R so that c′ ≥ c and

d′ ≤ d and c+ d = c′ + d′. The oracle α is complete when d = 0 and is sound

when b = 0.

The probability of oracle α detecting true faults is:

p(γ = F | α = F) =
a

a+ d
(1)

Similarly, the probability of oracle α accepting correct executions is:

p(γ = T | α = T) =
c

b+ c
(2)

A reduction, Π, of false negative probability repartitions the probability

weights to create a new oracle, α′ where a′ = a + Π, b′ = b − Π. Similarly,

reducing false positive probability by N creates a new oracle, α′, where c′ =

c + N , d′ = d − N7. Note that the two operations are independent and that

while A changes to A′, E does not change (see Figure 10). The intuition is

that α′ is a better approximation to γ than α.

Proposition 1 Oracle improvement increases conditional probabilities of de-

tecting true faults and of accepting correct executions.

p(γ = T | α = T) = p(γ = T, α′ = T)

p(γ = F | α = F) = p(γ = F, α′ = F)

Proof: As it was noted before, false negative reduction causes the following

repartitions: a′ = a+ Π, b′ = b− Π.

The Equation 1 and the fact that b′ > b lead to the following inequation:

7With some notation overload, we indicate with the same letters N , Π the self maps

modelling oracle improvement as well as the amount of oracle improvements, measured as

the removed false negatives/positives, since the context allows for an easy disambiguation.
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p(γ = T | α = T) =
c

b+ c
<

c

b′ + c
= p(γ = T, α′ = T)

For the repartition of a,

p(γ = F | α = F) =
a

a+ d
=

1

1 + d
a

<
1

1 + d
a′

= p(γ = F, α′ = F)

Similar proof can be performed also for false positives. �

We can measure how closely connected two random variables (oracles) are by

measuring their mutual information, a measure of their lack of independence

[22]:

I(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x) p(y)

When they are completely independent I(X; Y ) = 0 and when they are

completely dependent they contain the same information.

We can define I(α; γ) in terms of a, b, c, d, getting:

I(α; γ) =


−(b+ c)log2(b+ c)− (a+ d)log2(a+ d)

−(a+ b)log2(a+ b)− (c+ d)log2(c+ d)

+a log2 a+ b log2 b+ c log2 c+ d log2 d

(3)

One might conjecture that mutual information always increases as the

oracle is being improved. However this is not necessarily true, as neither

f(x) = x log(x) nor I(A; B) are monotonic functions. In fact f is concave on

x in the interval [0, 1] and I is concave on (A,B) in the interval [0,∞). For

example, suppose we have an oracle α with the following probability masses:

a =
1

8
, b =

3

8
, c =

1

4
, d =

1

4

Therefore, α disagrees with γ on fail
3

8
of times and the mutual information

between them I(α; γ) = 0.0487. An improvement step on α may lead to a

new oracle α′ and the following probability masses change:

a =
1

4
, b =

1

4
, c =

1

4
, d =

1

4

However, mutual information I(α′; γ) = 0, i.e., it has decreased.
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Theorem 1 Let α, α′ and γ be Boolean-valued random variables modelling

oracles (as above) and let α′ be obtained from α via an improvement step Π

(as above). Then

Π >
bd− ac
c+ d

⇒ I(α′; γ) ≥ I(α; γ)

Proof: Given a, b, c, d, the mutual information I(α′; γ) can be written as a

function of Π as follows:

I(α′; γ) = −(b+c−Π)log2(b+c−Π)−(a+d+Π)log2(a+d+Π)−(a+b)log2(a+

b)−(c+d)log2(c+d)+(a+Π) log2 (a+Π)+(b−Π) log2 (b−Π)+c log2 c+d log2 d

To find the values of Π which make it increase, we need to find the points

of minimum of I(α′; γ). For this, we calculate the derivative of I(α′; γ) in

terms of Π.

dI
dΠ

= log2(b + c − Π) +
1

ln2
− log2(a + d + Π) − 1

ln2
+ log2(a + Π) +

1

ln2
−

log2(b− Π)− 1

ln2
= log2

(b+ c− Π)(a+ Π)

(a+ d+ Π)(b− Π)

log2
(b+ c− Π)(a+ Π)

(a+ d+ Π)(b− Π)
= 0

(b+ c− Π)(a+ Π)

(a+ d+ Π)(b− Π)
= 1 , Π =

bd− ac
c+ d

So, when Π >
bd− ac
c+ d

, the mutual information increases. �

If we consider a step that improves false positives by N and we compute

the derivative of I(α′; γ) in terms of N , we obtain a very similar result:

Corollary 1 Let α, α′ and γ be Boolean-valued random variables modelling

oracles (as above) and let α′ be obtained from α via an improvement step N

(as above). Then

N >
bd− ac
a+ b

⇒ I(α′; γ) ≥ I(α; γ)
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Proof: Immediate from Theorem 1, via substitutions. �

Surprisingly, in spite of these limiting conditions on which improvement steps

increase mutual information, we can guarantee that, for every given oracle, we

can construct another oracle for which any improvement increases the mutual

information. We denote an oracle for which ac < bd, i.e. an oracle for which

the product of the probabilities of the inaccuracies is bigger than the product

of the probabilities of its accuracies, as a bad oracle. For such an oracle there

exists a symmetric corresponding oracle, called good oracle, for which ac > bd

and the mutual information with γ does not change. An example of a bad

oracle and its corresponding good oracle is shown in Figure 11.

Π

ℐ(α; γ)

Π = bd −ac
c + d

bad

oracle

good

oracle

Figure 11: Bad oracles

Proposition 2 Given a bad oracle α[a, b, c, d], the symmetric oracle α′[a′, b′, c′, d′] =

α[b, a, d, c] is a good oracle with the same mutual information as α[a, b, c, d].

Proof: α is a bad oracle, therefore bd < ac. The proposed transformation

suggests that a′c′ = bd and b′d′ = ac, as a result, b′d′ > a′c′, which proves that

α′ is a good oracle. Mutual information remains the same, as replacing a with

b and c with d in Equation 3, does not change its value. �
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Corollary 2 Oracle improvement increases mutual information between ac-

tual and perfect oracle assuming bad oracles are first transformed into good

oracles by negation.

Proof: If ac > bd the mutual information increases because of Theorem

1. If ac < bd the negated (symmetric) oracle α′ = α[b, a, d, c] satisfies the

condition a′c′ > b′d′, hence mutual information is ensured to increase because

of Proposition 2. �

The case of an initially decreasing function I(α; γ) corresponds to an

extremely poor initial oracle whose behaviour is opposite to the expected one.

Theorem 2 shows that such a bad oracle can be made into a good one by

simply swapping a with b and c with d. This swap can be interpreted as

negating the oracle predicate, since the swap just accounts for giving opposite

results for false negatives/true positives (resp. false positives/true negatives).

Therefore, for assertion oracles it means just negating the assertion’s verdict.

This negation will cause the assertion oracle to jump over the minimum of

I(α; γ) and to reach a region where I(α; γ) is monotonically increasing, as

indicated in Theorem 2 and Figure 11.

Proposition 3 For good oracles, the probabilities of the perfect oracle are

lower bounds for the conditional probabilities.

p(γ = T, α = T) > p(γ = T)

p(γ = F, α = F) > p(γ = F)

Proof: ac > bd =⇒ a >
bd

c
=⇒ a+ b+ c+ d > b+ c+ d+

bd

c
.

As a+ b+ c+ d = 1, 1 > b+ c+ d+
bd

c
.

Therefore, c > bc+ c2 + dc+ bd = (b+ c)(c+ d) =⇒ c

b+ c
> c+ d.

The last expression is equal to:

p(γ = T, α = T) > p(γ = T).

A similar derivation holds also for fault detection, therefore:
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p(γ = F, α = F) > p(γ = F).

�

An oracle having high mutual information with the perfect oracle is one

that agrees with the perfect oracle most of the time. This means it tends to

accept/reject correct/faulty program executions whenever the perfect oracle

does so. Since the proposed oracle improvement process increases mutual

information between actual and perfect oracles, it leads to an oracle which, in

agreement with the perfect oracle, reveals all the faults it can reveal, while at

the same time accepting all correct executions it should accept.

4.2 Approach

In this section, we describe our technique for oracle improvement via false

positive and false negative detection.

4.2.1 False Positive Detection

Given a program assertion, we detect its false positives by generating execution

scenarios where the assertion fails when it should hold because the behaviour

of the program is correct. In such a case, failure of the assertion points to

a bug in the assertion, not in the program. To be able to generate such

execution scenarios (test cases), we perform a testability transformation [41]

that transforms the criterion for false positive detection into the standard

branch coverage criterion.

Let us consider a program under test P containing n assertions a1 . . . an

: ai = assert(ci), i ∈ [1 . . . n], where ci is the boolean expression used in the

assertion ai. For each assertion ai, i ∈ [1 . . . n] in P the proposed testability

transformation takes ci, negates it and replaces the assertion ai with a new

branch containing the negated condition: if (!(ci)) {}.

Class Subtract in Figure 12 (top) has two assertions at lines 4 and 5. The

transformation for false positive detection takes the condition of the assert

statement at Line 4 ‘(result != x)’, negates it to ‘(!(result != x))’ and
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1 public class Subtract {

2 public double value(int x, int y) {

3 int result = x-y;

4 assert (result != x);

5 assert (result == x-y);

6 return result;

7 }

8 }

1 public class Subtract {

2 public double value(int x, int y) {

3 int result = x-y;

4 if (!(result != x)) {}; // target

5 if (!(result == x-y)) {}; // target

6 return result;

7 }

8 }

1 //Subtract.value(II)I:Branch Line 4

2 @Test(timeout = 4000)

3 public void test0() throws Throwable {

4 Subtract subtract0 = new Subtract();

5 int int0 = subtract0.value(0, 0);

6 }

Figure 12: Example of False Positive Detection
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replaces the assertion with the branch: ‘if (!(result != x)) {}’. By per-

forming a similar transformation on the assert statement at Line 5 we get the

transformed version of class Subtract shown in Figure 12 (middle).

Test case generators are given two targets to cover: the ‘then’ parts of the

‘if’ statements at lines 4, 5. Test cases produced by the generator provide

evidence that there are program executions that violate the assertions. In

order to classify such execution scenarios as false positives of the assertions,

the behaviour of the program in such scenarios must be contrasted with the

expected behaviour of the program, according to its requirements/specifica-

tions. If a test case violating an assertion has been generated and the program

behaviour under such an execution scenario has been deemed correct, a false

positive (i.e., a bug in the assertion) has been detected. This means that the

assertion should be fixed in order not to reject a correct program behaviour.

In the example shown in Figure 12, a test case can be produced that covers

the first target: TC=(0, 0). By contrast, the second target cannot be covered

and a test case generator would probably fail or time out while trying to cover

it. Since the expected result of the execution of value with input (0, 0) is

indeed 0, we have detected a false positive of the assertion at line 4. The

assertion is incorrect and the fix consists simply of removing it.

In our approach assertions are part of the source code, but they should

not cause any side effects. Therefore it is unacceptable that they lead to

an exception during program execution, i.e. cause a Crash. When our tool

performs false positive detection, if during the search process any test case

causes an exception, such that the error stack trace for this exception contains

the line number of the assertion in the code, the test case gets reported to the

developer as an evidence of crashing assertion.

4.2.2 False Negative Detection

An assertion has no false negatives if it exposes all faults. Therefore, if we

deliberately insert a fault into the source code of program P , a sound oracle

ought to always report the presence of this fault. Hence, to find evidence of
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false negatives we use mutation testing [35] to insert a (known) fault in program

P that corrupts the program state so that the corrupted state reaches the given

assertion and the assertion statement does not fail. We apply a testability

transformation [41] that converts the false negative detection criterion to the

standard branch coverage criterion.

Let us consider the implementation under test P and its mutationsM1, . . . ,Mk.

Program P and each of its mutants have n assertions a1, . . . , an: ai = assert(ci), i ∈

[1 . . . n]. Let us consider the variables (v1, . . . , vmi
) in scope at the asser-

tion point ppi. Their values after running a test case on P is indicated as

(vo1, . . . , v
o
mi

), while they are indicated as (v
Mj

1 , . . . , v
Mj
mi ) after running the same

test case on mutant Mj.

For each mutant Mj we create a transformed version of P , P ′j , by going

through the following steps:

• Step 1: In P , for each variable v1, . . . , vmi
we create a private field and

a public setter method for this field.

• Step 2: In P , we replace each assertion ai with the following branch:

if (((ci == c
Mj

i ) && (v
Mj

1 6= v1 || . . . || v
Mj
mi 6= vmi

)) || (vMj

1 == v1 && . . .

&& v
Mj
mi == vmi

)) {}

Automated generation of test cases to cover the branch produced at Step

2 proceeds iteratively as follows:

1. The test case generator runs each newly generated test case on each

mutant Mj and P .

2. If the mutant is strongly killed (i.e., P and Mj exhibit observably differ-

ent behaviours), the test case generator stores the values (v
Mj

1 , . . . , v
Mj
mi )

into P ′j by calling the public setter methods created at Step 1.

3. The test case generator runs the strongly killing test case on P ′j .

4. If the test case executed on P ′j covers all the target branches created at

Step 2, a false negative is reported. Otherwise, the test case generator
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modifies the test case so as to get closer to the target branches, hence

producing a new test case to be run.

So, when a false negative is reported, the following conditions hold: (1)

the program under test P contains a known fault (the mutation), associated

with an observably different behaviour between P and Mj (strongly killing)

condition; (2) the corrupted program state (infection) reaches at least one of

the considered assertions (and at least one of the variables in its scope has

a different value in P vs. Mj); but, (3) the outcome of all the assertions is

the same for P and for Mj (presumably a pass; otherwise we are potentially

in the presence of a false positive). This means that the assertions are not

strong enough to capture the difference between P and Mj, although at least

one variable accessible to the assertions has indeed a different value between

the execution of P and that of Mj.

Figure 14 shows an example of the described transformation for the class in

Figure 13 (top). Fields max_m1, a_m1, b_m1, max_m2, a_m2 and b_m2 together

with the respective setter methods, are added to class FastMath, to store the

values of the variables visible at Lines 9 and 10 in Figure 13 (top) and observed

during the execution of the mutant. The assertions at Lines 9 and 10 in Fig-

ure 13 (top) become the if conditions at Lines 18 and 22 in the transformed

program shown in Figure 14. The then branches of these conditional state-

ments are the targets for test case generation. If the test generator succeeds in

creating a mutation killing test case (in our example, one returning a different

value of max) that covers both of these targets, we obtain evidence of a false

negative. In fact, although such a test case can strongly kill the mutant, the

assertions (max >= a) and (max >= b) do not fail (provided they did not fail

in the original program), despite the presence of different values of either max,

a or b in the original vs. mutated program.

Let us consider a mutant M1 that changes the assignment max = b; at Line

7 in Figure 13 into max = a;. The test case TC=(0,1) can strongly kill this

mutant, because the value returned by the original version of max is 1, while it

is 0 when the mutant is executed. However, the assertion at line 9 passes on
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1 public class FastMath {

2 public int findMax (int a, int b) {

3 int max;

4 if (a >= b) {

5 max = a;

6 } else {

7 max = b; // M1: max = a; M2: max = b + 1;

8 }

9 assert (max >= a);

10 assert (max >= b);

11 return max;

12 }

13 }

1 //1. findMax, Line 7 IINC +1(max:0,2)

2 @Test(timeout = 4000)

3 public void test0() throws Throwable {

4 FastMath fastMath0 = new FastMath();

5 int int0 = fastMath0.findMax(0, 1);

6 }

Figure 13: Class FastMath: An Example of a False Negative
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1 public class FastMath {

2 private int max_m1, a_m1, b_m1;

3 private int max_m2, a_m2, b_m2;

4 public void setMax_m1(int max_m1) { this.max_m1 = max_m1; }

6 public void setA_m1(int a_m1) { this.a_m1 = a_m1; }

7 public void setB_m1(int b_m1) { this.b_m1 = b_m1; }

8 public void setMax_m2(int max_m2) { this.max_m2 = max_m2; }

9 public void setA_m2(int a_m2) { this.a_m2 = a_m2; }

10 public void setB_m2(int b_m2) { this.b_m2 = b_m2; }

11 public int findMax (int a, int b) {

12 int max;

13 if (a >= b) {

14 max = a;

15 } else {

16 max = b;

17 }

18 if (((max_m1 >= a_m1) == (max >= a) &&

19 (max_m1 != max || a_m1 != a || b_m1 != b))

20 || (max_m1 != max && a_m1 != a && b_m1 != b))

21 {} // target1

22 if (((max_m2 >= b_m2) == (max >= b) &&

23 (max_m2 != max || a_m2 != a || b_m2 != b))

24 || (max_m2 == max && a_m2 == a && b_m2 == b))

25 {} // target2

26 return max;

27 }

28 }

Figure 14: Class Transformation for False Negative Detection
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both original and mutated programs, since on both we have that max >= a is

true. On the other hand, the assertion at line 10 does not pass on the mutated

program, as max >= b is false. Therefore, there is no false negative, as at least

one of the assertions reacts to the injected fault.

Another mutant M2 changes the assignment max = b; at Line 7 in Fig-

ure 13 into max = b + 1;. The test case TC=(0,1) again strongly kills the

mutant. However, for this mutation both the assertions at Line 9 and 10 pass,

as the value of max is greater than the value of both a and b. So, this test

case and mutation show that it is possible to inject a fault in class FastMath,

resulting in an observably different behaviour between original and mutated

programs, which no present assertion can detect. This is an example of a false

negative, requiring an intervention by the developers in order to make the as-

sertion stronger. Specifically, it is possible to eliminate this false negative by

replacing the assertion in Figure 13 with assert (max >= a && max >= b &&

(max == a || max == b));.

There are a few possible, though unlikely, corner cases. A bug might affect

both the implementation and the assertions consistently, making the assertions

pass on original and mutated program. In such a case, it would be prudent

for the tester to check the output of mutant killing test cases, rather than

assuming that only assertions can be wrong. Other cases are discussed in

section 4.2.3 below.

4.2.3 Iterative Improvement Process

We propose a process for iterative oracle assessment and improvement based on

the outcome of false positive/negative detection, see Figure 15. The human is

necessarily in the loop of the process, because we assume that knowledge about

the intended program behaviour is available only informally or semi-formally

to the developers, who are asked to manually refine the oracle whenever a false

negative or a false positive is reported. Our approach might not be needed

in software processes that include complete formal specifications, from which

oracles are derived automatically. In our experience, industrial practice usually
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does not currently encompass complete formal specification, hence we think

the proposed approach has wide applicability.

Manual 

Refinement

Initial Oracle

Im
pr

ov
e

OASIs

FP Detection

FN Detection

A
ss

es
s

Figure 15: Iterative Improvement Process

The starting point for iterative oracle assessment and improvement is an

initial oracle, which can be defined manually, or can be produced automatically

by tools for invariant inference, like Daikon [27], or can be even the empty

(vacuous) oracle. Oracle deficiencies are detected and reported automatically

by our tool. The developer fixes the assertions in the program based on the

reported oracle deficiencies. Some care must be taken in this step, in order to

recognise the following cases:

1. A reported false positive might point to a bug in the program, not in the

assertion.

2. A test case killing a mutant and triggering an assertion violation in the

mutant might be associated with consistent bugs in both implementation

and assertion.
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3. A mutant might accidentally fix a fault in the program, causing a re-

ported false negative to point to a bug in the program, not in the asser-

tion.

The first case is very important, since the improved oracle is immediately

used for fault detection when this case occurs. The last two cases are expected

to occur very rarely in practice and actually have never occurred during our

experiments.

Depending on the improvement step the developer has taken to fix the

assertion, the new assertion can, in the best case, be fully correct, can have an

oracle deficiency (of the same or new type) or can lead to a Crash (e.g., due to

an exception) in the program. Figure 16 shows all the possible state changes

for the assertion during the improvement process.

Figure 16: Oracle Improvement Process: Possible Outcomes

To demonstrate examples of each state change, let’s see the shortened ver-

sion of class StackAr in Figure 17. In method pop there is an initial assertion

which has a False Negative. Figure 18 shows assertions that were produced by

different developers as an improvement to the initial one after one iteration of

improvement process.

The first assertion in Figure 18 causes a Crash. It can lead to ArrayIndex-

OutOfBoundsException, if the value of variable topOfStack is equal to -1 when
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the assertion gets executed. The second assertion shows how an attempt to fix

a false negative can lead to the introduction of a false positive. This assertion

claims that the value of topOfStack has been incremented, while in fact it was

decremented. This makes the assertion fail any time it gets executed.

public class StackAr {

private Object[] theArray;

private int topOfStack;

public StackAr(int capacity) {

theArray = new Object[capacity];

topOfStack = -1;

}

public void pop() throws UnderflowException {

//instrumentation

int old_topOfStack = topOfStack;

//instrumentation

Object[] old_theArray =

Arrays.copyOf(theArray, theArray.length);

if (topOfStack == -1)

throw new UnderflowException();

theArray[topOfStack] = null;

topOfStack = topOfStack - 1;

assert (theArray[topOfStack + 1] == null);

}

}

Figure 17: Class StackAr: Method pop

The third assertion shows an example of a correct improvement step. The

initial assertion checked the property stating that the value of theArray at

index topOfStack is equal to null. The improved assertion adds an additional

check stating that the value of topOfStack was changed correctly, i.e., it was

decremented by one. This assertion is stronger than the initial one, but it

still has a false negative. The fully correct assertion for method pop would be
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assertion number 4 in Figure 18. Along with the previous checks, it also ensures

that method validateArray returns true. In turn, method validateArray

loops through the array and checks whether all the elements in theArray and

old_theArray, except the one at index topOfStack + 1, are equal. Therefore,

to ensure full correctness in this case one should check that the method has

changed correctly the part of the stack state it was supposed to change (i.e.,

the values of topOfStack and theArray[ind], with ind = old_topOfStack)

and that it has not affected the rest of the state (i.e., the values of elements in

theArray[ind], except for index ind = old_topOfStack).

(1) assert (theArray[topOfStack] == null);

(2) assert (theArray[topOfStack + 1] == null &&

topOfStack - 1 == old_topOfStack);

(3) assert (theArray[topOfStack + 1] == null &&

old_topOfStack - 1 == topOfStack);

(4) assert (theArray[topOfStack + 1] == null &&

old_topOfStack - 1 == topOfStack &&

validateArray(theArray, old_theArray, old_topOfStack))

Figure 18: Class StackAr, Method pop: Examples of Improved Assertions

This shows the case when instead of fully correct assertions, partially cor-

rect ones as the initial one in method pop or the third one in Figure 18 might

be regarded as sufficiently adequate in practice. In fact, a complete speci-

fication of the state changes that a method should perform might provide,

in practice, a powerful enough method to catch most incorrect implementa-

tions, even if such assertion is only partially correct, by not ruling out method

implementations that operate state changes on the part of the state that is

supposed to be untouched by the operation implemented by the method. In

our approach the level of partial correctness can be quantified as the mutation

score of the assertion: a higher mutation score indicates that the assertion is

capable of ruling out a higher number of incorrect state changes performed by
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buggy implementations (mutants), possibly including state changes that affect

the supposedly unchanged substate.

After each improvement step, the iterative process restarts and the new

assertions are assessed for the presence of further oracle deficiencies. After

some iterations of oracle refinement, no oracle deficiencies will be reported to

the user. This means the oracle has been strengthened to solve the reported

false negatives and false positives, eventually getting closer and closer to the

“ghost” program oracle E (see Figure 10). The overall outcome of the process

is the improved oracle together with the bugs that such an improved oracle

can find.

4.3 Implementation

We have implemented our approach for false positive and false negative detec-

tion as a command-line tool OASIs (Oracle ASsessment and Improvement),

see Figure 19. OASIs takes five parameters as input: source code location

of the Java class, the name of the class, the name of the method where the

initial assertions are located, the search budget for false positive detection and

the search budget for false negative detection. The last two parameters are

optional and, if omitted, OASIs uses the default budgets of 60 seconds for

false positive and of 120 seconds for false negative detection. OASIs starts

the oracle assessment process by first looking for a false positive. If no false

positive is detected, the search for false negatives is initiated. The output of

the tool consists of a message which, in case an oracle deficiency is detected

comprises the exact kind, or just indicates that no deficiency was found. For

each detected oracle deficiency, the evidence (in the form of a test suite) is

provided.

4.3.1 False Positives

For false positive detection we first perform a testability transformation that

transforms the assertion in the code into a new branch. For this we use Java-
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Figure 19: OASIs Components

Parser8 (version 2.3.1) which provides a set of tools to parse, analyze, trans-

form and generate Java code. The source code transformation also detects the

lines of code where the newly created branches are located and passes them to

the test case generator, so that these branches can be differentiated from the

already existing ones. Our test case generator to cover these newly created

branches is implemented as an extension of the EvoSuite9 [29, 30] test case

generator (version 1.0.5).

We use EvoSuite’s branch coverage criterion. Let P be the original program

and B the set of branches in P . Let P ′ be the transformed version of P and B′

the set of branches in P ′. The original fitness function [31] (to be minimized)

for branch coverage, denoted fB(T ), measures the number of methods not

executed by keeping track of the set of executed methods FT out of the set

of all methods F and adds to it the sum of the minimal normalized branch

distances d(b, T ) for each branch b ∈ B:

fB(T ) =| F | − | FT | +
∑
b∈B

d(b, T )

where:

d(b, T ) =



0 if the branch has been covered

ν(dmin(b, T )) if the predicate has been

executed at least twice

1 otherwise

8http://www.javaparser.org
9http://www.evosuite.org
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with ν a normalisation function, such as x/(x+ 1).

Since we are interested in covering only branches BA = B′−B, i.e., the set

of branches that are created as a result of the transformation of assertions in

P into branches, we changed the fitness function of EvoSuite [31] into:

fB′(T ) =| F | − | FT | +
∑

b∈B′\B

d(b, T )

Once the test suite is generated, it is reported to the developer as evidence

of a false positive. The test case in Figure 12 (bottom) shows an example of

such a report for the method in Figure 12 (top). Along with providing a test

case, that will make the program assertion in the method fail, the output of

the tool also specifies in the comments the line number (Line 4 in this case)

where the failing assertion is located.

4.3.2 False Negatives

As described in the previous section, the approach for the detection of false

negatives is also based on the branch coverage test case generation criteria.

However, creating a transformed version of program P for each mutation is

quite inefficient. For that reason, in the prototype implementation instead of

the branch coverage we have adapted the strong mutation coverage criteria of

EvoSuite.

First, we instrument the source code of the class using JavaParser so that

we can monitor (1) the values of all variables visible at the program points

where the assertions are located and (2) the outcome of the assertions, i.e.

whether they pass or fail.

In EvoSuite, a mutant is strongly killed if EvoSuite can create a test case

assertion (not to be confused with the program assertions that are assessed

for false negatives) that evaluates to false if the test is executed on the mu-

tant and to true if it is executed on the original class. In fact, the test case

assertions generated by EvoSuite capture the observable behaviour of the pro-

gram, so a mutant is considered as strongly killed if the observable behaviour
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changes upon test case execution between the original and the mutated pro-

gram. When the mutant is executed, but not strongly killed, the minimum

normalized impact is measured in the fitness function [31]. Its inverse gives

the level of propagation of the infected state in the program (propagation dis-

tance, dp), with a wider impact (lower dp) regarded as an indicator that the

test case is getting closer to achieving the strong killing condition. These con-

siderations result in the following definition of propagation distance dp that is

used in EvoSuite’s fitness function for a test suite T and a mutant Mj:

dp(Mj, T ) =


0 if a TC assertion fails

1 if di(M,T ) > 0

1
1+impactmin(Mj ,T )

if di(M,T ) = 0

The infection distance di(M,T ) is calculated using the following formula:

di(M,T ) =

1 if M was not reached

ν(dmin(M,T )) if M was reached

Here d(M,T ) is the branch distance and ν(x) is a normalizing function, as

defined in Section 4.3.1.

To detect false negatives, we have to further restrict the notion of mutation

killing. For a given mutation Mj the mutation is considered to be killed only

if:

1. The original killing condition of EvoSuite is satisfied: a test case assertion

fails.

2. None of the conditions in the program assertions change their values:

∀i ∈ [1 . . . n] : c
Mj

i = coi .
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3. One of the variables visible at one of the program points where assertions

are located has different values in P and Mj: ∃i ∈ [1 . . . n] : v
Mj

1 6= vo1 ∨

. . . ∨ vMj
mi 6= vomi

.

As a result, we changed the formula for the normalized propagation distance

dp, so that, when the mutant is killed, it returns the normalized distance for

the following condition: (∀i ∈ [1 . . . n] : c
Mj

i = coi ) ∧ (∃i ∈ [1 . . . n] : v
Mj

1 6=

vo1 ∨ . . . ∨ v
Mj
mi 6= vomi

), instead of returning zero.

The test suite generated by OASIs as an evidence of a false negative consists

of the test cases each of which comes with a list of mutations. If each mutation

in the list is injected into the method under test and the provided test case is

executed, none of the program assertions will react to the mutation. For each

mutation we also report variables that have changed their values as a result of

the mutation. If a variable has a primitive type we provide the values of that

variable in the original and mutated versions. This provides additional support

for the developer in the improvement process by indicating which variables the

program assertion ignores or does not check strongly enough.

Figure 13 (bottom) shows an example of OASIs’ report for a false negative

in program assertions in Figure 13 (top). The report contains one test case

test0 and a description of the mutation in the comments above the test case.

As it follows from the description, the mutation applies an increment by 1

operator at line 7, changing the value of variable max from 1 to 2. However,

none of the assertions in the method reacts to this change.

107



5 Oracle Assessment and Improvement: Em-

pirical Evaluation

We conducted a large empirical evaluation of our oracle assessment and im-

provement approach. The goal was to assess its applicability to different types

of initial oracles, different subject programs and with different developers rep-

resenting the human in the loop. A common problem with controlled empirical

studies involving human subjects is that, due to their cost and complexity, their

size is limited. In order for this limitation not to affect the size/variety of sub-

ject programs and initial oracles being considered in the empirical evaluation,

we have conducted three separate empirical studies.

In our large scale study we used our approach to assess and improve oracles

in 5 large real-world systems. The initial oracles in this study were ranging

from the case where no oracle is present, hence fault detection relies entirely

on the implicit oracle (program crashing or raising exceptions), to a context

where the oracle is obtained automatically, by mining program specifications

from the observed program behaviour, or is produced manually. During these

experiments the human in the iterative assertion improvement process was the

author of the thesis, who had no familiarity with the subjects and no previous

experience in writing specifications. She of course knew how to interpret the

tool’s output very well.

Then we conducted an Oracle Assessment Study with 39 participants to

assess the ability of humans to detect false positives and false negatives manu-

ally, without any tool support. The results of this study are indicative of how

helpful the automated detection of oracle deficiencies could be for developers.

Another 29 participants were involved in our Oracle Improvement Study,

where they were assigned to two different groups (control and treatment).

Participants from the first group were given initial assertion oracles (for which

the oracle deficiency type was indicated) to be improved manually. Partici-

pants from the second group performed an iterative improvement process on

the same initial oracles with the support of our tool, playing the role of the
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human in the loop. The comparison of the quality achieved in the final oracles

validates empirically the effectiveness of the proposed approach.

Both of our human studies were approved by UCL’s Research Ethics Com-

mittee. All the experimental data collected is available at the link: https:

//github.com/guneljahan/OASIs/humanstudy.

The primary contributions of this chapter are:

1. The validation of our oracle assessment and improvement approach on

five nontrivial real-world systems and three types of initial oracles.

2. A novel human study on oracle assessment.

3. A novel human study on oracle improvement.

5.1 Large Scale Study

In this empirical evaluation we conducted a set of experiments to answer the

following research questions:

RQ1 (Implicit oracle): How effective is the computation of oracle deficien-

cies in introducing and iteratively improving new program assertions in classes

without assertions?

RQ2 (Inferred properties): What is the effectiveness of oracle deficiencies

computation for the improvement of automatically inferred program proper-

ties?

RQ3 (Manual oracle): How effective is the proposed approach in revealing

oracle deficiencies in classes that include human written program assertions?

RQ4 (Comparison with Initial Program Assertions): Can the improved

oracle reveal more faults than the initial (implicit, automatically inferred, man-

ual) oracle?

RQ5 (Comparison with Test Case Assertions): Can the improved oracle

reveal more faults than the test case oracle?

The effectiveness of the improved oracle is assessed in terms of increased

fault detection with respect to the initial and test case oracle.
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To answer RQ1-2-3 we report the number of assertions added in each iter-

ation to solve the false positives and negatives reported by our tool.

To answer RQ4 we analyse the mutation score reported by the popular and

scalable mutation analysis tool PIT10 with program assertions before and after

the improvement process.

For RQ5 we compare the mutation score of program assertions after the

improvement process with the mutation score of the test case assertions gen-

erated by automated test case generation tools as EvoSuite and Randoop.

There is empirical scientific evidence that mutants are an appropriate (and

laboratory controllable) surrogate for real software faults [4, 53], making the

mutation score a reasonable proxy for the actual fault detection rate. Since

false negative detection relies also on mutation analysis, we used different tools

(EvoSuite and PIT) for our technique and its evaluation, thereby avoiding any

circularity in the evaluation.

5.1.1 Subjects

Table 10: Features of the subject systems

Id Oracle Name NCLoC

CC None commons-collections 29,954

CM None commons-math4 83,929

CL None commons-lang 25,386

FE JML JavaFE 31,912

LG JML Logging 1,583

The subject systems used in our study are shown in Table 10. As each

research question requires a different type of initial oracle, the subjects for each

of them vary too. For the purpose of evaluation on programs with no initial

oracles (RQ1, RQ2), we have selected Apache Commons Math (version 3.5),

Apache Commons Collection (version 3.2) and Apache Commons Lang (ver-

10http://pitest.org
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sion 3.4), which are popular open source libraries that have been also used in

previous testing research. To evaluate our approach on programs that include

human written program assertions (RQ3), we have used the JavaFE front-end

parser library and Logging framework, which contain contracts written using

Java Modeling Language (JML), which is a specification language for Java pro-

grams. All of the subjects are used to evaluate the increased fault detection

capability (RQ4, RQ5) of the improved oracles.

5.1.2 Experimental Procedure

The experimental procedure for RQ1, RQ2, RQ3 involves two major activities:

obtaining initial oracles and running the assessment and improvement loop.

While the first step is different for each type of initial oracle and accordingly

for each research question, the second step remains the same across all the

three research questions.

For RQ1 no initial oracle is needed, since the implicit one is used. To infer

initial oracles for RQ2, first, the random test generation tool Randoop has been

used to produce a large test suite T (1000 test cases) for each class P . The

training traces needed by the invariant inference tool Daikon [27] are obtained

by running T on P . From such traces, Daikon infers properties of program

P . These are used as initial oracles. For RQ3, the initial oracles are already

provided with the subject programs. However, to make them compatible with

our tool, the JML specifications have been manually transformed into standard

Java assertions.

Once the initial oracles are available, the iterative process of oracle assess-

ment and improvement begins. The human in the loop was instructed to run

OASIs with its default parameters during this process. If false negatives are

detected, the nature of the mutation operations reported by the tool provides

guidance during the improvement process of the assertions. To ensure that

the human experimenter behaves deterministically we defined precise rules and

procedures for oracle improvement to be followed, prescribing what to do for
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each reported deficiency (e.g., for each EvoSuite mutation operator triggering

a false negative).

Table 11 shows the list of mutation operators reported by EvoSuite grouped

by the type of improvement actions required to remove false negatives.

Table 11: Procedure for assertion improvement

Improvement Action Mutation Operator Reported

Check variable value

DeleteField

InsertUnaryOperation

ReplaceConstant

ReplaceVariable

Check statement

DeleteStatement

ReplaceArithmeticOperator

ReplaceBitwiseOperator

Check condition
DeleteStatement

NegateCondition

ReplaceComparisonOperator

Check variable value: the way to improve the assertions is first to iden-

tify whether the changed variable is indeed allowed to change its value during

the execution of the program. If not, we should add a check on the variable

immutability. In case the change is allowed, the assertions should be revised

so as to ensure that the variable is changed in accordance with the expected

program behaviour.

Check statement: assertions fail to differentiate the original output of

the statement from that of the mutated one. The typical improvement in this

case consists of adding a check on the output value of the mutated statement.

Check condition: when assertions are not responsive to a mutated con-

dition, the relationship between the changed condition and the output of the

program is usually not captured in the assertions, so this relationship should
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be introduced into the assertions, in accordance with the intended conditional

behaviour of the program.

To compare the fault detection capability of the initial, improved and test

case oracles (RQ4, RQ5), we used mutation analysis. First we generated the

following test suites: (T1) Randoop test suite without test case assertions; (T2)

The same Randoop test suite as in T1, but with test case assertions; (T3) Evo-

Suite test suite without test case assertions, generated according to the branch

coverage criterion; (T4) The same EvoSuite test suite as in T3, but with test

case assertions. Each class had three versions: (P1) class with initial assertions;

(P2) class with improved assertions; (P3) class without any assertions. Then,

we used PIT to compute the mutation score using the following combinations

of test suite and program version: (1) For RQ4: P2, T1 compared to P1, T1 for

RQ4 (2) For RQ5: P2, T1 compared to P3, T2 and P2, T3 compared to P3, T4.

The comparison of these mutation scores provides an insight into the im-

provement in fault detection.

5.1.3 Results

Table 12 shows a summary of the results obtained in our experiments. Col-

umn C/M in Table 12 reports the number of constructors and methods in each

subject’s classes. Column Iteration1 shows the number of assertions available

in the first iteration. For RQ1 (implicit oracle), it is the number of new asser-

tions introduced to address the false negatives revealed initially by mutation

analysis (subcolumn New). For RQ2 and RQ3 these are respectively the num-

ber of assertions produced by Daikon or those already available in the original

programs (subcolumn Init). Columns Iteration2 and Iteration3 contain three

subcolumns New, FP, FN, which report the number of newly added assertions,

assertions in which false positives were detected and assertions in which false

negatives were detected. The subcolumns A, FP, FN of column Total show

the overall number of assertions generated, false positives and false negatives

detected during all the iterations.
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Table 12: Oracle deficiencies (FP/FN) reported by our tool at each improve-

ment iteration

RQ Classes Subj C/M Iteration1 Iteration2 Iteration3 Total

New Init New FP FN New FP FN A FP FN

RQ1 25 CM 62/186 283 0 15 15 106 0 0 13 298 15 119

RQ1 25 CC 40/234 296 0 31 31 44 0 1 5 327 32 49

RQ2 20 CL 54/170 0 605 55 114 44 6 0 2 660 114 46

RQ2 20 CM 30/112 0 1014 43 297 166 8 4 13 1065 301 179

RQ3 50 FE 55/155 0 465 21 0 106 0 2 17 486 2 123

RQ3 10 LG 13/55 0 134 26 0 33 3 0 5 153 0 38

In terms of human effort we estimate that the average time spent to improve

the assertion in the case of a detected false positive was 4 minutes and for a

detected false negative it was 10 minutes.

RQ1 (Implicit Oracle)

To generate the experimental data necessary to answer RQ1 we ran our

tool on 25 classes from Apache Commons Math and 25 classes from Apache

Commons Collections.

For most classes (98%) the improvement process was completed in no more

than three iterations. For 4% of the classes, all of which belong to Collections,

the process was completed in just one iteration, which means that no oracle

deficiencies were detected for the assertions generated in the first iteration. For

72% of the classes from Math and 80% from Collections two iterations were

enough. Only 28% of classes from Math and 25% of classes from Collections

required three iterations to find all the oracle deficiencies. In the third and last

iteration, 90% of detected deficiencies were false negatives and only 10% false

positives. There was only one class from Collections (StringKeyAnalyzer)

that required 7 iterations to complete the process.
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RQ1: The proposed oracle improvement process effectively supported the

creation of program assertions from scratch. The process typically involved

two to three iterations of successive oracle refinement to converge to an

oracle for which no deficiency is reported.

RQ2 (Inferred Properties)

For RQ2 we considered Apache Commons Lang and Apache Commons

Math. The size of the test suite generated by Randoop (version 3.0.3) to

create the training traces for Daikon ranges between 250 and 34,126, with an

average of 4,141. The number of preconditions and postconditions generated

by Daikon for each class was on average 10 and 30, respectively.

There were no classes for which Daikon was able to generate assertions

without any oracle deficiencies. For 75% of the classes from Lang and 65% of

the classes from Math one iteration was enough to complete the process. For

the remaining classes, two iterations (after initial oracle creation) were needed.

All of the detected false positives in Daikon-generated assertions were removed

in the first iteration. The false positives in the second iteration (just 2 classes)

are due to the new assertions added at the first iteration.

The preconditions generated by Daikon have been treated as filters for

the postconditions. Hence, a false positive is found if a precondition holds

and the postcondition fails. Failure of a precondition was regarded as a true

positive (i.e. a needed check at the beginning of the method) if such a failure

prevents an execution that results in some error. Otherwise the precondition

was weakened or removed.

The postconditions generated by Daikon for the analysed classes can be

classified as follows: (1) Daikon was able to generate the exact postcondition

for all the methods in the class, so no false negatives were detected. This

happened in 30% of the classes in Lang and 50% of the classes in Math. (2)

Daikon was not able to generate the exact postcondition, but it was able to

generate a very weak one, as for example, the check for non null-ness. This

happened in 35% of the classes in Lang and 25% of the classes in Math. In this
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case, the generated assertion was improved to contain no more false negatives.

(3) Daikon was not able to generate any postcondition, so the new assertions

were added to remove the false negatives. This was the case in 35% of the

classes in Lang and 25% of the classes in Math.

RQ2: The proposed oracle improvement process was extremely effective

in improving weak assertions generated by Daikon or in adding assertions

that were missed by Daikon. The process typically involved one iteration

of Daikon oracle refinement.

RQ3 (Manual Oracle)

While JavaFE and Logging do include JML specifications, the number of

constructors and methods having contracts is indeed quite low. To apply our

tool in a scenario different from that of RQ1, we have selected 50 classes from

JavaFE and all the classes from Logging, which have at least two methods/-

constructors with at least one requires or ensures JML specification.

In 82% of the classes in JavaFE and in 60% of the classes in Logging no

oracle deficiencies were detected after the first iteration. The remaining classes

required just one more iteration. In 48% of the classes from JavaFE there was

at least one method with no oracle deficiencies at all.

Overall, the oracle improvement process was not able to detect any false

positives in these classes, but it was able to find at least one false negative

in each class. The improvements necessary to remove the identified oracle

deficiencies are typically minor improvements. The most common case was

the addition of some immutability check. Less frequent were cases where a

very weak postcondition (such as @ensures \result != null or @ensures

\fresh (\result), had to be strengthened, or a postcondition had to be

added to a method with only @requires and no @ensures clause.

RQ3: The proposed oracle improvement process was able to detect deficien-

cies in manually defined JML contracts, but the associated improvements

were typically minor ones, with the exception of a few cases of weak or

missing postconditions.
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RQ4 (Comparison to Initial Program Assertions)

Table 13 shows the average mutation score computed by PIT (version

1.1.7) for each subject before and after iterative oracle improvement.

The highest mutation score increase was observed for subjects with no

initial oracle (other than the implicit one): the implicit oracle is unable to

react to the injected faults in most cases. Remarkably, for 72% of the classes

with no initial oracle, the mutation score increased from 0% to 100%.

Table 13: RQ4: Average mutation score by subject for initial (µs) and im-

proved (µ′s) oracle

Oracle Subj µs µ′s ∆ Â12 p-value

Implicit
CM 16% 97.6% 81.6% 1.0 1.4 · 10−5

CC 8.3% 98.4% 90.1% 0.98 2.2 · 10−5

Inferred
CL 60.5% 98.8% 38.3% 0.9 9.0 · 10−3

CM 50.2% 95.8% 45.6% 0.91 4.7 · 10−4

Manual
FE 78.8% 100% 21.2% 0.9 6.3 · 10−7

LG 81.5% 100% 18.5% 0.89 1.7 · 10−2

All All 50.1% 98.4% 48.3% 0.92 < 2.2−16

A substantial increase in the mutation score was observed for subjects

equipped with Daikon assertions. A smaller, still quite relevant, mutation

score increase occurred for subjects coming with manually written JML con-

tracts. While for 20% of the classes with JML contracts the mutation score

did not change at all, for the remaining 80% of the classes oracle improvement

contributed to a higher mutation killing capability.

In all cases, the observed mutation score increase is statistically significant

(p ≤ 0.05) according to the Wilcoxon non-parametric (paired, two-tailed) sta-

tistical test (p-values are presented in Table 13). The Vargha-Delanay effect

size Â12 is always large (in our study, Â12 ≥ 0.89).

RQ4: The improved oracle has significantly higher mutation score than

the implicit, the inferred (Daikon) and the manual (JML) initial oracles.
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RQ5 (Comparison to Test Case Assertions)

Table 14 reports the average mutation score computed by PIT for all sub-

jects (1) with test case assertions generated by Randoop and Evosuite (µs) (2)

with program assertions after iterative oracle improvement (µ′s).

The improved program assertions achieve 51.8% and 53.4% higher muta-

tion score than the test case assertions generated by EvoSuite and Randoop

respectively. The average number of program assertions in the subject classes

is 20 and the average number of test case assertions is 18 in EvoSuite and 55 in

Randoop. This shows that program assertions require the manual validation

of a lower(Randoop) or comparable(EvoSuite) number of assertions but have

a higher fault detection capability.

Table 14: RQ5: Average mutation score by subject for test case (µs) and

improved (µ′s) oracle

Oracle Subj µs µ′s ∆ Â12 p-value

Randoop All 45% 98.4% 53.4% 0.93 5.3 · 10−7

EvoSuite All 46.9% 98.4% 51.5% 0.95 3.8 · 10−6

As in RQ4, the observed mutation score increase is statistically significant

and the Vargha-Delaney effect size Â12 is always large.

RQ5: The improved oracle has significantly higher mutation score than

the test case assertions generated by EvoSuite and Randoop.

5.1.4 Qualitative Analysis

To provide a better understanding of the iterative process and the nature of

the improvements it provides let’s have a look at some examples in detail.

Improvement of Implicit Oracle

Figure 20 (top) shows the source code of method add() from class MapBackedSet,

taken from Apache Commons Collections. This method does not contain any
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assertions. To create assertions for it, we first run our tool with false negative

detection enabled, getting the output shown in Figure 21.

Let us consider the mutations in test0() and the assertions that should

be added to detect them: (1) mutations 1, 4 and 7 lead to the change of the

method’s return value, so the check for this value is necessary; (2) mutations 2,

5 and 8 show that we should check whether the given parameter was inserted

into the map; (3) mutations 3 and 6 show that the relationships between the

values of size and map.size() should be checked. Based on this analysis, we

add the new assertion shown in Figure 20 (middle).

However, when we check the newly added assertion for false positives, we

get a test case violating the assertion. By analysing the test case we can see

that it adds elements with key equal to null into the map twice. As the

map does not keep two values with the same key, the second inserted element

replaces the first one, so the size of the map does not change and the assertion

fails. Taking this situation into account, we improve our assertion as shown in

Figure 20 (bottom) and the check for false positives confirms this improvement.

Improvement of Inferred Oracle

Figure 22 (top) shows the source code of the getSize() method of class

Interval from the Apache Commons Math library with the postconditions

generated for it by Daikon. Following the described process, we first checked

the given assertions for the existence of false positives. The output of the

tool for this step is a test case calling the constructor of Interval with input

parameters (-1, -1) and then calling getSize. Indeed, following the test

case execution we can see that result = -1.0 - (-1.0) = 0, so it is greater

than old_upper which has the value of -1.0. Hence, the 4th assertion (line 19)

contains a false positive. Moreover, result = 0 also shows the existence of a

false positive in the 3rd assertion (line 18), declaring that result cannot be

zero.
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1 public boolean add(final E obj) {

2 final int size = map.size();

3 map.put(obj, dummyValue);

4 return map.size() != size; }

1 public boolean add(final E obj) {

2 final int size = map.size();

3 map.put(obj, dummyValue);

4 boolean result = map.size() != size;

5

6 assert (map.get(obj) == dummyValue) &&

7 map.size() == size + 1 &&

8 (result == (map.size() != size)));

9

10 return result; }

6 assert (

7 map.get(obj) == dummyValue &&

8 result == (map.size() != size) &&

9 implication (result == true,

10 map.size() == size + 1)));

Figure 20: Method add(): No Assertions (top), Assertion Added at Iteration

1 (middle), Final Assertion (bottom)
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/* 1 add, Line 4 - ReplaceConstant - true -> false

* 2 add, Line 3 - DeleteField: mapLjava/util/Map;

* 3 add, Line 2 - DeleteField: mapLjava/util/Map;

* 4 add, Line 4 - ReplaceComparisonOperator != -> ==

* 5 add, Line 3 - DeleteStatement:

put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/ lang/Object;

* 6 add, Line 2 - DeleteStatement: size()I

* 7 add, Line 4 - DeleteStatement: size()I

* 8 addAll, Line 3 - DeleteField: dummyValueLjava/lang/Object; */

@Test

public void test0() throws Throwable {

HashMap<String, Object> hashMap0 = new HashMap<String,

Object>();

MapBackedSet<String, Integer> mapBackedSet0 =

MapBackedSet.mapBackedSet((Map<String, ? super Integer>)

hashMap0, (Integer) (-144));

boolean boolean0 = mapBackedSet0.add("");

assertEquals(true, boolean0);

}

Figure 21: FN Detection for Method add()
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1 public class Interval {

2

3 private final double lower;

4 private final double upper;

5

6 public Interval(double lower, double upper) {

7 this.lower = lower;

8 this.upper = upper;

9 }

10

11 public double getSize() {

12 double old_upper = upper;

13 double old_lower = lower;

14 double result = upper - lower;

15

16 assert (this.lower == old_lower); //1

17 assert (this.upper == old_upper); //2

18 assert (result != 0); //3: removed (FP)

19 assert (old_upper >= result); //4: removed (FP)

20

21 return result; } }

7 if (upper < lower) { // Fix for bug #MATH-1256

8 throw new NumberIsTooSmallException(

9 LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL,

10 upper, lower, true);

16 assert (this.lower == old_lower); //1

17 assert (this.upper == old_upper); //2

18 assert (result == upper-lower); //5: new (FN)

19 assert (result >= 0); //6: new (FN)

Figure 22: Method getSize() with Daikon assertions before (top) and after

(bottom) oracle improvement; a real bug was reported and fixed (middle)
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//Test case number: 1

/* 1. org.apache.commons.math4.geometry.euclidean.oned.

Interval.getSize()D: Line 14 ReplaceArithmeticOperator - -> +

* 2. org.apache.commons.math4.geometry.euclidean.oned.

Interval.getSize()D: Line 14 14 - ReplaceArithmeticOperator -

-> * */

@Test

public void test1() throws Throwable {

Interval interval0 = new Interval((-1.0), (-1.0));

double double0 = interval0.getSize();

assertEquals (double0, 0.0); }

Figure 23: FN detection for method getSize()

After removing the two assertions with false positives, we ran the tool to

check the remaining assertions for the existence of false negatives. The output

of the tool for this step is in Figure 23. As we can see, it shows that if we replace

the ‘-’ sign in the code with either ‘+’ or ‘∗’, there is no assertion that reacts

to this injected fault. To prevent this situation we add two new assertions that

check the value of the result as follows: assert (result == upper - lower),

assert (result >= 0). The new version of class Interval with improved

oracle is shown in Figure 22 (with improved assertions at the bottom).

After this improvement, we start the next iteration, and the tool detects

a false positive, which happens to be a true positive, i.e. a real bug of class

Interval. The new assertion #6 (at line 19) is violated when the constructor

of class Interval is called with input parameters 0.0, -1.0. In such a case the

returned size of the interval is negative, while an interval size is supposed to

be always non-negative. The bug has been reported to the Apache Commons

Math developer community (bug report # MATH-1256) and was immedi-

ately fixed by the developers, by raising an exception inside the constructor of

Interval when upper < lower (see Figure 22, middle).

In a similar way, we have detected two more bugs in Apache Commons

Math. One involves five classes: CanberraDistance, ChebyshevDistance,
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EarthMoversDistance, EuclideanDistance and ManhattanDistance. Each

of them contains a method to compute a distance between two arrays. If

the length of the first array is greater than the length of the second, method

compute() in all five classes gives an error (ArrayIndexOutOfBoundsException).

Quite strangely, if the length of the second array is greater than the first, the

method terminates silently. The bug was reported to developers (bug report

# MATH-1258) and fixed.

The third bug is in class Incrementor. If an instance of this class is

initialized with a negative number, its method canIncrement returns false,

although the upper bound set in the class has not yet been reached (bug

report # MATH-1259). The reported bug led to the discussion that the overall

functionality of the class does not serve its purpose, so the solution was to

replace the class Incrementor with a new class with the correct functionality,

to deprecate Incrementor in Math 3.6 (so as to ensure backward compatibility

for some time) and to remove it in Math 4.0.

The last detected bug is in the class Complex. The method reciprocal

returns INF only if the real and imaginary parts are exactly equal to 0.0. In

the cases when real and imaginary parts are double numbers very close to 0.0,

it does not return INF. The bug was reported to the developers (bug reports

# MATH-1259, # NUMBERS-22) and subsequently fixed by adjusting the

output of the method to IEEE and C99 standards.

5.1.5 Threats to Validity

The main threats to validity are the authors’ bias and the external validity

threat.

Internal validity : The first author has been involved in a number of tasks

carried out during the experiments. Specifically, she has developed the tool be-

ing evaluated and she has manually refined the oracles during the experiments,

playing the role of the human in the loop. Therefore, the way the oracles have

been refined might have influenced the results. We carefully mitigated this

validity threat by defining precise rules and procedures for oracle improve-
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ment to be followed by the human experimenter, prescribing what to do for

each reported deficiency (e.g., for each EvoSuite mutation operator triggering

a false negative). As a result, the human in the loop in our experiments has

behaved largely deterministically and unimaginatively, as determined by these

procedures. Moreover, to mitigate the single-annotator bias risk we followed

a cross-checked-annotator approach, in which the first author’s implementa-

tion of the protocol was cross-checked by another author. Developers properly

trained on the usage of our tool and on the changes to apply for each oracle de-

ficiency can be as efficient as the first author, but possibly even more effective,

given higher domain knowledge and freedom to improve the oracle.

External validity : We have validated our approach on a set of classes from

five different subjects and with three different types of initial oracles. While we

expect similar results to hold for other subjects, generalisability of our findings

requires further replications on additional subjects.

5.2 Human Study: Oracle Assessment

To improve an oracle one should first be aware of its current deficiencies and

then take actions to get rid of them. Our approach automatically detects false

positives and false negatives in the assertions and reports them to the user. To

check whether the first task, oracle assessment, is difficult for humans, which

would indicate that the information provided by our tool is potentially useful,

we conducted a study to analyse how successful developers are at assessing

oracles manually, with no tool support. With this overall goal in mind, we

explored the following research questions:

RQ6: How effective are developers in determining whether the oracle has a

deficiency and, if it has one, what the deficiency type is?

RQ7: What are the common misclassifications developers make when assess-

ing oracle deficiencies?
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5.2.1 Object Selection

The starting point of our experimental design was the previous study by Staats

et al. [95]. In this previous work Staats et al. analysed the user’s ability to

classify invariants dynamically generated by Daikon as correct or incorrect. An

invariant is considered incorrect if there is a test input capable of violating the

invariant, which is in line with our definition of a False Positive. Three Java

classes were used as subject programs in this previous study: StackAr, Matrix

and PolyFunction. StackAr is a stack class originally used in user studies about

Daikon [74]. Matrix is a class representing a matrix, found in the JAMA linear

algebra package, developed by The MathWorks and the National Institute of

Standard and Technology (NIST) [44]. PolyFunction is a class representing

a polynomial function, and is part of the Math4J package [69]. The users

involved in the previous study analysed 336 invariants generated by Daikon

for these classes during the experiments. Moreover, at the end of the task each

participant was asked to manually write 5 invariants for each class.

To evaluate classifications made by each participant, authors needed to

determine whether each invariant was correct or incorrect. For this they em-

ployed two automated approaches to try to falsify invariants. First, they ap-

plied Randoop using 100,000 test inputs (far more than the 1,000 used to

generate the invariants). Second, a different, manually written random test

generation harness was produced for each case example, and then applied for

a long period of time (24 hours). For any remaining invariants, three of the

authors manually examined each one, attempting to develop a test input capa-

ble of violating the invariant. When failing, they tried to understand whether

the invariant was indeed correct. Invariants that they could not falsify were

accepted as correct. As we have noted before, the definition of invariant cor-

rectness in this study is in line with our definition of false positives. So, to

recheck the classification of the authors, we applied OASIs, considering only

false positive detection, to the invariants used in the study by Staats et al.

[95]. Table 15 shows that while the approach described in the paper [95] found
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73 assertions with a false positive among 324 assertions, our approach found

false positives in 60 more assertions.

Table 15: OASIs applied to the invariants from [95]

Class # of Assertions Incorrect

In Paper [95] OASIs

Matrix 122 18 42

Poly 121 26 50

StackAr 81 29 41

Overall 324 73 133

We reused the subject programs of the study by Staats et al. [95], and

used the dynamically generated and manually written invariants as our initial

oracles. However, we used the output of OASIs for classifying these invariants.

The aim of our study was not limited to the analysis of the developers’ ability

to detect False Positives, but to also include the same analysis for False Nega-

tives. Given this wider task, we decided to give subjects more time for oracle

assessment than in the previous study. In our study, we provided participants

with 10 assertions from two different classes to be evaluated in 30 minutes. By

contrast, in the study by Staats et al. [95] subjects were asked to analyse 112

invariants on average in 60 minutes or 86 invariants on average in 35 minutes,

depending on the session.

We selected 15 assertions (5 from each class) among 336 properties inferred

by Daikon and 37 human-written assertions. Our selection process favoured

assertions that were checking the functionality specific to the method under

test rather than general properties of the class (as most Daikon-generated

invariants do). For each assertion we run our tool to detect whether it has

a false positive, a false negative or no oracle deficiencies. In case no oracle

deficiency was found, we also analysed the assertion manually to ensure that

the output of the tool is correct.
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Before executing the empirical study, we conducted a pilot study with 2

volunteers (who were not included later in the experiment itself). The results

of the questionnaire and the discussion after the pilot study showed that par-

ticipants think that the time provided was insufficient to analyse 10 assertions

in total. Therefore, we reduced the number of assertions to 6 for the main

experiment (3 for each class). We also slightly reduced the source code of all

three case examples to make the task more feasible.

Table 16 lists the classes from the work of Staats et al. [95] that we reused

in our experiments and the number of lines of code, methods and assertions in

them. Rows Assertion 1, Assertion 2 and Assertion 3 indicate whether each

assertion has a false positive (FP), a false negative (FN) or no false positives

and no false negatives (None) and whether it is human-written (H) or Daikon-

generated (D).

Table 16: Assessment Study: Subject Programs

StackAr Matrix PolyFunction

SLOC 94 142 152

# of Methods 11 17 12

# of Assertions 3 3 3

Assertion 1 FN, D FP, D FN, H

Assertion 2 None, H FN, D FP, H

Assertion 3 FP, D None, H FN, D

5.2.2 Participants

To answer our research questions we conducted three separate experimental

sessions. The first and third sessions were conducted with master degree stu-

dents of the Security Testing course at the University of Trento. The second

session was conducted with professional developers who work at Fondazione

Bruno Kessler. The analysis of user feedback for the first two sessions showed

that participants thought that they did not have enough time to perform the
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task. Therefore, in the third session we changed the duration of the task from

30 minutes to 45 minutes.

Table 17: Assessment Study: Experimental Sessions

Type of Part. # of Part. Duration

Session 1 MSc Students 20 75 min

Session 2 Prof. Developers 6 75 min

Session 3 MSc Students 13 90 min

Table 17 lists all the sessions conducted during the study, the type and

number of participants in each of them along with the whole duration of the

session. Overall, 33 master degree students and 6 professional developers par-

ticipated in our experiments.

5.2.3 Experimental Procedure

At the beginning of each session we provided an identical 30 minute training

to the participants: (1) explaining what the oracle problem is; (2) explaining

what a false positive and a false negative is; (3) overviewing Java assertions;

(4) showing multiple examples of false positives and false negatives in Java as-

sertions; (5) introducing utility classes and constructs used to write assertions

(e.g., the boolean implication operator and the way to refer to old values of

variables). In the training, the motivation for the assertions in the program

was explained to be regression testing, as in regression testing users can assume

that the program behaves correctly as is. Correspondingly, the user’s task is to

determine whether assertions match the program’s current behaviour. Indeed,

asking participants to judge whether invariants match the intended program

behaviour would have made the task overly difficult, since participants are not

the developers of the classes under study. We also recommended that partici-

pants start their analysis of the assertions from the search for false positives.

In fact, only after making sure that there is no false positive (the assertion
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is partially correct), it makes sense to check whether the assertion has false

negatives (the assertion is strong enough to expose arbitrary faults).

After the training session, each subject received an experiment package,

consisting of the randomly assigned group id, a statement of consent and in-

structions on how to proceed with the task. Participants were divided into

groups in order to have a balanced number of responses for each subject class.

Instructions directed the participants to the website where the source code of

Java classes for their group could be downloaded and to the online question-

naire.

During the task, each participant was assigned two Java classes with three

assertions each. The objective was to indicate for each assertion whether (1)

it has a false positive (2) it has a false negative (3) it has no false positives and

no false negatives. In case the subject did not know the answer the option “I

don’t know” was provided as well. Once the 30 minute (45 minute for the third

session) period assigned for the task was completed, participants proceeded to

the questionnaire to answer questions about their background and to provide

feedback about the session.

5.2.4 Results

RQ1: User Effectiveness

To answer RQ1 we calculated the correct/incorrect classification ratios for

each participant group, investigated the parameters that affect users’ perfor-

mances and measured the agreement rate between participants.

Classification Results. Table 18 presents the results for the two sessions

(Session 1 - SS1, Session 3 - SS3) conducted with students. Column All shows

the overall number of classifications obtained for each assertion. Columns

Correct and Incorrect show the number of correct and incorrect classifications

respectively. Column Don’t Know reports the number of cases when the option

“I don’t know” was picked for the assertion. While the duration of these

sessions was different (30 min vs. 45 min), the results for them are similar,

respectively with 25% and 26% correct classification rates.
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Table 18: Results: Students (SS1 - 1st session, 20 students; SS3 - 3rd session,

13 students)

As.-n OD
All Correct Incorrect Don’t Know

SS1 SS3 SS1 SS3 SS1 SS3 SS1 SS3

M1 FP 13 8 2 (15%) 1 (13%) 10 (77%) 7 (88%) 1 (8%) 0 (0%)

M2 FN 13 8 7 (54%) 5 (63%) 3 (23%) 1 (13%) 3 (23%) 2 (25%)

M3 None 13 8 6 (46%) 3 (38%) 5 (38%) 1 (13%) 2 (15%) 4 (50%)

P1 FN 13 9 1 (8%) 2 (22%) 9 (69%) 5 (56%) 3 (23%) 2 (22%)

P2 FP 13 9 2 (15%) 1 (11%) 5 (38%) 4 (44%) 6 (46%) 4 (44%)

P3 FN 13 9 1 (8%) 1 (11%) 8 (61%) 5 (56%) 4 (31%) 3 (33%)

S1 FN 14 9 3 (21%) 1 (11%) 8 (57%) 8 (89%) 3 (21%) 0 (0%)

S2 None 14 9 5 (36%) 3 (33%) 9 (64%) 5 (56%) 0 (0%) 1 (11%)

S3 FP 14 9 3(21%) 3 (33%) 8 (57%) 5 (56%) 3 (21%) 1 (11%)

120 78 30 (25%) 20 (26%) 65 (54%) 41 (52%) 25 (21%) 17 (22%)

198 50 (25%) 106 (53%) 42 (21%)
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Table 19: Results: Professional Developers (2nd session, 6 developers)

Assertion All Correct Incorrect Don’t Know

M1 4 1 (25%) 3 (75%) 0 (0%)

M2 4 2 (50%) 1 (25%) 1 (25%)

M3 4 4 (100%) 0 (0%) 0 (0%)

P1 5 3 (60%) 1 (20%) 1 (20%)

P2 5 1 (20%) 0 (0%) 4 (80%)

P3 5 2 (40%) 2 (40%) 1 (20%)

S1 3 0 (0%) 2 (67%) 1 (33%)

S2 3 2 (67%) 0 (0%) 1 (33%)

S3 3 2 (67%) 0 (0%) 1 (33%)

36 17 (48%) 9 (25%) 10 (27%)

Table 19 shows the results for the 6 professional developers. With a 48%

correct classification rate they exhibited almost twice as good a performance

than students. For 4 out of 9 assertions, professional developers had no incor-

rect classifications at all, either always correctly classifying an assertion (M3 )

or selecting the answer ”I don’t know” rather than giving an incorrect answer

(P2, S2, S3 ).

Figure 24 provides more insight into the participants’ performances by

showing the number of participants giving the same number of correct answers

(which ranges from 0 to 6). 10 out of 33 students were not able to correctly

classify a single assertion. This was not the case for professional developers,

as each of them was able to correctly assess from at least 1 up to 4 assertions.

The best performance of 5 and 6 correct answers was exhibited by one student.

Overall, for 39 participants the average correct classification ratio is only

29%, see Table 20. There are no assertions that were incorrectly or correctly

classified by all participants. In 22% of cases the option “I don’t know” was

picked and in 49% the provided classification was wrong.
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Table 20: Results: Overall (39 participants)

Assertion All Correct Incorrect Don’t Know

M1 25 4 (16%) 20 (80%) 1 (4%)

M2 25 14 (56%) 5 (20%) 6 (24%)

M3 25 13 (52%) 6 (24%) 6 (24%)

P1 27 6 (22%) 15 (56%) 6 (22%)

P2 27 4 (15%) 9 (33%) 14 (52%)

P3 27 4 (15%) 15 (56%) 8 (30%)

S1 26 4 (15%) 18 (69%) 4 (15%)

S2 26 10 (38%) 14 (54%) 2 (8%)

S3 26 8 (31%) 13 (50%) 5 (19%)

234 67 (29%) 115 (49%) 52 (22%)

We tested the statistical significance of our results. According to the

Pearson-Klopper method for calculating binomial confidence intervals (at 95%

confidence level), for students the correct classification rate is in the range

[0.193:0.219] with mean 0.253; for professional developers it is in the range

[0.304:0.645] with mean 0.472; and for all participants it is in the range [0.229:0.349]

with mean 0.286. The difference between students’ and professional develop-

ers’ performances is statistically significant according to Fisher’s exact test

(two-sided) with p = 0.01488 at 95% confidence level. We conclude that there

is inferential statistical evidence that the professional developers were signifi-

cantly better at oracle assessment than students.

Parameters affecting user effectiveness. In the background question-

naire we asked participants questions about their programming experience,

their assessment of the understandability of the training material and their

satisfaction with the time provided for the task. To analyse whether any of

these factors affected subjects’ effectiveness, we calculated the ratios of cor-

rect, incorrect and “I don’t know” answers within each group corresponding

to different parameter values. The first/second columns in Table 21 show the
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Table 21: Results for different parameter values

All Correct Incorrect Don’t Know Conf. Int. Pearson Correlation Co-Factor Analysis

Coeff. p-value Coeff. p-value

Progr. Exp. (37)

0.0728 0.6642 2.2370 0.9220
<1 year (7) 42 8(19%) 30(71%) 4(10%) [0.09:0.34]

1 - 3 years (13) 78 27(35%) 31(40%) 20(26%) [0.24:0.46]

>3 years (17) 102 26(25%) 49(48%) 27(26%) [0.17:0.35]

Java Exp. (37)

-0.0310 0.8649 -3.830 0.6860
None (3) 18 5(28%) 9(50%) 4(22%) [0.10:0.53]

<1 year (12) 72 23(32%) 35(49%) 14(19%) [0.21:0.44]

1-3 years (16) 96 22(23%) 48(50%) 26(27%) [0.15:0.33]

>3 years (6) 36 11(31%) 18(50%) 7(19%) [0.16:0.48]

Industry Exp.(36)

0.4126 0.0112 10.4270 0.0190
None (19) 114 18(16%) 62(54%) 34(30%)) [0.10:0.24]

<1 year (9) 54 20(37%) 26(48%) 8(15%) [0.24:0.51]

1-3 years (5) 30 15(50%) 11(37%) 4(13%) [0.31:0.69]

>3 years (3) 18 6(33%) 8(44%) 4(22%) [0.13:0.59]

Enough Time (36)

0.2001 0.2334 12.770 0.4900
No (18) 108 26(24%) 57(53%) 25(23%) [0.16:0.33]

Yes (18) 108 35(32%) 49(45%) 24(22%) [0.24:0.42]

Training (38)

0.2681 0.0989 4.2590 0.6670
1 (1) 6 0(0%) 5(83%) 1(17%) [0.00:0.46]

2 (3) 18 3(17%) 4(22%) 11(61%) [0.04:0.31]

3 (12) 72 20(28%) 39(54%) 13(18%) [0.18:0.40]

4 (12) 72 19(26%) 36(50%) 17(24%) [0.17:0.38]

5 (10) 60 21(35%) 29(48%) 10(17%) [0.23:0.48]
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Figure 24: Number of Participants Grouped by Number of Correct Answers

parameter values and the number of overall responses within each group, while

the next columns list the oracle assessment answers. Column Conf. Int. shows

confidence intervals (at 95% confidence level) for each response.

As the table shows, the rate of correct answers increases when we switch

from the group with ”< 1 year” to the group with ”1−3 years” of programming

experience. However, this increase does not continue for the group with ”>

3 years” of programming experience. A similar pattern holds for Java and

Industry Experience. Regarding the time provided for the task, the number

of responses are equal for both groups, but the ratio of correct answers is

higher when the answer was ”yes”. The user effectiveness also increases as

the subjective comprehensibility of the provided training material increases

(according to participants). However, even when participants think that the

time allocated for the task was enough, their average effectiveness is only

32%. Similarly, when they rate the provided training material with the highest

possible mark, the average effectiveness is still only 35%.

We calculated the Pearson correlation coefficient between the ratio of cor-

rect answers and each of the factors in Table 21. The correlation coefficients

are positive for all factors except Java Experience. Industry Experience is the
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Figure 25: What Was the Main Challenge while Performing the Task?

factor with the highest correlation rate and the only one where correlation

is statistically significant (p ≤ 0.05). Even for this factor, the correlation is

moderate, not strong. The permutation test for the analysis of co-factors gives

similar results.

To get participants’ opinions on the difficulties associated with the task,

we asked them a multiple-choice question “What was the main challenge while

performing the task?”. We got responses from all 39 participants with 54

answers selected. As Figure 25 shows, the main challenge for participants was

to understand the source code of the classes, followed by understanding the

assertions.

Agreement rate between participants. To analyse how much homo-

geneity there is between the classifications provided by users, we measured

the degree of inter-rater agreement. Fleiss’ kappa [28] is the most common

statistical measure for assessing the reliability of agreement between a fixed

number of raters when classifying items. It calculates the degree of agreement

in classification over the one that would be obtained by chance. However, as

we have overall 9 assertions and each participant classified only a subset (6) of

them, Fleiss’ kappa is not applicable to our data. Hence, we instead used Krip-

136



pendorff’s alpha [55] coefficient, which generalizes Fleiss’ kappa to incomplete

(missing) data. Krippendorff’s alpha takes a value between 0 and 1, where

0 is perfect disagreement and 1 is perfect agreement. When it is less than 0

disagreements are systematic and exceed what can be expected by chance.

Table 22: Agreement rate between participants

Students Professionals All

# Alpha # Alpha # Alpha

Matrix 21 0.124 4 0.324 25 0.091

PolyFunction 22 0.006 5 0.042 27 0.011

Stack 23 0.005 3 -0.102 26 -0.006

33 0.010 6 0.015 39 0.049

Table 22 shows the number of raters and Krippendorff’s alpha value for

each subject group and for all subjects (i.e., students, professionals and all

participants). The highest agreement rate is for the assertions in class Matrix,

among professionals. According to Landis and Koch’s [56] interpretation of

agreement rate values, professionals have reached a fair agreement. This is

related to the fact that all professionals have classified one of the assertions

(M3 ) in this class correctly, therefore fully agreeing. The agreement rate for

class StackAr between professionals and also for all participants is negative

(poor). In all the other cases, there is a slight agreement between students,

professionals and all participants.

Overall, these low agreement rate values show that although all subjects,

even those with industry experience, find oracle classification hard, there is no

evidence of systematic bias nor consistent misunderstanding among subjects

regarding their incorrect oracle inferences. For example, it is never the case

that participants consistently agree on classifying an assertion which actually

has a false positive as an assertion with a false negative.
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RQ6 (effectiveness): Our experiments show that subjects can only

achieve a poor correct classification rate (29%) when assessing whether an

assertion contains a false positive, a false negative or none of the two. Pro-

fessional developers achieve a significantly higher correctness rate (48%)

than students (25%), but still such a correctness rate is largely below the

desirable value (100%). The inter-rater agreement was also quite poor with

no consistent misclassifications. We observed moderately strong evidence

that industrial experience is correlated with the correct classification rate,

but found no similar evidence of any other correlations.

RQ2: Misclassifications
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Figure 26: Correctness Rate for FP, FN and None

Harder to Detect Oracle Deficiencies. To investigate which type of

oracle deficiency is harder to detect for developers, we summarised the results

of the oracle assessment task for each type of oracle deficiency and participant

group (see Figure 26). As the figure reveals, both students and professional

developers are more successful in detecting false negatives than false positives

(27% vs. 21% overall). However, the best result is achieved for assertions with

no oracle deficiencies at all. For these assertions, professionals were able to

provide correct classifications in 86% of the cases.
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We asked the question “Which oracle deficiency is harder to detect?” to

the participants in the exit questionnaire. As Figure 27 shows, the number of

people finding false positives harder to detect than false negatives is slightly

higher, which is in line with our results. However, to check whether the re-

sponse of participants considering false negatives harder than false positives is

consistent with the actual results we observed in the experimental results, we

calculated the correct classification rates for false positives and false negatives

by both the ”FP is harder” and ”FN is harder” groups. The results show that

the ”FN is harder” group is more successful in detecting false positives (29%)

than false negatives (19%). Similarly, the ”FP is harder” group shows better

results for assertions with false negatives (31%) than for the ones with false

positives (18%). Therefore, the participants’ intuition about the difficulty of

each oracle deficiency type is confirmed by the results observed for each group

of deficiency.
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Figure 27: Which Oracle Deficiency is Harder to Detect?

Misclassification types. To analyse the type of mistakes participants

made when assessing oracles, we calculated how often each of the 6 possible

misclassifications has occurred. Column Class-Misclass in Table 23 lists these

misclassifications, where the notation OD1 -OD2 means that the assertion has

an oracle deficiency of type OD1, but was classified as having OD2. Columns
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Students, Professionals and All show the rate of each misclassification for the

corresponding participant group. These rates were calculated by dividing the

number of times the misclassification OD1 -OD2 took place by the overall

number of assertions with OD1.

Table 23: Misclassifications

Class-Misclass Students Professionals All

FP-FN 29% 25% 28%

FP-None 30% 0% 26%

FN-FP 17% 18% 17%

FN-None 36% 18% 33%

None-FP 25% 0% 22%

None-FN 20% 0% 18%

As the Table 23 shows, students have made each possible misclassification.

In contrast, for professional developers three out of six possible erroneous clas-

sifications never took place. The ratio of each misclassification is higher for

students than for developers, except FN-FP, for which the difference is neg-

ligible. Students misclassify false positives as false negatives or ”None” at

very close ratios (29% vs. 30%), while for professionals such difference is more

perceptible (25% vs. 0%). Despite the fact that false positives are being mis-

classified more often, the most common error for all participants is FN-None.

This shows that users often fail to recognise the bugs that the assertion can

miss, and therefore tend to classify weak assertions as strong. One of the

least prevalent misclassifications is None-FN, showing that strong assertions

are classified as weak more rarely.

RQ7 (misclassifications): False positives were perceived (and were ac-

tually found) to be the hardest category to identify for all subjects. The

most common misclassification consists of weak assertions regarded as free

of deficiencies, showing that identifying faults potentially missed by an as-

sertion is a quite difficult task for humans.
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5.2.5 Threats to Validity

Internal. A threat to internal validity may result if the training material or

experiment objectives were unclear to participants. To mitigate this threat we

thoroughly revised all our training materials and tested them on a pilot study.

Our measurements of user effectiveness are obtained by comparing partic-

ipants’ results against the outcome of OASIs. While it provides evidence for

any oracle deficiency it detects, it may report no oracle deficiencies even if some

(undetected) deficiency is actually there. To deal with this issue, the authors

thoroughly examined each assertion with no oracle deficiencies according to

OASIs, to ensure that the tool’s judgement was indeed correct.

External. The classes used in our study were not developed by our par-

ticipants and may have been unfamiliar to them. However, it is a common

practice that developers test code not written by them. We have selected

three relatively simple Java classes for our studies due to the limited time of

the experimental sessions. We acknowledge that our results cannot be gener-

alised to other Java classes. However, we had a large number of participants

in the study, and therefore we believe that our results provide insight in the

expected behaviour of developers with different experience and backgrounds

in the oracle assessment process.

5.3 Human Study: Oracle Improvement

Once developers are aware of assertion deficiencies, they must improve the as-

sertion so as to remove deficiencies. To support developers in this process, our

tool automatically generates counterexamples that demonstrate the reason for

each type of oracle deficiency. To check whether this leads to a more effective

oracle improvement process, we conducted a study to compare the improve-

ment process when using our tool against manual improvement unaided by our

tool. We addressed the following research questions:

RQ8: What is the quality of assertions improved using our tool compared to

assertions improved manually?

141



RQ9: When using our tool, how many iterations and how much human effort

does the iterative improvement process require to remove all oracle deficiencies

in the assertion?

5.3.1 Participants

Table 24: Improvement Study: Participants

Part.-t Group Exp. Jobs Amount Job Title

P1 Without Tool 8 years 7 1000+ USD C, C++, Java Developer

P2 Without Tool 3 years 0 0 USD Software Quality Assurance Analyst

P3 Without Tool 3 years 18 1000+ USD Software Tester

P4 Without Tool 3 years 4 3000+ USD Full Stack Software Engineer

P5 Without Tool 5 years 0 0 USD Expert in Automation QA

P6 With Tool 3 years 0 0 USD Software Quality Assurance Engineer

P7 With Tool 1 year 2 15 USD Test Automation Engineer

P8 With Tool 3 years 1 40 USD Test Manager

P9 With Tool 6 years 0 0 USD QA Automation Engineer

P10 With Tool 5 years 0 0 USD Full Stack Java Developer

In our approach, the developer is an integral part of the oracle improvement

process. To analyse how beneficial is the use of our tool for developers with

various backgrounds, two different groups of participants were involved in our

experiments. We recruited the participants for the first group by sending

personal email invitations to 28 PhD students from Fondazione Bruno Kessler

and to 19 PhD students and 2 postdoctoral researchers from University College

London. No financial incentive was offered in this invitation. Overall, 17 PhD

students and 2 postdoctoral researchers agreed to participate.

Our second group of participants were developers from Upwork. Upwork is

a global freelancing platform where businesses and independent professionals

collaborate remotely. To hire developers on this platform, we registered there
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as a client, by filling in necessary details and then adding and verifying the

payment method. After registration, we posted two different fixed-price jobs:

1) without using the tool, with a payment of 20 USD; 2) using the tool, with a

payment of 30 USD. The difference in the price is due to the training on how

to use our tool, an extra activity that is carried out only for the second job.

For both jobs we required candidates to pass a qualification test. Overall, we

received 20 job proposals for the first and 12 job proposals for the second job.

We aimed to have five freelancers completing each job. To reach this quota we

had to hire 15 freelancers overall: four of them did not pass the qualification

test and one did not submit the last part of the task.

Participants for each job were selected so that there is a balance in terms

of experience between control and treatment groups on average. Table 24 lists

our final list of participants from the Upwork platform. Column Group shows

whether each participant worked on a task with or without the tool. Column

Exp. shows the experience of each developer in years. Column Jobs shows

the number of jobs each freelancer did on the Upwork platform and Column

Amount shows how much money each freelancer has earned overall.

We had limited control on the group composition (we could just approxi-

mately balance the level of Experience). In fact, it turned out that the group

Without Tool includes participants with slightly higher # of Jobs and Amount,

possibly giving a slight unfair advantage to this group of subjects. We deemed

this possible bias acceptable since it reduces the chance of Type I errors (in-

correctly inferring that our tool provides benefits to its users).

5.3.2 Experimental Procedure

The main structure of our experimental procedure is shown in Figure 28. The

PhD student/Postdoc sessions were organised individually for each participant

as a single 1.5 - 2 hour session. In Upwork we divided our experimental session

into milestones, i.e., subtasks with separate budgets and deliverables. Each

participant had to pass each milestone to be able to proceed with the next
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one. The green bars in Figure 28 show the content and the payment offered

for each milestone.

Oracle Improvement 
Training

Oracle Improvement

Practice Task Tool Training Final Task Questionnaire

5 USD 15 USD10 USD

Figure 28: Oracle Improvement Study: Experimental Procedure

Each experimental session started with a 30-minute Oracle Improvement

Training, which contained all the information from the Oracle Assessment

Study training material, with the addition of multiple examples on how to

improve the assertions to remove oracle deficiencies. For the participants from

Upwork, this material was provided in written form, while for the PhD stu-

dent/Postdoc sessions it was delivered in the form of a presentation.

The training was followed by an Oracle Improvement Practice Task, where

participants were provided with 4 simple Java methods with an initial asser-

tion each. The objective of the task for the participants was to improve the

assertions so that they have no false positives and no false negatives. The aim

of the task was to ensure that participants understand the oracle improvement

process.

In the Upwork setting, participants submitted their improved assertions

online. In case any of the four assertions still had oracle deficiencies left, the

written feedback explaining the reason for the oracle deficiency was sent to

them. Participants could resubmit based on the feedback provided. In case

the participant was not able to finish the improvement process after two itera-

tions of feedback, her/his participation in the experiment was terminated. In

the PhD student/Postdoc sessions, this part was conducted in a more inter-

active way, where participants could write the improved assertion and receive

immediate feedback, possibly followed by a discussion, and could subsequently

improve the assertion until all deficiencies were removed.
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The Tool Training was conducted only with participants from the treat-

ment (With Tool) group. The training material was provided in written form

to participants from Upwork and in the form of a presentation to the others.

The training included information on: (1) how to run the tool; (2) the output

of the tool for False Positives; (3) the output of the tool for False Negatives,

including the explanation of each mutation operator that could be applied to

the source code.

To give a hands-on experience on the use of the tool, participants ran the

tool and analysed its output for the methods from the Oracle Improvement

Task. We reused these methods to ensure that participants performing the task

with the tool did not get more examples and experience of oracle improvement

than participants not using the tool. We provided a machine with pre-installed

tool to the participants in the PhD student/Postdoc sessions.

We provided instructions on where to download the tool and how to run

it on their machine to participants from Upwork. Participants from Upwork

were also required to submit a written description of the output produced by

the tool for each method, to check that they could understand it properly.

For False Positives they had to explain why the generated test case makes the

assertion fail. For False Negatives they had to describe the applied mutations

and why the assertion does not react to them. Examples of such descriptions

were provided in the training material.

After participants received all the necessary training, they proceeded with

the Final Task. In this task they were provided with a single Java class StackAr

which had an assertion with a false positive in the top method and an assertion

with a false negative in the pop method. The objective of the task was to

improve both assertions so that they have no oracle deficiencies. The aim of

the task was to compare the outcome of the oracle improvement process when

participants use the tool and when they do not. Participants from both groups

knew the type of oracle deficiency each assertion has.

The control group was instructed to improve the assertions manually. The

treatment group had the tool to guide them: for each improvement step they
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could run the tool and if an oracle deficiency was detected, based on the test

cases reported as an evidence they could decide on the next improvement step.

The stopping point for the participants from the treatment group was when the

tool reported no oracle deficiencies, while for the control group it was only the

participant’s own confidence in the final assertions. In the Upwork experiments

we offered a bonus of 5 USD to participants from the control group who were

able to submit assertions with no oracle deficiencies.

Once the task was over, participants were asked to submit their final as-

sertions along with the information about their background, as well as their

assessment of the experimental session through the exit questionnaire.

5.3.3 Results

Quality of Final Assertions

Table 25 shows the results for the participants who improved the asser-

tions manually. Column OT (Overall Time) shows the overall time spent on

improving each assertion, as reported by each participant. Column Outcome

shows the oracle deficiency or the level of correctness the final assertion has

reached, where the distinction among FN, Partially Correct and Fully Correct

is that an assertion labelled FN has mutation score = 0; an assertion labelled

Partially Correct has mutation score > 0 and < 1; an assertion labelled Fully

Correct has mutation score = 1 (assuming in all three cases that there is no

residual false positive, which would otherwise cause the labelling FP).

The results presented in Table 25 show that only five out of nine partici-

pants in the PhD student/Postdoc sessions achieved full correctness for Asser-

tion 1. The assertions submitted by the remaining four participants either still

have a false positive or cause a crash in the program. None of the participants

was able to improve Assertion 2 to the point of full correctness, but five out

of nine participants have achieved partial correctness. The participants from

Upwork (UP1-UP5) performed worse for Assertion 1 and better for Assertion 2

in comparison to the participants from PhD student/Postdoc sessions. For the
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Table 25: Improvement Study: Results Without Tool

Participant Assertion1 Assertion2

Outcome OT Outcome OT

P1 Crash 45:00 Partially C. 30:00

P2 Fully C. 5:00 FP 10:00

P3 FP 5:00 FP 10:00

P4 Crash 25:00 Partially C. 10:00

P5 Fully C. 2:00 Partially C. 4:00

P6 FP 6:00 Partially C. 6:00

P7 Fully C. 10:00 FN 7:00

P8 Fully C. 16:00 FP 10:00

P9 Fully C. 7:00 Partially C. 2:00

UP1 Partially C. 20:00 Partially C. 20:00

UP2 Fully C. 45:00 FN 40:00

UP3 FN 45:00 Partially C. + FP 30:00

UP4 Partially C. 17:00 Partially C. 18:00

UP5 Partially C. 25:00 Partially C. + FP 35:00

21% Partially C. 18:12 64% Partially C. 15:28

43% Fully C.

first assertion, only one participant achieved full correctness. For the second

assertion four participants submitted partially correct assertions and no one

submitted a fully correct one.

Table 26 shows the results for the participants who used our tool to improve

the assertions. Here, column OT (Overall Time) comprises the running time of

the tool, reported in column TT (Tool Time), and the time the developer spent

on analysing the output of the tool and improving assertions, i.e., the human

cost, reported in column HT (Human Time). Every time the participant ran

our tool, we recorded the time of the day and the assertions in the code. Based

on this information, we calculated the human cost as the sum of time intervals
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Table 26: Improvement Study: Results With Tool

Part.-t Assertion1 Assertion2

Outcome OT TT HT Outcome OT TT HT

P10* Fully C. 19:02 03:53 15:09 Partially C. 14:07 07:48 06:19

P11* Fully C. 18:01 05:22 12:39 Partially C. 24:06 14:16 09:50

P12* Fully C. 21:11 03:52 17:19 Partially C. 13:59 07:47 06:12

P13* Fully C. 16:37 10:26 06:11 Partially C. 10:56 07:52 03:04

P14* Fully C. 10:27 06:03 04:24 Partially C. 20:03 11:27 08:36

P15 Fully C. 12:59 06:41 06:18 Partially C. + FP 52:18 15:04 37:14

P16 Fully C. 19:51 10:49 09:02 Partially C. + FP 44:06 19:16 24:50

P17 Fully C. 12:20 07:10 05:10 Partially C. + FP 47:44 28:08 19:36

P18 Fully C. 12:44 06:03 06:41 Fully C. 40:40 15:55 24:45

P19 Fully C. 47:38 14:15 33:23 Partially C. 34:43 16:17 18:26

UP6 Fully C. 13:46 07:48 05:58 Fully C. 22:14 10:48 11:26

UP7 Fully C. 15:17 09:15 06:02 Partially C. 31:38 10:47 20:51

UP8 Fully C. 08:24 04:57 03:27 Fully C. 22:16 10:05 12:11

UP9 Fully C. 09:25 05:34 03:51 Fully C. 06:28 03:57 02:31

UP10 Fully C. 16:36 08:53 07:43 Fully C. 28:20 11:16 17:04

100% Fully C. 16:57 07:24 09:33 33% Fully C. 27:33 12:42 14:51

67% Partially C.

between tool runs and the running time of the tool as the sum of tool run

durations for all iterations.

When using the tool, all the participants from both PhD student/Postdoc

sessions and Upwork sessions have achieved full correctness for Assertion 1. As

our PhD student/Postdoc experimental sessions were limited in time, initially

we configured the tool so that it reports false negatives for Assertion 2 only

until partial correctness was achieved (as in the third assertion in Figure 18).

Five participants (marked with an asterisk in Table 26) have run the tool

with this configuration. As they achieved the desired partial correctness in a
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relatively short time, we used the standard configuration of the tool reporting

all false negatives for the rest of the participants. As a result, the latter

participants received a false negative report after achieving partial correctness.

However, only one of them was able to improve the assertion to the point of

full correctness.

Three participants (P15, P16, P17) understood the reason of the reported

false negative and made steps towards improvement, but the added checks

contained a false positive which they were not able to remove by the end of

experimental session. Participant P19 was not able to understand the reason

for the reported false negative, and, therefore did not improve the assertion

beyond the point of partial correctness. The same scenario occurred also for

Upwork Participant UP9. The rest of the Upwork participants (four out of

five) were successful in achieving full correctness.

In Tables 25 and 26 we do not indicate explicitly the level of partial correct-

ness (i.e., the mutation score), because it is the same across all participants:

Partial Correctness for Assertion 1 has mutation score = 75%, while for As-

sertion 2 it is 92%.

Overall, for Assertion 1, 43% of participants achieved full correctness and

21% achieved partial correctness when improving assertions manually versus

100% of developers achieving full correctness when improving assertions using

our tool. For Assertion 2, in case of manual improvement 64% of developers

achieved partial correctness, while when using the tool 33% of them got to a

point of full correctness and 67% of them to a point of partial correctness.

We checked the statistical significance of the difference between the manual

and tool-supported improvement by applying the Fisher’s exact test (two-

sided) in two different configurations. In the first configuration we compared

the outcomes of assertions in terms of achieving partial correctness and in the

second in terms of achieving full correctness. In both cases the difference is

statistically significant at 95% confidence level, with p = 0.00025 in the first

configuration and p = 0.00067 in the second.
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We conducted a co-factor analysis to check if the type of participants

(whether they are from Upwork or PhD student/Postdoc sessions) is signif-

icantly affecting their performance. Another co-factor here is whether the tool

was used or not, while mutation score is the dependent variable. The permuta-

tion test shows that the effect of participant type is not statistically significant

with p = 0.33333, but the effect of tool usage is statistically significant with

p < 2 ∗ 10−16.

RQ8 (Quality of Final Assertions): The tool helped developers produce

assertions with higher quality. On average, when using the tool participants

achieved full correctness in 67% and partial correctness in 33% of cases,

while participants without tool achieved full correctness in 21% and partial

correctness in 43% of cases. The difference is statistically significant.

Iterative Improvement Process

Analysis of the time required to complete the iterative improvement process

(see Tables 25, 26) is quite problematic, because we had to measure time

differently in the different settings of the experiments. Specifically, the PhD

student/Postdoc group without tool marked time in a paper sheet in a strictly

controlled classroom setting, so their reported time is quite reliable.

On the contrary, Upwork participants self reported the time spent to im-

prove the assertions without tool in an uncontrolled environment. They might

have inflated times a bit to justify their remuneration and they might have

been quite approximate in their time measurement. Time values measured

for both groups when using the tool were obtained in a completely different

way, since these values have been extracted from the tool execution logs. This

means that they are very accurate, but also quite different from the times that

humans self-report. Because of such differences, we can make only limited

claims on time.

Overall, we observe that the order of magnitude is the same. In fact,

the overall average time ranges between 15:28 and 27:33, considering both
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Figure 29: Improvement Study Results: Iterative Process Details

groups and treatments, with two intermediate values at 16:57 and 18:12. This

indicates that the introduction of the tool can be extremely beneficial to the

assertion quality (as shown in previous section) without having any remarkable

impact on the time developers take to complete the improvement process. We

can also notice that the human time (Column Human T.) when the tool is

used (see Table 26), tends to be lower than the human overall time when no

tool is available (see Table 25). It is only when the tool time (Column Tool

T.) is added that we get comparable times to the setting without the tool.

These findings indicate that the tool execution time has a significant im-

pact on the improvement process and that any performance improvement that

could be achieved on the tool speed (the tool is a research prototype and

was not optimized for performance) could directly benefit the overall iterative

improvement time experienced by the tool users.

151



Figure 29 shows the overall number of iterations and the outcome of each

iteration for both assertions and for all 15 participants who used the tool in the

oracle improvement process. For the first assertion the number of iterations

varied from 1 to 8 and the average number of iterations required to achieve

full correctness was 2.93. For the second assertion the number of iterations

varied from 1 to 13 and the average number of iterations was equal to 4.66.

The average number of iterations participants went through to achieve full

correctness was 3.8, while for partial correctness it was 3.66. Since these two

numbers are approximately the same, we can conjecture that participants who

were able to achieve full correctness performed bigger improvement steps, since

they achieved higher quality in approximately the same number of iterations.

At each iteration developers spent on average 195 seconds for the analysis of

tools’ output and fixing the oracle deficiency in case of Assertion 1 and 191

seconds in case of Assertion 2.

Only three participants (P14, P18, UP8) were able to improve the first

assertion to the point of full correctness immediately after getting the report

for the initial false positive, i.e. in one iteration. The more common scenario

is to have a sequence of iterations (from 2 to 8) in which the tool still reports

false positives.

When trying to fix the false negatives in Assertion 2, 9 participants have

introduced a false positive and 2 participants have introduced a crash into

the assertion. A very peculiar case is the improvement process followed by

Participant P17, since in 7 out of 13 iterations the tool reported a Crash.

The oracle deficiencies with an asterisk in Figure 29 denote the cases where

the tool was run on an assertion identical to the initial one. This means the

participant has decided to restart the process from the initial assertion. Five

participants have acted so in eight different cases after on average 2.3 iterations

of improvement. While it is understandable that after making a series of

unsuccessful changes to the assertion, developers roll them back and restart

from scratch, the initial iterations serve apparently no purpose, as the same

deficiency that was already reported initially is analysed later in the process.
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RQ9 (Human Effort for Iterative Process): The introduction of the

tool in the process does not impact the overall iterative improvement time

to any major extent. If we exclude the tool execution time, it actually

reduces the time required from humans. The number of iterations during

oracle improvement process varied between 1 and 13, with an average of

3.9 iterations. In each iteration, developers spent, on average, 193 seconds

of manual effort between tool runs to fix oracle deficiencies.

Tool Performance and User Feedback

We measured the performance of our tool during the experiments as the

amount of time it took to report the presence or absence of oracle deficiencies.

The tool starts each iteration from a search for a false positive. In case no

false positive is detected, the search for a false negative is initiated. Therefore,

the detection time for false negatives includes the whole search budget of a

false positive search (60 seconds by default). Similarly, the tool uses its search

budget for both false positives and false negatives before reporting that no

evidence of oracle deficiencies was found. On average, during our experiments

false positives were reported in 60, crashes in 62 and false negatives in 162

seconds, while the report for no oracle deficiencies took 271 seconds.

To get insight into the perceived quality of the tool, we asked participants

to rate their experience with it in the exit questionnaire. We asked five Likert

scale format questions, with a range of options from 1 (strongly disagree) to

5 (strongly agree). Figure 30 lists the questions and shows the answers of

participants to each of them. As results show, the tool was assessed to be easy

to run (4.5 on average). The usefulness of its output to understand the reason

of a false positive was rated as 4.07, while its helpfulness to fix a false positive

was evaluated as 4.13. For false negatives both of these numbers were a bit

lower: 3.87 on average.

We also asked a multiple-choice question about the main difficulties users

face when trying to interpret the output of the tool for each oracle deficiency.

Figure 31 shows the percentages of chosen answers. For false positives, under-
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Figure 30: User Feedback on Tool

standing the reported test cases (40%) and understanding why the test case

makes the assertion fail (40%) were equally challenging for participants. For

false negatives the main difficulty was figuring out why the assertion does not

react to the mutation (47%), followed by the understandability of the reported

test cases (26%) and reported mutations (21%).

20%
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Test Cases
Why assertion fails for TC
Other

5%
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47%
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Test Cases
Why assertion does
not react to mutation
Reported mutations
Other

False Positives False Negatives

Figure 31: Difficulties in Understanding Tool’s output
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5.3.4 Threats to Validity

Internal. To mitigate the threat to internal validity regarding the understand-

ability of the training material and experimental objectives for the partici-

pants, we included a practice task in our study and ensured that participants

had successfully completed it before proceeding to the real task. For Upwork

participants, who received the training material and performed the tasks in

remote mode, after each type of training (oracle improvement and tool) we

required a test to be completed. They could proceed with the final task only

after passing the test.

A part of the study was performed in a remote setting using the Upwork

freelancing platform. The training provided to these participants was in writ-

ten form. Moreover, participants could work on the tasks at their own dis-

cretion and we could not oversee their behaviour. In the exit questionnaire,

Upwork participants rated the training material as 4.8 out of 5, on average,

which indicates that they were satisfied with its quality. For the participants

who used the tool, we collected metadata on each tool run, therefore we could

check the timeframe and iterative process for each assertion. Participants who

did not use the tool self-reported time spent on each assertion. We include time

information in our results, but acknowledge that it is not reliable. Overall, co-

factor analysis shows that results of Upwork participants are not significantly

different from the results of other participants.

External. As in the Oracle Assessment study, the classes used in this

study were not developed by our participants and may have been unfamiliar

to them. We also acknowledge that the results of our Oracle Improvement

study cannot be generalised to other Java classes. However, due to the large

number of participants with varying experiences and background, we believe

that our study provides meaningful insights about the behaviour of developers

in the oracle improvement process.

A further threat to external validity is that our results might be biased

by the population of developers who are registered at Upwork. Results could

have been different if we had involved a different population of professional
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developers (e.g., using another freelancing platform). We mitigated this threat

by introducing a qualification test. By adopting such a filter, we expect that we

would be able to recruit a subset of workers with similar skills in any platform.

5.4 Conclusions and Future Work

We have proposed an iterative technique for the assessment and improvement

of oracles, which is based on test case generation for the identification of false

positives and mutation testing for the identification of false negatives. Our

experimental results show that our tool is able to identify both false positives

and false negatives in three important types of initial oracles (implicit, inferred

and manual), leading to an average 48.6% improvement of mutation score over

all the analysed classes and exposing real faults that have been reported to

and fixed by the developers. In this experimental setup the human in the loop

was represented by the author of the thesis.

In our further evaluation the role of the human in the loop was played by

developers with different backgrounds and experience: master degree students,

PhD students, postdoctoral researchers, professional developers and freelancers

from the Upwork platform.

Our results show that humans perform poorly when assessing oracles man-

ually. Their correct classification rate is 29%, on average. Professional devel-

opers (48%) show almost twice better performance than students (25%), but

still misclassify more than half of oracle deficiencies. Overall, false positives

are harder to detect than false negatives. However, the most common mis-

classification type is when an assertion with a false negative is classified as an

assertion having no oracle deficiencies. This study indicates that humans find

it very difficult to assess the deficiencies of program oracles. Hence, there is

a strong need for automated support in such task. Our tool OASIs aims at

addressing this need.

When provided with information on the type of oracle deficiency for the as-

sertion and asked to improve it manually, developers, on average, achieved full

and partial correctness in 21% and 43% of cases respectively. These numbers
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increased significantly, with developers achieving 67% of full and 33% of partial

correctness when they used our tool OASIs for the improvement process. The

overall number of iterations varied from 1 to 13, with an average of 3.8 for full

and of 3.66 for partial correctness. Results show that developers struggle with

achieving full correctness. None of the participants doing manual improvement

was able to improve any of the assertions in our study to a fully correct state.

3 participants from the group with the tool ran it for 2.6 extra iterations on

average after achieving partial correctness to produce a fully correct assertion,

but they did not succeed. While the reports of OASIs, informing users that

their assertions are only partially correct, were judged definitely useful (they

prevent developers from believing their oracles will not miss any faults), in

practice users might prefer to stop the improvement process at a partially

correct state, due to the substantial effort incurred to achieve full correctness.

Overall, our results show that the proposed approach supports the devel-

oper in both the oracle assessment and oracle improvement processes, and

leads to the creation of that are more sound and complete oracles. Our future

work will be to optimise the performance of OASIs, so that OASIs takes less

time to run and leads to a smoother incremental improvement process. The

analysis of the iterative oracle improvement process using OASIs shows that

around 45% of time in each iteration is spent on actually running the tool.

The main cost associated with the execution of OASIs is the mutation analy-

sis step, performed to identify false negatives. One performance optimisation

could be to avoid analysing all possible mutations for a method, considering

only a meaningful/representative subset of such mutations. Therefore, the

work on mutant selection [75, 109] can become a part of our implementation

in future.

The user feedback collected about the understandability and helpfulness of

the tool’s output, including the difficulty in understanding the automatically

generated test cases, will also be addressed in our future work. The existing

work in the area of test code understandability such as techniques to improve
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the readability of automatically generated test cases [23] or to provide test

case summaries in natural language [79] can be incorporated into OASIs.
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6 Conclusions and Future Work

This chapter summarises the overall conclusions of this thesis and how the pre-

sented work addresses the objectives it aimed to investigate. It also discusses

how the approaches presented can be extended and enhanced in future work.

6.1 Summary of Achievements

The main contributions of the thesis are:

• Empirical Study on Failed Error Propagation in Programs with

Real Faults

We have presented empirical evidence from a large corpus of real-world

faults in Java systems that reveals a surprisingly low level of failed error

propagation amongst the 384 faults studied; all state corruptions caused

by these faults can be observed, and none failed to propagate. These em-

pirical findings contradict earlier work on failed error propagation and,

if replicated in other fault corpuses and/or for other languages, would

have profound implications for software testing. Furthermore, when we

turn our attention to studying the synthetic faults introduced by pro-

gram mutants, a widespread practice believed to be good at simulating

real faults, we find very different behaviour: the artificial faults denoted

by mutants do exhibit failed error propagation, unlike the real faults we

studied. These findings concerning mutants provide additional nuances

on earlier work on the suitability of mutation testing for simulating real

faults. Such synthetic faults may be closely coupled to real faults in the

sense that test cases that reveal them also tend to reveal real faults. Nev-

ertheless, there do appear to be non-trivial differences in the behaviour

of synthetic faults and real faults, with respect to their error propaga-

tion. Lack of failed error propagation is due to the use of the strongest

possible oracle as postcondition, which checks all externally observable

program variables. This requires techniques to assess and improve exist-
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ing oracles, that might not be no as strong as the optimal postcondition

oracle.

• Formal Model of Oracle Improvement

We have proposed a formal model of oracle improvement using Shannon’s

information theory. We first proved that oracle improvement increases

conditional probability of accurate acceptance/rejection given the prob-

ability of the ideal oracle doing so. By modelling the actual and perfect

oracles as a pair of boolean-valued random variables, we measured how

closely connected they are using mutual information. We then proved

that every improvement step can make the information in the actual

oracle closer to the information in the perfect oracle.

• Approach for Oracle Assessment and Improvement

We have proposed an iterative technique for the assessment and improve-

ment of the oracles. We use search-based test case generation to detect

false positives and mutation analysis to detect false negatives. Our ap-

proach necessarily places a human in the loop of the iterative process as

the source of information about program’s intended behaviour. We have

implemented this approach as a tool, named OASIs, for Java programs.

Experimental results show that OASIs is able to identify both false pos-

itives and false negatives in three important types of initial oracles (im-

plicit, inferred and manual), leading to an average 48.6% improvement of

mutation score over all the analysed classes and exposing real faults that

have been reported to and fixed by the developers. Moreover, the pro-

gram assertions improved using our approach detect, on average, 52.6%

more faults than the test case assertions generated by automated test

case generators.

• Human Study on Oracle Assessment

We conducted a large empirical study with 39 participants (33 students,

6 professionals) overall to assess developers’ ability to detect oracle defi-
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ciencies manually, with no tool support. The results show that subjects

achieve a low correct classification rate (29%) when performing the or-

acle assessment task. The performance of professional developers (48%)

is significantly higher than the performance of students (25%), but it

is still below the desirable value (100%). The analysis of parameters

that might affect users’ performance shows a moderate evidence that in-

dustrial experience is correlated with correct classification rate and no

evidence of any other correlations. These results confirm that the oracle

assessment is a difficult task for humans and that automatic detection

of false positives and false negatives by OASIs is indeed useful.

• Human Study on Oracle Improvement

We conducted an Oracle Improvement Study, where participants (19

overall) were assigned to the control or treatment group. The partici-

pants from the control group had to improve the provided initial oracles

manually, while the participants from the treatment group had the sup-

port of OASIs to perform the same task. The results show that OASIs

helped developers produce higher quality assertions. Participants who

used the tool were able to achieve full correctness in 67% of cases and par-

tial correctness in 33% of cases, while participants without tool achieved

full correctness in only 21% and partial correctness in only 34% of cases.

The number of iterations during oracle improvement process varied be-

tween 1 and 13, with an average of 3.9 iterations. The introduction of

OASIs in the process did not impact the overall time spent on oracle im-

provement to any major extent. If the tool execution time is excluded, it

actually reduced the time required from humans. Therefore, using OA-

SIs in oracle improvement process leads to a higher quality final oracles

and requires less human effort.
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6.2 Future Work

Further Experiments on Failed Error Propagation

As shown in Section 2.4.2, the existing work on failed error propagation is

focused mainly on synthetic or hand-seeded faults. Only two works [24, 104]

consider 12 and 38 real faults in C programs respectively. While our study on

failed error propagation addresses real faults in Java programs, there are no ex-

isting studies analysing it on a large corpus of real faults in C/C++ programs.

To analyse the generalisability of our results to programming languages other

than Java, our future work will focus on the empirical evaluation of failed error

propagation in C/C++ programs with real faults.

There are existing metrics that serve as predictors of failed error prop-

agation in the programs under test. The works by Voas and his collabora-

tors [100, 102] introduced a metric called ”testability” for this purpose (de-

scribed in detail in Section 2.4.2). The work by Androutsopoulos et al. [5]

proposed 4 new information theory-based metrics and demonstrated they are

well-correlated with failed error propagation. We plan to calculate these met-

rics for the subject programs with real faults we have used in our empirical

study and analyse whether their values are also in line with the low level of

FEP we have observed.

When measuring the level of FEP in our empirical study, we considered

the maximum oracle, i.e. an oracle that was checking all the externally visible

members of a Java class. However, such an oracle is rarely available. To

measure the level of FEP in cases when weaker oracles are provided, we plan

to gradually weaken the maximum oracle by excluding the externally visible

variables that we consider and measure the level of FEP with such an oracle.

Moreover, we plan to evaluate whether the change in the level of FEP as a

result of change of the oracle is correlated with the metrics mentioned in the

previous paragraph.
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Improvements on OASIs

We plan to add a plugin to OASIs which will convert the final improved

program assertions into the format required by automated test case generators

such as Randoop. Therefore, these program assertions will serve as speci-

fications which will be respected during automated test case and assertion

generation.

The automated test case generator Randoop has a parameter using which

developers can provide a specification of the expected behaviour of the code

under test. This specification indicates the circumstances when the method

can be called, and how it should behave when called. Randoop uses such a

specification to better classify method calls as error-revealing, expected be-

haviour, or invalid. The corresponding parameter in Randoop should be set to

file containing the method specifications. The file format is a JSON list with

elements indicating pre-conditions, post-conditions and throw-conditions.
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[24] Murial Daran and Pascale Thévenod-Fosse. Software error analysis: A

real case study involving real faults and mutations. In Proceedings of the

1996 ACM SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA ’96, pages 158–171, New York, NY, USA, 1996. ACM.

[25] Martin D. Davis and Elaine J. Weyuker. Pseudo-oracles for non-testable

programs. In Proceedings of the ACM ’81 Conference, ACM ’81, pages

254–257, New York, NY, USA, 1981. ACM.

[26] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting

controlled experimentation with testing techniques: An infrastructure

and its potential impact. Empirical Softw. Engg., 10(4):405–435, October

2005.

[27] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,

Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon

system for dynamic detection of likely invariants. Sci. Comput. Program.,

69:35–45, December 2007.

[28] J.L. Fleiss et al. Measuring nominal scale agreement among many raters.

Psychological Bulletin, 76(5):378–382, 1971.

[29] Gordon Fraser and Andrea Arcuri. Evolutionary generation of whole
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