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Abstract

In this work we consider two-dimensional capillary-gravity waves propagating

under the influence of a vertical electric field on a dielectric of finite depth

bounded above by a perfectly conducting and hydrodynamically passive fluid.

Both linear and weakly nonlinear theories are developed, and long-wave model

equations are derived based on the analyticity of the Dirichlet-Neumann oper-

ator. Fully nonlinear computations are carried out by using a time-dependent

conformal mapping method. Solitary waves are found, and their stability char-

acteristics subject to longitudinal perturbations are studied numerically. The

shedding of stable solitary waves is achieved by moving a Gaussian pressure on

the free surface with the speed close to a phase speed minimum and removing

the pressure after a period of time. The novel result shows that a depression

bright solitary wave and an elevation generalised solitary wave co-exist in the

solitary-wave excitation.
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1. Introduction

Electrohydrodyanmics (EHD), which is concerned with the coupling between

electric fields and fluid flows, enjoys a wide range of applications in chemistry
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and engineering, such as coating processes in [1], and cooling systems in a con-

ducting pump in [2]. In practice, an EHD problem usually involves a free surface5

or an interface between two liquids. Therefore, a good understanding of wave

motions under electric fields benefits the engineering community. Research on

EHD interfacial waves was first conducted by Taylor & McEwan in [3]. Their

theoretical and experimental results showed that normal electric fields can lead

to a destabilization of the interface between a conducting fluid and a dielectric.10

A few years later, Melcher & Schwarz performed a linear stability analysis of

the problem under tangential electric fields, which were shown to be capable of

regularizing short waves in [4]. These two early works described the e↵ect of

electric fields on the linear stability of interfacial waves. The study was then ex-

tended to many other EHD problems. For example, two works by [5, 6] showed15

the control and suppression of the Rayleigh-Taylor instability using horizontal

electric fields. Nonlinear EHD Kelvin-Helmholtz instability was investigated in

[7, 8]. Large amplitude travelling waves in electrified fluid sheets were computed

using the full Euler equations in [9]. The touch-down singularity was observed in

a thin film in [10], where the lowest point of the fluid interface reaches the solid20

bottom. The theoretical studies in the aforementioned references employed the

method of multiple scales, whereas the numerical results were obtained either

by a boundary integral method or direct numerical simulations.

In the absence of electric fields, the problem reduces to the study of classic

capillary-gravity waves. It is well acknowledged that a Korteweg-de Vries (KdV)25

equation can be derived for two-dimensional long capillary-gravity waves. The

equation admits elevation solitons for ⌧ > 1/3, and depression solitons for ⌧ <

1/3, where ⌧ is the Bond number defined by

⌧ =
�

⇢gh2
, (1)

with � being the coe�cient of surface tension, g the acceleration due to gravity,

⇢ the fluid density and h the thickness of the fluid layer. However, when solving30

the full Euler equations, depression and elevation solitary waves were found by

[11, 12] for ⌧ < 1/3. The elevation waves from the former paper are characterised
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by a train of non-decaying oscillations in the far field. These waves are the

so-called generalized solitary waves, and it was later shown in [13] that the

oscillatory tails never vanish. In this work, we examine whether the e↵ect of35

electric fields can remove the far-field ripples of the generalized solitary waves.

The problem of two-dimensional free-surface capillary-gravity waves propa-

gating on a perfectly conducting fluid under the e↵ect of vertical electric fields

has been investigated intensively by many authors. In the papers of [14, 15, 16]

the KdV, modified KdV and KdV-Benjamin-Ono equations were derived re-40

spectively. These models were obtained in the long-wave approximation, where

the depth of fluid layer is assumed to be much smaller than the typical wave-

length. A comprehensive summary of the model equations can be found in [17].

Fully nonlinear travelling-wave solutions were found in [18], based on a bound-

ary integral method. It is noted that there are no studies on time-dependent45

solutions of the full Euler equations. However, when the fluid is assumed to be

a dielectric, and the gas layer a perfect conductor, a time-dependent conformal

mapping technique, first pioneered by [21], was employed in [19] to compute

the dynamics of solitary waves in deep water. In this work, we generalize the

results of [19] to the case of a finite-depth fluid layer and examine the destabi-50

lizing e↵ect of the normal electric field. Both weakly nonlinear models and fully

nonlinear computations are considered.

The rest of the paper is structured as follows. The problem is formulated

mathematically in section 2 . The linear theory and weakly nonlinear models

are derived respectively in section 3 and 4 . The numerical scheme based on55

the time-dependent conformal mapping is described in section 5 . The fully

nonlinear results are presented and discussed in section 6 . Finally, a conclusion

is given in section 7 .

2. Formulation

We consider the two-dimensional irrotational flow of an inviscid incompress-

ible fluid of finite depth that is bounded above by a hydrodynamically passive
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Figure 1: Configuration of the problem. The gravity acts in the negative y-direction. We

denote the equation of the unknown free surface by y = ⇣(x, t).

region. The fluid is assumed to be a perfect dielectric with permittivity ✏0. The

passive region above the fluid is assumed to be perfectly conducting. This Di-

electric (fluid) – Conductor (gas) system is actually a one-layer problem which

can be formulated by using Cartesian coordinates with the y-axis directed ver-

tically upwards, and y = 0 at the undisturbed level. The formulation is shown

in figure 1 . The gravity g and the surface tension � are both included in the

formulation. The deformation of the free surface is denoted by y = ⇣(x, t).

A vertical electric field with voltage potential v is applied. We assume that

v = �V0 at the bottom, where V0 is a constant. Since the fluid motion can be

described by a velocity potential function �(x, y, t), the governing equations can
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then be written as

r
2
� = 0, for y < ⇣(x, t), (2)

r
2
v = 0, for y < ⇣(x, t), (3)

⇣t = �y � �x⇣x, on y = ⇣(x, t), (4)

v = 0, on y � ⇣(x, t), (5)

v = �V0, on y = �h, (6)

�y = 0, on y = �h. (7)

Furthermore, it is shown in [19] that the Bernoulli equation satisfied on the

free-surface gives

�t +
1

2
|r�|

2 + gy �
✏0

⇢(1 + ⇣2x)


1

2
(1� ⇣

2
x)(v

2
x � v

2
y) + 2⇣xvxvy

�

�
�

⇢

⇣xx

(1 + ⇣2x)
3/2

= 0, on y = ⇣(x, t), (8)

where the subscripts denote partial derivatives. The last three terms of (8) are60

respectively the force due to gravity, the Maxwell stresses resulting from the

electric field, and the force due to surface tension. Equations (4) and (7) are

the kinematic boundary condition on the free surface and the no-penetration

condition at the bottom. The condition (5) expresses the fact that the region

above the fluid is a perfect conductor, and in turn implies65

vx + vy⇣x = 0, on y = ⇣(x, t). (9)

Condition (9) allows us to manipulate the electric field term in the dynamic

boundary condition (8), resulting in

�t +
1

2
|r�|

2 + g⇣ +
✏0

2⇢
|rv|

2
�
�

⇢

⇣xx

(1 + ⇣2x)
3/2

= 0 on y = ⇣(x, t). (10)

We choose h,
p
h/g and V0 as the reference length, time and voltage potential

respectively. In this scaling, the bottom boundary is given by y = �1. The

governing equations (2) and (3) remain the same, while the dynamic boundary

condition (10) becomes

�t +
1

2
|r�|

2 + ⇣ +
Eb

2
|rv|

2
� ⌧

⇣xx

(1 + ⇣2x)
3/2

= 0 on y = ⇣(x, t), (11)
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where ⌧ is the Bond number (see (1)) and Eb is the electric Bond number defined70

by

Eb =
✏0V

2
0

⇢gh3
. (12)

The boundary conditions on the voltage potential are now scaled to be

v = 0, on y = ⇣(x, t) , (13)

v = �1, on y = �1 . (14)

The kinematic conditions (4), (7) and (9) remain unchanged.

3. Linear theory

We linearize the system by writing

⇣(x, t) = Ae
i(kx�!t)

, (15)

�(x, y, t) = Be
i(kx�!t) cosh k(y + 1) , (16)

v(x, y, t) = y + Ce
i(kx�!t) sinh k(y + 1) , (17)

where A, B and C are small constants. By applying condition (9), we have75

v = y �
⇣ sinh k(y + 1)

sinh k(⇣ + 1)
. (18)

By di↵erentiating (11) with respect to t, making use of (4) and dropping all the

nonlinear terms, we obtain the linear dispersion relation

c
2
p =

⇣1
k
+ ⌧k

⌘
tanh k � Eb , (19)

where cp = !/k is the phase speed. Short waves (k � 1) are always linearly

stable for a fixed Eb. However, for long waves (k ! 0), we obtain c
2
p ⇠ 1� Eb,

which indicates that long waves are linearly unstable for Eb > 1. It is well80

known that there exists a minimum of the phase speed when ⌧ < 1/3. In the

following discussion, and throughout the paper, we choose ⌧ = 1/4 in most of

our numerical computations. This choice of ⌧ is made such that there exists a
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Figure 2: Graph of the linear dispersion relation for Eb = 0.9 (solid), 0.95 (dashed), 0.99

(dashed-dotted) and 1 (dotted) when ⌧ = 1/4 and the critical value E⇤
b = 0.9423.

minimum in the dispersion relation, allowing the existence of depression solitary

waves and elevation generalized solitary waves, as discussed in section 1.85

When Eb < E
⇤
b ' 0.9423, the right-hand side of (19) is positive for every k,

and there exists a minimum at k = k
⇤ = 1.4026, where the depression solitary

waves bifurcate [22]. However, if Eb becomes larger than E
⇤
b , the electric field

starts to destabilize the waves with wavenumber close to k
⇤. When Eb is further

increased to be greater than 1, the long waves (k ! 0) are all destabilized, i.e.90

the KdV is no longer a valid model, and only short waves survive. An illustrating

graph of cp against k for di↵erent Eb is shown in figure 2.

4. Weakly nonlinear regime

In this section, we study the weakly nonlinear regime under the long wave

assumption. We derive the KdV equation by using the Dirichlet-Neumann op-95

erators for this problem, and discuss how the weakly nonlinear regime relates

to the fully nonlinear computations which will be presented in Section 5 and 6 .

4.1. Dirichlet-Neumann operators

The Dirichlet-Neumann operator (DNO) can be defined for the fluid velocity
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potential as follows100

G(⇣)� = �⇣x�x + �y =
p

1 + ⇣2x
@�

@n
, (20)

where �(x, t) , �(x, ⇣, t) is a surface variable, and n is the unit normal vector

pointing out of the surface. A modified voltage potential can be defined by

w = v � y and the kinematic condition (9) becomes

wx + ⇣xwy = �⇣x . (21)

On y = ⇣, we define W(x, t) , w(x, ⇣, t) = �⇣(x, t). A DNO for W can be

written as105

G
�(⇣)(�⇣) = G

�(⇣)W = �⇣xwx + wy =
p

1 + ⇣2x
@w

@n
. (22)

Following [20], the kinematic and the dynamic boundary condition can be rewrit-

ten in terms of the surface variables � and ⇣ by using the DNOs as follows

⇣t = G(⇣)� , (23)

�t = �⇣ + ⌧
⇣xxp
1 + ⇣2x

+Mf +Me , (24)

where

Mf =

�
G(⇣)�

�2
+ 2

�
G(⇣)�

��
⇣x�x

�
� �2

x

2(1 + ⇣2x)
, (25)

and

Me = �
Eb

2

�
G

�(⇣)⇣
�2

� 2G�(⇣)⇣ � ⇣
2
x

1 + ⇣2x

. (26)

It was shown by [23] that the DNOs are analytic provided the L
1-norm and110

Lipschitz-norm of the displacement ⇣ are smaller than a certain constant. They

can be expanded in the Taylor series

G(⇣) =
1X

n=0

Gn(⇣) , (27)

G
�(⇣) =

1X

n=0

G
�
n (⇣) , (28)
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where Gn and G
�
n are homogeneous of order n in ⇣. Applying G to the

ground state solution e
ikx cosh k(y+1) of the fluid velocity potential and G

� to

e
ikx sinh k(y + 1) of the voltage potential, the first two terms of the series can115

be obtained after performing similar calculations as to those in [17, 20]

G0 = D tanh(D) , (29)

G
�
0 = D coth(D) , (30)

G1(⇣) = D⇣D �G0⇣G0 , (31)

G
�
1 (⇣) = D⇣D �G

�
0 ⇣G

�
0 , (32)

where D = �i@x. By ignoring the terms of o(⇣2), the governing system is

reduced to

⇣t = G0�+G1(⇣)� , (33)

�t = �⇣ + ⌧
⇣xxp
1 + ⇣2x

+
1

2

⇥
(G0�)

2
� �2

x

⇤

�
Eb

2

h
(G�

0 ⇣)
2
� 2G�

0 ⇣ � 2G�
1 (⇣)⇣ � ⇣

2
x

i
. (34)

4.2. Long-wave models

In this subsection, we derive the model equation under the long wave limit,120

i.e. assuming that the typical wavelength is much greater than the depth of the

fluid layer. The displacement ⇣ and the velocity potential function are assumed

to be small. Their size is measured by a small parameter ✏. We consider the

following scaling:

⇣ = O(✏2) , � = O(✏) , @x = O(✏) ,

@t = O(✏) , ⌧ = O(1) , Eb = O(1) .

Equations (29) and (30) can be expanded as polynomials in D125

G0 = D
2
�

1

3
D

4 +
2

15
D

6 +O(✏8) , (35)

G1 = D⇣D �D
2
⇣D

2 +O(✏8) , (36)

G
�
0 = Id +

1

3
D

2
�

1

45
D

4 +O(✏6) , (37)

G
�
1 = �⇣ +D⇣D �

1

3
D

2
⇣ �

1

3
⇣D

2 + ⇣
2 +O(✏6) . (38)
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The governing system reads

⇣t = ��xx �
1

3
�xxxx � ⇣�xx � ⇣x�x , (39)

�t = �
1

2
�2

x � (1� Eb)⇣ +

✓
⌧ �

Eb

3

◆
⇣xx �

3Eb

2
⇣
2
, (40)

which is a Boussinesq-type system in ⇣ and �. A one-dimensional Benney-Luke

type equation can be obtained by di↵erentiating (40) with respect to t and

combining this with (39) to find

�tt � c
2
0�xx +

✓
⌧ �

1

3

◆
�xxxx + (�2

x)t +

✓
1 +

3Eb

c20

◆
�t�xx = 0 , (41)

where c
2
0⇣ = ��t + O(✏4) has been used. Here, c0 =

p
1� Eb is the long wave130

speed which can be obtained by taking the limit k ! 0 in the linear dispersion

relation (19). To get the uni-directional Korteweg de Vries equation (KdV), we

introduce

X = ✏(x� c0t) , T = ✏
3
t . (42)

Changing the variables from (x, t) to (X,T ) in (41) and keeping only the terms

up to O(✏5) yields135

�XT �
1

2c0

✓
⌧ �

1

3

◆
�XXXX +

3

2

✓
1 +

Eb

c20

◆
�X�XX = 0 . (43)

Transforming back to the original variables, the celebrated KdV is obtained

qt + c0qx �
1

2c0

✓
⌧ �

1

3

◆
qxxx +

3

2

✓
1 +

Eb

c20

◆
qqx = 0 , (44)

where q = �x. When ⌧ = 1/3, it is not di�cult to obtain a fifth-order KdV

equation as follows

qt + c0qx +
1

90c0
qxxxxx +

3

2

✓
1 +

Eb

c20

◆
qqx = 0 . (45)

The derivation can be easily extended for three-dimensional waves, where a

Kadomtsev-Petviashvili equation will be obtained. The readers are referred to

[17] for more details.140
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4.3. Connection to other EHD problems

Many other electrohydrodynamic problems of free-surfaces have been inves-

tigated in the last decade. In particular, the problem of Perfect Conductor

(fluid)–Dielectric (gas) received much attention [10, 16, 17, 18, 24]. The associ-

ated linear dispersion relation under our scaling is145

c
2
p =

⇣1
k
+ ⌧k � Eb cothRk

⌘
tanh k , (46)

where R = h
+
/h is the ratio of the depths of the two layers. The corresponding

KdV equation for R � 1 is

qt + qx �
Eb

2
Qqx +

1

2

✓
1

3
� ⌧

◆
qxxx +

3

2
qqx = 0 , (47)

where Q is a pseudo-di↵erential operator, defined by

Q =
p

�@xx coth(R
p

�@xx) . (48)

We note that Q reduces to H@x when R ! 1, i.e. the upper region is infinitely

deep, with H being the Hilbert transform defined by150

H[f ](⇠) =
1

⇡

Z
f(⇠0)

⇠0 � ⇠
d⇠

0
. (49)

Then (47) reduces to a KdV-Benjamin-Ono equation [16]

qt + qx �
Eb

2
H[qxx] +

1

2

✓
1

3
� ⌧

◆
qxxx +

3

2
qqx = 0 . (50)

We note that (50) can be generalized to a Benjamin-Ono Kadomtsev-Petviashvili

equation in three-dimensional problems (see [17, 25]).

It is of interest to note that, in the particular case R = 1, i.e. the upper

and the lower region are of the same size, the linear dispersion relation (46) is155

exactly the same as (19) for the case of Dielectric–Perfect Conductor. Under

the long-wave limit, Q can be expanded as a Taylor series in D as shown in

section 4.2. Equation (47) reduces to

qt + c0qx �
1

2c0

✓
⌧ �

1

3

◆
qxxx +

3

2

✓
1�

Eb

c20

◆
qqx = 0 . (51)

The linear terms match with those from (44), as expected.
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5. Numerical scheme160

To solve the fully nonlinear equations numerically, we employ the time-

dependent conformal mapping technique. It is a method pioneered by [21],

which maps the free surface onto the horizontal axis in a new complex plane

denoted by (⇠, ⌘). The fluid domain is transformed onto a strip with depth D.

The harmonic conjugate of x(⇠, ⌘) can be obtained via the Cauchy-Riemann

equations for the analytic function z(⇠, ⌘) = x(⇠, ⌘)+ iy(⇠, ⌘). Similarly, we can

derive the harmonic conjugates of �(⇠, ⌘) and v(⇠, ⌘), denoted by  (⇠, ⌘) and

⌫(⇠, ⌘) respectively. In the transformed plane, we write the surface variables as

X(⇠, t) ⌘ x(⇠, 0, t), Y (⇠, t) ⌘ y(⇠, 0, t), �(⇠, t) ⌘ �(⇠, 0, t),  (⇠, t) ⌘  (⇠, 0, t),

V (⇠, t) ⌘ v(⇠, 0, t) and N(⇠, t) ⌘ ⌫(⇠, 0, t). The map can be formally defined as

the solution of the following boundary value problem

y⇠⇠ + y⌘⌘ = 0,  ⇠⇠ +  ⌘⌘ = 0, for �D < ⌘ < 0, (52)

y = Y (⇠, t),  =  (⇠, t), on ⌘ = 0, (53)

y = �1,  = Q, on ⌘ = �D, (54)

where Y (⇠, t) = ⇣(⇠, 0, t). Q is an arbitrary constant, and we choose Q = h i,

where h·i is the mean value defined as

hfi =
1

L

Z L/2

�L/2
f(⇠)d⇠ , (55)

where
⇥
�

L
2 ,

L
2

⇤
is the computational domain, and L is usually chosen to be the

wavelength. It can be shown that

D = 1 + hY i, (56)

X⇠ = 1� T [Y⇠], (57)

 ⇠ = T [�⇠], (58)

N⇠ = �
1

D
+ T [V⇠], (59)

where T [.] is defined by

T [f ](⇠) =
1

2D
PV

Z
f(⇠0) coth

⇣
⇡

2D
(⇠0 � ⇠)

⌘
d⇠

0
. (60)
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Here ‘PV’ denotes the Cauchy principal value of the integral. We note that

V⇠ = 0 as v is identically zero everywhere on the free surface. Next, we follow

[26] to derive the time-evolution equations, which finally read

Yt = Y⇠T


 ⇠

J

�
�X⇠

 ⇠

J
, (61)

�t =
1

2J

�
 2

⇠ � �
2
⇠

�
� Y �

Eb

2D2J
+ ⌧

X⇠Y⇠⇠ � Y⇠X⇠⇠

J3/2
+ �⇠T


 ⇠

J

�
, (62)

where J = X
2
⇠ + Y

2
⇠ is the Jacobian of the conformal map.

For travelling waves, all functions depend on x� ct, where c is an unknown

constant. After similar calculations as those presented in [27], we have

 = cY. (63)

Then the resulting governing equation becomes

1

2

✓
c
2 +

Eb

D2

◆✓
1

J
� 1

◆
+ Y � ⌧

X⇠Y⇠⇠ � Y⇠X⇠⇠

J3/2
= 0. (64)

In the present paper, solitary waves are approximated by long periodic waves.

It follows that D is needs to be updated over time in unsteady simulations to

ensure that the wavelength in the conformal space is the same as that in the

physical space. The surface elevation can be expressed as a Fourier series

Y (⇠) =
NX

n=1

an cos

✓
2n⇡⇠

L

◆
+ bn sin

✓
2n⇡⇠

L

◆
, (65)

where the coe�cients an, bn are unknowns. By imposing symmetry at X = 0,

all the sin terms vanish, i.e. bn are zero for arbitrary n. The T -transform is

computed numerically by Fourier multipliers as follows

T [g] = F
�1

h
i coth(kD)F [g]

i
, (66)

where F is the Fourier transform. In most computations, we use 2048 Fourier

modes and L = 100 to achieve a high computing accuracy. This numerical165

scheme has been successfully used in the context of gravity waves [28] and

flexural-gravity waves [29] on water of finite depth.

13



x

-50 0 50

y

-0.01

0

0.01

0.02

0.03

0.04

x

-50 0 50

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Figure 3: Solitary wave profiles for ⌧ = 1/4 in the absence of electric fields.

6. Numerical results

6.1. Travelling waves

The fully nonlinear problem is solved by using the numerical scheme intro-170

duced in section 5 . We start by computing solitary waves for ⌧ = 1/4 in the

absence of electric fields, i.e. capillary-gravity waves. We manage to reproduce

the results of [11] for depression solitary waves and elevation generalized solitary

waves. Two typical wave profiles are depicted in figure 3 . Next, we include a

normal electric field with strength measured by Eb. To examine the long wave175

model obtained in section 4.2, we compute depression solitary waves with speed

close to c0 for Eb = 0.5 and ⌧ = 1/3 by using the full Euler and the fifth-order

KdV equation. The results matched quite well as shown in figure 4 .

Next, we restrict our attention to the solitary waves for ⌧ = 1/4 in the

presence of a normal electric field, and study numerically the bifurcations as180

well as their dynamics. The complete amplitude-speed diagram for solitary

waves is presented in figure 5 for Eb = 0.5, and some corresponding profiles are

shown in figure 6 . The branch of depression waves starts at the minimum of the

dispersion curve (c = cmin), and decreases monotonically to c = 0. When there

is no electric field, [11] showed that the static (i.e. no flow) solitary capillary-185

gravity wave obtained was self-intersecting. It is found that the electric field

has the e↵ect of suppressing overhanging, as sketched in figure 6 a . When the
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Figure 4: Comparison between the numerical solutions for a depression wave with c = 0.7068

for ⌧ = 1/3 and Eb = 0.5 by the full Euler equation (solid) and the fifth-order KdV equation

(dashed).

strength of the electric field is increased, the amplitude of the static depression

wave decreases and shrinks to zero at the critical value of E⇤
b , as shown in figure

7. For Eb > E
⇤
b , the regime becomes linearly unstable and therefore no solitary190

waves exist for such values of Eb. The curve of depression waves from figure 5

emanates from zero amplitude at c = cmin, which suggests that the associated

nonlinear Schrödinger equation is focussing, and therefore wavepacket solitary

waves bifurcate from infinitesimal periodic waves. The one-dimensional stability

can be examined by imposing an initial longitudinal perturbation to the solitary195

wave. An example is presented in figure 8 , where the wave is perturbed by �5%

in amplitude at t = 0 and placed in a frame of reference moving with the initial

phase speed. As time increases, the wave travels towards the left of the frame

since the depression wave of smaller amplitude propagates faster, as can be seen

from the amplitude-speed diagram 5 . Such numerical tests were performed to all200

the solutions from the depression branch, and no one-dimensional instabilities

were observed. For elevation waves, the so-called generalized solitary waves

with non-decaying oscillatory ripples at the tail are found. These waves also

bifurcate from infinitesimal periodic waves, but at a speed c
0
0(> cmin). The
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Figure 5: The solution branches of depression waves (left) and elevation generalized solitary

waves (right) for ⌧ = 1/4 and Eb = 0.5 in the amplitude-speed diagram. The bifurcation

points are marked as circles.

value of c00 depends on the value of L but if the periodicity is suspended, i.e.205

L ! 1 and k ! 0, c00 tends to c0 =
p
1� Eb which equals 0.7071 for Eb = 0.5.

As the dispersion relation admits a minimum, these waves appear due to the

resonance of the long wave mode k = 0 with periodic waves with wavenumber

k
† propagating at the long wave speed, i.e. cp(k†) = c0. Although solution b

looks like a KdV soliton, it still has a very small non-decaying tail. Due to the210

assumption of periodicity, there exists infinitely many generalized solitary-wave

branches for a fixed computational domain. Jumping to the next branch on the

right adds an additional far-field oscillation to the wave in a half wavelength

(see e.g. figure 6 c&f). To carry out a more rigorous investigation on whether

true elevation solitary waves exist in the presence of a normal electric field, we215

follow [13, 30] to perform a numerical investigation by monitoring the curvature

of the solution at the right end of the computational domain, denoted by 0,

for a fixed ⌧ and various Eb. As can be seen clearly from figure 9 , the solution

branches are all u- or n-shaped and move away from zero as we increase Eb.

Therefore the value of 0 never goes to zero, i.e. generalised solitary waves do220

not approach KdV-like elevation soliton as a limit in the presence of electric
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Figure 6: The wave profiles that correspond to the points indicated in figure 5.

fields. This is a complement to the work by [13] demonstrating a numerical

evidence that capillary-gravity elevation solitary waves do not exist on water

of finite depth either in the presence or absence of electric stress. The one-

dimensional stability can be studied in the same manner as the depression case,225

provided the value of L is su�ciently large. An initial amplitude-decreasing

perturbation by 5% is imposed. True generalized solitary waves (which have

infinite energy) are expected to be unstable. However we have not observed

any one-dimensional instabilities from the numerical results for time t up to

4000 as shown in figure 10. This is a numerical issue that may be due to the230

periodic assumption made in the numerical scheme which restricts the energy

to be finite.
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Figure 7: Graph of ⇣(0) against Eb for depression solitary waves with zero propagating speed.
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Figure 8: Dynamics of a stable depression wave with c = 0.6566, ⌧ = 1/4, Eb = 0.5. An

amplitude-decreasing perturbation is initially applied. A reference frame moving with c =

0.6566 is chosen.
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Figure 10: Dynamics of an elevation generalized solitary wave with c = 0.7212, ⌧ = 1/4,

Eb = 0.5. An amplitude-decreasing perturbation is initially applied. A reference frame

moving with c = 0.7212 is chosen. Only part of the domain is shown for a better display.
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6.2. Touch-down singularity

In this subsection we examine numerically the linear instability which occurs

when Eb > E
⇤
b by using the method introduced in section 5 . A touch-down235

singularity is expected, due to the finite depth of the fluid, and increase in

amplitude of the interface. A stable capillary-gravity depression wave (see the

top left graph of figure 11) is chosen as the initial state with the strength of Eb

varying in time as follows

Eb = 0.1(j � 1) , for t 2 [5(j � 1), 5j) , j = 1, 2, 3, ..., 11 , (67)

where t is the time variable. A moving frame of reference is chosen such that the240

solitary wave is steady for Eb = 0. When the electric field is switched on and

Eb < E
⇤
b , the solitary wave remains stable. From the left column of figure 11 ,

it is observed that there is energy radiating in the form of small ripples because

of the discrete jumps in Eb. There will be less radiation if the electric field is

changed more gradually. Meanwhile, the speed of the solitary wave is slower,245

and the wave amplitude becomes larger as the electric field strength is increased,

which agrees with the theory. When Eb > E
⇤
b (t � 50), it can be seen from the

graphs on the right of figure 11 that the wave amplitude increases very quickly,

and ultimately approaches the bottom. At t > 51.97, a numerical instability is

observed due to an infinite curvature where the surface collapses with the lower250

boundary. We call this phenomenon a touch-down singularity, where the wave is

destabilized by the electric field. Such numerical experiment of destabilization

can be applied to other waves such as periodic waves or generalized solitary

waves. Similar touch-down singularities are expected.

6.3. Excitation255

In section 6.1 , the one-dimensional stabilities were examined. To excite the

stable solitary waves, we perform a numerical experiment by adding an external

moving Gaussian pressure distribution into the Bernoulli equation, which is

defined as follows

P = 0.03e�(x+200�Ut)2
, (68)
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Figure 11: Dynamics of a depression wave with c = 0.9660, ⌧ = 1/4. The value of Eb is

increased as a function of time. We only show part of the waves for better display.

with Eb = 0.5 fixed and U = 0.64, which is chosen to be close to the phase speed260

minimum. The pressure is initially switched on at x = �200 and later removed

at t = 20. We let the numerical experiment continue for a long time (up to

t = 400). A stable depression wave propagating with speed 0.5836 (< cmin)

is obtained. As the surface is depressed below the mean level locally by an

external pressure, due to the conservation of mass in the computational domain,265

it must be elevated above the mean level somewhere. We have observed that

such elevation propagates in the form of a generalised solitary wave travelling
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Figure 12: Snapshots of the excitation experiment with Eb = 0.5 at time t = 2.5, 20, 200

and 400. A disturbance moving with speed 0.64 is switched on at t = 0 and o↵ at t = 20.

At the end of the experiment, a depression wave moving with speed 0.5836 and an elevation

generalized solitary wave with speed 0.7347 are obtained.

with speed 0.7347 (> c0) which is faster than the speed of the depression wave.

Hence it appears in the front and gets away from the depression wave in time.

The propagating wave speeds are measured from the numerical experiment by270

computing the mean velocities over a time interval t 2 [200, 400]. The two

waves are highlighted in the bottom snapshot of figure 12 . They are compared

to the travelling solitary wave solutions computed in section 6.1 , and a strong

agreement can be seen, as shown in figure 13 .

In the above numerical experiment, after the excitation of the solitary waves,275

one can decrease progressively Eb to 0, such that the solitary waves are classic

capillary-gravity waves. These waves can also be excited without the use of

an electric field. We repeat the experiment, this time taking Eb = 0 with a
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Figure 13: Comparison between the excited solitary waves (solid) and the travelling solutions

(dashed-dotted). (Left) A depression wave with speed 0.5836. (Right) An elevation generalized

solitary wave with speed 0.7347. We only show part of the waves for better display.

disturbance P defined by (68) with U = 0.96. The pressure is switched o↵ at

t = 20, and we see again the formation of a depression wave and an elevation280

generalized solitary wave (see figure 14). However, it can be observed from the

two experiments of excitation for Eb = 0 and Eb = 0.5 that the speed di↵erence

between the solitary waves becomes greater in the presence of the electric field,

which in turn makes the two waves further apart from each other in the same

period of time. In fact, the generated depression wave travels with a speed less285

than and close to cmin, while the excited generalised solitary wave travels with

a speed faster than and close to c0. For a reasonable value of Eb, the di↵erence

c0 � cmin becomes greater than the non-electric case, which indicates that the

electric field is useful for separating the excited solitary waves in a short time.

7. Conclusion290

In the current work, the problem of electrohydrodynamic capillary-gravity

waves on a dielectric fluid under a normal electric field was investigated. Linear

and weakly nonlinear theory were both presented. Long-wave model equations

were derived by using the Dirichlet-Neumann operators. Fully nonlinear com-
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Figure 14: Snapshots of the excitation experiment with Eb = 0 at time t = 2.5, 20, 200

and 400. A disturbance moving with speed 0.96 is switched on at t = 0 and o↵ at t = 20.

At the end of the experiment, a depression wave moving with speed 0.9385 and an elevation

generalized solitary wave with speed 1.0391 are obtained.

putations were carried out for solitary waves and their dynamics. A numerical295

experiment of excitation was conducted to generate the solitary waves. The

comparisons between the excited and steady solutions were drawn, and an ex-

cellent agreement was obtained.
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