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Abstract—Passive WiFi radar shows significant promise for a
wide range of applications in both security and healthcare owing
to its detection, tracking and recognition capabilities. However,
studies examining micro-Doppler classification using passive WiFi
radar have relied on manually stimulating WiFi access points to
increase the bandwidths and duty-cycles of transmissions; either
through file-downloads to generate high data-rate signals, or
increasing the repetition frequency of the WiFi beacon signal
from its default setting. In real-world scenarios, both these
approaches would require user access to the WiFi network
or WiFi access point through password authentication, and
therefore involve a level of cooperation which cannot always
be relied upon e.g. in law-enforcement applications. In this
research, we investigate WiFi activity classification using just
WiFi probe response signals which can be generated using a
low-cost off-the-shelf secondary device (Raspberry Pi) eliminating
the requirement to actually connect to the WiFi network. This
removes the need to have continuous data traffic in the network
or to modify the firmware configuration to manipulate the beacon
signal interval, making the technology deployable in all situations.
An activity recognition model based on a convolutional neural
network resulted in an overall classification accuracy of 75%
when trained from scratch using 300 measured WiFi probe-
response samples across 6 classes. This value is then increased
to 82%, with significantly less training when adopting a transfer
learning approach: initial training using WiFi data traffic signals,
followed by fine-tuning using probe response signals.

Keywords— Activity Recognition, Passive WiFi Doppler Radar,
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I. INTRODUCTION

Passive WiFi radar has the potential for a number of applications
in urban areas because of its ability to detect, track and, more recently
classify specific activities of personnel. For e-healthcare and ambient
assisted living, the technology could be used to monitor both the
frequency of movements and type of activities to infer the health
status of an individual [1]. Additionally, in security and safety-critical
scenarios, it could be used to detect adversaries through-walls [2], or
provide indicators of signs-of-life [3]. Furthermore, unlike optical
systems, WiFi radar does not generate images which could be used
to identify people, and therefore maintains user privacy.

802.11 b/g/n (WiFi) operates in the 2.4 GHz band [4] and when
exploited as a transmitter of opportunity in passive radar, has been
shown to be highly sensitive to small motions [5] because of the long
integration times possible. For limbs and torso movements involved
with everyday human tasks, the motions are of the order of a few
m/s which would have a corresponding Doppler shift frequency of
around 1-12 Hz. This is well within the Doppler resolution capability
of WiFi passive radar and therefore sufficient for activity recognition
[6]. WiSee [7] is an implementation of a Doppler sensing system

that uses WiFi-like signals for identification of human gestures in
an in-home environment with high accuracy. However, the system
employs a bespoke WiFi-like narrowband 2.4 GHz transmission
signal which does not fully meet the IEEE 802.11 b/g/n standards.
The WiSee receiver then analyses the received signal following a
subtraction technique to obtain the frequency shift. Though WiSee
is able to recognise various types of body gestures, its approach
prohibits the use of commodity WiFi access points (APs) which
typically employs wideband signals during the transmission of data.
A number of other research studies have however proposed WiFi
based passive systems that do work with commodity APs. Tan et
al [8], for example have developed a system that employs high-
throughput data processing techniques that enables real-time output.
Two channels are used in this system: the reference channel employs
a narrow-beam antenna to measure the transmissions from a WiFi
AP directly, and the surveillance channel which typically makes
use of a wider beam antenna for greater coverage, to measure the
Doppler shifted signal from moving objects. This system design has
been demonstrated experimentally using commercial wireless access
points for both bistatic [9], [10] and multistatic receiver architectures
[11], [12]. All of these studies assume continuous high data-rate WiFi
transmissions and simulates this condition experimentally by ensuring
a file is continuously being downloaded from the WiFi network via
the AP. However, in real-world scenarios such as those involving
the emergency services (law enforcement, counter-terrorism, search
& rescue etc) this assumption is rather unrealistic and cannot be
relied on as there are many instances when there are no users on the
WiFi network. When the WiFi AP is idle, it continually transmits a
low-bandwidth beacon signal to broadcast its presence. Some recent
studies such as [6] and [13] have focused on using passive radar to
exploit the WiFi beacon signal but these studies have all increased
the repetition rate of the WiFi beacon bursts from every 100 ms
(the default setting) to 20 ms (the maximum allowable periodicity
on most WiFi APs). These adjustments to make the system usable
would again require a level of cooperation with the WiFi AP (in this
case password authentication) and therefore cannot be relied on for
many real-world deployments.

To address the above issue, this paper takes advantage of WiFi
probe response transmissions. The probe request-response protocol
in the WiFi standard allows the exchange of information between the
WiFi AP and client devices such as link speed, transmission power
and compatibility. More importantly, we take advantage that the data
in the probe protocol is not subject to any type of encryption, allowing
us to repeatedly send probe requests in order to stimulate continuous
wideband signal transmissions from the AP, giving us the freedom to
exploit any WiFi transmitter without joining the network, or making
any modifications to the AP. The probe signal has been used for
cooperative outdoor localisation [14] but has not been used in any
Doppler-based passive sensing system.
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approaches have been the subject of significant interest in the research
community [15], [16], [17]. In [17] Bjorklund et al propose a
feature extraction method derived from principal component analysis
to select the strongest patterns from temporal Doppler records. An
activity recognition classification accuracy of approximately 70%
for 5-classes was achieved (walking, jogging, running, creeping and
crawling). However, the high operating frequency of their commercial
active radar (77GHz) meant that the system could only operate over
a limited range. For Doppler-based activity recognition using passive
WiFi radar, Chen et al [6] successfully classified a range of everyday
human activities using a support vector machine (SVM) and the
sparse representation classifier (SRC). In this work, two surveillance
channels were employed to provide multiple aspect data for subjects
under test. Moreover, automatic segmentation methods for extracting
the start and end points of the micro-Doppler signature are proposed.
Finally, the authors in [18] treat their Doppler radar spectrograms as
static images, allowing the application of machine vision techniques.
Using this approach, the authors successfully validate their premise
that it is possible to transfer pre-trained convolutional neural networks
for image recognition (such as GoogleNet and AlexNet) to neural
networks generated from RF micro-Doppler data.

As described above, this paper attempts to examine the possibility
of activity recognition using Doppler measurements from probe
response transmissions to enable the passive exploitation of any WiFi
AP. However, a key challenge is that the duty cycle of WiFi probe
transmissions is lower than conventional WiFi data transmissions
(albeit higher than WiFi beacon transmissions) which results in
a reduction of classification accuracy. We therefore also apply a
transfer learning strategy to fine-tune our micro-Doppler convolution
neural network and improve the classification accuracy. A 500-sample
micro-Doppler dataset relating to 6 classes of motions was first
collected using WiFi data transmission signals. A convolution neural
network is trained from scratch with this dataset. Next, the network
is trained with a probe response signal dataset which was made up
of 300 samples over the same 6 classes. The integration of transfer
learning gave rise to a 7% increase in the classification, but more
notably led to a significant reduction in training times This result has
important implications for real-world deployments where there would
realistically be hundreds, or even thousands, of classes of activity to
be recognised.

II. WIFI SIGNAL GENERATION

As explained above, many WiFi Doppler radar systems exploit
high data-rate WiFi signals as opportunistic illuminators to make use
of the large bandwidths and long duty cycles. However, when the
network is idle with no users, the WiFi AP must be stimulated by
some means (usually through file downloads) to transmit waveforms
suitable for radar sensing. This approach requires the radar operator
to have user access to the network, making the system unusable when
the AP belongs to a third-party, or an adversary. The WiFi beacon
signal has been examined as a viable alternative [6] and [13] as it is
constantly transmitted by WiFi APs, although it has a much lower
bandwidth. Milani et al [19] concluded that the default beacon signal
interval time of 100ms in commodity WiFi APs is not sufficient for
WiFi sensing as the Doppler record is illegible and corrupted by
noise. Our own examination of the WiFi beacon suggests the interval
between bursts must be reduced to around 40ms which is agreement
with [19]. However, this again requires user access to the WiFi AP.

Similar to the beacon signal, the WiFi probe request and probe
response signals are not encrypted. However, they differ in that they
possess wider bandwidths and their transmissions involve longer duty
cycles, and therefore offer a viable alternative opportunistic signal
for use in passive WiFi radar that does not require any type of user
authentication. To examine the utility of the probe signal for activity
recognition we employ a Raspberry PI [20] equipped with a Kali
Linux distribution to identify all WiFi APs in the immediate vicinity
and attempt to handshake with any that the radar operator selects. The

Raspberry PI is then able to stimulate the WiFi AP to continuously
emit probe response signals by constantly transmitting probe requests
(according to the 802.11 probe protocol illustrated in Fig. 1) [4]. In
our tests, the Raspberry PI was configured to transmit at its maximum
frame rate limit of 75 probe requests per second with a 13ms interval,
though higher rates are achievable in alternative devices to generate
more frequent probe response bursts.

Fig. 1: WiFi Handshake Process

To assess the WiFi probe signal for passive activity classification,
we undertake a campaign of data measurements. The experimental
geometry is shown in Fig. 2 and a picture of the experimental
apparatus are shown in Fig. 3. This setup is similar to the test
environment used in [10]. It consists of a transmitter (a commodity
WiFi AP) and two USRP N210 SDRs acting as reference and
surveillance receivers. The reference channel employs a narrow-beam
antenna directed toward the WiFi AP to monitor its transmissions
whilst minimising interference from other APs in close proximity,
as well as unwanted target reflections. The surveillance channel uses
a wider beamwidth antenna aimed towards a surveillance cell where
test subjects undertake a range of everyday activities to generate WiFi
micro-Doppler signatures for analysis.

Fig. 2: Geometry Setup



Fig. 3: Image of experimental apparatus

III. SIGNAL PROCESSING AND DATA COLLECTION

To obtain the frequency shift and delay for any time-point as
a subject is undertaking an activity, it is necessary to apply the
discrete Cross Ambiguity Function (CAF) shown in equation (1) and
described in [8]. This involves cross-correlating the data measured in
the surveillance channel with Doppler shifted and delayed copies of
the reference signal to identify correlations peaks that correspond to
micro-motions on the body.

CAF (τd, fd) =

N∑
n=0

r[n]s∗[n+ τd]e
−j2πfd n

N (1)

In the above equation, N is the total number of samples in a
window, r[·] and s[·] are the discrete samples from the reference and
surveillance channels respectively which is presented using complex
numbers, and where ∗ is the conjugate operation. τd is the time delay
which can be converted to the range, and fd is the Doppler frequency
shift. A more detailed description of CAF processing is given in [2].

Figure 4 shows the range-Doppler surface output from the CAF
processing for an example experiment. The x axis is the bistatic
range, and the y axis is the measured Doppler frequency shift. Anal-
ysis of this result reveals a correlation peak at approximately 6Hz
which corresponds to a target motion of approximately 0.75m s−1,
suitable to assess micro-Doppler frequency characteristics. This peak
also appears in the first target range bin but the associated range res-
olution of this measurement (approximately 35m) is not sufficient to
generate useful localisation data. To generate micro-Doppler temporal
records of human activities suitable for activity classification, the
Doppler profile from the first range-bin for sequential CAF outputs
are concatenated in a similar fashion to [10].

Fig. 4: Example CAF output

The experimental work involved collecting two categories of data;
the first focused on measuring activity using WiFi data transmissions,

and the second was concerned with WiFi probe response transmis-
sions. For the former, a client and a server are set up to transfer
data and generate a continuous high data-rate (wide bandwidth)
OFDM modulated transmissions. A subject would then perform
several types of motions in a test area to generate WiFi micro-
Doppler signatures for analysis. In total 500 samples were collected
across 6 classes, which are shown in Fig. 5. Each of the 6 classes
had approximately 83 samples and were chosen to reflect a range
of motions; They all had distinguishing upper body movements in
order to generate characteristic micro-Doppler signatures. Example
Doppler spectrograms from the dataset are illustrated in Fig. 6. In
Fig. 6 a zero-Doppler line is present for all plots and arise from
reflections of stationary objects such as walls, furniture and other
everyday objects. The second WiFi probe response dataset is gathered
using the same set of 6 classes, but with 300 samples, 50 samples
for each class. Some examples are shown in Fig. 7. Comparing these
Doppler spectrograms with those from Fig. 6, we can see a similar
frequency response pattern for the different classes. However, the
micro-Doppler traces are noisier because of the bursty nature (lower
duty cycles) of WiFi probe-response transmissions relative to WiFi
data transmission signals.

(a) Class 1 (b) Class 2 (c) Class 3

(d) Class 4 (e) Class 5 (f) Class 6

Fig. 5: Illustration of the 6 classes. Class 1: take a bow. Class
2: breast stroke. Class 3: front crawl stroke. Class 4: sit down.
Class 5: stand up. Class 6: double punch.

Fig. 6: Micro-Doppler measured from WiFi data transmissions



Fig. 7: Micro-Doppler from probe response transmissions

Like with other machine learning tasks, data normalisation is a
critical step. For WiFi based micro-Doppler activity recognition, the
power of the signal received by our passive WiFi software-defined
radio (SDR) hardware may vary as the target moves around, and as
the bistatic geometry changes. Our methodology for normalisation is
shown below and is based on the assumption that the power remains
constant over the duration of all classes of motion. For each column
in the raw Doppler record, every value is first squared. Then, the
values within each column are divided by the sum of the column
which sets the total power for each column to unity. To suppress the
noise, a two-dimensional 3 × 3 median filter is used to denoise the
Doppler spectrogram.

Fig. 8: A normalised and denoised Doppler record

IV. ACTIVITY CLASSIFICATION

Activity classification is defined as a classification task in which
a model is able to identify a specific motion or action based on
the micro-Doppler signature presented in the recorded spectrogram.
As the Doppler record is stored as an image, we can use image
classification techniques for activity recognition. A convolutional
neural network (CNN) is a specifically designed multi-layer neural
network widely used in image analysis. In this work, we propose to
use a simplified version of the well-known AlexNet [21] convolution
neural network. A simplified version is necessary because Alex-net is

designed to process 256×256 RGB images but our Doppler records
are 51 × 75 signal channel images. In addition, the features in the
WiFi Doppler spectrograms are drawn from the frequency domain
rather than a spatial domain. The proposed network is as follows: the
input layer, convolution layer, ReLU layer, pooling layer, convolution
layer, ReLU layer, pooling layer, fully connected layer, softmax layer
and classification layer. The structure and the detailed parameters
are presented in Fig. 9. Note that the ReLU layer is built into the
convolution layer and therefore not shown.

Fig. 9: The proposed CNN for WiFi activity classification

The CNN is trained and implemented in Matlab using the Neural
Network Toolbox.

To test and verify the accuracy of the network, it is first trained
on the WiFi data transmission measurements. 80% of the samples
in the dataset are used for training and 20% are used for testing.
The rate of progress in training is plotted in Fig. 10. In this
training, measured samples are split into batches of 128 and the
batch accuracy is defined as Number of samples correctly classified in the batch

Number of samples in the batch . In
testing, the model accuracy is defined using a similar approach:
Number of samples correctly classified in the test set

Number of samples in the test set . It can be seen that the batch
accuracy converges to 90% and model accuracy to around 89% in the
test set, suggesting no over-fitting is present. The confusion matrix is
shown in Fig. 11 with true positive values that indicate the proposed
network is suitable for micro-Doppler activity classification.

Fig. 10: The rate of progress in training the network using
WiFi data signal dataset



Fig. 11: Confusion matrix for WiFi data signal dataset

The second step is to re-train the CNN with the WiFi probe re-
sponse signal dataset using transfer learning. Using a similar method,
80% samples in this dataset were used for training and 20% for
testing. To compare the transfer learning approach with training from
scratch, a CNN with an identical structure was created and trained
only with the WiFi probe response signal dataset. To ensure a fair
comparison, both of the models were trained using 300 iterations. The
training progress rate is shown in Fig. 12. It is clear that the accuracy
of the CNN using transfer learning surges after just the first few
iterations while the accuracy of the CNN trained from scratch remains
relatively low. The accuracy of the model trained from scratch rises at
around 110 iterations but at that stage, the transfer learning model is
already approaching the maximum accuracy. Towards the end (around
300 iterations) both converge: For the WiFi probe response signal
dataset, the accuracy of transfer learning is 81.7% while the accuracy
of the model trained from scratch is 75.0%. The confusion matrices
are shown in Fig. 13. This result highlights the benefit of adopting
a transfer learning approach to ensure feasible training times when
for example developing a commercial activity recognition system
that would require identification of hundreds, or even thousands of
classes. It is, however, worth noting that the final batch accuracy in the
transfer learning progress approaches 98% but the actual performance
on the test set is 81.7% indicating the presence of over-fitting.

Fig. 12: Comparison of transfer learning and training from
scratch

(a) Training from scratch (b) Transfer learning

Fig. 13: Confusion matrix of the CNN trained with WiFi probe
response signal dataset

V. SUMMARY AND DISCUSSION

In real-world applications of WiFi passive radar, a system would
ideally exploit the 802.11 OFDM signals due to their high-bandwidths
and long duty cycles. However, given that these transmissions are not
guaranteed, and the fact that the everpresent WiFi beacon signal with
100 ms burst interval is not suitable for micro-Doppler analysis, the
WiFi probe response signal provides the most reliable and viable
option for micro-Doppler based recognition and therefore should
feature as a core part of a sensing toolkit. In this case, taking
advantage of the transfer learning is a practical approach to train the
network models employed in a fast and efficient manner, especially as
a commercial system would be expected to identify a much broader
range of motion types and activities. Other considerations for real-
world deployment of such a technology include training the networks
using data gathered in different environmental conditions and over a
larger range of bistatic geometries. There is also a requirement to
deal with unsegmented Doppler records.

The transfer learning approach which we have adopted in this work
is able to speed up the training time in our 6 class classification
by a factor of approximately 2. By determining the image of the
spectrogram which most frequently stimulates a neuron in the CNN to
fire, we are able to identify the features learned by the neural network
trained using the WiFi data transmission signals. Fig. 14 illustrates
features learned by the second convolution layer of the CNN, and
highlights the abstract nature of the feature set; it consists of slopes,
horizontal lines, dashed lines, and even noise-like patterns. The
isolation of these abstract features require significant computational
time and resource but are inherited through the process of transfer
learning which gives rise to more efficient, and therefore faster
training time .compared to training from scratch. Both approaches
do however lead to similar accuracy and seem to be limited by (a)
the capability of the recognition model and (b) the quality of the
dataset.

One of the main limitations of our approach is that the probe
response signals, which act as the opportunistic illuminator are
stimulated by continually sending probe requests signal to the WiFi
AP. These act as an unwanted source of noise in the radar receivers
and can mask target responses. Currently, we minimise interference
effects manually by choosing a probe request transmission power
just above the threshold to stimulate the probe response, though a
real-world system would ideally set this parameter automatically.
Moreover, classification performance may degrade as the distance
between the stimulation device (in our case a Rasberry Pi) and WiFi
AP increases.



Fig. 14: Features learned by second convolution layer in CNN
trained using WiFi Data Signal Dataset

VI. CONCLUSION AND FUTURE WORK

This paper presents a WiFi-based passive activity recognition
system that just uses the WiFi probe signal which can work with
any wireless AP, even if it is protected by a password or other
authentication methods. By repetitively sending a WiFi probe request
signal, the wireless AP is stimulated to continually transmit a WiFi
probe signal which can be exploited as a reliable illuminator of
opportunity. Two sets of experimentally measured activity data are
gathered; one using WiFi transmissions containing data traffic, and
other using just WiFi probe response signals. CNN models that were
either trained from scratch or trained using a transfer learning were
assessed and compared and it was found that although they achieved
similar classification accuracy across 6 classes of activity (75% and
82% respectively). Additionally, transfer learning reduced training
times 2-fold, which would be highly desirable when training networks
that are required to classify across significantly more classes. Finally,
the in our current system the recognition tasks are implemented
offline so to achieve our future objective of moving towards a real-
world commercial system, we aim to investigate edge-computing
methodologies to will facilitate real-time classification on-board our
SDR prototype.
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