1 Growth pattern of infants with gastroschisis in the neonatal period

2

3	Authors: Nigel J Hall, ^{1,2} Melanie Drewett, ² David M Burge, ² Simon Eaton ³
4	1. University Surgery Unit, Faculty of Medicine, University of Southampton, Southampton, UK
5	2. Department of Paediatric Surgery and Urology, Southampton Children's Hospital
6	3. Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child
7	Health, London, UK
8	
9	Corresponding author:
10	Nigel J Hall
11	University Surgery Unit, Mailpoint 816
12	Faculty of Medicine, University of Southampton
13	Southampton General Hospital
14 Tremona Road	
15 Southampton SO16 6YD	
16	Tel: 023 8120 6146
17	E-mail: n.j.hall@soton.ac.uk
18Page 1 of 17	

19 Abstract

20 Background / Aim: Early postnatal growth patterns may have significant long term health effects.

Although preterm infants on parenteral nutrition (PN) exhibit poor growth, growth pattern of term or near-term infants requiring PN is not well reported. We aimed to investigate this in infants born

23 with gastroschisis.

24 Methods: Retrospective review of all infants with gastroschisis requiring PN treated at a single

25 centre over a 4 year period. Growth and clinical data were retrieved, and weight SDS scores for

corrected gestational age calculated. Weight SDS (mean±SD) were compared at clinically relevant

27 timepoints and multi-level regression used to model growth trends over time.

28 Main Results: During the study period 61 infants with gastroschisis were treated; all were included.

29 Infants were small for gestational age at birth for weight (SDS score -0.87±0.85). Weight SDS

decreased significantly during the first 10 days of age (mean decrease 0.81±0.56; p<0.0001) and

between birth and discharge (mean decrease 0.81±0.56; p<0.0001). Despite tolerating full enteral

32 feeds, weight SDS velocity was negative around the time of transition from parenteral to enteral

feed. There was evidence of 'catch up' growth between 3 and 6 months of age.

34 **Conclusion:** Despite nutritional support with PN, infants with gastroschisis demonstrate significant

35 growth failure during the newborn period. Further efforts are required to understand the underlying

36 mechanisms, improve nutritional support and to evaluate the long term consequences of postnatal

37 growth failure in this population.

38 Abstract 234 words

Page 2 of 17

40 Introduction

41 Parenteral nutrition (PN) has become part of the everyday clinical treatment of many patients who 42 require nutritional supplementation. In newborn infants, PN has made a significant contribution 43 towards improving survival of both preterm infants whose intestine is too immature to absorb 44 adequate enteral nutrition and term infants with congenital intestinal anomalies. 45 Despite such nutritional support with PN, preterm infants fail to exhibit expected weight gain based 46 on existing growth charts (1). Despite improvement in neonatal care two large cohorts of preterm 47 infants (the EPICure cohort in 1995 and the EPICURE II cohort in 2006), showed no significant 48 improvement in post-natal weight gain and evidence of significant growth failure prior to discharge 49 in both cohorts (2). This raises questions about the adequacy of current nutritional practice. The potential clinical effects of this growth 'failure' include a likely increase in infant length of stay and a 50 detrimental neurodevelopmental outcome. There is also an increasing body of evidence supporting 51 52 a link between early neonatal nutrition and subsequent health outcomes in later life including 53 cardiovascular disease, obesity and diabetes (3-6). A follow-up study of the first EPICure cohort 54 demonstrated evidence of altered cardiovascular outcomes compared with controls at an age as 55 young as 11 years (7, 8). Early neonatal nutrition (and growth failure) may be a contributing factor. 56 Whilst the growth of preterm infants requiring PN has been reported in a number of cohorts (1, 2, 9, 57 10), that of term or near term infants requiring PN is less well documented (11). It is not known 58 whether term infants receiving PN demonstrate a similar growth 'failure' to their preterm 59 counterparts, or whether they grow satisfactorily and at a rate similar to enterally fed infants. 60 The purpose of this study was to define the postnatal growth pattern of term and near-term infants 61 with gastroschisis (GS) treated in a single neonatal surgical unit. GS is a congenital abdominal wall 62 defect resulting in the prenatal evisceration of intestine. It is an isolated anomaly in the vast majority 63 of cases with co-existing morbidities being rare. Infants with GS exhibit a period of intestinal failure 64 in the newborn period, presumed to be a result of antenatal intestinal damage and typically lasting 65 from weeks to months (12-14). During this period of limited enteral tolerance, infants with GS receive nutritional support with PN. As such, infants with GS may be considered to have isolated 66 67 intestinal failure and represent an ideal population in which to study the effects of PN on growth in 68 term and near-term infants. Based on our clinical observations, we hypothesised that current nutritional practice using contemporary PN would result in growth failure of infants with GS. 69

70 Methods

With institutional approval, we performed a retrospective review of all infants with GS treated at a single neonatal surgical centre over a 4 year period. Growth and clinical data were retrieved from the case notes, an online clinical data capture database routinely in use for all infants in our region (South East Neonatal Database [SEND]) and from a prospectively maintained departmental database. Standard deviation scores (SDS) for corrected gestational age were calculated for weight

- 76 and head circumference using the LMSgrowth add-in (15) for Microsoft Excel 2010 (Microsoft
- 77 Corporation). As recommended, we used the UK_WHO_preterm dataset due to the gestational age
- 78 at birth of our population. This dataset comprises data from the British 1990 reference data,
- reanalysed 2009 and the 2006/2007 WHO Child Growth Standards. A SDS of 0 is equivalent to 50th

80 centile, -1 to 16th centile and -2 to 2nd centile.

81 We calculated weight SDS for individual infants at clinically relevant time points. These were (i) birth;

- (ii) 10 days chronological age; (iii) the day on which they last received PN (indicative of successful
 transition to exclusive enteral feeds); (iv) discharge from hospital and (iv) during out-patient follow
 up. For the purposes of follow-up duration we restricted our dataset to 6 months of chronological
 age as the number of datapoints after this was limited. The 10-day time point was chosen as it is
 recognised that there is a period of fluid redistribution following birth meaning that weight SDS at 10
- 87 days of age may be a more reliable indicator of subsequent growth potential than birth weight. Since
- 88 not all infants were weighed on the 10th day of life, we used a weight taken on the 9th, 10th or 11th
- day of life as being representative of the 10th day of life and used the corresponding SDS.
- 90

91 Data Analysis

92 SDS for weight for the cohort over time are presented as mean ± standard deviation (SD). SDS for 93 individual infants were compared between time points using a series of paired T-tests (it was not 94 possible to perform a repeated measures ANOVA due to a small amount of missing data). In order to 95 correct for multiple comparisons, a Bonferroni correction was performed; as six possible 96 comparisons were made between time points, the cut-off for significance between individual time 97 points was set at 0.05/6 = 0.0083).

98 To illustrate the data graphically we generated smoothed 'growth curves' for the entire cohort

99 showing a mean SDS and 95% confidence interval. These were generated by calculating a weight SDS

100 on each and every day for each infant. When a weight was not measured on a specific day, we

- 101 assumed a linear change in weight SDS between consecutive time points when a weight was
- available and imputed weight SDS on the basis of this linear change. Weight SDS imputed in this waywere not used for statistical analysis.
- 104To determine the effect of a variety of relevant processes on change in SDS, we centred the growth105curves on different clinically relevant milestones (e.g. stopping PN, discharge home). This enabled us
- to investigate the pattern of growth at these time points more precisely than if we were to
- 107 interrogate the data based on chronological age alone since all infants achieve these milestones at
- 108 different ages. This analysis only included infants who had received PN.
- 109

Clinical management

110 The clinical and nutritional care of infants did not change during the study period. The preference in 111 our unit is to use a preformed silo (Medicina®) to facilitate reduction of abdominal viscera into the 112 abdominal cavity followed by non-surgical closure at the bedside whenever safe and feasible. Infants 113 in whom such an approach was not deemed possible (predominantly for anatomical reasons) 114 underwent either primary closure under general anaesthesia or staged reduction using a surgically 115 applied silo followed by surgical closure of the abdomen. The nutritional practice in our unit did not 116 change during the study period and consisted of provision of total parenteral nutrition (TPN) starting 117 on day 2-3 once the infant was clinically stable aiming to provide 100-120 kCal/kg/day in a volume of 118 150ml/kg/day. Infants were placed 'nil by mouth' until surgical closure of the abdomen had been 119 achieved and there were signs of intestinal motility judged by reducing volumes and clearance of 120 bile in nasogastric aspirates. At this time enteral feeds were commenced and advanced as tolerated 121 aiming to achieve a volume of at least 150mL/kg/day in divided feeds. If an infant was not thriving 122 on this volume then additional volume was offered. Mothers who wished to provide breast milk for 123 their infant were encouraged to do so; infants of those who did not or could not received a term 124 formula milk. As enteral feeds were advanced the volume of PN administered was reduced 125 appropriately. Once the clinical team judged that enteral feeds of more than 100mL/kg/day were 126 being tolerated (i.e. without vomiting, significant abdominal distension and with passing of regular 127 stool), PN was discontinued. Infants were discharged home once they had demonstrated weight gain 128 on full enteral feeds and were reviewed regularly in a neonatal surgical out-patient clinic. The period 129 during which infants received PN includes a period where infants were being exclusively fed with PN 130 and a period during which they received at least some enteral feed and some PN, the proportion on 131 any given day determined by their clinical progress.

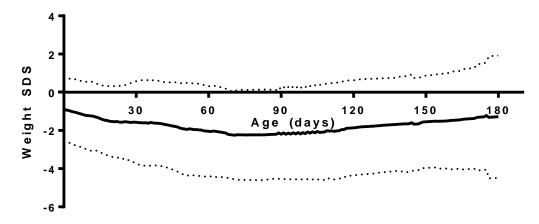
132 **Results**

133 During the study period 64 infants with GS were treated at our institution. Three infants transferred 134 into our unit following initial management in other surgical centres were excluded. A total of 949 135 separate weight measurements were identified in 61 infants. Eight infants were transferred out to 136 other units during the study period. Data for these infants were included up until the point of 137 transfer and weight at discharge home was obtained in all but two. Thirty infants were male and 138 mean gestational age at birth was 36.0±2.3 weeks. Mean birth weight was 2.36±0.54kg 139 corresponding to a mean weight SDS of -0.87±0.85. Three infants met the criteria of having complex 140 gastroschisis as defined by Molik et al (16); the remainder had simple gastroschisis. 141 Five infants never received PN but were started initially on enteral feeds due to favourable clinical progression. All but these five infants received PN until a mean age of 29.8±21.3 days. Eighteen 142 143 infants received PN until greater than 30 days of age, 2 until greater than 60 days and 1 for more 144 than 90 days. Mean age at discharge home was 35.6±24.8 days.

146 Growth pattern during first 6 months

147 The overall pattern of change in weight SDS from birth until age 6 months, including the periods of

148 TPN, mixed PN/enteral feeds, and exclusive enteral feeds pre discharge is shown in Figure 1. Mean


149 weight SDS fell from -0.87±0.85 at birth to a nadir of -2.24±1.13 at 71 days of age. There was

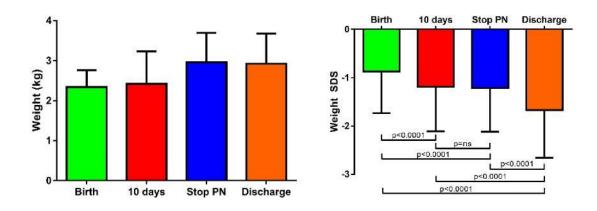
evidence of catch up growth from 3 to 6 months of age with rising weight SDS during this time

151 period.

152 Figure 1 Weight SDS change over time (whole cohort) Mean (95% CI) Smoothed curves were

153 generated by linear regression as described in the methods.

SDS variation over time


155 Weight at clinically relevant milestones in infants who received PN (n=56)

Mean weight and weight SDS at pre-specified milestones is shown in Figure 2. Mean weight SDS at 156 157 birth was -0.87 and fell to -1.19±0.92 at 10 days of age. Mean SDS at the time of stopping PN was -1.22±0.90 and at time of discharge home was -1.67±0.99. Weight SDS at 10 days of age was 158 159 significantly lower than birth weight SDS (mean difference 0.35±0.37; p<0.0001). Weight SDS at the 160 time of stopping PN was significantly lower than birth weight (mean difference 0.34±0.46; p<0.0001) but similar to weight SDS at 10 days of age (mean difference 0.0007±0.38; p=0.91). Discharge weight 161 SDS was significantly lower than weight SDS at birth (mean difference 0.84±0.58; p<0.0001), 10 days 162 of age (mean difference 0.54 ± 0.59) and at the time of stopping PN (mean difference 0.48 ± 0.41 ; 163 164 p<0.0001).

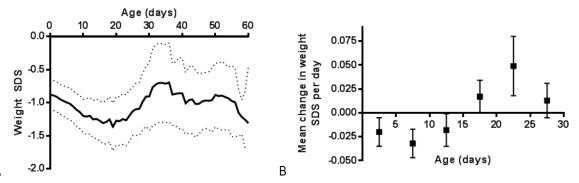
Figure 2 Change in weight (A) and weight SDS (B) across time points. Weight SDS scores were
 compared between time points by paired t-tests, using a Bonferroni-corrected p-value cutoff of
 p<0.083 (=0.05/6).

В

170

171

172173 Growth pattern whilst on PN (n=56)

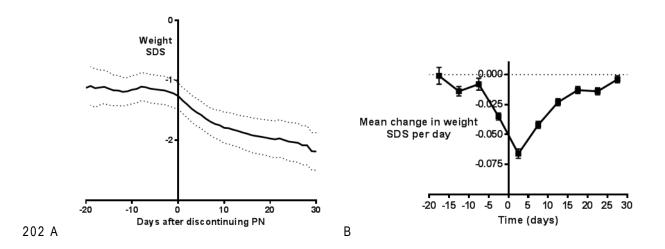

174 Change in weight SDS whilst receiving at least some PN is shown in Figure 3A. This period includes a 175 period where infants were being exclusively fed with PN and a period during which they received at 176 least some enteral feed and some PN, the proportion on any given day determined by their clinical 177 progress. The graph has been limited to 60 days of age as only 2 infants received PN for longer than 178 this time. The graph illustrates growth pattern achieved during nutritional support with PN. To 179 investigate change in weight SDS over time whilst on PN, mean change in weight SDS during 5 day 180 time periods were calculated and plotted against age. These data are shown in Figure 3B and 181 demonstrate that weight SDS fell during the first 10 days of life and increased progressively during 182 the next 15 days before stabilising after 25 days of age.

165

184 Figure 3A Growth pattern whilst on PN (mean, 95%CI)

185 Figure 3B Mean change in weight SDS per day in 5 day time periods from birth (data points are mean

186 <u>(SEM))</u>


187 A 189

190 Change in weight SDS around the time of discontinuing PN

191 Growth pattern around the time of discontinuing PN and establishing full enteral feeds is illustrated 192 in Figure 4A which is centred at the time of discontinuation of PN. Change in weight SDS per day 193 around the same time point is shown in Figure 4B. These data demonstrate that there was a 194 progressive fall in weight SDS during the transition from PN to enteral feed which was maximal 195 immediately following discontinuation of PN. This fall continued whilst the infants were on full 196 enteral feed but the magnitude of this fall decreased over time, with weight SDS appearing to 197 stabilise by approximately 30 days after discontinuing PN.

199 Figure 4A Change in weight SDS around the time of discontinuing PN (Mean and 95%CI)

- 200 Figure 4B Mean change in weight SDS per day in 5 day time periods centres on the time of
- 201 <u>discontinuation of PN (data points are mean (SEM))</u>

205 **Discussion**

206 Our main aim was to document growth and change in weight over time in a population of near term 207 infants since there is a paucity of data relating to this population particularly when compared to 208 preterm infants. We used a cohort of infants with a single diagnosis of GS to remove the variability 209 that may be attributable to diagnosis. The majority of infants with GS are born without co-existing morbidities and therefore GS represents a condition in which there is a temporary, isolated intestinal 210 211 failure. The mean gestational age at birth was 36 weeks and all but 5 infants received PN. 212 Our rationale for documenting growth in this population was to challenge whether contemporary 213 nutritional practice for this population is adequate and appropriate. There is an increasing body of 214 evidence to suggest a link between early life nutrition and later life health outcomes including 215 neurodevelopmental outcome and risk of cardiovascular disease, diabetes and obesity (3, 6, 17-20). 216 Previous investigations have primarily focussed on term infants who are enterally fed and preterm

217 infants. Documenting the growth pattern of term or near-term infants who receive PN has rarely 218been performed (11). Further we wished to investigate anecdotal clinical observations and report these to the wider clinical nutritional community. These included progressive downward crossing of

growth centiles despite nutritional supplementation with PN in this population and poor growth (including on occasion weight loss) during the period of transition from parenteral to full enteral nutrition. Overall these data demonstrate that infants with GS are born small for gestational age (mean weight

224 SDS at birth was -0.87) and that the weight SDS continues to fall during early life, both during the 225 first 10 days of life in which fluid shifts are expected, but also subsequently (Figure 1). In this cohort 226 of infants weight SDS did not increase until between 3 and 6 months of age suggesting that 'catch-227 up' growth may be occurring at this time. We limited our study to 6 months of age since there was a 228 paucity of data beyond this time point. The fall in weight SDS during early life is during a time when 229 the majority of infants were receiving at least some nutritional support with PN and certainly all 230 under close medical scrutiny. These findings therefore challenge the adequacy of current nutritional 231 practices for this population.

232 There are a number of potential explanations for our findings, some of which we have attempted to 233 investigate by analysing change in weight SDS between clinically relevant milestones. During the 234 immediate postnatal period the majority of infants received PN in accordance with our institutional 235 guidelines. Once there was clinical evidence that the intestine may tolerate enteral feed, these were 236 commenced and increased at a rate determined by the clinical status on a daily basis, as is usual in 237 all neonatal surgical centres. We observed that during this time period of complete or partial 238 nutritional support with PN, weight SDS initially decreased. Unfortunately using our methodology it 239 was not possible to differentiate between periods of total PN (i.e. no enteral feed) and partial PN 240 (some enteral feed). It is therefore not possible to conclude whether this decrease is due to 241 inadequacy of PN regime, or that the infant was not able to achieve nutritional benefit from the 242 enteral feed being given, or indeed perhaps both.

243 Prior to this study we had observed that infants tended to cross downwards across centile lines and 244 in some cases actually lose weight around the transition from PN to enteral feeds. Our data 245 demonstrate that this is indeed the case (Figure 4) and that decrease in weight SDS continued in this 246 population for at least 30 days. These observations raise the possibility that PN is being discontinued 247 too early and/or that infants may not be able to absorb adequate nutrition from the administered 248 enteral feed in order to thrive at the time at which PN is discontinued. The time at which PN is 249 discontinued was typically once the infant was tolerating at least 100ml/kg/day of enteral feed. The 250 decision to stop PN is typically made based on the overall progress of the infant, their anticipated 251 ability to tolerate further increases in enteral feed quickly and other clinically relevant factors. It is 252 possible that prolonging PN until a higher volume of enteral feed is tolerated may alter weight 253 trajectory around the time of stopping PN. However any prolongation of PN needs to be weighed 254 against the risks of PN and

central venous access, most notably in this population, the risk of sepsis.

256 It is generally assumed that an infant who can tolerate a certain volume of enteral feed will gain 257 nutritional benefit from it. A possible explanation for our observations however is that although 258 infants can take feed into their gastrointestinal tract and do not vomit large amounts of it, they may 259 not be able to digest or absorb it adequately to realise its full nutritional benefit. This raises the 260 possibility of there being an ongoing intestinal pathology in this group of infants that may at least in 261 part contribute to poor weight gain. Although outside the remit of this study we have recently raised 262 the possibility of a high incidence of cow's milk protein intolerance in infants with GS (21). Poor 263 nutrient absorption may be a component of this clinical entity in which case an alternate feed type, 264 such as a partially hydrolysed or amino acid based formula may be appropriate for this population. 265 Further study would be necessary to demonstrate if the use of an alternate enteral formula would 266 improve growth during the period of PN administration and after stopping PN altogether. However it 267 is striking that SDS at discharge home was lower than SDS at the time of stopping PN despite the

255

infant being fully enterally fed and apparently tolerating enteral feed. Our observations of decrease
in weight SDS around the time of stopping PN is similar to that reported in preterm infants during
the transition phase from PN to enteral feed (22). Inadequate protein supply as opposed to

271 inadequate calorie intake has been proposed as a causative factor in the preterm population.

272 Investigation of substrate provision was not possible in our cohort.

An additional observation that we have made in caring for these infants that is difficult to quantify using a retrospective methodology is that around the time of transition from parenteral to enteral

275 276

nutrition there appears to be a change in the body shape of many infants often with a a redistribution of subcutaneous fat or shedding of oedema. The cause of this is unclear but we now know that this time period is associated with a change in growth velocity and speculate that these phenomena may be related. One possible explanation is that there is a difference in the

278 279

277

280

way the body handles intravenous and enteral nutrition, particularly fluid and lipid. A prospective evaluation of change in body composition around the time of transition

from PN to enteral nutrition may help to investigate this phenomenon further.

282 One challenge regarding the assessment of weight and weight SDS in the immediate postnatal 283 period relates to the use of weight SDS calculated at birth. Specifically concern has been raised that 284 comparing weight SDS at any given time with the weight SDS at birth may be misleading and may be 285 interpreted as demonstrating poor growth when in fact growth has been adequate (23). For this 286 reason the current WHO growth charts for full term infants do not include datapoints for the first 2 287 weeks of life and recommend that full term infants are not plotted on growth charts during this 2 288 week period. It is recognised that in full term infants there is a period of fluid redistribution during 289 which infants lose both weight SDS and weight. However for preterm infants (defined as <37 weeks 290 gestation) no such recommendation exists and until recently it was not known how the weight of 291 preterm infants changed in the immediate postnatal period (9). Additionally assumptions made 292 regarding the post-natal growth pattern in term infants relate to a healthy population receiving

293 enteral milk feeds, many of whom (if breast fed) actually receive very little volume of milk during the

first few days of life. Whether such assumptions should apply to a population of infants who receive

295 intravenous fluid and PN from birth onwards is not known.

296 Given the possibility that a comparison of weight SDS at a given time point with weight SDS at birth

- 297 may overestimate poor growth (23), we compared weight SDS at subsequent time points with
- 298 weight SDS at 10 days of age. We did indeed demonstrate a significant reduction in weight SDS
- between birth and 10 days of age suggesting that this population of infants do behave similarly to

their healthy counterparts. Further we observed that weight SDS at the time of stopping PN was
similar to that at 10 days of age (Figure 2B) suggesting that during the period of complete or partial
PN support, and beyond 10 days of age, nutritional support is in fact adequate. The data in Figure 3B
confirm this and in fact demonstrate that weight SDS increased during this time period. However,
there remained a significant decrease in weight SDS between that at 10 days of age and that at
discharge. This supports the hypothesis that overall this group of infants do not achieve adequate
growth using current enteral nutritional practices.

307 We acknowledge a number of limitations to this study some of which are inherent in the 308 retrospective design. Firstly it is possible 309 that infants who were growing well were not reviewed as regularly as those who were not, 310 particularly following discharge from hospital, and that we have over-estimated decrease in weight 311 SDS following discharge as a result. Secondly we have not been able to account for other 312 contributory factors that may have resulted in infants receiving less nutritional support than 313 anticipated, particularly whilst on PN. These include temporary lack of central venous access and 314 episodes of sepsis during which PN may not have been given. Whilst we 315 have focussed on weight and weight SDS in this report we had originally intended to include 316 other important anthropometric measures such as head circumference and length. 317 Unfortunately we were precluded from making 318 meaningful analysis of these due to a paucity of measurements. It was not routine practice to 319 measure length regularly on our unit during the study period. Since this time we now regularly 320 measure all three anthropometric measures at least weekly on all infants in our unit._ We used the 321 UK WHO preterm dataset as a reference standard for this study which is recommended for all 322 infants born at less than 37 weeks gestation. Whilst it is possible that infants with gastroschisis may 323 not be expected to follow standard weight trajectories, we are unaware of any gastroschisis specific 324 growth standards and therefore believe the reference standard we have used to be the most 325 appropriate currently available. 326 In summary we have documented pattern of growth in a cohort of infants with GS during the first 6 327 months of life. Whilst we have raised more questions than we have provided answers, we believe 328 we have identified justification to investigate further the nutritional support these infants receive 329 and their growth related outcomes. As a result of this study we plan to review our nutritional 330 practice and subsequently review the effects of this on growth outcomes in a more detailed manner 331 prospectively.

333 Acknowledgements

- 334 NJH is supported by the NIHR through the NIHR Southampton Biomedical Research Centre in
- 335 nutrition. SE gratefully acknowledges support from Great Ormond Street Hospital Children's Charity
- 336
- 337 Funding
- 338 This research did not receive any specific grant from funding agencies in the public, commercial, or
- 339 not-for-profit sectors
- 340

341 Contributor statement

- 342 NJH conceived the study, contributed to study design, collected data, analysed data and wrote the
- 343 first draft of the manuscript. MD and DMB contributed to study design, collected data and critically
- 344 appraised and revised the manuscript. SE contributed to study design, analysed data and critically
- 345 appraised and revised the manuscript

346

347 **References**

Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR. The EPICure study:
 growth and associated problems in children born at 25 weeks of gestational age or less. Arch Dis
 Child Fetal Neonatal Ed. 2003;88(6):F492-F500.

Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES. Short term outcomes
 after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the
 EPICure studies). BMJ. 2012;345:e7976.

354 3. Lewandowski AJ, Lamata P, Francis JM, Piechnik SK, Ferreira VM, Boardman H, et al. Breast 355 Milk Consumption in Preterm Neonates and Cardiac Shape in Adulthood. Pediatrics. 2016;138(1).

 Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A. Is slower early growth beneficial for longterm cardiovascular health? Circulation. 2004;109(9):1108-13.

358 5. Singhal A. The role of infant nutrition in the global epidemic of non-communicable disease. 359 Proc Nutr Soc. 2016;75(2):162-8. 360 6. Singhal A, Kennedy K, Lanigan J, Fewtrell M, Cole TJ, Stephenson T, et al. Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized controlled trials. Am J Clin Nutr. 361 362 2010;92(5):1133-44. 363 Bolton CE, Stocks J, Hennessy E, Cockcroft JR, Fawke J, Lum S, et al. The EPICure study: 7. 364 association between hemodynamics and lung function at 11 years after extremely preterm birth. J 365 Pediatr. 2012;161(4):595-601 e2. 366 McEniery CM, Bolton CE, Fawke J, Hennessy E, Stocks J, Wilkinson IB, et al. Cardiovascular 8. consequences of extreme prematurity: the EPICure study. J Hypertens. 2011;29(7):1367-73. 367 Cole TJ, Statnikov Y, Santhakumaran S, Pan H, Modi N, Neonatal Data Analysis U, et al. Birth 368 9. weight and longitudinal growth in infants born below 32 weeks' gestation: a UK population study. 369 Arch Dis Child Fetal Neonatal Ed. 2014;99(1):F34-40. 370 Guellec I, Lapillonne A, Marret S, Picaud JC, Mitanchez D, Charkaluk ML, et al. Effect of Intra-371 10 372 and Extrauterine Growth on Long-Term Neurologic Outcomes of Very Preterm Infants. J Pediatr. 373 2016;175:93-9 e1. 374 Bishay M, Lakshminarayanan B, Arnaud A, Garriboli M, Cross KM, Curry JI, et al. The role of 11. 375 parenteral nutrition following surgery for duodenal atresia or stenosis. Pediatr Surg Int. 376 2013;29(2):191-5. 377 12. Owen A, Marven S, Johnson P, Kurinczuk J, Spark P, Draper ES, et al. Gastroschisis: a national 378 cohort study to describe contemporary surgical strategies and outcomes. J Pediatr Surg. 2010;45(9):1808-16. 379 Bradnock TJ, Marven S, Owen A, Johnson P, Kurinczuk JJ, Spark P, et al. Gastroschisis: one 380 13. 381 year outcomes from national cohort study. BMJ. 2011;343:d6749. 382 Skarsgard ED, Claydon J, Bouchard S, Kim PC, Lee SK, Laberge JM, et al. Canadian Pediatric 14. 383 Surgical Network: a population-based pediatric surgery network and database for analyzing surgical birth defects. The first 100 cases of gastroschisis. J Pediatr Surg. 2008;43(1):30-4. 384 Cole TJ, Pan H. LMSgrowth, a Microsoft Excel add-in to access growth references based on 385 15 386 the LMS method. Version 2.742011. Molik KA, Gingalewski CA, West KW, Rescorla FJ, Scherer LR, Engum SA, et al. Gastroschisis: a 387 16. plea for risk categorization. J Pediatr Surg. 2001;36(1):51-5. 388 389 Thureen PJ. The neonatologist's dilemma: catch-up growth or beneficial undernutrition in 17. very low birth weight infants-what are optimal growth rates? J Pediatr Gastroenterol Nutr. 2007;45 390 391 Suppl 3:S152-4. Hofman PL, Regan F, Cutfield WS. Prematurity--another example of perinatal metabolic 392 18. programming? Horm Res. 2006;66(1):33-9. 393 Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N. Altered adiposity after extremely 394 19. 395 preterm birth. Pediatr Res. 2005;57(2):211-5. 396 Singhal A. The global epidemic of noncommunicable disease: the role of early-life factors. 20. 397 Nestle Nutr Inst Workshop Ser. 2014;78:123-32. 398 21. Burge D, Drewett M, Hall N. Do infants with gastroschisis have a high incidence of non-IgE-399 mediated cow's milk protein allergy? Pediatr Surg Int. 2015;31(3):271-6. 400 22. Miller M, Vaidya R, Rastogi D, Bhutada A, Rastogi S. From parenteral to enteral nutrition: a 401 nutrition-based approach for evaluating postnatal growth failure in preterm infants. JPEN J Parenter 402 Enteral Nutr. 2014;38(4):489-97. 403 Lander A. Falling weight Z-scores in the postnatal period need careful interpretation. Arch 23.

Page 16 of 17

404 Dis Child. 2011;96(10):987.