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Abstract—Activity recognition and monitoring using radar
micro-Doppler signatures (µ-DS) classification has played an
vital part in various security and healthcare applications. In the
practical scenario, aspect angle variations of µ-DS increase the
data diversity but can be regarded as a distraction factor for
activity recognition. The learned feature extractor and classifier
will degrade a lot if the test µ-DS is from a different aspect
angle from the training dataset. This is because the aspect
angle variations between training and test dataset will break
the assumption of the classification methods: the training and
test data are drawn from the same distribution. This paper aims
to eliminate the aspect angle variations by learning aspect angle
invariant and meanwhile discriminative features in the bi-static
radar geometry using the unlabeled test data. More specifically,
we first propose a new problem to train a feature extractor using
certain aspect angles but generalizes well for other aspect angles
in the test stage. Next, we propose two adaptation networks
termed as MMD-DAN and JS-DAN, utilizing two widely used
distribution divergence measurements. Finally, we evaluate our
experimental setting and methods using experimental data.

I. INTRODUCTION

Detecting human targets and their activities relies on the
micro-Doppler signature (µ-DS) analysis of the frequency
modulations of the backscattered signal. As the additional
frequency modulations induced by rotating and vibrating parts
of objects, e.g. wheels of trucks, limbs movement of human
targets [1–3], µ-DS and the classification methods have been
applied in plenty of fields. It has been shown that movement
of different human targets can be distinguished, as well as
differences between men and women, people and animals
[4, 5]. In addition, µ-DS have been used to distinguish wind
turbine blades and the blades of aircraft rotors [6]. It has
also been demonstrated how µ-DS of different human target
movements can help increase the situational awareness of the
ambient assistant living in the healthcare context [7–13].

In fact, µ-DSs and their applications have been investigated
over a number of years under this regime The developments
include but are not limited to: novel time-frequency analysis
methods, feature extraction methods and classifier designs
[11, 12, 14–20]. In spite of these novel designs, very few of
them consider aspect angle variations in µ-DS and eliminating
them to further boost the activity recognition performance.
Previous works by Fioranelli et al. [21–23], Chen et al. [19].
and Patel et al. [20] considered to adopt the multi-static radar
to learn useful features for motion recognition, considering

the dynamic effects of the aspect angle variation for µ-DS
classification. However, they have not consider to boost the
activity recognition performance by eliminating the aspect
angle variation and learn a aspect angle invariant features for
bi-static radar geometries.

µ-DS classification methods make assumptions about the
model and task. The most widely adopted one is that the
training and test data, features or joint feature and label repre-
sentations are drawn from the same distribution. Unfortunately
the aspect angle variations between training and test data may
break this assumption in practical scenarios, for example, if
the training data are from aspect angle 1, however all the test
samples are from aspect angle 2 and 3, the distributions of
training and test data diverge and therefore the classification
performance will degrade due to the “unseen” aspect angle
variations in the training stage.

To tackle the distribution discrepancy or divergence caused
by the “unseen” aspect angle variations in bi-static radar
geometry, we first propose a new problem for human activity
recognition to extract not only the discriminative features for
activity recognition but they have to be aspect angle invariant
as well. Then we also propose two deep adaptation networks to
reduce the distribution divergence by leveraging the Maximum
Mean Discrepancy (MMD) and the Jenson-Shannon(JS) diver-
gence measurements in the network design. More specifically,
the contributions of this paper are summarized as follows:

1) we formulate a new problem for human activity recog-
nition to eliminate the aspect angle variations.

2) we handle this problem utilizing the deep adaptation
network (DAN) and apply two widely-used one, termed
as MMD-DAN and JS-DAN, leveraging MMD and JS
divergence respectively.

3) we design various experiments handling aspect angle
variations between training and test dataset in the con-
text of recognizing armed or unarmed walking human
targets. In addition, we compare the results of MMD-
DAN and JS-DAN with the baseline network.

The paper is organized as follows: first we formulate the
new problem to eliminate the aspect angle variation in the
context of domain adaptation theory in section II. Next, we
introduce the proposed two deep adaptation network (DAN)
to eliminate the aspect angle variations in section III. Section



IV and V focuses on detailed experiments and results. Finally
we conclude the paper in section VI.

II. PROBLEM FORMULATION

µ-DS classification methods make assumptions about the
model and task. The most widely adopted one is that features
or joint feature and label representations in training and test
datasets are drawn from the same distribution. Unfortunately
due to the unpredictable aspect angle variations, this assump-
tion rarely holds in practical scenarios.

In this paper, we propose a new problem for human activity
recognition: to train a feature extractor and classifier using
certain aspect angles but generalizes well for other aspect
angles in the test stage. Note that we may access the test
data samples in this task but not the labels since in practical
scenarios, we cannot know the aspect angle or the activity of
the target in test stage. To address this problem, we propose the
relevant task in the following: to learn aspect angle invariant
features trained using µ-DS from fixed aspect angles but
generalizes well to test samples from other aspect angles
by eliminating the aspect angle variations.

More specifically, the task is formalized as follows: the
training µ-DS data xs and label ys are sampled from distribu-
tion P s on fixed aspect angles (e.g. we only sample training
µ-DS from aspect angle 1 only) and termed as the source
data or source domain Ds = {(xs, ys)}; while the test data
xt and label yt are sampled from the other distribution P t

on different aspect angles (e.g. aspect angle 2 or/and 3) and
termed as the target data or target domain Dt = {(xt, yt)}.
Note that P t 6= P s and in the training stage, the test
label yt is not available. In this paper, we further assume
that there is single activity recognition task and therefore
both domains share the same classification categories, where
ys ∈ [1,2, ...,Nc] and yt ∈ [1,2, ...,Nc]. Given this
scenario, the task is equivalent to learn aspect angle invariant
feature representations by two ConvNets Ts and Tt so that
their feature distribution discrepancies are reduced, where
P s(Ts(x

s)) ≈ P s(Tt(x
t)).

III. UNSUPERVISED DEEP ADAPTATION NETWORK (DAN)
FOR µ-DS CLASSIFICATION

In this section, we introduce two deep adaptation net-
works(DAN), including MMD-DAN and JS-DAN adopting
Maximum Mean Discrepancy and the Jenson-Shannon di-
vergence respectively for learning the aspect-angle-invariant
features.

A. Network Architecture

In general, architecture of DAN for µ-DS classification
is composed of three modules, including feature extractor
network modules Ts and Tt, classifier network C and the
distribution matching module D. Figure 1 describes the basic
architecture of DAN, where

• Ts and Tt aim to extract features from two domains(µ-DS
from two aspect angles) as Ts(x

s) and Tt(x
t);
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Fig. 1. Architecture of DAN.

• The network/module D then measures the domain distri-
bution discrepancy as D(Ts(x

s), Tt(x
t)); The network

D and Tt are updated by minimizing the domain dis-
crepancy loss LDisc as shown in Eq.(1).

• The classifier network C takes the source domain
featureTs(x

s) as input, transforms it to predicted label
vector C(Ts(x

s)). The networks Ts and C are updated
by minimizing the cross-entropy (CE) loss LCE in
Eq.(2), leveraging the ground-truth source-domain label
ys.

min
Tt,D

LDisc(D(Ts(x
s), Tt(x

t))) (1)

min
Ts,C

LCE(C(Ts(x
s)), ys) (2)

Note that the MMD and JS based divergence measurements
and the relevant LDisc are introduced in the following two
sections.

B. MMD-DAN

This section introduces the widely used divergence mea-
surements in adaptation tasks termed as the Maximum Mean
Discrepancy (MMD). Let us first assume that Ns and Nt

source and target domain samples are drawn from the distri-
butions P s(Ts(x

s)) and P t(Tt(x
t)) respectively.

The MMD is usually considered as the non-parametric
estimate of the distance between two distributions, by pro-
jecting the input into the Reproducing Kernel Hilbert Space
(RKHS) [24]. The projection function can be more formally
defined as φ(·) : Rd → H with the H a RKHS and the
MMD loss LMMD is formalized in the Eq.(??) where the
distribution discrepancy is measured via the difference of the
feature sample means in the RKHS. This measurement can
be efficiently calculated using the inner product of mapped
feature φ(Ts(x

s
i )) and φ(Tt(x

t
j)) via the kernel function.

The MMD loss LMMD will only be close to zero if the two
distributions under estimate are very similar P s(Ts(x

s)) ≈
P t(Tt(x

t)), as proved in [24]. We may regard LMMD as
the discrepancy loss LDisc as shown in Eq.(3).



LDisc(x
s, xt) = LMMD(xs, xt) = D(Ts(x

s
i ), Tt(x

t
j))

= ‖ 1

Ns

Ns∑
i

φ(Ts(x
s
i ))−

1

Nt

Nt∑
j

φ(Tt(x
t
j))‖2H

(3)

C. JS-DAN

JS divergence may be the first measurement implemented
based on the adversarial training strategy. This has been
widely used in the well-known Generative Adversarial Net-
work (GAN) [25] and relevant applications. We formulate the
JS divergence JS(P s||P t) in Eq.(4) and its implementation
using adversarial training shown in Eq.(5). Note that KL
means the Kullback-Leibler (KL) divergence. We may regard
the distribution discrepancy loss LDisc as the JS divergence
loss LJS which can be reformulated as the following opti-
mization problem in Eq.(5) where the distribution matching
network D tries to measure the JS discrepancy by maximizing
the loss LJS .

LDisc(x
s, xt) = LJS(x

s, xt)

= JS(P s||P t) = KL(P s||P
s + P t

2
) +KL(P t||P

s + P t

2
)

(4)

LDisc(x
s, xt) = LJS(x

s, xt)

= max
D

ETs(xs)∼P s(Ts(xs))[log(D(Ts(x
s)))]

+ET (xt)∼P t(Tt(xt))[log(1−D(Tt(x
t)))]

(5)

D. Optimization

To sum up, the overall optimization is formulated as the
following Eq.(6). More specifically, MMD-DAN is optimized
in Eq.(7) while JS-DAN optimization function is shown in
Eq.(8). Intuitively, both MMD-DAN and JS-DAN aim to learn
discriminative and aspect angle invariant features by minimiz-
ing the CE loss and the distribution discrepancy. However,
they use different formulations for the distribution discrepancy
loss LDisc, where MMD-DAN utilizes the Kernel function
in module D while JS-DAN utilizes the adversarial training
strategy and the module D functions like a domain classifier.

min
Ts,Tt,C

LCE + λDiscLDisc (6)

min
Ts,Tt,C

LCE+λDisc‖
1

Ns

Ns∑
i

φ(Ts(x
s
i ))−

1

Nt

Nt∑
j

φ(Tt(x
t
j))‖2H

(7)

min
Ts,Tt,C

max
D

LCE + λDiscETs(xs)∼P s(Ts(xs))[log(D(Ts(x
s)))]

+λDiscETt(xt)∼P t(Tt(xt))[log(1−D(Tt(x
t)))]

(8)

IV. EXPERIMENT

A. Radar System and Experiment Scenario

In the following Figure 2, the data are collected when
targets walk from three different angles roughly around 30

degree, 0 degree and -30 degree, (denoted as Ang 1,2,3).
The distance between the target position and the RX node
is 70m and the TX node is 40 meter away from the RX
node. There are two movements in the experiment, which are
walking with armed and unarmed weapon (replaced with a
metal stick holding or not holding). There are three people
involved into the experiments, their height are 1.87m, 1.7m
and 1.75m respectively. For each walking, the recorded time
is 5 second and in total 90 data samples (5 second recording)
are collected.
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Fig. 2. Experiment scenario in the field using NetRad.

In this paragraph, we introduce the NetRad radar systems,
the experimental scenarios in the trial and finally the process-
ing methods and details.

The radar system used to collect the data presented in this
paper is the bi-static system from NetRAD [23, 26], which
has been developed over the past years at University College
London and the basic architecture can be found in [26]. The
system is a coherent pulsed radar and operates at 2.4 GHz. The
data shown in this work were collected using the following
RF parameters: 0.6 µs pulse duration, 45 MHz bandwidth,
linear up-chirp modulation, and 5 kHz PRF to include the
whole human µ-DS within the unambiguous Doppler region.
Five seconds of data were recorded for each measurement
in order to collect a multiple periods of the average human
walking gait, which is on average approximately 0.6 seconds.
The transmitted power of the radar is approximately 200 mW.
The antennas have 24 dBi gain and are operated with vertical
polarization to effectively interact with human subjects, as the
human body shape is such that the vertical dimension is more
significant than the horizontal dimension. This is expected to
increase the SNR of the targets’ echoes in comparison with
horizontal polarization

B. µ-DS Data Processing and Augmentation for DAN

First the matched filter processing is used by crosss-
correlating the reference and received echo signals and the
Short Time Fourier Transform (STFT) is adopted to obtain
the spectrogram. The processing parameters is summarized in



TABLE I
PROCESSING PARAMETERS INCLUDING THE ONES TO COLLECT AND

GENERATE THE µ-DS, TRAIN THE DCNN AND AUGMENTATION.

Recording Time 5s
Overlapping Ratio 0.9

FFT Integration Time 0.3s
Augmentation Time Width 0.15s

SGD Momentum 0.9
Base Learning Rate 0.001 (FC), 0.0005 (Conv)

Table I, where the overlapping ratio is 0.9 and the integration
time of FFT is 0.3 seconds. Each µ-DS sample is recorded
for 5 seconds and the stride for cropping the µ-DS samples
in the data augmentation operation is chosen as 0.15 seconds.
In addition, to increase the challenge of testing, we are also
cropping the testing data into different dwell time but the stride
is chosen as 0.3 seconds and the cropping starting point is
chosen randomly. We argue that this test scheme is a more
realistic scenario, where we cannot guarantee where the real-
time test data starts, as the radar may have been performing
other tasks prior to extracting the µ-DS of a specific target at
a specific time.

The basic networks Ts and Tt and data operations are
implemented using the Tensorflow software. The network
structure of Ts and Tt consists of two Convolutional (Conv)
layers, composed of 64 and 128 kernel filters with the size
of 32 × 32 and 11 × 11 respectively. Following the Conv
layers are the Fully Connected (FC) layers which usually
transform the local activation maps of Conv layers to the
label embedding. We adopt a two-layer architecture with
output activation number of 512 and 128 respectively. The
network C projects the feature dimension to the representation
of semantic categories (two classes in this application). The
network D is a single FC layer, which projects the feature
to classify the two domains with the output dimension of
2. The conventional SGD method is used for optimizing the
parameters, with the momentum 0.9. The initialized learning
rate for FC layers and Conv layers are chosen as 0.001 and
0.0005 respectively. The decay policy for the learning rate is
the inverse decay and the decayed learning rate denoted as
lrdecay is following the Eq.(9), where lrbase is initialized
base learning rate. The batch size is chosen as 50 and training
and test samples are shuffled by the Tensorflow FIFO-Queue
operation. The regularization weight for the Conv and FC
layers are chosen as 0.005.

lrdecay = lrbase × (1 + 0.001× epoch)−0.75 (9)

Due to the limited number of µ-DS, we design an aug-
mentation method by cropping the original training data into
smaller patches, as shown in Figure 4. Due to the nature of
the time series of the µ-DS data, we generated more training
samples by shifting them in the time domain by different stride
sizes. As our training µ-DS data is x ∈ Rwinput×hinput , the
augmented training samples can be represented as the cropped
data along the time axis via different strides, as shown in
Eq.(??), where widthwin, heightwin are the window sizes

in two dimensions. This operation, if stride sizes small enough
are chosen, will increase the number of training samples,
give additional data diversity, and improve the robustness of
the model as data generated under various conditions will
be used for training. In practice, this time shifting simulates
misalignment in time and small Doppler offsets for the training
data and these two situations can practically happen in realistic
uncontrolled scenarios.
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Fig. 3. Raw µ-DS of a target walking unarmed from angle 1, using receiver
node 1 in Figure 2; two black boxes indicate the augmented µ-DS, with
window size of 1s and window height of 100Hz.
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Fig. 4. Augmentation results: (a), (b), (c) and (d) are four augmented data
examples generated from the 5-second µ-DS in Figure 3. The augmentation
method and parameters are illustrated in Section ??.

More specifically, as shown in Figure 3, an example of
a target walking unarmed from angle 1, received by node
1 is illustrated. Here, in the 5-second µ-DS, red and green
rectangular boxes indicate two augmented data samples in
the training stage. The example shown in Figure 3 uses
width win as 1.5 second, while the height win chosen
as 100 Hz. It seems obvious that, the augmented data samples
can be generated by selecting very small stride of the moving
window, which will also simulate small misalignment in
realistic data.

C. Experiment Settings to Eliminate Aspect Angle Variations

We follow the experiment setting in Section IV-A and the
summary of the utilized µ-DS dataset is in Table II. In this



(a) Ang1, Rifle

2 4

20

40

60

80

100
(b) Ang2, Rifle

2 4

20

40

60

80

100
(c) Ang3, Rifle

2 4

20

40

60

80

100

(d) Ang1, Walk

2 4

20

40

60

80

100
(e) Ang2, Walk

2 4

20

40

60

80

100
(f) Ang3, Walk

2 4

20

40

60

80

100

Fig. 5. Raw µ-DS of walking and walking with rifle from three angles. All x-
axis represents time with unit of second while all y-axis represents frequency
with unit of Hz. The scale is in dB.

section, we mainly evaluate the effect of the MMD-DAN and
JS-DAN using different mono-static and bi-static µ-DS and
specifically, we design 6 adaptation tasks listed in Table III.
In these experiments, our interest factor is the motion while
the distraction factors is the aspect angle. The designed six
experiments mainly investigate the aspect angle variations. We
choose to set up the experiments in a “Factor Control” manner
where we use the data from target 1 only if we focus on
eliminating the variations caused by aspect angles.

TABLE II
EXPERIMENT DETAILS FOR ADAPTING TWO FACTORS OF VARIATIONS

INCLUDING ASPECT ANGLE AND TARGET PERSONNEL.

Bi-Static µ-DS (5-second) Number 90
Train Percentage 20%

Dwell Time 1s
Augmented Train µ-DS Number 918
Augmented Test µ-DS Number 648

Aspect Angles (Degree) -30, 0, 30

TABLE III
EXPERIMENTS TO EVALUATE THE FACTORS OF VARIATION; THE MAIN

INTEREST FACTOR IS THE MOTION RECOGNITION WHILE THE
DISTRACTION FACTOR IS THE ASPECT ANGLE. WE CONDUCT THE 6

EXPERIMENTS USING µ-DS FROM TARGET 1 ONLY BUT THREE ASPECT
ANGLES SO THAT THE VARIATION CAUSED BY TARGET IDENTITIES IS

CONTROLLED.

Experiment Variation Source Domain Target Domain
Number Factor (Training Set) (Testing Set)

Exp1 Aspect Angle Angle 1,2 Angle 3
Exp2 Aspect Angle Angle 1,3 Angle 2
Exp3 Aspect Angle Angle 2,3 Angle 1
Exp4 Aspect Angle Angle 1 Angle 2,3
Exp5 Aspect Angle Angle 2 Angle 1,3
Exp6 Aspect Angle Angle 3 Angle 1,2

V. RESULT AND ANALYSIS

A. µ-DS Results

In Fig.5, the Doppler frequencies related to the bulk move-
ment from angle 1 and 2 are centred at around 42Hz, while the

TABLE IV
RECOGNITION RATES (%) BY ELIMINATING THE ASPECT ANGLE

VARIATIONS; AVG REFERS TO AVERAGE RESULTS OF THE 6 EXPERIMENTS
USING A SPECIFIC METHOD. BASE-NET REFERS TO RESULT OF BASE

NETWORK IN FIG.1 WITHOUT THE NETWORK D AND THE DISTRIBUTION
MATCHING BRANCH.

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 AVG
Base-Net 71.1 100.0 100.0 88.9 78.9 93.9 88.8

MMD 74.4 100.0 100.0 92.2 79.4 99.4 90.9
JS 71.1 100.0 100.0 90.4 81.1 98.3 90.2

one from angle 3 is around 34Hz. This is due to the relatively
larger aspect angle for angle 3 than angle 1 and 2. Either for
armed or unarmed gaits, in general, frequency due to arms
movement from angle 1 is smaller than angle 2, while the one
from angle 3 is much smaller than the angle 1. These can
all be explained by the different Doppler aspect angles in the
bi-static radar geometry and the velocity components of the
bi-static bisector.

It can be clearly seen that the unarmed walking gait from
angle 1 and 2 are clearly distinguished from the armed ones
by the signatures from 20Hz to 30Hz caused by the swinging
arms. From angle 3, as shown in (c) and (f), the difference
between unarmed and armed one is not obvious, but some
vague differences in the µ-DS from 25Hz to 35Hz still exist.

B. Results of Eliminating Aspect Angle Variations

For base-net results, it can be observed that it achieves
100.0% in Exp2 and 3, however much lower for other ex-
periments. We hypothesize the reason to be the similarities
between aspect angle 1 and 2 and µ-DS from angle 1 and
2 are separated in training and test set respectively in Exp2
and 3. However, for other scenarios, where aspect angle 1 and
2 are both in either the test or training set, the performance
degrades to the lowest 71.1%, which demonstrates that the
aspect angle variations may degrade the activity classification
performance.

However in Table IV, through the distribution matching
module by MMD and JS, MMD-DAN and JS-DAN outper-
form the base-net results for all experiments except Exp 2
and 3 (since the base-net result has been 100.0%). For Exp1
and Exp4-6, the best-performing DAN results outperform the
baseline by 3.3%, 3.3%, 2.2% and 5.5% respectively. These
results prove the effectiveness of MMD-DAN and JS-DAN to
eliminate the aspect angle variations. For comparison between
MMD-DAN and JS-DAN, MMD-DAN achieves better results
for three experiments however, JS-DAN outperforms MMD-
DAN in Exp5 only.

VI. CONCLUSION

This paper first proposes a new problem for human activity
recognition using µ-DS classification: to train discriminative
and meanwhile aspect angle invariant features in the bi-static
radar geometry. Then we proposed two DANs termed as
MMD-DAN and JS-DAN for eliminating the aspect angle
variations, leveraging the MMD and JS divergence. Through



experimental results, MMD-DAN achieves better and more ro-
bust results than JS-DAN in almost all scenarios and different
level of aspect angle variations.
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