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Human noise blindness drives suboptimal cognitive
inference
Santiago Herce Castañón1,2, Rani Moran 3,4, Jacqueline Ding1, Tobias Egner5,6, Dan Bang 3 &

Christopher Summerfield1

Humans typically make near-optimal sensorimotor judgements but show systematic biases

when making more cognitive judgements. Here we test the hypothesis that, while humans are

sensitive to the noise present during early sensory encoding, the “optimality gap” arises

because they are blind to noise introduced by later cognitive integration of variable or dis-

cordant pieces of information. In six psychophysical experiments, human observers judged

the average orientation of an array of contrast gratings. We varied the stimulus contrast

(encoding noise) and orientation variability (integration noise) of the array. Participants

adapted near-optimally to changes in encoding noise, but, under increased integration noise,

displayed a range of suboptimal behaviours: they ignored stimulus base rates, reported

excessive confidence in their choices, and refrained from opting out of objectively difficult

trials. These overconfident behaviours were captured by a Bayesian model blind to integra-

tion noise. Our study provides a computationally grounded explanation of human suboptimal

cognitive inference.
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The question of whether humans make optimal choices has
received considerable attention in the neural, cognitive and
behavioural sciences. On the one hand, the general consensus

in sensory psychophysics and sensorimotor neuroscience is that
choices are near-optimal. For example, humans have been shown to
combine different sources of stimulus information in a statistically
near-optimal manner, weighting each source by its reliability1–6.
Humans have also been shown to near-optimally utilise knowledge
about stimulus base rates to resolve stimulus ambiguity7–11.

On the other hand, psychologists and behavioural economists,
studying more cognitive judgements, have argued that human
choices are suboptimal12. For example, when required to guess a
person’s occupation, humans neglect the base rate of different
professions and solely rely on the person’s description provided
by the experimenter. Such suboptimality has been attributed to
insufficient past experience13, limited stakes in laboratory set-
tings14, the format in which problems are posed15, distortions in
representations of values and probabilities16, and/or a reluctance
to employ costly cognitive resources17,18. However, an account
of human decision-making that can explain both perceptual
optimality and cognitive suboptimality has yet to emerge19.

Here we propose that resolving this apparent paradox requires
recognizing that perceptual and cognitive choices often are cor-
rupted by different sources of noise. More specifically, choices in
perceptual and cognitive tasks tend to be corrupted by noise that
arises at different stages of the information processing leading up
to a choice20–23. In perceptual tasks, experimenters typically
manipulate noise arising before or during sensory encoding. For
example, they may vary the contrast of a grating, or the net
motion energy in a random dot kinematogram, which affects the
signal-to-noise ratio of the encoded stimulus and in turn the
sensory percept24. Conversely, in cognitive tasks, which often
involve written materials or clearly perceptible stimuli, experi-
menters typically seek to manipulate noise arising after stimulus
encoding. For example, they may vary the discrepancy between
different pieces of information bearing on a choice, such as the
relative costs and benefits of a consumer product18. These types
of judgement are difficult because they require integration of
multiple, sometimes highly discordant, pieces of information
within a limited-capacity cognitive system25–27.

Here we test the hypothesis that, while humans are sensitive to
noise arising during early sensory encoding, they are blind to the
additional noise introduced by their own cognitive system when
integrating variable pieces of information. We tested this hypothesis
using a novel psychophysical paradigm that separates, within a single
task, these two types of noise. In particular, observers were asked to
categorise the average tilt of an array of gratings. We manipulated
encoding noise (i.e. the perceptual difficulty of encoding an indivi-
dual piece of information) by changing the contrast of the array of
gratings, with decisions being harder for low-contrast arrays. Second,
we manipulated integration noise (i.e. the cognitive difficulty of
integrating multiple pieces of information) by changing the varia-
bility of the orientations of individual gratings, with decisions being
harder for high-variability arrays. Manipulating these different
sources of noise within a single task allows us to rule out previous
explanations of the optimality gap which hinge on task differences.
To pre-empt our results, we show that, while observers adapt near-
optimally to increases in encoding noise, they fail to adapt to
increases in integration noise. We argue that such noise blindness is a
major driver of suboptimal cognitive inference and may explain the
gap in optimality between perceptual and cognitive judgements.

Results
Experimental dissociation of encoding and integration noise.
All six experiments were based on the same psychophysical task

(see Methods). On each trial, participants were presented with
eight tilted gratings organized in a circular array. Participants
were required to categorise the average orientation of the array as
oriented clockwise (CW) or counter-clockwise (CCW) relative to
the horizontal axis (Fig. 1a, b). After having made a response,
participants received categorical feedback about choice accuracy,
before continuing to the next trial. We manipulated two features
of the stimulus array to dissociate encoding noise and integration
noise: the contrast of the gratings (root mean square contrast,
rmc: {0.15, 0.6}), which affects encoding noise, and the variability
of the gratings’ orientations (standard deviation of orientations,
std: {0°, 4°, 10°}), which affects integration noise. The underlying
distribution of average orientations was identical for all experi-
mental conditions.

In Experiments 1 (n= 20) and 2 (n= 20), we assessed the
effects of contrast and variability on choice accuracy and
evaluated participants’ awareness of these effects. In both
experiments, at the beginning of a trial, we provided a prior
cue which, on half of the trials, signalled the correct stimulus
category with 75% probability (henceforth biased trials), and, on
the other half of trials, provided no information about the
stimulus category (henceforth neutral trials) (Fig. 1b). The neutral
trials provided us with a baseline measure of participants’ choice
accuracy in the different conditions of our factorial design, and
the biased trials allowed us to assess the degree to which—if at
all—participants compensated for reduced choice accuracy in a
given experimental condition by relying more on the prior cue.
In Experiment 2, to provide additional insight into participants’
awareness of their own performance, we asked participants to
report confidence in their choices (i.e. the probability that a
choice is correct; Fig. 1c).

Matched performance under encoding and integration noise.
We first used the neutral trials to benchmark the effects of contrast
and variability on choice accuracy. As intended, choice accuracy
decreased with lower contrast (ANOVAs; Exp1: F(1,19)= 15.5,
p < 0.001; Exp2: F(1,19)= 40.7, p < 0.001; collapsed: F(1,39)=
49.1, p < 0.001) and with higher variability (ANOVAs; Exp1: F
(1.2,24.5)= 8.4, p < 0.01; Exp2: F(1.6,32.0)= 26.4, p < 0.001; col-
lapsed: F(1.4,56.9)= 30.6, p < 0.001). Our factorial design con-
tained three critical conditions which allowed us to compare
participants’ behaviour under distinct sources of noise: (i) base-
line, (ii) low-c and (iii) high-v. In the baseline condition, the total
amount of noise is lowest (high contrast, 0.6; zero variability, 0°).
In the low-c condition (low contrast, 0.15; zero variability, 0°),
encoding noise is high but integration noise is low. Conversely, in
the high-v condition, integration noise is high but encoding
noise is low (high contrast, 0.6; high variability, 10°). As
expected, choice accuracy was reduced both in the low-c and in
the high-v conditions (about 12%) compared to the baseline
condition (t-tests; baseline > low-c: t(39)= 9.24, p < 0.001; base-
line > high-v: t(39)= 9.69, p < 0.001; Fig. 2a). Critically, choice
accuracy was at statistically similar levels in the low-c and the
high-v conditions (t-tests; Exp1, high-v > low-c: t(19)= 0.09, p >
0.9; Exp2, high-v > low-c: t(19)= 0.31, p > 0.7; collapsed, high-v >
low-c: t(39)= 0.28, p > 0.7; Fig. 2a). Overall, the results show that
we successfully manipulated noise at different stages of informa-
tion processing.

Cue usage under encoding and integration noise. We next
leveraged the biased trials to assess the degree to which partici-
pants adapted to the changes in choice accuracy induced by our
factorial design. Given the above results, we would expect parti-
cipants to rely more on the prior cue in the low-c and the high-v
condition than in the baseline condition. To test this prediction,
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we applied signal detection theory28,29 to quantify the degree to
which participants shifted their decision criterion in accordance
with the prior cue (see Methods). Briefly, we constructed a bias
index, which was computed as the difference in the decision
criteria between the condition where the prior cue was clockwise
and the condition where the prior cue was counter-clockwise.
The higher the bias index, the higher the influence of the prior
cue on choice.

As expected under an ideal observer framework, participants
used the prior cue more in the low-c than in the baseline
condition (t-test; t(39)= 4.89, p < 0.001; Fig. 2c). However,
contrary to an ideal observer framework, participants used the
prior cue less in the high-v than in the baseline condition
(t-test; t(39)= 2.85, p < 0.01; Fig. 2c). This pattern is clear from
psychometric curves created separately for each condition
(compare inflection points in Fig. 2b). Consistent with these
results, a full factorial analysis of the bias index identified a
negative main effect of contrast (ANOVA; F(1,39)= 24.5, p <
0.001) and a negative main effect of variability (ANOVA; F
(1.9,75.7)= 10.0, p < 0.001; Fig. 2d). Finally, including both
neutral and biased trials, we used trial-by-trial logistic regression
to investigate how contrast (c) and variability (v) affected the
influence of the prior cue and sensory evidence (μθ) on choices
(μθ, cue, μθ*c, μθ*v, cue*c, cue*v; Fig. 2e). The prior cue had
a larger influence on choices on low-contrast compared to
high-contrast trials (t-test; t(39)= 4.05, p < 0.001) and on low-
variability compared to high-variability trials (t-test; t(39)= 5.21,

p < 0.001). Taken together, these results show that participants
did not adapt to the additional noise arising during integration of
variable pieces of information.

Overconfidence under integration noise. To test whether par-
ticipants did not adapt because they were blind to integration
noise, we analysed the confidence reports elicited in Experiment 2
(Fig. 1c). We implemented a strictly proper scoring rule such that
it was in participants’ best interest (i) to make as many accurate
choices as possible and (ii) to estimate the probability that a
choice is correct as accurately as possible30. In support of our
hypothesis, analysis of the full factorial design showed that, while
mean confidence (we did not analyse other statistical moments)
varied with contrast (ANOVA; F(1,19)= 32.9, p < 0.001), it did
not vary with variability (ANOVA; F(1.1,22.7)= 0.64, p > 0.5). In
addition, direct comparison between the low-c and high-v
conditions showed that participants were more confident in the
high-v condition (t-test; t(19)= 3.97, p < 0.001; Fig. 3a), with
participants overestimating their performance (difference
between mean confidence and mean accuracy in the high-v
condition, t-test; t(19)= 5.60, p < 0.001; greater overconfidence
in the high-v than in the low-c condition, t-test; t(19)= 2.70,
p < 0.05; Fig. 3c). Although participants reported lower con-
fidence in the high-v condition compared to baseline (Fig. 3a),
this decrease was due to participants utilising response times
(RTs) as a cue to confidence31: a trial-by-trial regression analysis
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showed that confidence decreased with longer RTs and was
unaffected by variability once RTs had been accounted for
(t-tests; v, t(19)= 0.38, p > 0.7; other predictors, all t-values > 4,
all p < 0.001; see Fig. 3b, see Supplementary Note 7 and Supple-
mentary Fig. 7 for a discussion between RTs and confidence).

In Experiment 3 (n= 18), because explicit confidence reports
can be highly idiosyncratic32–34, we obtained an implicit, but
perhaps more direct measure of confidence (Fig. 1d)35–37.
Specifically, on half of the trials (optional trials), we introduced
an additional choice option, an opt-out option, which yielded
“correct” feedback with a 75% probability. On the other half of
trials (forced trials), participants had to make an orientation
judgement. Under this design, to maximise reward, participants
should choose the opt-out option whenever they thought they
were less than 75% likely to make a correct choice. Despite
matched levels of choice accuracy in the low-c and the high-v
conditions (t-test; forced trials, t(17)= 0.26, p > 0.7), participants
decided to make an orientation judgement more often on high-v
than on low-c trials (t-test; optional trials, t(17)= 2.35, p < 0.05;
Fig. 3d), again indicating overconfidence in the face of integration
noise. A full factorial analysis verified that the proportion of
such opt-in trials varied with contrast (ANOVA; F(1,17)= 21.3,
p < 0.001) but not with variability (ANOVA; F(1.4,24.0)= 3.5,
p > 0.05). Similarly, a trial-by-trial logistic regression showed
that the probability of opting in varied with contrast (t-test;
t(17)= 6.93, p < 0.001) but not with variability (t-test; t(17)= 1.6,
p > 0.1), after controlling for other task-relevant factors. Overall,
participants’ confidence (probed explicitly or implicitly) was

lower when encoding noise was high, but not so when integration
noise was high, despite making a comparable proportion of errors
in the two conditions. These results indicate that participants
were blind to integration noise.

Computational model of noise blindness. We next compared a
set of computational models based on an ideal observer frame-
work to provide a mechanistic explanation of the observed data
(see Methods and Supplementary Table 1 for an overview of all
models considered). There are broadly three components to our
approach. First, a generative (true) model which describes the
task structure and how noisy sensory evidence is generated.
Second, an agent’s internal model of the task structure and how
sensory evidence is generated. Critically, the internal model may
differ from the generative model. Third, a Bayesian inference
process which involves inverting the internal model in order to
estimate the probability of a stimulus category given sensory
evidence and in turn make a response. This process involves
marginalising over contrast and variability levels according to a
belief distribution over the different experimental conditions.
Optimal behaviour can be said to occur when there is a direct
correspondence between the generative model and the agent’s
internal model. We evaluated the models both qualitatively (i.e.
model predictions for critical experimental conditions) and
quantitatively (i.e. BIC scores).

We focus here on an omniscient model, which has perfect
knowledge of the task structure and how sensory evidence is
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generated, and two suboptimal models, which provide different
accounts of participants’ lack of sensitivity to the performance
cost associated with stimulus variability. The suboptimal models
relax the omniscient assumptions about an agent’s beliefs about
(i) the task structure and/or (ii) the sources of noise in play.

In our task, the distribution of average orientations was
common across experimental conditions and consequently
independent of contrast and variability (Fig. 4a). We therefore
modelled an agent’s sensory evidence as a random (noisy) sample
from a Gaussian distribution centred on the average orientation
of the stimulus array (Fig. 4b), with the variance of this
distribution determined by both encoding noise and integration
noise. We verified that the results reported below are not due
to this simplifying assumption (see Supplementary Note 2 and
Supplementary Fig. 2 where we simulate data under a Bayesian
model which operates with eight noisy samples, one for the
orientation of each grating, rather than one noisy sample). We
used each participant’s data from the neutral trials to para-
meterise their levels of encoding noise and integration noise
in each experimental condition (see Methods). The fitted noise
levels, which are part of the generative model, were the same for
all models; no additional free parameters were fitted to the data
and the models only differed with respect to their assumptions
about the internal model.

The omniscient model has, for each experimental condition, a
pair of functions that specify the probability density over sensory
evidence given a CW and a CCW stimulus, taking into account
both encoding and integration noise. As the model can identify
the current condition (e.g., knows with certainty that a trial is
drawn from the high-contrast, high-variability condition), it only

uses the relevant pair of density functions to compute the
probability of the observed sensory evidence given a CCW and a
CW category (Fig. 4c). On neutral trials, each category is equally
likely, and the agent computes the probability that a stimulus
is CW and CCW directly from the density functions. On biased
trials, the categories have different prior probabilities, and the
agent scales the density functions by the prior probability of
each category as indicated by the prior cue (Fig. 4d). After having
calculated the probability that a stimulus is CW and CCW,
the agent can compute a choice (i.e. chose the category with
the higher posterior probability) and confidence in this choice
(i.e. the probability that the choice is correct).

We now consider two alternative explanations of the
participants’ lack of sensitivity to the performance cost associated
with stimulus variability. First, a variability-mixer model which
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relaxes the assumption that an agent can identify the current
variability condition. Specifically, the model uses a single pair
of density functions for all variability conditions (i.e. a mixture of
density functions across variability conditions). As a result,
compared to the omniscient model, the density functions are
wider on low-variability trials but narrower on high-variability
trials. Second, a noise-blind model which relaxes the assumption
that the agent is aware of integration noise. As for the variability-
mixer model, the noise-blind model uses a single pair of density
functions for all variability conditions, but, critically, these density
functions do not reflect the additional noise due to stimulus
variability. Because of these differences in the internal model
used for Bayesian inference, the three models differ in the degree
of confidence in a choice for a given sensory evidence (Fig. 4f)
and, by extension, the influence of the prior cue on choice on
biased trials.

In support of our hypothesis, the noise-blind model provided
the best fit to our data. First, the noise-blind model, and not the
omniscient model, predicted three key features of participants’
behaviour: (i) overconfidence on high-variability trials within
participants (Supplementary Note 3 and Supplementary Fig. 3),
(ii) no correlation between mean accuracy and mean confidence

across participants on high-variability trials (Fig. 5a), and (iii) a
diminished influence of the prior cue on high-variability trials, as
revealed by both the bias index (Fig. 5c) and the trial-by-trial
regression predicting (signed) confidence (Fig. 5d), where the
prior cue has a positive effect on confidence but less so when
variability is high. Second, quantitative comparison yielded “very
strong evidence”38 for the noise-blind model over the omniscient
model, with an average ΔBIC across participants of −32.9
(Fig. 5b). Finally, analyses of the patterns of overconfidence in the
critical conditions of our factorial design favoured the noise-
blind over the variability-mixer model (Supplementary Fig. 3),
and quantitative comparison yielded “very strong evidence” for
the noise-blind over the variability-mixer model (ΔBIC=−20.4,
Fig. 5b). In summary, the modelling indicates that participants
neglected integration noise altogether.

Participants are noise blind and not variability blind. To fur-
ther rule out the hypothesis that participants were simply unable
to discriminate the variability conditions as proposed by the
variability-mixer model, we ran Experiment 4 (n= 23). After
having made a choice, participants were asked to categorise either
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the contrast of the stimulus array (rmc, high: 0.6 vs. low: 0.15) or
the variability of the stimulus array (std, high: 10° vs. low: 0°)
(Fig. 1e). Again, choice accuracy on neutral trials in the low-c and
the high-v conditions was statistically indistinguishable (t-test;
t(22)= 1.22, p > 0.2). We reasoned that, if participants had dif-
ficulty identifying the variability condition but were otherwise
aware of integration noise, then they should behave closer to
optimal when they correctly identified the variability condition.
To test this prediction, we used the biased trials to compare cue
usage when the variability condition was correctly and incorrectly
categorised (75.71 ± 2.26% of the variability judgements were
correct). In contrast to the prediction, but in line with our
hypothesis, participants showed blindness to integration noise
even when they correctly identified the variability condition:
participants were more biased on low-c than high-v trials
regardless of whether the variability categorisation was correct (t-
test; t(22)= 3.03, p < 0.01) or incorrect (t-test; t(22)= 2.96, p <
0.01; Fig. 6a, b).

In Experiments 1–4, the experimental conditions were
interleaved across trials, which may have made it too difficult
for participants to separate the different sources of noise in play.
To further test the generality of our results, we ran Experiment 5
(n= 24) in which either the contrast or the variability level was
kept constant across a block of trials (Fig. 6c, d). Even then, and
despite receiving trial-by-trial feedback, participants were not
more influenced by the prior cue when variability was high
compared to the baseline condition (t-test; biased trials, t(23)=
0.80, p > 0.4), but they were more influenced by the prior
cue when contrast was low than when variability was high (t-test;
biased trials, t(23)= 2.37, p < 0.05).

Sequential sampling account of noise blindness. A recent study
investigated how stimulus volatility (i.e. changes in evidence
intensity within a trial) affected choice and confidence39. Parti-
cipants were found to make faster responses and report higher
confidence when stimulus volatility was high. These results were
explained by a sequential sampling model which assumes that
observers are unaware of stimulus volatility and therefore, unlike
an omniscient model, adopt a common choice threshold across
trial types. We show, using empirical and computational analyses,
that this model cannot explain our results (Supplementary
Note 4 and Supplementary Fig. 4). For example, the model pre-
dicts faster RTs on high-variability than low-variability trials, a
prediction which is at odds with our observation of slower RTs on
high-variability trials. To further evaluate how our experimental
manipulations affected the choice process, we fitted a hierarchical
instantiation of the drift-diffusion model40 to participants’ choice
behaviour on neutral trials. In line with the above results, this
analysis showed that the effects of contrast and variability on
accuracy and RTs were captured by a change in drift-rate and not
in threshold or non-decision time (Supplementary Note 5 and
Supplementary Fig. 5).

Noise blindness cannot be explained by subsampling. We have
proposed that stimulus variability impairs performance because
of noise inherent to cognitive integration of variable pieces of
information. An alternative explanation of the performance cost
for high stimulus variability is that participants based their
responses on a subset of gratings rather than the full array. Under
this subsampling account, choice accuracy for high-variability
stimuli is lower because of a larger mismatch between the average
orientation of the full array and the average orientation of the
sampled subset. Here we provide several lines of evidence against
the subsampling account (also Supplementary Note 6 and Sup-
plementary Fig. 6).

We first examined performance under different set-sizes in
Experiment 6 (n= 20) where the stimulus array was made up of
either four or eight gratings (average orientations and orientation
variability were equated across set-sizes). We reasoned that, if
participants did indeed engage in subsampling, then performance
should be higher for four than eight gratings: sampling four items
should impair performance in the high-v condition for an eight-
item array but not for a four-item array because the average
orientations were matched across experimental conditions.
However, in contrast to the subsampling account, we found no
effect of set-size on choice accuracy (ANOVA; F(1,20)= 0.004,
p > 0.9; Supplementary Fig. 6a), with the effects of contrast
(ANOVA; F(1,20)= 39.6, p < 0.001) and variability (ANOVA;
F(1,20)= 30.3, p < 0.001) comparable to those observed in the
previous experiments.

We next simulated performance for eight-grating arrays under
a subsampling agent which did not have integration noise but
instead sampled a subset of the items (1–8 items, Supplementary
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Fig. 6b). The observed difference in participants’ performance
between the baseline and the high-v conditions could be
explained by assuming an agent that sampled about four items
out of eight. However, this account—because there is no
integration noise—predicts that participants should have similar
levels of performance for the baseline and the high-v conditions
for four-item arrays, a prediction which is at odds with our data
(Supplementary Fig. 6a). If integration noise is introduced, then
most, if not all, items would have to be sampled to account for
the data.

Finally, we fitted a computational model to participants’
choices in Experiments 1 to 3 (eight-item arrays) in order to
directly estimate the number of items sampled by each
participant. This modelling approach revealed that the majority
of participants (42 out of 60) sampled all eight items
(Supplementary Table 2). We emphasise that subsampling, even
if an auxiliary cause of integration noise, cannot by itself explain
participants’ lack of sensitivity to the performance cost associated
with high-variability stimuli.

Discussion
Here we propose a new explanation for the previously reported
gap in optimality between perceptual and cognitive decisions.
Using a novel paradigm, we show, within a single task, that
humans are sensitive to noise present during sensory encoding, in
keeping with previous perceptual studies1,8, but blind to noise
arising when having to integrate variable or discordant pieces
of information, often a requirement in cognitive tasks. This noise
blindness gave rise to two common signatures of suboptimality
found in cognitive studies: base-rate neglect and overconfidence.

We provided several lines of evidence for our hypothesis. We
showed that, when stimulus variability was high, participants
were overconfident, as indicated by cue usage, confidence reports,
and opt-in responses, even though they received trial-by-trial
feedback. We found overconfidence even when stimulus varia-
bility was salient (Exp1–3), accurately categorised (Exp4), or
constant across a block of trials (Exp5). Overall, these lines
of evidence indicate that, while participants were able to track
stimulus variability, they simply neglected the performance cost
associated with high-variability stimuli. Consistent with this
interpretation, the best-fitting computational model of our data
indeed assumed that participants were blind to the additional
noise inherent to cognitive integration of variable pieces of
information.

An extensive literature has considered the different types of
noise which affect human choices21,22,41. Our classification is
partially related to a previous distinction between noise which
originates inside the brain, such as intrinsic stochasticity in sen-
sory transduction42, and noise which arises outside the brain,
such as a probabilistic relationship between a cue and a reward43.
Specifically, our account classifies noise according to when it
arises during the information processing that precedes a choice.
Encoding noise refers to noise accumulated up to the point at
which a stimulus is encoded. As such, encoding noise includes
both external noise (e.g., a weak correspondence between a retinal
image in dim lighting and the object that caused the image) and
internal noise (e.g., intrinsic stochasticity in sensory transduc-
tion). By comparison, integration noise strictly refers to internal
noise which arises at later stages of information processing, when
two or more pieces of information need to be integrated either in
space or time, within a limited-capacity cognitive system in order
to make a choice. There are several potential contributors to
such noise. For instance, errors of inference and information
updating44, information decay in working memory45, temporal
biases such as recency and primacy46, and conflict among

relevant information26,27. Of course, choices may be affected by
other types of noise than those considered here. For example,
cognitive decisions may involve memories, sometimes distant in
the past, and risk and ambiguity47,48.

Many psychophysical tasks confound encoding and integration
noise. For instance, in the classic random dot-motion task,
decreasing motion coherence is typically thought to increase
encoding noise, as momentary evidence is less indicative of the
underlying motion direction49,50. However, decreasing motion
coherence can also affect integration noise, as momentary evi-
dence becomes more variable relative to a running estimate of
motion direction. Indeed, recent work has shown that noisy
cognitive inference, related to our notion of integration noise, is
a major driver of variability in choices51. Similarly, it has been
shown that for complex inference problems, a mismatch between
an agent’s internal model of a task and the true structure of a task
provokes departures from optimality41. Here we extend these
findings by introducing noise blindness as an additional driver
of suboptimal cognitive inference. Choice variability due to
integration noise, or imperfect inference, may not systematically
bias choices away from the correct choice. Blindness to these
sources of choice variability, however, predicts systematic over-
confidence as reported in the current study. In short, we show
that suboptimality can arise not only from having the wrong
model of a task but also from having the wrong model of oneself.

We recognize that using our task alone it is hard to categori-
cally say whether the locus of integration noise is early (e.g., in
early sensory cortex) or late (e.g., higher association cortex where
information is combined over broader windows in space and
time). However, several lines of evidence indicate a late locus.
First, participants can detect stimulus variability (Exp4), which
we would not expect if the sensory representations themselves
were distorted during early processing stages, and in support of a
higher-order account, noise blindness does not depend on whe-
ther variability was accurately discriminated (Fig. 6a, b). Second,
the effect of stimulus variability on participants’ choice accuracy
does not depend on set-size (four vs. eight items in Exp6), and
again in support of a higher-order account, neither did the
observed noise blindness. Third, participants’ RTs and the drift-
diffusion modelling suggest that information processing con-
tinues after stimulus offset and is thus unlikely to occur in early
sensory areas. Fourth, stimulus variability is reflected in brain
activity in higher association and control areas (e.g., parietal
cortex, anterior insula, and dorsomedial prefrontal cortex)52,
which is consistent with integration noise arising after sensory
encoding. More generally, our study is an example of the emer-
ging use of perceptual tasks as a window onto general principles
of cognition and decision-making53.

We do not know why humans are blind to integration noise.
One possibility is that basing decision strategies on all sources of
noise would prolong deliberation and thus reduce reward rates,
or that recognising one’s own cognitive deficiencies requires
a much longer timeframe. However, a well-known cognitive
illusion may help understand why blindness to one’s own cog-
nitive deficiencies may not be catastrophic: even though failures
to detect salient visual change suggests that cognitive processing
is highly limited54, humans enjoy rich, vivid visual experiences
of cluttered natural scenes. Human information processing is
sharply limited by capacity, but as agents we may not need to be
aware of the extent of these limitations.

Methods
Participants. One hundred and twenty-eight healthy human participants with
normal or corrected-to-normal vision were recruited to participate in six experi-
ments (86 females, 10 left-handed, mean age ± SD: 25.00 ± 4.32; Exp1: n= 20;
Exp2: n= 20; Exp3: n= 20; Exp4: n= 23; Exp5: n= 24; Exp6: n= 21). Participants
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were reimbursed for their time and could earn an additional performance-based
bonus (see below). The experiments were conducted in accordance with local
ethical guidelines and all participants provided written informed consent. The
study was approved by the University of Oxford Central University Research Ethics
Committee.

Experimental paradigm. All six experiments were based on the same psycho-
physical task. On each trial, participants had to judge whether the average orien-
tation of a circular array of gratings (Gabor patches; see Fig. 1) was tilted clockwise
(CW) or counter-clockwise (CCW) relative to horizontal. The average orientation
of the gratings in each trial was randomly selected from a mixture of two Gaussian
distributions (centred at 3° either side of the horizontal axis, respectively, and with
8° of standard deviation). We manipulated encoding noise and integration noise by
varying two features of the array in a factorial way manner: the root mean square
contrast (rmc) of the individual gratings, which affects the difficulty of encoding
the stimulus array, and the variability of the orientations of the individual gratings
(std), which affects the difficulty of integrating orientations across the stimulus
array. The number of contrast and variability conditions varied between experi-
ments: in Experiments 1–3, three contrast levels (rmc= {0, 0.16, 0.6}) and three
variability levels (std= {0°, 4°, 10°}); in Experiments 4–6, two contrast levels
(rmc= {0.15, 0.6}) and two variability levels (std= {0°, 10°}). The stimulus array
was presented for 150ms and was followed by a 3000 ms choice period. Participants
indicated their choice by pressing the right (CW) or the left (CCW) arrow-key on a
QWERTY keyboard. They received feedback about choice accuracy, before con-
tinuing to the next trial. If no response was registered within the choice period, the
word “LATE” appeared at the centre of the screen, and the next trial was started.
Experiments 1–3 consisted of 1296 trials, divided into 36 blocks of 36 trials each.
Experiments 4–6 consisted of 1200 trials, divided into 32 blocks of 40 trials each.

In Experiments 1 and 2, participants were presented with a cue to the prior
probability of each stimulus category. The cue was presented 700 ms before the
onset of the stimulus array and remained on the screen until a response was
registered. An “N” indicated that the two stimulus categories were equally likely, an
“R” indicated a 75% probability of a CW stimulus and an “L” indicated a 75%
probability of a CCW stimulus. Half of the blocks contained neutral trials (“N”)
and the other half contained biased trials (“R” or “L”). The blocks were randomised
across an experiment. In Experiment 2, after having made a choice, participants
were required to indicate the probability that the choice is correct by moving a
sliding marker along a scale (50–100% in increments of 1%). In Experiment 3, on
half of the blocks, participants could opt out of making a choice and receive the
same reward as for a correct choice with a 75% probability. There was no prior cue.
In Experiment 4, after having made a choice, participants had to categorize (high
vs. low) either the contrast or the variability of the stimulus array. Participants
received trial-by-trial feedback about the categorisation judgement. The judgement
types were counterbalanced across trials. In Experiment 5, for each block of trials,
we fixed the contrast or the variability level while varying the other feature. In
Experiment 6, on half of the blocks, the stimulus array consisted of eight gratings
and, on the other half of blocks, the stimulus array consisted of four gratings.
Further experimental details are provided in the Supplementary Methods.

Statistical analyses. All statistics are reported at the group level. We performed
two-way analyses of variance (reported throughout the text as ANOVAs) with
participants as a random variable to test the effects of contrast and variability on
choice accuracy, RTs, cue usage, confidence (Exp2) and opt-in behaviour (Exp3).
We performed most analyses of choice accuracy and confidence using neutral
trials; analyses of cue usage were naturally based on biased trials. We used multiple
linear regression and multiple logistic regression to isolate the effect of variability
on confidence and opt-in responses, respectively. One-sample two-tailed t-tests
(reported throughout the text as t-tests) were applied to estimate (i) the significance
of the difference between behavioural measures across conditions being different
from zero, and (ii) the significance of the mean distribution of regression coeffi-
cients being different from zero. For the analyses in Fig. 5a, seven participants were
excluded because of excessive opt-out responses, but result were comparable when
including them. All p-values lower than 0.001 are reported as “p < 0.001”, p-values
≥0.001 but lower than 0.01 are reported as “p < 0.01”, p-values ≥0.01 but lower than
0.05 are reported as “p < 0.05”. All p-values ≥0.05 are reported as higher than the
closest lower decimal (e.g., a p-value of 0.175 would be reported as “p > 0.1”), with
exception of p-values between 0.05 and 0.1 which are reported as “p > 0.05”. The
degrees of freedom for the ANOVAs are specified using non-integer values when
a Greenhouse–Geisser correction has been used to correct for violations of the
sphericity assumption.

Computational modelling. We first describe the omniscient model, which takes
into account encoding and integration noise and can identify which condition a
trial is drawn from (i.e. assigns a probability of 1 to the current condition on a
given trial). We then describe the variability-mixer model, which takes into account
integration noise but cannot distinguish the variability conditions (i.e. assigns equal
probability to all variability conditions on a given trial), and the noise-blind model,
which entirely neglects integration noise. For completeness, we ran six additional
models which varied an agent’s awareness of encoding noise and/or ability to
discriminate contrast conditions. We only discuss these models in Supplementary
Table 1 as they had no support in the empirical data.

We modelled—regardless of the model—an agent’s noisy estimate, x, of the true
average orientation, μ, as a random sample from a Gaussian distribution with mean
μ and variance σ2:

x ¼ ϵðμ; σ2Þ; ð1Þ
where σ is the agent’s total level of noise (encoding plus integration noise) in an
experimental condition (see below for noise estimation).

We assumed that an omniscient agent’s internal model has, for each condition,
a unique pair of category-conditioned probability density functions (PDFs) over
sensory evidence which reflect the total level of noise and the true probability
distribution over average orientations (see Fig. 4c for an example). As such, an
omniscient agent would have six pairs of PDFs in Experiments 1–3 and four pairs
of PDFs in Experiments 4–6. An omniscient agent uses the relevant pair of PDFs to
compute the probability of the sensory evidence given a CW and a CCW category:

PDFcat&cond ¼ pðxjcat; condÞ; ð2Þ
where cat is the category and cond is the condition. We constructed the PDFs by
convolving the true probability distribution over average orientations with a zero-
centred Gaussian distribution with variance σ2 depending on a participant’s total
noise in a condition. Note that the construction of these PDFs is specific to the
model in question (see construction of non-omniscient PDFs below) and is the
only source of variation in model predictions about choice and confidence.

We assumed that an agent—regardless of the model—would compute the
probability of each category using Bayes’ theorem:

pðcatjcue; x; condÞ ¼ pðxjcat;condÞ�pðcatjcueÞ
ðpðxjcat;condÞ�pðcatÞþ pðxjcatalt ;condÞ�pðcatalt jcueÞÞ ð3Þ

where p xjcat; condð Þ is computed using the relevant PDFs and p(cat) is the prior
probability of the category in question as indicated by the prior cue. If the category
in question is CW, then the alternative category, catalt is CCW, and vice versa. On
neutral trials, the prior probability of each category is 50%. On biased trials, the
prior probability of one category is 75% and the prior probability of the other
category is 25%. The computation detailed in Eq. (3) can be thought of as scaling
the relevant PDFs by the prior probability of the respective category (see Fig. 4d for
an example).

Finally, we assumed that an agent—regardless of the model—makes a decision,
d, by selecting the category with higher posterior support and computes confidence
in this decision as:

Confidence ¼ pðd ¼ catjcue; x; condÞ ð4Þ
which in our task is directly given by the posterior probability of the chosen
category.

Because the omniscient model takes into account encoding and integration
noise and knows which experimental condition a trial is drawn from, an agent
will (i) be appropriately influenced by the prior cue, (ii) accurately estimate the
probability of having made a correct choice, and (iii) opt out of trials when being
less than 75% likely to be correct. We now describe the two models which relaxed
the omniscient assumptions.

We first consider the variability-mixer model which takes into account
integration noise but cannot distinguish the different variability conditions.
Therefore, when estimating the probability of the sensory evidence given a CW and
a CCW category, the variability-mixer marginalizes its estimate over all possible
variability conditions (equivalent to an omniscient agent whose PDFs have been
mixed across variability conditions). As a result, when orientation variability is low,
the PDFs are more overlapping than for the omniscient model. Conversely, when
orientation variability is high, the PDFs are less overlapping than for the
omniscient model. For these reasons, a variability-mixer model would display a
mixture of under- and overconfidence.

Finally, we consider the noise-blind model which neglects integration noise.
Like in the case of the variability-mixer model, a noise-blind agent only has a pair
of PDFs for each contrast level but, unlike in the case of a variability-mixer model,
these PDFs only take into account encoding noise. As a result, when orientation
variability is non-zero, the PDFs are less overlapping than under either of the two
other models (Fig. 4e). A noise-blind agent would therefore tend to hold stronger
posterior beliefs (i.e. steeper curves for Fig. 4f). Such stronger posterior beliefs will
lead a noise-blind agent to (i) be less influenced by the prior cue than needed,
(ii) overestimate the probability of having made a correct choice, and (iii) not opt
out of trials when being less than 75% likely to be correct.

We note that these models (as well as the six additional models described in
Supplementary Table 1) make the same predictions about choice on neutral trials
but differ with respect to (i) choices on biased trials and (ii) confidence and opt-in
behaviour on both neutral and biased trials. Choice probabilities were computed by
marginalizing over the distribution of noisy sensory samples on a given trial; note
that, for a given sensory sample, the stimulus category with the higher posterior
probability is always chosen.

In the aforementioned models, we assumed that an observer’s inferences are
conditional on the average orientation of a stimulus array. We made this
simplifying assumption because, by design, the average orientation is independent
of variability in the orientation of individual items across experimental conditions.
However, it is possible that, if we modelled an observer’s inferences as conditional
on the orientation of individual items, then integration noise may not be needed to
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account for the performance cost associated with high-variability stimuli. We
simulated performance under this ensemble model, and show that it cannot predict
the performance cost associated with high-variability stimuli (Supplementary
Note 2 and Supplementary Fig. 2).

Noise estimation. We assumed that each experimental condition was affected by
Gaussian noise with a specific standard deviation, σcond. We assumed that encoding
noise depends upon the contrast of the array and that integration noise is pro-
portional to the variability of orientations in the array. We estimated the total level
of noise for each condition using four free parameters (three for Experiments 4–6).
Two parameters characterised the level of encoding noise for each contrast level:
one for low contrast (nClow) and one for high contrast (nChigh). The other two
parameters (one for Experiments 4–6) characterised the level of integration noise
for each variability level: one for medium variability (nVmed, only for Experiments
1–3) and one for high variability (nVhigh). For a given condition, the total level of
noise (the standard deviation of the Gaussian noise distribution), σcond, is thus
given by:

σcond ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εσ2cond
� �þ ισ2cond

� �

q

; ð5Þ
where εσcond and ισcond specify the contribution of encoding noise and integration
noise, respectively. For instance, for the low-contrast, high-variability condition,
the total level of noise would be given by substituting nClow for εσcond and nVhigh

for iσcond.
We fitted the four noise estimators for each participant by maximizing the

likelihood of the participant’s choice using neutral trials only (we used a genetic
algorithm with a population size of 100 individuals and a maximum generation
time of 1000 generations). We note that, because of our factorial design, we could
separate the two sources of noise. We used the fitted parameters for each
participant to construct the model PDFs described above. We note that the model
predictions pertain to independent features of the data: (i) confidence on neutral
trial choices, (ii) choices (and choice probabilities) on biased trials, and (iii)
probability of opting out.

The mean ± SEM of the best-fitting values for the four noise parameters (nClow,
nChigh, nVmed and nVhigh) in units of degrees were: 10.10 ± 1.51, 3.31 ± 0.39, 3.0 ±
0.78 and 6.8 ± 1.0, respectively. Following Eq. (5), the estimated total amounts of
noise fitted for the three key conditions (baseline, low-c and high-v) were therefore:
3.31 ± 0.39, 10.1 ± 1.51 and 8.0 ± 1.0, respectively. There was a significant difference
between the values for the baseline condition and those for the other two
conditions (both p-values < 0.001), but no significant difference between the low-c
and high-v conditions (p-value > 0.16).

Psychometric fits. We fitted psychometric curves to the average proportion of
clockwise choices using a four-parameter logistic function:

P ¼ A1 � A2

1þ eðx�x0Þ=dx þ A2; ð6Þ

where P is the proportion of CW choices, A1 is the right asymptote, A2 is the left
asymptote, x0 is the inflection point and 1/dx is the steepness, and x is the average
stimulus orientation at which the proportion of CW choices is evaluated. We
computed the proportion of clockwise choices within six bins (quantiles) over
average orientations relative to horizontal. The psychometric curves shown in
Fig. 2b are for illustration only.

Bias index. We used signal detection theory28,29 to calculate the decision criteria, c,
separately for trials on which the prior cue favoured CW and trials on which
the prior favoured CCW. The decision criterion provides a signed estimate of
the degree to which the prior cue biases a participants’ choices independently
of their sensitivity to average orientation. We computed the criterion as,
c ¼ �0:5½Φ�1ðHRÞ þΦ�1ðFARÞ�, where Φ�1 represents the inverse of the normal
cumulative density function, and HR and FAR represent the hit rate (i.e. the
proportion of CW trials where participants responded CW) and false alarm rate
(i.e. the proportion of CCW trials where participants responded CW), respectively.
We then used the difference between c when cued CW (cCW) and c when cued
CCW (cCCW) as our measure of cue usage: bias index= cCW−cCCW. Higher values
indicate greater cue usage. We computed a bias index for each participant and each
experimental condition.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Anonymised behavioural data and code supporting our main analyses are available via
the Open Science Framework (https://doi.org/10.17605/OSF.IO/QYNJG).
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