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Abstract 26 

Contrast enhanced ultrasound (CEUS) using microbubble contrast agents has shown great 27 

promise in visualising and quantifying active vascular density. Most existing approaches for 28 

vascular density quantification using CEUS are calculated based on image-intensity, and are 29 

susceptible to confounding factors and imaging artefact. Poor reproducibility is a key challenge 30 

to clinical translation. In this study a new automated temporal and spatial signal analysis 31 

approach is developed for reproducible microbubble segmentation and quantification of 32 

contrast enhancement in human lower limbs. The approach is evaluated in vitro on phantoms 33 

and in vivo in lower limbs of healthy volunteers before and after physical exercise. In this 34 

approach vascular density is quantified based on the relative areas microbubbles occupy instead 35 

of their image intensity. Temporal features of the CEUS image sequences are used to identify 36 

pixels that contain microbubble signals. A microbubble track density (MTD) measure, the ratio 37 

of the segmented microbubble area over the whole tissue area, is calculated as a surrogate for 38 

active capillary density. In vitro results show a good correlation (r2 = 0.89) between the 39 

calculated MTD measure and the known bubble concentration. For in vivo results, a significant 40 

increase (129% in average) in the MTD measure is found in lower limbs of healthy volunteers 41 

after exercise, with excellent repeatability over a series of days (ICC = 0.96). This compares to 42 

the existing state-of-art approach of destruction and replenishment analysis on the same 43 

subjects (ICC <= 0.78). The proposed new approach demonstrates great potential as an accurate 44 

and highly reproducible clinical tool for quantification of active vascular density. 45 

 46 

Key words: contrast enhanced ultrasound, lower limb, vascular density quantification, image 47 

segmentation, temporal analysis, reproducibility, peripheral arterial disease 48 
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Introduction 50 

Ultrasound is a safe, affordable and accessible front-line clinical imaging modality, 51 

characterised by real-time image display. Recent advances in contrast-enhanced ultrasound 52 

(CEUS) imaging, provide the possibility of specifically imaging blood vessels with high 53 

sensitivity and resolution. Microbubbles move through the body while being confined to blood 54 

vessels, distinguishing them as an excellent intravascular contrast medium. They vibrate under 55 

ultrasound and in a non-linear fashion, generating specific harmonic signatures that allow them 56 

to be distinguished from background tissue signals with a high sensitivity.  57 

 58 

CEUS is ideally suited for measurements of flow and vascular density, as bubbles move within 59 

the blood vessels at comparative speeds to blood cells. A destruction-replenishment approach 60 

has been used in many in vitro and in vivo trials with success. High amplitude ultrasound is 61 

used to destroy microbubbles within the imaging plane, then the replenishment of the region is 62 

observed over time. To quantify vascular density, Time Intensity Curve (TIC) analysis is 63 

conducted to extract a number of physiological parameters such as peak intensity and flow rate 64 

etc. This method estimates parameters related to vascular characteristics of the tissue and has 65 

been applied to the study of liver (Claudon, et al. 2013) and heart (Senior, et al. 2013, Wei, et 66 

al. 1998). Recent studies have shown particularly great promise in evaluating 67 

neovascularisation in atherosclerotic plaques (Hellings, et al. 2010, Huang, et al. 2008, Xiong, 68 

et al. 2009), the myocardial microcirculation (Senior, et al. 2013, Wei, et al. 1998) and the 69 

musculoskeletal microcirculation of the lower limb (Amarteifio, et al. 2013, Amarteifio, et al. 70 

2011, Duerschmied, et al. 2009, Krix, et al. 2011, Krix, et al. 2009, Lindner, et al. 2008, 71 

Mitchell, et al. 2013, Song, et al. 2014).  72 

 73 
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However the quantification of vascular density using CEUS is affected by many confounding 74 

factors (Tang, et al. 2011). In particular most existing analysis is image-intensity based, and 75 

such an approach is vulnerable to problems such as signal attenuation, and nonlinear imaging 76 

artefacts (Cheung, et al. 2015, Yildiz, et al. 2015). An alternative approach to individual bubble 77 

tracking and quantification within the image have been reported, particularly in peripheral 78 

imaging applications where relatively high frequencies are commonly used (4-15MHz). While 79 

imaging with such frequencies reduces sensitivity in bubble detection (Tang and Eckersley 80 

2007) and only the brightest bubbles show up in the CEUS images, the improved spatial 81 

resolution associated with such high frequency could facilitate the tracking of individual 82 

bubbles. Hoogi et al. (Hoogi, et al. 2012) proposed a method for segmenting the contrast spots 83 

within atherosclerotic plaques in individual images by tracking individual microbubbles. The 84 

main advantage of this approach is that the temporal behaviour of bubble flow can be 85 

demonstrated. This makes it robust to noise and allows differentiation between blood vessels 86 

and artefacts.  87 

 88 

Recently several groups have developed various methods for single bubble detection and 89 

tracking by taking advantage of some temporal information. Viessmanns et al. and Christensen-90 

Jeffries et al. used rolling background subtraction to remove unwanted background signals 91 

from static structures such as the echo from the tube wall (Christensen-Jeffries, et al. 2015, 92 

Viessmann, et al. 2013). Ackermann et al. adopted a temporal median filtering and 93 

foreground/background subtraction to detect and track of multiple microbubbles in ultrasound 94 

B-Mode Image (Ackermann and Schmitz 2016). Errico et al. developed ultrafast ultrasound 95 

localization technique for deep super-resolution vascular imaging by exploiting the coherence 96 

of backscattered signals, the spatiotemporal filtering approach discriminates slowly moving 97 

bubbles of sub-wavelength size (low spatial coherence) from slow motion tissue signals whose 98 
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temporal variations affect many neighbouring pixels the same way (high spatial coherence) 99 

(Errico, et al. 2015). Gessner et al. developed acoustic angiography to visualise microvascular 100 

architecture without significant contribution from background tissues by using super-101 

harmonics and a customised dual-frequency probe (Gessner, et al. 2013). Mischi et al. used 102 

spatiotemporal analysis of ultrasound contrast agent dispersion kinetics to image angiogenesis 103 

(Mischi, et al. 2012). In this study we propose a different method and apply it to a clinical 104 

application of quantifying active vascular density in human lower limbs. Comparing to the 105 

existing techniques, the proposed method examines frequency features in the temporal domain 106 

which is image intensity independent and hence may be more robust to the various confounding 107 

factors such as attenuation.” 108 

 109 

 110 

In CEUS image sequences, we hypothesise that the temporal profile of each pixel can be used 111 

to detect microbubbles passing the pixel. The relative area of these “bubble pixels” can provide 112 

an area-based vascular density measure that may be more robust than existing image-intensity 113 

based approaches. Furthermore, the pixel-based temporal analysis can be reduced to an 114 

automated algorithmic process, giving advantages in terms of user interface, output speed and 115 

interpretation over existing approaches.  116 

 117 

The objective of this study was to develop a robust and automated quantification tool for 118 

microbubble activity in CEUS image sequences using a pixel level temporal and spatial 119 

analysis based algorithm. This technique will be demonstrated with a flow phantom and then, 120 

as an initial clinical demonstration, applied to the quantification of in vivo musculoskeletal 121 

microcirculation in lower limb vascular density of healthy human subjects. 122 
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 123 

Materials and Methods 124 

Microbubble detection algorithm 125 

The proposed algorithm works at a pixel level to detect microbubble signals. The image 126 

contains primarily three components: tissue artefact, noise, and microbubble signals. Initially, 127 

average image intensity and coefficient of variation are used to remove tissue signals, and then 128 

microbubbles are distinguished from noise by examining the frequency composition of the 129 

pixel’s temporal signal. The temporal signal of a pixel within a vessel with bubble(s) passing 130 

through has very different frequency composition from that with noise only (See Figure 1). 131 

The microbubble detection algorithm consists of the following specific steps. 132 

1) Detecting tissue only regions. 133 

Given the signal, I(t), the coefficient of variation (COV) is shown as follow, 134 

 135 

𝐶𝑂𝑉 =
√〈(𝐼(𝑡) − 〈𝐼(𝑡)〉)2〉

〈𝐼(𝑡)〉
 (1) 

where 〈𝐼(𝑡)〉 is the temporal average intensity. If we assume tissue signals to be higher in 136 

amplitude than noise background and not changing significantly over time, the combination of 137 

COV and average intensity can be used to identify tissue signal. If a signal’s COV is smaller 138 

than a threshold TCOV and its average intensity is larger than a threshold TAI, this signal is 139 

classified as tissue signal. The threshold values of TCOV and TAI are estimated empirically by 140 

examining the histograms of the datasets. Based on the parameters, COV and average intensity 141 

described in the method section, their thresholds were set in order to detect and separate tissue 142 

signals. Before bubbles flowed through the target ROI, the intensities of tissue and noise could 143 

be estimated by analysing in these pre-contrast frames manually selected regions of tissue and 144 
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noise. They were used as a template for threshold selection. The corresponding threshold values 145 

for COV and average intensity were determined by finding the intersection of tissue and noise 146 

distributions in the parameter histogram. The combination of COV and average intensity can 147 

be used to identify tissue signal. The remaining unclassified signals contain microbubbles and 148 

noise.  149 

Figure 2A and 2B show screen captures from a human subject’s gastrocnemius after an 150 

intravenous injection of Sonovue. It can be seen that microbubble signals, tissue signals (arrows 151 

in Figure 2A) and noise are visible in the image.  152 

 153 

2) Separating microbubble regions from regions of noise through examining temporal features 154 

It is assumed that the temporal noise of the ultrasound data is white noise (Bar-Zion, et al. 155 

2015, Barrois, et al. 2013) and hence broadband. For a pixel where a microbubble(s) passed 156 

through, the temporal signals are expected to have more low frequency components depending 157 

on the velocity of the microbubbles. Therefore a simple way to identify microbubble signal 158 

from noise is to look at the frequency features of the signals.   159 

Example time intensity curves (Figures 1A and 1C) and their spectra (Figures 1B and 1D) for 160 

microbubbles and noise from single pixels of in vivo human data are shown. It can be seen that 161 

the microbubble signal consists of more low frequency components, while the noise is spread 162 

over the whole spectrum, thus allowing their separation. In this study, we fix the time window 163 

for Fourier analysis to be 30 seconds. This is empirically chosen in order to generate reasonable 164 

amount of segmented bubble signal within the image plane. 165 

 166 
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Before describing the following steps of the method, the physiological relevance of the 167 

frequency of the microbubble signal should be explained. The rate of change of the intensity at 168 

a point is related to flow velocity. Therefore, given a single microbubble with velocity 𝑣𝑏 =
𝑑

𝑡
 , 169 

where the d is the distance travelled by it in time t either within or across the ultrasound imaging 170 

plane. For a certain concentration of microbubbles, if we assume that the microbubbles are well 171 

mixed and the average separation distance of two neighbouring microbubbles is D, while the 172 

duration between one bubble passing a certain pixel and its neighbour bubble passing the same 173 

pixel is T, the velocity of a single microbubble can be described by equation (2): 174 

𝑣𝑏 =
𝐷

𝑇
= 𝑓𝐷 (2) 

where f is the inverse of T, i.e. a frequency. Assuming a constant concentration, the frequency 175 

is linearly related to the velocity of microbubbles.  176 

While the frequency is determined by microbubble velocity, it is also affected by microbubble 177 

concentration and other factors. To improve the robustness of the method, instead of examining 178 

the fine features on the spectrum, a simple measure of relative weighting of the signals high 179 

and low frequency components is used in this study.  Given the microbubble signal, Ib(t), noise 180 

signal, In(t), and their power spectra 𝐼𝑏̂(𝑓) ,  𝐼𝑛̂(𝑓)  , a cut-off frequency, 𝑓′, is defined (see 181 

equation (3)) to separate the spectrum into low and high frequency regions. The area under 182 

curve is then calculated (exclude the DC component) for these two regions correspondingly.  183 

A high-to-low frequency ratio (HLFR) is calculated: 184 

𝐻𝐿𝐹𝑅 =  
∑ |𝐼(𝑓)|𝑓>𝑓′

∑ |𝐼(𝑓)|𝑓≤𝑓′ 

 (3) 

The ratio is used to classify a given signal as either microbubble or noise. For a pixel containing 185 

e.g a microvessel, as microbubbles occasionally pass this otherwise dark pixel, its temporal 186 
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signal is expected to have a higher proportion of lower frequency components than white noise. 187 

Consequently the HLFR of the pixel is expected to be smaller than that of noise.  188 

A histogram of normalised HLFR for each CEUS image sequence is then constructed where 189 

two peaks are expected (See Figure 3), one corresponding to microbubbles and the other to 190 

noise background. A HLFR threshold, 𝑇𝐻𝐿𝐹𝑅, is then determined to separate the microbubble 191 

and noise distribution. To automatically determine the threshold, the histogram is fitted using 192 

a double-Gaussian model. The threshold is set at the interception of these two Gaussian 193 

distributions (Otsu 1979). 194 

 195 

The cut-off frequency 𝑓′ in equation (3) to separate the high and low frequency components in 196 

the signal spectrum is important and needs to be optimised. We formulate an optimisation 197 

solution to estimate the optimal cut-off frequency, 𝑓 ′̂,  by maximising the distance between the 198 

bubble peak and noise peak, 𝐿(𝑓′), in the HLFR histogram, 199 

𝑓 ′̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑓′

(𝐿(𝑓′)) (4) 

Once the optimal 𝑓 ′̂  is determined, the threshold 𝑇𝐻𝐿𝐹𝑅  can be computed accordingly to 200 

segment out bubble areas. The normalised histogram is calculated from HLFR. The value of 201 

HLFR is normalised by the maximum HLFR within the ROI. The peak positions and the 202 

distance L are taken from the fit of two Gaussian distributions for a given cut-off frequency 𝑓′. 203 

The optimal cut-off frequency 𝑓 ′̂ is determined by an iterative procedure (optimisation). Given 204 

that there are only two types of signals, microbubbles and noise, the following constraints are 205 

set in order to obtain a valid solution. (1) Two peaks should exist and be positive; any negative 206 

peak is considered as an unphysical solution and therefore, is rejected. (2) There must be an 207 
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intersection between two peaks. We then choose the optimal cut-off frequency 𝑓 ′̂ such that the 208 

distance L is maximised. 209 

 210 

Finally a spatial filtering is conducted to the segmented image to remove isolated pixels of 211 

noise to further improve the robustness of the algorithm. A 3x3 pixel median filter is applied. 212 

The size of the filter is determined when taking into account the spatial extent of a microbubble 213 

in an image.  214 

 215 

Microbubble track density (MTD) measure  216 

The number of pixels identified as having bubble signals is normalized by the total number of 217 

pixels within the ROI to obtain the microbubble track density (MTD) measure for the ROI.  218 

𝑀𝑇𝐷 =
number of pixels with microbubbles

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑅𝑂𝐼
 (5) 

This measure is used as a surrogate for active vascular density within the ROI.  219 

 220 

Phantom flow model set up and validation 221 

The microbubble detection algorithm was validated on a flow phantom constructed in-house. 222 

It consisted of a contrast agent-filled solution in a tank. The flow was generated by a magnetic 223 

stirrer, which is placed under the tank. Given that the microbubbles were well mixed, such a 224 

setup offers repeatable experimental measurements with different concentrations of 225 

microbubbles.  226 

 227 
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The SonoVueTM (Bracco, Milan) microbubbles were used at six concentrations: 0 µL (control), 228 

0.05µL, 0.1µL, 0.15µL, 0.2µL and 0.25µL, diluted in 0.6L air-saturated water in a tank. A 229 

magnetic stirrer was used to stir the solution at 2 rev/second. CEUS data were acquired using 230 

the following in vitro scanning protocol. A clinical Philips iU22 ultrasound scanner (linear 231 

3/9MHz broadband linear array transducer, Philips Ultrasound, Bothell, USA) was used to scan 232 

the phantom with the following settings: gain = 69%, TGC = manually adjusted, frame rate = 233 

13Hz, compression = 50, persistence = off. The scanner MI was set at 0.06 and the contrast 234 

imaging mode on the scanner was used. With the low MI bubble destruction is largely avoided 235 

and better reduction of the harmonic component from the tissue is achieved. Three 10-second 236 

sequences were obtained for each volume of microbubbles. Analysis of CEUS video sequences 237 

was performed offline using software developed in-house, which is written in MATLAB (The 238 

Mathworks Inc., Natick, MA, USA). Regions of interest (ROIs) in the middle of the image 239 

covering a rectangular area of 245 x 70 pixels (1.75 cm x 0.5 cm) were selected manually. The 240 

MTD quantities generated by the proposed method are compared with the known 241 

concentrations of the microbubbles. The contrast specific imaging amplitude may be affected 242 

by bubble velocity due to signal decorrelation during the pulse sequence but the effect should 243 

be small. This is because our approach mainly depends on frequency measurement rather than 244 

amplitude, and also given the very short time interval between the two pulses (for a depth of 245 

7.5cm the time internal will be ~0.1ms), the small vessels we are interested where flow is low 246 

(much less than 1m/s). Furthermore, the data analysis was performed on video data which is 247 

log-compressed, which affects the noise statistics. 248 

 249 

In vivo methodology 250 
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Five healthy volunteers were recruited from a research centre (Charing Cross Hospital, 251 

Imperial College London). The study was approved by the National Research and Ethics 252 

Committee (reference 13/LO/0943) and each participant provided written informed consent.  253 

CEUS image sequences were acquired on the lower limb with a clinical PHILIPS iU22 scanner 254 

(3/9 MHz broadband linear array transducer, Philips Ultrasound, Bothell, USA) with the same 255 

settings as in vitro experiments. Contrast imaging mode in the scanner is used in this study. All 256 

the analyses were performed on such contrast specific images. B mode image is only used for 257 

motion estimation. SonoVueTM was diluted using normal saline via a mini-spike system (25mg 258 

in 20ml). It was given as a continuous intravenous infusion (VueJectTM, Bracco, Milan) via an 259 

18G cannula sited in an antecubital vein, at a rate of 4.0 mL/min. Subjects were positioned on 260 

an examination couch in the left-lateral position, with knees lightly flexed for comfort. Image 261 

sampling was taken perpendicular to the skin from the medial head of gastrocnemius in the left 262 

leg, and the skin was marked for repeated measures. Care was taken to standardise the relative 263 

positions of both subject and imaging clinician using rehearsal. Care was taken to standardise 264 

the relative positions of both subject and imaging clinician using rehearsal.  Imaging 265 

commenced about 10 seconds prior to infusion initiation, and due to the limit of the scanner 266 

storage two consecutive acquisitions (~2.5 minutes each) were made to capture the full infusion 267 

period of ~5 minutes. Care was taken to minimise image acquisition down-time between 268 

recording sessions. Steady-state destruction-reperfusion imaging was conducted approximately 269 

4 minutes after the infusion started, as an existing validated quantification method for 270 

comparison. The cannula was flushed with saline and disconnected. Subjects were exercised 271 

on a treadmill (walking speed: 2mph, +2%/3-mins, 15-minutes total), and then the imaging 272 

studies were repeated. The interval between cessation of exercise was minimised as far as 273 

practically possible. Measurements were repeated for each volunteer on consecutive days. One 274 

subject was excluded in this study due to acquisition error.  275 
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The whole image sequence was divided into five equal image segments of 300 frames each. 276 

The last segment was excluded in the data analysis to avoid the end of perfusion. Five region-277 

of-interests were computer generated for the purposes of analysis (dimensions and placement 278 

on screen kept constant for all scans; see Figure 4). The MTD for both pre-exercise and after-279 

exercise images were calculated and compared. Repeatability of the proposed method against 280 

destruction-reperfusion was also evaluated.  281 

 282 

Large blood vessels elimination 283 

Large blood vessels carrying large numbers of microbubbles may distort the measurement of 284 

active microvascular density. Visual inspection of scans can identify arteries and veins, and 285 

these can be manually removed from the ROI. A comparison before and after manual removal 286 

was made.   287 

 288 

Non-rigid motion compensation 289 

The motion of lower limb was tracked and corrected before any further processing by an image 290 

registration algorithm, MIRT (Myronenko 2006). The algorithm employs a non-rigid motion 291 

compensation framework (Lee, et al. 1997, Rueckert, et al. 1999). The MS similarity measure, 292 

assuming that Rayleigh speckle noise in consecutive images is correlated, was chosen to deal 293 

with noisy B-mode ultrasound images (Myronenko, et al. 2009). Maximum likelihood 294 

approach was used to estimate the transformation between the images and hence maximise the 295 

conditional probability. To keep the manuscript from being too long, and having the potential 296 

radiologist readers in mind, we only included a short description of the algorithm and referred 297 

to [M. Andriy, Non-rigid Image Registration: Regularization, Algorithms and Applications, 298 
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Ph.D. thesis, Oregon Health & Science University, 2010. 299 

http://digitalcommons.ohsu.edu/etd/370/] for details in the manuscript. Here are some details 300 

of the method: the registration is done by considering two 2D ultrasound images I and J 301 

acquired at consecutive time instances. The maximum likelihood approach to estimate the 302 

transformation T between the two images and hence maximise the conditional probability, 303 

p(J(T),| I,T), where we assumed that all pixel-wise conditional probabilities are independent 304 

and identically distributed. and J(T) denotes the intensity values of pixel after applying the 305 

transformation T. The MS similarity measure assumes that the Rayleigh noise n1 and n2 on 306 

image I and J are not independent. If two consecutive images I and J are taken with sufficiently 307 

high frame rate, which is the case for modern ultrasound devices, the speckle noise formation 308 

between the consecutive frames is similar, and the noise n1 and n2 are correlated. Then, the 309 

conditional probability becomes: 310 

 

(6) 

where D is the scaling constant of the dynamic range, ρ is the correlation coefficient and  = 311 

n1 /n2 312 

The registration and correction were firstly conducted on the simultaneously acquired B-mode 313 

sequence and then transferred to CEUS image sequence. 314 

 315 

Destruction and Replenishment (DR) analysis 316 

The in vivo flow quantification was calculated using destruction replenishment time-intensity 317 

data (Lindner, et al. 2008, Wei, et al. 1998). A frame obtained 0.08 second after destruction is 318 

used as the background and is subtracted from subsequent frames to eliminate signal from non-319 

http://digitalcommons.ohsu.edu/etd/370/
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capillary vessels (Belcik, et al. 2015). The replenishment curve was fitted with a mono 320 

exponential function, 𝑦 = 𝐴(1 − 𝑒−𝑡), where y is video intensity, A is plateau intensity and  321 

is the rate constant using a non-linear least squares fitting algorithm in MATLAB. The time 322 

sequence analysed was measured from destruction flash to the end of the following 500 frames. 323 

Peak intensity (𝐴), blood flow (𝐴 × 𝛽) and flow reserve (ratio of blood flow after exercise to 324 

resting blood flow) were calculated from this model, and compared with the results obtained 325 

by our microbubble detection algorithm. 326 

 327 

Statistical analysis 328 

The microbubble track density (MTD) measures were calculated and the difference before and 329 

after exercise tested using paired samples t tests. A two-tailed test was used, with alpha set at 330 

0.05. Statistical analysis was performed using online GraphPad Prism 6 (GraphPad Software 331 

Inc., San Diego, California, USA). For reproducibility the intra-class correlation coefficients 332 

(ICC) of MTD and DR methods for the four subjects’ two repeats on different days were 333 

calculated and compared.  334 

 335 

Results 336 

Phantom validation 337 

By examining the HLFR histograms two distinct peaks were detected at HLFR = 0.2 (𝑓 ′̂= 0.31 338 

rad/s, microbubbles) and HLFR = 0.75 (𝑓 ′̂= 0.31 rad/s, noise). The locations of both peaks 339 

were similar for different concentrations of microbubbles. The segmentation results of the 340 

phantom with five microbubble concentrations are shown in Figure 5. It can be seen that more 341 

microbubbles were detected at higher concentration.  342 
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 343 

The linear relationship between MTD and concentration is illustrated in Figure 6, with an R-344 

square value of 0.89. 345 

 346 

In vivo results 347 

The plots of normalised HLFR of four subjects before and after exercise are displayed in Figure 348 

3. Two distinct peaks are seen, the lower one corresponding to microbubbles and the higher 349 

peak for noise. The thresholds 𝑇𝐻𝐿𝐹𝑅  of the four subjects were automatically determined 350 

according to that described in section Microbubble detection algorithm to be 0.12 (𝑓 ′̂= 2.51, 351 

before exercise) and 0.167 (𝑓 ′̂= 2.51, after exercise) for subject 1, 0.093 (𝑓 ′̂= 1.88, before 352 

exercise) and 0.14 (𝑓 ′̂= 1.88, after exercise) for subject 2, 0.16 (𝑓 ′̂= 2.51, before exercise) and 353 

0.15 (𝑓 ′̂= 1.88, after exercise) for subject 3, and 0.4 (𝑓 ′̂= 1.26, before exercise) and 0.35 (𝑓 ′̂= 354 

0.94, after exercise) for subject 4,  and the unit of the frequency f’is rad/s. 355 

 356 

The segmentation results of four subjects before and after exercise are provided in Figure 7. It 357 

can be seen that the segmented microbubble areas increased after exercise.  358 

 359 

Destruction and Replenishment analysis 360 

The time intensity curves, fitted with the mono exponential function before and after exercise 361 

with a repeated scan are shown in Figure 4. The perfusion was increased after exercise. 362 

 363 
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Reproducibility 364 

The percentage change of microbubble track density after exercise for each scan is compared 365 

(Figure 8). The average percentage increase of microbubble track density (mean ± SD) was 366 

138.2% ± 79.8 at the first day and 119.4% ± 62.7 at the second day, and the average percentage 367 

increase of MTD for two days was 128.8%. While for the existing DR method, the average 368 

percentage increase of peak intensity (mean ± SD) was 75.6% ± 71.6 at the first day and 234.7% 369 

± 169.3 at the second day, and the average percentage increase of peak intensity for two days 370 

was 155.1%. For DR blood flow measurement, the average percentage increase (mean ± SD) 371 

was 213.8% ± 191.3 at the first day and 341.1% ± 215.4 at the second day for DR analysis, and 372 

the average percentage increase for two days was 277.4%. Furthermore, the DR average flow 373 

reserve (mean ± SD) was 3.1 ± 1.9 at the first day and 4.4 ± 2.2 at the second day for DR 374 

analysis, and the average flow reserve for two days was 3.7. Figure 9 also shows using a scatter 375 

plot how repeatable each method is. The proposed approach demonstrated excellent agreement 376 

on repeated measurements with high reproducibility (ICC = 0.96, p = 0.008), while the existing 377 

state-of-art DR analysis showed poor reproducibility of peak intensity (ICC = -0.39, p = 0.61), 378 

and better reproducibility of blood flow (ICC = 0.78, p = 0.09) and flow reserve (ICC = 0.78, 379 

p = 0.09). 380 

 381 

Analysis with large blood vessels 382 

The MTD using the proposed algorithm without removing large vessel signals was also 383 

calculated. The average percentage increase of microbubble track density (mean ± SD) was 384 

130.2% ± 69.8 at the first day and 115.8% ± 63.3 at the second day. The average percentage 385 

increase of MTD was 123% for two days.  Only a small change of ~6% in the averaged data is 386 
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found when comparing to the results with large vessels removed. The inclusion of large vessels 387 

does not change the repeatability of the results either (ICC = 0.97 vs. 0.96). 388 

 389 

Discussion 390 

A temporal and spatial image analysis method has been developed for detection and 391 

segmentation of microbubble signals to generate MTD, a quantitative surrogate measure for 392 

vascular density /tissue active capillary density. The method was validated in-vitro and then 393 

applied to healthy lower limb CEUS images to quantify active vascular density. The in-vitro 394 

results show an excellent linear relationship between the microbubble concentration and the 395 

MDT measure. The in vivo data on human lower limbs show a significant increase in MDT 396 

measure after exercise (129%) and the results are highly repeatable (ICC=0.96).  397 

 398 

It should be noted that the bubble velocity variations could affect the frequency spectrum of 399 

the temporal pixel signal. However, given the two very different types of signals we want to 400 

separate, slow microbubble movement in microvasculature versus very high frequency noise, 401 

and only a threshold (of high to low frequency ratio) is required, there is certain room in the 402 

methods to accommodate velocity variations. 403 

 404 

Quantification of active vascular density is valuable in a wide range of clinical applications. 405 

While CEUS imaging is increasingly used in clinical imaging and research, its repeatability 406 

and accuracy are still poor, largely due to the various factors that affect the image intensity-407 

based quantification measures (Tang, et al. 2011).  Since the relative frequency feature used in 408 

this method is image intensity independent and is robust to the various confounding factors 409 
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such as attenuation, the approach may potentially offer reliable and repeatable quantification 410 

results. It is shown that our method is much more repeatable than the accepted disruption-411 

replenishment analysis which is image intensity based (ICC of 0.96 vs 0.78). Moreover, our 412 

approach can also deal with microbubbles travelling perpendicular to the 2D imaging plane. 413 

 414 

Also, it is assumed that the concentration of detectable microbubbles is relatively low, given 415 

the typical clinical dose and the fact that many bubbles injected will be invisible under the 416 

clinical high frequency. 417 

 418 

Besides reproducibility, this proposed method can also help address another key issue of the 419 

existing method for limb vascular density quantification; the low SNR associated with low 420 

basal blood flows in humans. As the proposed technique makes use of temporal information 421 

accumulated over a couple of minutes, it is more robust to noise. The in vivo data of this study 422 

demonstrated detection of a significant amount of bubble signal corresponding to basal blood 423 

flow. 424 

 425 

 426 

The proposed method is based on temporal analysis of individual pixels so it is sensitive to the 427 

motion effect. As the motion of lower limb can be non-rigid (muscle movement may result in 428 

the images changing shape, and these shape changes cannot be corrected by a rigid body 429 

transformation), we employed a non-rigid motion correction (Myronenko, et al. 2009) to reduce 430 

motion artefacts. While this correction technique seems to be effective in correcting motion 431 

and allows the generation of repeatable quantification results, any remaining motion that is 432 



20 
 

uncorrected for could potentially introduce a bias in the quantification by magnifying vessel 433 

footprints.  434 

 435 

For some applications the primary target of interest is small capillary vessels, and hence the 436 

existence of large vessels, e.g. in the lower limb images in this study, is less desirable and may 437 

affect the quantification result. In this study we have identified the apparent large vessels in the 438 

data by visual inspections and manually removed them. We then compared the quantification 439 

results with or without the large vessels. In this case the results with and without large vessels 440 

in this case are very similar. The average percentage increase of MTD with large vessels is 441 

slightly smaller (123%) than the one without large vessels (129%) and the difference of average 442 

percentage increase is not statistically significant. This indicates that the result is not 443 

significantly affected by large vessels.  As our approach counts the areas that any microbubble 444 

covers in CEUS images, even a single bubble slowly flowing through a small vessel would 445 

cover a significant area due to the point spread function of imaging system being much larger 446 

than the size of a microbubble/capillary. Therefore our approach seems to favour small vessels 447 

than larger ones which might explain why the existence of large vessels did not have a 448 

significant effect.  449 

 450 

Our destruction reperfusion analysis is concordant with that reported in existing literature 451 

(Lindner, et al. 2008). The peak intensity and blood flow measurements increased after 452 

exercise.  However, the reproducibility is not reported in that study. When our DR method is 453 

compared with MTD, the reproducibility characteristics of MTD are much more favourable.  454 

  455 
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The delay between the exercise and the imaging (~2 minutes) could reduce the flow reserve 456 

measurements. Another factor is that the physical exercise in this study is not very stressful so 457 

only a minor vasodilatation is expected. Both factors contributed to the low flow reserve 458 

comparing to that in (Lindner, et al. 2008). It should be noted that comparing to perfusion, the 459 

vascular density / MTD measured in this study is less dependent on e.g. the applied stress 460 

(exercise), the subject's physical condition, and the time taken from exercise to imaging. 461 

 462 

   463 

It should be noted that our approach is different to the maximum intensity projection (MIP) 464 

(Anderson, et al. 1990, Parker, et al. 1988), which display the maximum image intensity during 465 

the whole acquisition period at each pixel. While MIP is a good tool to visualise vascular 466 

morphology, it is still image intensity based and has similar issues as other existing techniques 467 

when used for vascular density quantification.  468 

 469 

The proposed method can be affected by the concentration of bubbles. Using too high a 470 

concentration of bubbles may cause saturation in the bubble detection results. Such saturation 471 

can be dealt with by either taking shorter video sequences, or by applying a statistical formula 472 

(Siepmann, et al. 2010). Furthermore, it should be noted that the number of subjects is low 473 

(n=4) in this study and the proof-of-concept nature of this study. Further work on more subjects 474 

would be useful to confirm the robustness of our method. 475 

 476 

The present study does not measure kinetics and hence perfusion. However, the frequency 477 

features of the image sequence data have information that allows not only an effective 478 
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separation of bubbles from noise, but also potentially the velocity information of the blood 479 

flow. A pixel within a vessel with faster flow will generate higher temporal frequencies due to 480 

the more frequent appearance of microbubbles in the pixel temporal signal. These frequencies 481 

will also be dependent on microbubble concentration and further studies should be conducted 482 

to explore this extra information in the CEUS temporal signals.  483 

 484 

It should be noted that the out-of-plane motion could still affect the quantification, if 485 

homogeneity in microvessel distribution in the tissue cannot be assumed. Further studies to 486 

take into account out-of-plane motion, techniques such as 3D US/CEUS imaging and motion 487 

correction could potentially improve the quantification results. 488 

 489 

We observed that there is often single-pixel noise remaining, known as salt-and-pepper noise, 490 

after our bubble detection algorithm. To remove such noise but keep microbubble signals, we 491 

used a 3x3 median filter. The size of the filter is determined by measuring apparent 492 

microbubble sizes at various image depths under the experimental system settings described in 493 

the Methods section. The smallest bubble size is ~ 5 by 5 pixels. The image resolution is ~ 14 494 

pixel per mm so the pixel size is ~ 0.07mm 495 

 496 

This technique has great potential for clinical translation. Practically, it would be feasible to 497 

use tens of seconds of standard clinical CEUS scan data during plateau phase, and the 498 

quantification process can be fully automated with high repeatability. It has great potential in 499 

the real-time assessment of limb vascular density /active capillary density in patients with 500 

peripheral vascular density deficits. The need for cardiovascular ionotropic support can have 501 
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negative effects on peripheral vascular density, and CEUS may be able to guide intravascular 502 

filling needs and ionotropic support. CEUS could be used to accurately quantify capillary 503 

vascular density in post-operative surgical flap monitoring, guiding patient management and 504 

decision making. Our automated CEUS method could be used in an outpatient setting, provide 505 

a potentially valuable biomarker for clinically significant peripheral arterial disease, or attribute 506 

information to the management of the patient with a diabetic foot (prognosis, surgical planning, 507 

treatment monitoring). It also has the potential to be extended to other clinical applications, 508 

e.g. quantification of carotid/aortic plaque neovascularisation, breast screening or cancer 509 

monitoring.  510 

 511 

Conclusions 512 

The proposed microbubble detection method demonstrated excellent accuracy and 513 

repeatability in quantifying active vascular density and has great potential for clinical 514 

translation in the assessment of lower limb vascular density and beyond. 515 

 516 
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 621 

Figure 1: The time intensity curve and power spectrum of (A, B) microbubbles (C, D) noise 622 

The power spectrum density in Fig2B and 2D represents the frequency composition of the pixel 623 

temporal signal (Fig2A and 2C). Such frequency spectrum indicates how fast the pixel signal 624 

changes over time. For a pixel containing only noise, the signal changes has both fast (high 625 

frequency) and slow (low frequency) components in the spectrum (broadband) (Fig2D). For 626 
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bubble signal the change is slow and it has a peak at lower frequencies in the spectrum (Fig2B). 627 

The position of the peak depends on the bubble flow velocity as explained in the Methods 628 

section and equation (2).  629 

 630 

Figure 2: Contrast-enhanced ultrasound screen captures from human gastrocnemius muscle in 631 

vivo, after injection of Sonovue. (A) CEUS mode image with tissue and microbubble signals 632 

are labelled with arrows. and (B) B-mode image 633 

 634 

 635 

Figure 3: The normalised HLFR of (A, B) subject 1, (C, D) subject 2, (E, F) subject 3, (G, H) 636 

subject 4 before and after exercise of first day scan 637 

 638 

Figure 4: The disruption-replenishment time intensity curves with mono exponential of (A, B) 639 

subject 1, (C, D) subject 2, (E, F) subject 3, (G, H) subject 4 for the first and second day scans 640 

[BE - before exercise, AE - after exercise] 641 

 642 

Figure 5: The segmentation results of the phantom with five microbubbles concentrations (A) 643 

0.05µL (B) 0.1µL (C) 0.15µL (D) 0.2µL (E) 0.25µL [The height of the ROI: 0.7cm] 644 

 645 
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Figure 6: Microbubble track density measure versus microbubble concentration in the 646 

phantom. Three repeats of washing and re-injecting bubbles (Wash) and three repeats for each 647 

bubble injection were made 648 

 649 

Figure 7: The CEUS segmentation results of subject 1 (A, B), subject 2 (C, D), subject 3 (E, F) 650 

and subject 4 (G, H), taken from gastrocnemius before and after exercise 651 

 652 

Figure 8: (A) Microbubble track density quantification by our microbubble detection algorithm 653 

per scan and (B) Peak intensity, (C) Blood flow, (D) Flow reserve by Destruction and 654 

Replenishment analysis before and after exercise 655 

 656 

Figure 9: The plot of percentage change of first day scan vs second day scan by (A) 657 

Microbubble track density quantification and (B) Peak intensity, (C) Blood flow, (D) Flow 658 

reserve by destruction-replenishment analysis. (n=4) 659 

 660 

Video: Contrast-enhanced ultrasound movie from human gastrocnemius muscle in vivo, after 661 

injection of Sonovue. (left panel) CEUS mode image with tissue and microbubble signals are 662 

labelled with arrows and (right panel) B-mode image 663 

 664 


