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Studies have shown that intra-plaque neovascularisation (IPN) is closely correlated with plaque 31 

vulnerability. In this study, a new image processing approach, differential intensity projection 32 

(DIP), was developed to visualise and quantify IPN in contrast enhanced ultrasound (CEUS) 33 

image sequences of carotid arteries. DIP used the difference between the local temporal 34 

maximum and the local temporal average signals to identify bubbles against tissue background 35 

and noise. The total absolute and relative areas occupied by bubbles within each plaque were 36 

calculated to quantify IPN. In vitro measurements on a laboratory phantom were made, 37 

followed by in vivo measurements where twenty-four CEUS image sequences of carotid 38 

arteries from 48 patients were acquired. The results using DIP were compared with those 39 

obtained by maximum intensity projection (MIP) and visual assessment. The results show that 40 

DIP can significantly reduce nonlinear propagation tissue artefacts and is much more specific 41 

in detecting bubble signals than MIP, being able to reveal microbubble signals which are buried 42 

in tissue artefacts in the corresponding MIP image. A good correlation was found between 43 

microvascular area (MVA) (r = 0.83, p < 0.001) / microvascular density (MVD) (r = 0.77, p < 44 

0.001) obtained using DIP and the corresponding expert visual grades, comparing favourably 45 

to r = 0.26 and 0.23 obtained using MIP on the same data. In conclusion, the proposed method 46 

shows great potential in quantification of IPN in contrast enhanced ultrasound of carotid 47 

arteries. 48 

 49 

Key words: differential intensity projection, contrast enhanced ultrasound, carotid artery, 50 
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Introduction 54 

Stroke is a leading cause of death in the world-wide (Fuster and Voûte 2005). The formation 55 

of vulnerable atherosclerotic plaque in the carotid artery increases the risk of stroke (U-King-56 

Im et al. 2009; Mughal et al. 2011). Several studies have reported that intraplaque 57 

neovascularisation (IPN) is a precursor of intraplaque haemorrhage (IPH) and IPN could thus 58 

be a surrogate biomarker of unstable plaque (Feinstein 2006; Virmani et al. 2006; Hellings et 59 

al. 2010). Therefore, quantification of IPN can be used for the early detection and clinical 60 

management of unstable atherosclerotic plaques and hence minimise the risk of stroke.  61 

 62 

Recently, contrast-enhanced ultrasound (CEUS) imaging with microbubble contrast agents has 63 

provided a unique tool for visualizing and quantifying IPN. It has shown promise for imaging 64 

plaque vasculature. Several groups (Feinstein 2004; Coli et al. 2008; Giannoni et al. 2009; Lee 65 

et al. 2010) have established correlations between CEUS imaging results and histological 66 

plaque neovascularisation and the risk of plaque rupture. However, in these studies, only 67 

subjective visual assessment was used to quantify the findings. Furthermore, although several 68 

computer algorithms (Hoogi et al. 2012; Akkus et al. 2013) are available to assist in the 69 

quantitative analysis of the images, they have some limitations. Hoogi et al. proposed a method 70 

for segmenting the contrast spots within atherosclerotic plaques in individual images by 71 

tracking individual microbubbles. The main advantage of this approach is that it utilises the 72 

temporal behaviour of bubble flow can be demonstrated. This makes it robust to noise and 73 

allows differentiation between blood vessels and artefacts. However, several parameters of the 74 

algorithm were determined empirically from a few sequences, which may be a variable to 75 

quantitative results. Akkus et al. developed a statistical segmentation of carotid plaque 76 

neovascularisation. An iterative expectation-maximisation algorithm was employed to solve a 77 
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mixture estimation problem to identify contrast microbubble signals. But, this technique has 78 

difficulties quantifying IPN reliably for plaques located on the far wall of the carotid artery due 79 

to nonlinear propagation artefacts (also called pseudo-enhancement artefact) (Tang and 80 

Eckersley 2006; Tang et al. 2010). Non-linear propagation of ultrasound creates artefacts in 81 

CEUS images that could significantly affect both qualitative and quantitative IPN assessments 82 

(ten Kate et al. 2012). Although there are correction methods (Renaud et al. 2012; Yildiz et al. 83 

2015) to remove non-linear artefact, they are not available on current commercial scanners. 84 

 85 

Moreover, the maximum intensity projection (MIP) is a common intensity-based bubble 86 

imaging method. It can visualise bubble paths (i.e. vessel trajectories) by displaying the 87 

maximum intensity over time for each pixel in CEUS images (Suri et al. 2002; van Ooijen et 88 

al. 2003; Hoogi et al. 2011). While this approach is sensitive, simple and fast, the disadvantage 89 

is that this method has low specificity to bubbles. In particular, it is difficult to distinguish 90 

between tissue artefact due to nonlinear propagation and blood vessels, and therefore it could 91 

generate over-estimated vessel paths and affect quantification results.  92 

 93 

The objective of this study was to develop and evaluate a sensitive, specific, simple and fast 94 

microbubble detection technique for CEUS carotid artery imaging by using differential 95 

intensity projection (DIP). This technique was demonstrated in vivo, and applied to the 96 

quantification of intraplaque neovascularisation in vivo. 97 

 98 

 99 

Methods 100 
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Differential intensity projection 101 

The proposed algorithm worked at a pixel level to detect microbubble signals. The CEUS 102 

images contained primarily three components: tissue artefact, noise, and microbubble signals. 103 

The differential intensity projection (DIP) was defined as below to capture the microbubble 104 

signals. 105 

𝐷𝐼𝑃(𝑥𝑖 , 𝑦𝑖) = maximun(𝐼(𝑡, 𝑥𝑖 , 𝑦𝑖)) − 〈𝐼(𝑡, 𝑥𝑖 , 𝑦𝑖)〉 (1) 

 106 

where DIP(xi, yi) is the differential image intensity at the ith pixel between the temporal peak 107 

signal 𝐼(𝑡, 𝑥𝑖, 𝑦𝑖)  and the temporal average intensity 〈𝐼(𝑡, 𝑥𝑖 , 𝑦𝑖)〉 . For a given bubble 108 

occasionally passing an otherwise dark image pixel, the peak intensity was expected to be much 109 

higher than the average intensity. On the other hand, the peak intensity and the average intensity 110 

were expected to be similar for tissue signal. For noise both the peak and average intensity are 111 

expected to be relatively low. As a result, the differential intensity of pixels containing 112 

microbubble signals is expected to be higher than that of tissue or noise.  113 

 114 

Threshold selection 115 

A threshold in differential intensity was required to separate microbubble signals from tissue 116 

and noise. It was estimated from the histogram of differential intensity projection, an example 117 

of which is shown in Figure 1. It should be noted that the threshold is automatically adjusted 118 

for each patient based on the entire image. The intensity histogram of differential intensity 119 

projection is constructed (see Figure 2). The threshold is determined at the intersection point 120 

of microbubble and tissue distributions. 121 

 122 
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 123 

Microvascular area and density 124 

The ROI in plaque was selected manually. The number of pixels identified as containing bubble 125 

signal was defined as the microvascular area (MVA), which can then be normalized by the 126 

total number of pixels within the plaque ROI to obtain the microvascular density (MVD) 127 

measure for the ROI.  128 

𝑀𝑉𝐷 =
MVA

𝑎𝑟𝑒𝑎𝑜𝑓𝑅𝑂𝐼
 (2) 

 129 

In-vitro study 130 

The DIP algorithm was validated on a simple laboratory phantom constructed in-house and 131 

shown in Figure 1A. It consisted of a piece of tissue-mimicking material, above which a highly 132 

diluted microbubble suspension was gently stirred to simulate individual bubbles moving 133 

within the phantom.  134 

 135 

Clinical application (plaque) 136 

Forty-eight patients previously treated for head and neck cancer (HNC) with at least one risk 137 

factor for atherosclerosis were recruited from a cancer centre. These patients are asymptomatic 138 

for cardiovascular events. From this group, 24 videos with carotid plaque were selected for this 139 

study. The study was approved by the institutional research and ethics committee and each 140 

patient provided informed consent. CEUS image sequences were acquired on both sides of the 141 

neck with a clinical scanner (GE Vivid7 with a 9 MHz broadband linear array transducer). The 142 

GE scanner was used to scan the subject with the following settings: MI = 0.21, Gain = 0, DR 143 
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= 54, TGC = manually adjusted, Frequency = 3.2/6.4 MHz. The contrast mode is used to 144 

perform contrast enhanced imaging. Contrast-enhanced ultrasound video loops were taken 145 

using a commercially available ultrasound contrast agent, SonoVueTM (Bracco, Milan) given 146 

as an intravenous infusion via a peripheral vein at a rate of 1.2 mL/min.  The infusion was 147 

delivered over a total of 5-7 minutes.  Imaging was performed in real-time prior to the arrival 148 

of and following the saturation of the carotid artery with SonoVue.  149 

 150 

 151 

Visual assessment 152 

IPN was graded semi-quantitatively as absent (Grade 0), limited to the adventitia/plaque base 153 

(Grade 1) or extensive and/or extending into the plaque body (Grade 2) by a clinician (Dr. 154 

Shah).  155 

 156 

Motion compensation and DIP 157 

The motion of carotid artery was tracked and corrected by a dedicated motion correction 158 

algorithm (Stanziola et al. 2015). The algorithm consisted of three steps: (A) Pre-processing, 159 

(B) Lumen segmentation and (C) Registration.  In the first step, large rigid motions were 160 

removed by a rigid registration. Then, the algorithm used the information of the cardiac cycle 161 

and the Gabor filter responses of the corresponding frames to obtain a mixture of frames where 162 

the fragmentation of the lumen signal was largely removed. In the second step, the lumen was 163 

segmented by using thresholding and level set methods. A binary mask of the lumen region 164 

was obtained for each frame. Finally, a non-rigid registration was performed to correct the 165 

motion effect on each frame based on minimising the energy functional of non-lumen region 166 
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of two consecutive images and the energy functional of segmented lumen region of two 167 

consecutive binary masks. 168 

Then DIP images were calculated for each CEUS image sequence using Eqn (1). Maximum 169 

Intensity Projection (MIP) images were also obtained for comparison purpose. 170 

 171 

Regions of interest (ROI) analysis 172 

Analysis of CEUS video sequences was performed off-line using software developed in-house 173 

using MATLAB (The MathWorks, Natick, MA, USA). Carotid plaques were segmented 174 

manually as the regions of interest (ROIs) by a clinical expert (Dr Chahal) using both CEUS 175 

sequence and maximum intensity projection (MIP) (Figure 2, first and second columns). Both 176 

MVA and MVD were calculated for each plaque, and results compared with visual grading. 177 

 178 

Statistical analysis 179 

The sample size was small and not normally distributed. Therefore, non-parametric statistical 180 

analyses were used in this study. The correlation between the visual grade and the MVA/MVD 181 

derived from our method was tested by Spearman rank correlation. The differences between 182 

the mean rank of MVA/MVD and the visual grade groups were tested by Kruskall-Wallis test 183 

with alpha set at 0.05. Statistical analyses were performed using SPSS (IBM Corp. Released 184 

2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, New York, USA). Further, a 185 

comparison between MIP and DIP using patient data was performed  186 

 187 

Results 188 
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In-vitro study 189 

The CEUS image of the phantom, MIP and DIP images were shown in Figure 1. It can be seen 190 

that while the microbubble detection is similar between the MIP and DIP, the tissue linear 191 

artefact at the lower part of the image in the CEUS image and the MIP was completely removed 192 

in DIP image. 193 

 194 

Differential Intensity Histogram and Threshold selection 195 

By examining the histogram of differential intensity projection (0.25) (Figure 2, dotted line), it 196 

can be seen that there are peaks in the histogram corresponding to microbubble, tissue and 197 

noise. 198 

 199 

Visual Assessment and Differential intensity projection  200 

Among the 24 video sequences, Grade 0 IPN was seen in 12/24 videos, while Grade 1 IPN in 201 

8/24 videos and Grade 2 IPN in 4/24 videos. Examples of CEUS images and the MIP images 202 

with each visual grade are shown in Figure 3. The corresponding DIP images are shown in 203 

Figure 2 (third column).  204 

 205 

By examining MIP and DIP images of the same dataset against visually confirmed bubble 206 

signals by clinician experts (solid arrows in the images), DIP showed not only much less 207 

nonlinear tissue artefact and better image contrast, but also clearly revealed IPN signals which 208 

were buried by tissue artefacts in the corresponding MIP image (Figure 2B).  209 

 210 
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Clinical evaluation (MVA and MVD) 211 

The average and the median of MVA for each visual grade are shown in Table 1. It can be 212 

observed that both mean and median of MVA increased with the visual grade. Furthermore, 213 

Table 2 shows the average and the median of MVD for each visual grade. It can be seen that 214 

both mean and median of MVD increased with the visual grade.  215 

The box plots of visual grade vs MVA or MVD were displayed in Figure 4. 216 

 217 

Spearman's rank correlation coefficient 218 

Both MVA and MVD were significantly correlated with the visual grade (R= 0.83 and 0.77 219 

respectively, (p < 0.001 for both) for DIP.  This is a significant improvement over those 220 

obtained by MIP (MVA: R = 0.26, MVD: R = -0.23). 221 

 222 

 223 

Kruskal-Wallis Test 224 

Table 3 shows the visual grade groups comparison. For the group grade 0 vs grade 1, there was 225 

a significant difference in MVA or MVD at α = 0.05. Similarly, there was a significant 226 

difference in MVA or MVD at α = 0.05 for the group grade 0 vs grade 2. However, for the 227 

group grade 1 vs grade 2, the difference in MVA or MVD was not significant at α = 0.05, while 228 

the difference in MVD was significant at α = 0.1. 229 

 230 

Discussion 231 
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In this study a new image processing approach, differential intensity projection (DIP), was 232 

developed to visualise and quantify plaque IPN in CEUS image sequences of carotid arteries 233 

in vivo. Compared with existing method MIP, the proposed DIP can significantly reduce 234 

nonlinear propagation tissue artefacts and improve imaging specificity, as validated in the in 235 

vitro study where ground truth is available. Two quantitative measures, MVA which is related 236 

to the total vascular areas occupied by IPN in the plaque, and MVD which is a vascular density 237 

measure, were generated based on each DIP image. The in vivo data on human carotid artery 238 

analysed by DIP showed a strong and much higher correlation between MVA/MVD and visual 239 

IPN grade than that by MIP. There was also a significant difference in MVA/MVD between 240 

patient groups (i.e. grade 0 vs grade 1 or grade 0 vs grade 2).  241 

 242 

Quantification of IPN  as a novel surrogate marker for stroke risk can be highly valuable in 243 

clinical diagnosis. Recently, several groups have developed various methods for IPN 244 

quantification. Huang et al. (Huang et al. 2008) proposed a dynamic evaluation of the plaque 245 

enhancement by a time intensity curve analysis (TIC). TIC is commonly used in analysing 246 

large and well perfused organs, for example, the liver, prostate and heart. However, plaques in 247 

the carotid artery are often small and weakly perfused. Therefore, TIC analysis may not be 248 

appropriate to quantify microvessels in plaques. Hoogi et al. (Hoogi et al. 2012) adopted 249 

electrocardiogram (ECG) gating to correct for motion and only one CEUS image per cardiac 250 

cycle was used. Hence, the connection of microvessel paths after time integration may be lost. 251 

More importantly, these algorithms can be significantly affected by the nonlinear propagation 252 

tissue artefact. The DIP method has a unique advantage of being able to efficiently reduce such 253 

tissue artefacts.  254 

 255 
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One challenge of quantifying neovascularisation in plaque is tissue motion. It is caused by the 256 

expansion and contraction of blood vessels, breathing and swallowing. Our dedicated motion 257 

compensation algorithm (Stanziola et al. 2015) was applied to improve the quantification of 258 

IPN. The software performs better than other current available methods. It should be noted that 259 

even if motion compensation is applied, some out-of-plane motion could still affect the 260 

quantification. Any non-corrected motion will potentially introduce artefacts into DIP images. 261 

Further studies to take into account of out-of-plane motion could further improve the 262 

quantification results. 263 

 264 

Besides the nonlinear propagation tissue artefact and motion compensation, attenuation is also 265 

an important consideration that may affect quantification. Whilst it appeared in our study that 266 

quantification was not significantly affected by attenuation, it may not always be the case. 267 

Recently, Cheung et al (Cheung et al. 2015) have developed an automated attenuation 268 

correction and normalisation algorithm to improve the quantification of contrast enhancement 269 

in ultrasound images of carotid arteries. The algorithm firstly corrects for attenuation artefact 270 

and normalises intensity within the contrast agent-filled lumen and then extends the correction 271 

and normalisation to regions beyond the lumen. 272 

 273 

The proposed method can generate more specific visualisation of vessels and more reliable IPN 274 

quantification. It could have important implications for clinical screening, diagnosis and 275 

management of this important disease. Specifically, such quantitative information on plaque 276 

vascularisation enables improved patient risk stratification and potentially improves drug 277 

treatment by providing a tool for monitoring treatment. 278 
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 279 

The DIP is simple and computationally efficient and can be implemented in real time, as it only 280 

involves simple mathematical operations. The quantification process is semi-automated, only 281 

requiring manual input for segmenting the plaques. Fully automated segmentation is possible 282 

but requires further studies. 283 

 284 

It should be noted that there is some overlap in MVD between grade 1 and grade 2 plaques and 285 

the difference was not statistically significant. This is likely due to the the small sample size of 286 

the analysis (n=4 for grade 2). More patient data in future studies would help demonstrate any 287 

significance in quantification results between the two groups using our method. 288 

 289 

In our clinical data only two out of the twenty four plaques are located in the near wall, while 290 

there are 22 plaques found in the far wall. Due to the low number of the near wall plaques it is 291 

not possible to draw any conclusion on how our method performs on plaques located at the 292 

different sides of the wall. However, it should be noted that the correlation of the far wall 293 

quantification by DIP improved significantly over MIP.  294 

 295 

  296 

Conclusions 297 

DIP is demonstrated to be a specific, simple and fast technique for visualisation and 298 

quantification of small vessels in CEUS images and has potential for clinical assessment of 299 

intraplaque neovascularisation. 300 
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 370 

 371 

Figure 1: (A) The CEUS image of tissue mimicking phantom (B) Maximum intensity 372 

projection (C) Differential intensity projection. 373 

 374 

Figure 2: Histogram of differential intensity projection 375 

 376 

Figure 3: First column: CEUS image with ROI. Second column: Maximum intensity 377 

projection. Third column: Differential intensity projection.  (A) plaque with grade 0 (B) plaque 378 
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with grade 1 (C) plaque with grade 2, tissue artefact is indicated by a dashed arrow and bubble 379 

signal is indicated by a solid arrow. 380 

 381 

Figure 4: Box plot of visual grade versus (A) MVA (B) MVD, outlier is indicated by a circle 382 

with number. 383 

 384 

Video: A CEUS video sequence of a carotid artery with IPN (Grade 2), where microbubbles are seen 385 

passing through the plaque (red arrows). 386 

 387 

Table 1: The average and median of MVA for each visual grade 388 

Visual Grade Mean ± SD Median 

Grade 0 1.42 ± 2.90 0 

Grade 1 95.67 ± 105.58 48 

Grade 2 538.50 ± 701.27 228.5 

 389 

Table 2: The average and median of MVD for each visual grade 390 

Visual Grade Mean ± SD Median 

Grade 0 0.08 ± 0.47 (%) 0% 

Grade 1 1.21 ± 1.40 (%) 0.40% 

Grade 2 8.26 ± 12.88 (%) 2.18% 

 391 

Table 3: Visual grade groups comparison by Kruskal-Wallis test 392 
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Visual Grade Groups Comparison MVA MVD 

Grade 0 vs Grade 1  p = 0.001*  p = 0.006* 

Grade 1 vs Grade 2 p = 0.126 p = 0.062 

Grade 0 vs Grade 2  p = 0.001*  p = 0.001* 

* significant at α = 0.05 

 393 


