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Abstract

In the classic 2-species Lotka–Volterra competition model, and more general
competitive planar Kolmogorov models, there is a continuous curve called the
carrying simplex that links all non-zero steady states and attracts all non-zero
population densities. This curve is where the opposing processes of popu-
lation growth and decline balance. In this paper, we use stability analysis
and index theory to show that such a curve also exists when the interactions
between two species are more general, such as co-operative or predator-prey,
provided that reasonable biologically motivated conditions hold. For ex-
ample, both species experience intraspecific competition and all population
densities remain bounded for all time. We consider systems where there is
at most one co-existence steady state. The ‘balance manifold’ is formed of
heteroclinic orbits and attracts all non-zero population densities, but un-
like its competitive analogue, the curve is no longer necessarily continuously
differentiable.

Keywords: Kolmogorov system, carrying simplex, balance manifold,
heteroclinic orbit

1. Introduction

Many biological and physical systems have opposing processes that lead even-
tually to a state where the processes are in a state of balance. For physical
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systems, a classic example is a balance of forces which may result in an
equilibrium, for example, a pendulum at rest at its lowest point.
In ecology, population density changes are due to a multitude of processes
that contribute to population growth and decline. These processes are in
turn controlled by factors such as fecundity, competition, co-operation, pre-
dation, environmental factors and so on. For many ecological systems, a long
term state of balance will be achieved where these processes are in static or
dynamic balance, although the underlying geometry of this state of balance
may be extremely complex (for example, a strange attractor [1, 2, 3]). The
purpose of this paper is to investigate a class of two-species deterministic
ecological models and determine when a manifold of balance exists – balan-
cing solutions coming out of the origin, and down from infinity in the phase
plane. Such models have a simple behaviour in that all orbits converge to a
steady state on the balance manifold.

2. Background

For deterministic continuous-time single-species population models, the con-
ditions for the existence of a unique positive environmental carrying capacity
K at which the population eventually settles are well-understood: the per-
capita growth rate is a continuous function f : R≥0 → R with f(0) > 0,
f(x) < 0 for x > K and f−1(0) = {K}. Here we will use R≥0 = [0,∞) and
R>0 = (0,∞). The key features behind a unique, attracting carrying capacity
are: (i) the origin is repelling, (ii) infinity is repelling, and (iii) the positive
equilibrium K is unique. At the carrying capacity, there is a balance between
the growth and decline of the population, meaning all non-zero population
densities are attracted to this state.
An analogous concept of balance exists in higher dimensions. For competitive
systems, Hirsch [4, 5] introduced carrying simplices which are hypersurfaces
that asymptotically attract all non-zero initial population densities and con-
tains all non-zero steady states. The most interesting property of a carrying
simplex is that all non-trivial dynamics, such as periodic orbits, occur on
it. The theory of carrying simplices for both continuous and discrete-time is
an active research field, but to the best of our knowledge, all known results
for carrying simplices relate to competitive [6, 4, 5, 7, 8] or type-K compe-
titive systems [9]. For competitive Lotka–Volterra systems, the convexity of
the carrying simplex has also been studied as it can imply properties of the
system as a whole [10, 11, 12].
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In [13] we have developed an analytic formula for an analogue of the carrying
simplex which can also be applied to a class of non-competitve 2-species
Lotka–Volterra systems. In this context it is referred to as a balance sim-
plex, which can still be projected 1-to-1 and onto the unit simplex by radial
projection. However many other properties no longer hold from carrying
simplices. For example, the balance simplex is no longer C1-continuous, nor
is it the graph of a decreasing function (which all hold for the planar car-
rying simplex [10, 5, 14, 15]). The balance manifold that we introduce here
is similar to the carrying simplex and the balance simplex, except we now do
not require that the balance manifold projects radially 1-to-1 and onto the
unit probability simplex.

3. General Kolmogorov population models

We examine a general planar Kolmogorov-type system

dx1

dt
= F1(x1, x2) = x1f(x1, x2),

dx2

dt
= F2(x1, x2) = x2g(x1, x2), (1)

where we only consider (1) on the phase space R2
≥0 and the functions f, g :

R2
≥0 → R2

≥0 are C1-continuous on an open set containing R2
≥0. Such a system

is often used to model the ecological dynamics of a closed habitat in which
two species interact.
Our standing assumptions for (1) are:

A1 The origin O and infinity are repellers;

A2 There are unique axial steady states q1 = (x̄1, 0) and q2 = (0, x̄2),
x̄1 > 0, x̄2 > 0;

A3 All steady states of (1) are hyperbolic, i.e. the eigenvalues of the Jaco-
bian (see equation (5)) at all steady states have non-zero real parts;

A4 (Intraspecific competition)

∂f

∂x1

(x) < 0,
∂g

∂x2

(x) < 0, x = (x1, x2) ∈ R2
≥0. (2)
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We denote the flow of the system by ϕ(·, t) : R2
≥0 → R2

≥0 or ϕt(x) when x is
fixed. One important property of this system is that the axes are invariant
(forwards and backwards in time). The interior R2

>0 also remains invariant.

Definition 3.1. We denote by O+(x) = {ϕt(x) : t ≥ 0} the forward orbit
through x and O−(x) = {ϕt(x) : t ≤ 0} the backward orbit through x. The
orbit through x is denoted by O(x) = O+(x) ∪O−(x).

Definition 3.2. We denote by ω(x) the set of limit points of the forward
orbit O+(x) and α(x) is the set of all limit points of the backward orbit
O−(x).

Definition 3.3. A heteroclinic orbit is an orbit that joins two distinct steady
states, and a homoclinic orbit is an orbit between the same steady state.

Definition 3.4. Let p be a steady state of (1), we call any orbit which has
its α-limit equal to p an unstable orbit of p. Similarly, any orbit which has
its ω-limit equal to p is called a stable orbit of p.

Definition 3.5. Let N a neighbourhood of p ∈ U . Then the local sta-
ble manifold of p relative to N , written W s

loc(p) = {x ∈ N : O+(x) ⊂
N and ϕt(x) → p as t → ∞}. The global stable manifold is W s(p) =⋃
t≤0 ϕt(W

s
loc(p)). The local unstable manifold of p relative to N , written

W u
loc(p) = {x ∈ N : O−(x) ⊂ N and ϕt(x) → p as t → −∞}. The global

unstable manifold is W u(p) =
⋃
t≥0 ϕt(W

u
loc(p)).

Definition 3.6. The basin of attraction of p is B(p) = W s(p). Similarly, the
basin of repulsion of p is the open set R(p) = W u(p).

To elucidate what its means to say that infinity is a repeller for (1) we make
a co-ordinate change to bring infinity into view. We define the inversion map
X = (X1, X2) : R2

≥0 \O → R2
≥0 via

X1(x) =
x1

x2
1 + x2

2

, X2(x) =
x2

x2
1 + x2

2

. (3)

Then X maps infinity in x1, x2 co-ordinates to the origin in X1, X2 co-
ordinates. Infinity is repelling in (1) when the origin of the transformed
system

Ẋ1 = (X2
2 −X2

1 )F̄1 (X1, X2)− 2X1X2F̄2 (X1, X2)

Ẋ2 = (X2
1 −X2

2 )F̄2 (X1, X2)− 2X1X2F̄1 (X1, X2) ,
(4)
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is an unstable node, where F̄i (X1, X2) = Fi(x1, x2) for i = 1, 2. In this case
there is an ε > 0 and arc {(X1, X2) ∈ R2

≥0 : X2
1 + X2

2 = ε} that all trans-
formed orbits cross outwards. Back in the original co-ordinates, this means
that there is an arc {(x1, x2) ∈ R2

≥0 : x2
1 + x2

2 = ε−1} that all orbits from
infinity cross inwards.

To obtain the basin of repulsion of infinity in (1) we can alternatively find the
basin of attraction of the origin in (4) and map back to x1, x2 co-ordinates.

Definition 3.7. We define a balance manifold for (1) to be a globally
attracting (on R2

≥0\{0}), compact, connected curve that is equal to the union
of the boundaries of the basins of repulsion of the origin and of infinity.

Remark 1. Note that since the balance manifold is globally attracting on
R2
≥0\{0}, it is invariant for the flow of (1) and necessarily contains all non-

zero steady states.

The balance manifold Σ is analogous to the carrying simplex which exists in
the competitive case where ∂f

∂x2
< 0 and ∂g

∂x1
< 0 in R2

≥0 [5]. Conceptually, we
want the balance manifold to separate the basins of repulsion of the origin
and of infinity as shown in Figure 1.

Figure 1: The balance manifold. [COLOUR: ONLINE ONLY]
The thick (red) arrows show the direction of the dynamics in different parts of the phase
plane of a 2-species system. The solid (green) curve is the balance manifold.

A simple, but important, consequence of assumption A4 is:
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Lemma 3.1. Under the assumption (2) there can be no interior closed orbits
for (1).

Proof. Via the Dulac Theorem [16] with Dulac function B(x) = (x1x2)−1,

div(B(x1f, x2g)) =
1

x2

∂f

∂x1

+
1

x1

∂g

∂x2

< 0, x = (x1, x2) ∈ R2
>0,

and so there can be no interior closed orbits.

While this rules out interior homoclinic orbits, it does not rule out homoclinic
orbits from a boundary steady state. For this possibility we have

Lemma 3.2. Under the assumptions A1-A4 it is not possible for the unstable
orbit of an axial saddle steady state of (1) to be a homoclinic orbit.

Proof. Without loss of generality assume the axial saddle steady state with a
homoclinic orbit is q1. By assumption A3 the saddle q1 has a one-dimensional
unstable manifoldW u(q1) and a one-dimensional stable manifoldW s(q1). Let
x0 = (x0

1, x
0
2) ∈ W u(q1) with x0

2 > 0 and O+(x0) be the forward orbit through
x0. Then if the unstable orbit of q1 is a homoclinic orbit, ϕt(x

0) → q1 as
t → ∞, so that x0 ∈ W s(q1) = {(x, 0) : x ∈ R>0}, a contradiction to
x0

2 > 0.

It will be useful to note the Jacobian of the system (1):

J (x1, x2) =

(
f(x1, x2) + x1

∂f
∂x1

(x1, x2) x1
∂f
∂x2

(x1, x2)

x2
∂g
∂x1

(x1, x2) g(x1, x2) + x2
∂g
∂x2

(x1, x2)

)
. (5)

At the origin O

J (0, 0) =

(
f(0, 0) 0

0 g(0, 0)

)
, (6)

so to satisfy assumption A1 we require f(0, 0) > 0 and g(0, 0) > 0 for the
origin to be repelling.
Assumption A2 requires that (1) has a unique positive steady state on each
axis, which will be the carrying capacity of each individual species. Consider
the axial state q2 = (0, x̄2) where x̄2 > 0 and g(q2) = 0. The Jacobian here is

J (q2) =

(
f(q2) 0

x̄2
∂g
∂x1

(q2) x̄2
∂g
∂x2

(q2)

)
. (7)
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Assumption A1 ensures that q2 is asymptotically stable on the x1-axis. The
invariant x2-axis has the associated eigenvalue x̄2

∂g
∂x2

(q2), and so we require
∂g
∂x2

(q2) < 0. We also assume f(q2) 6= 0 to avoid a non-hyperbolic steady
state. The sign of f(q2) determines whether this axial steady state is a
saddle point or a stable node.
Similarly, at the other axial steady state, q1 = (x̄1, 0), we require ∂f

∂x1
(q1) < 0,

and the sign of g(q1) determines whether q1 is a saddle point or a stable node.

By considering the Poincaré index of steady states (see, for example, [16]),
we can determine the possible stability types of the steady state of (1).

Definition 3.8. Let Γ be a smooth3, closed curve traversed anti-clockwise
and consisting of only ordinary points of the vector field (i.e. no steady
states). Let θ be the angle between the flow of the vector field at a point on
Γ and the positive horizontal axis. Consider a point x0 ∈ Γ. Since the flow
is continuous, as we traverse around Γ, back to x0, the variation of θ will be
a multiple of 2π, say 2kπ; k ∈ Z. The index of Γ, denoted IΓ, is k.

We let [θ]γ denote the change in the angle θ as we traverse a curve γ, so that

IΓ = [θ]Γ
2π

. Let Γ be the closed curve orientated anticlockwise as shown in
Figure 2. There are different components to Γ = Γ0 ∪ Γ1 ∪ Γa ∪ Γ2. In this
case, since Γ contains only ordinary points, its index is zero. As the origin is
an unstable node, [θ]Γ0 = π

2
.

To calculate the change in angle along the component Γa, we bring infinity
into view via the inversion map (3). Then infinity is repelling in (1) when
the origin of the system in X1, X2 co-ordinates is an unstable node. In that
case there is an ε > 0 and arc {(X1, X2) ∈ R2

≥0 : X2
1 + X2

2 = ε} that all
transformed orbits cross outwards. Back in the original co-ordinates, this
means that there is an arc {(x1, x2) ∈ R2

≥0 : x2
1 + x2

2 = ε−1} that all orbits
from infinity cross inwards. Hence [θ]Γa = −π

2
.

Now suppose that q1 is a saddle, then [θ]Γ1 = −π, whereas if q1 is a stable
node, [θ]Γ1 = +π. Suppose that both q1 and q2 are saddles. Then the total
angle change should be zero, since there are no steady states inside Γ, but we
find [θ]Γ = π

2
− π

2
− π − π = −2π. Hence it is not possible that both of q1, q2

are saddles. Similarly if q1, q2 cannot both be stable nodes, since then we
would have [θ]Γ = 2π. Thus the only possible case is when one axial steady

3See [17] for the extension to piecewise smooth curves.
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Figure 2: A closed curve enclosing no steady states. [COLOUR: ONLINE
ONLY]
Γ = Γ0 ∪ Γ1 ∪ Γa ∪ Γ2 is the thick (red) closed curve traversed anticlockwise, looping
around each axial steady state. Γ0 is sufficiently close to the origin such that the vector
field is pointing away from the origin, and Γa is arbitrarily far from the origin such that
Γ contains all possible interior steady states.

state is a saddle and the other is a stable node.

On the other hand, if there are interior steady states, then with Γa chosen so
that all interior steady states lie inside Γ, we find that the sum of the indices
of the interior steady states is the index of Γ. Hence when there is a unique
interior steady state x∗, the index of Γ is then equal to the index of x∗. Now
there are more possibilities.

If both q1, q2 are saddles, then the index of x∗ is equal to plus one, so that
x∗ cannot be a saddle. With the assumption of x∗ being hyperbolic and in-
traspecific competition (preventing interior closed orbits) it follows that x∗

must be stable and a node or spiral. If both q1, q2 are stable nodes, then the
index of x∗ is equal to minus one, so that x∗ must be a saddle. Lastly, the
case where one axial steady state is a saddle and the other is a stable node
is not possible; x∗ would have an index of zero, contradicting its hyperbolicity.

To summarise

Lemma 3.3. For the system (1) under the assumptions A1-A4:
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1. If there is no interior steady state, one axial steady state must be a
saddle and the other a stable node.

2. If there is a unique interior steady state, then

(a) If both axial fixed points are saddles, the interior fixed point is not
a saddle, and so it must be a stable node or a stable spiral.

(b) If both axial fixed points are stable nodes, the interior fixed point
is a saddle.

(c) It is not possible that one axial fixed point is a saddle if the other
is a stable node.

4. Case 1: no interior fixed point

Without loss of generality, let us suppose that q1 is a saddle and q2 a stable
node.

Lemma 4.1. Consider the system (1), under the assumptions A1-A4. As-
sume there is no interior steady state. Suppose one of these axial steady
states is a saddle point, and the other is a stable node. Then the balance ma-
nifold is formed of the unique heteroclinic orbit connecting the axial steady
states (along with these steady states).

Proof. Since we are only considering hyperbolic steady states, the saddle q1

has a one-dimensional unstable manifold W u(q1). Let x0 ∈ W u(q1) in R2
>0

and O+(x0) be the forward orbit through x0. By assumption A1, O+(x0) is
bounded and so by the Poincaré–Bendixson theorem ω(x0) contains a ste-
ady state, say p. By Lemmas 3.1 and 3.2, there are no homoclinic orbits,
so p 6= q1. Moreover, O is repelling so p 6= O. This leaves p = q2. Then
since q2 ∈ ω(x0) there exists a tk → ∞ such that ϕtk(x0) → q2 and hence
a K ′ such that ϕtK′ (x

0) ∈ B(q2) and ϕt(x
0) ∈ B(q2) for all t > tK′ , and so

ω(x0) = {q2}. Hence O+(x0) is a curve that connects x0 ∈ W u(q1) to q2 and
we obtain a heteroclinic orbit H = W u(q1) \ {q1}.

Next we show that H = ∂R(0) = ∂R(∞). H divides R2
≥0 into two disjoint

connected and invariant components, say H− containing O and H+ = R2
≥0 \

(H∪H−). Let x0 ∈ H− and consider O−(x0). Since x0 6∈ H = W u(q1)∪{q2},
there is no subsequence tk → −∞ with ϕtk(x0) → q1 and hence q1 6∈ α(x0).
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By the Poincaré–Bendixson theorem we must have O ∈ α(x0). Since O is a
stable node backwards in time, we see that α(x0) = {O}. HenceH− = R(O).

Next we map H+ to X(H+) using the inversion (3) and consider the transfor-
med dynamics (4). Examining these dynamics near the transformed steady
states shows that their stability types remain the same. This gives the same
phase portrait topology as the previous paragraph, and we conclude that
H+ = R(∞).

Hence for the case where q1 is a saddle and q2 a stable node, we have the
balance manifold

H = ∂R(0) = ∂R(∞) = W u(q1) ∪ {q2}.

To summarise, we have shown:

Theorem 4.2. For a balance manifold to exist in the case where (1) has no
interior steady state, the following conditions are sufficient:

1. f(0, 0) > 0, g(0, 0) > 0; the origin is repelling.

2. Infinity is repelling.

3. There exists a unique axial steady state q2 = (0, x̄2) on the positive
x2-axis satisfying g(q2) = 0, ∂g

∂x2
(q2) < 0 and f(q2) 6= 0.

4. There exists a unique axial steady state q1 = (x̄1, 0) on the positive
x1-axis satisfying f(q1) = 0, ∂f

∂x1
(q1) < 0 and g(q1) 6= 0.

5. f(q2)g(q1) < 0; the axial steady states are of different stability types
and are hyperbolic.

5. Case 2: a unique interior fixed point

We now consider the case where there is a unique interior steady state x∗ =
(x∗1, x

∗
2). The first four conditions from Theorem 4.2 are still required. The

Jacobian at the interior steady state is:

J (x∗1, x
∗
2) =

(
x∗1

∂f
∂x1

(x∗1, x
∗
2) x∗1

∂f
∂x2

(x∗1, x
∗
2)

x∗2
∂g
∂x1

(x∗1, x
∗
2) x∗2

∂g
∂x2

(x∗1, x
∗
2)

)
. (8)
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By assumption x∗ is hyperbolic and it may be a node or a saddle. However,
when x∗ is a node, it is necessarily asymptotically stable due to assumption
A4, through the condition (2).

Lemma 5.1. Let x∗ be the unique interior fixed point of the system (1) under
the assumptions A1-A4. Suppose that both axial steady states are saddle
points. Then the balance manifold is formed of the two heteroclinic orbits
connecting the axial steady states to x∗ (along with these steady states).

Proof. Each axial steady state is a hyperbolic saddle with one-dimensional
stable and unstable manifolds. Let W u(q1) be the unstable manifold of q1

and choose x0 ∈ W u(q1) in R2
>0 . By the Poincaré–Bendixson theorem, ω(x0)

must contain a steady state p, and p 6= O since O is repelling and p 6= q1 by
Lemma 3.2. Moreover p 6= q2. To see this, note that for q2 ∈ ω(x0) there
exists tk →∞ as k →∞ with ϕtk(x0)→ q2. Suppose that ϕtk(x0) 6∈ W s(q2)
for any k. Then ϕt(x

0) 6∈ W s(q2) for any t since W s(q2) is exactly the in-
variant x2-axis. Noting the Hartman–Grobman [16] theorem, it follows that
ϕtk(x0) 6→ q2, a contradiction. Hence we are left with p = x∗, which is asymp-
totically stable. Since O+(x0)∩B(x∗) 6= ∅, there is a heteroclinic connection
H2 = W u(q1) \ {x∗} between q1 and x∗. Similarly there is a heteroclinic
connection H3 = W u(q2) \ {x∗} linking q2 and x∗.

Next we show that ∂R(0) = W u(q1) ∪W u(q2). Let H = H2 ∪H3. H divides
R2
≥0 into two disjoint connected and invariant components, sayH− containing

O and H+ = R2
≥0 \ (H∪H−). Let x0 ∈ H−. We will show that α(x0) = {O}.

By the Poincaré–Bendixson theorem, α(x0) contains a steady state p and as
x∗ is attracting p 6= x∗. Moreover, p 6∈ {q1, q2} since x0 6∈ W u(q1) ∪W u(q2).
Hence p = O and since O is an unstable node, α(x) = {O} and H− = B(O),
H = ∂R(O). As in Lemma 4.1, we may use the inversion map (3) to establish
that H+ = R(∞) and H = ∂R(∞).

We conclude that in this case the balance manifold

H = ∂R(0) = ∂R(∞) = W u(q1) ∪W u(q2).

Lemma 5.2. Let x∗ be the unique interior fixed point of the system (1),
under assumptions A1-A4. Suppose both axial steady states are stable nodes.
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Then x∗ is a saddle point and the two unstable orbits of x∗ have different
ω-limits, each equal to exactly one of the axial steady states.

Proof. That x∗ is a saddle follows from the Index Theorem. By the Poincaré-
Bendixson theorem each unstable orbit of x∗ has a ω-limit set that contains a
steady state, which in neither case can be O, since O is an unstable node, nor
x∗, since there are no interior homoclinic orbits by Lemma 3.1. Consider one
of the unstable orbits of x∗, call it γ1. Then since γ1 has ω-limit in {q1, q2},
γ1 ∩ (B(q1) ∪ B(q2)) 6= ∅. Hence γ1 is a heteroclinic orbit connecting x∗ to
either q1 or q2. Similarly for the other unstable orbit γ2. Suppose that γ1 and
γ2 connect to the same ω-limit, say q1. These two heteroclinic orbits γ1, γ2

enclose a bounded and invariant region R∗ and x∗ ∈ R∗. Since x∗ is hyperbo-
lic, W s(x∗)∩R∗ 6= ∅. Choose x0 ∈ W s(x∗)∩R∗. By the Poincaré–Bendixson
theorem, α(x0) contains a steady state, say p. p 6= x∗ since we can have no
interior closed orbits, and p 6= q2 because R∗ is invariant and disjoint from
the x2-axis. Hence we must have p = q1. But this is not possible because q1

is a stable node.

Next we show that ∂R(0) = W u(x∗). Let H = γ1 ∪ γ2. H divides R2
≥0 into

two disjoint connected and invariant components, say H− containing O and
H+ = R2

≥0\(H∪H−). Let x0 ∈ H−. We will show that α(x0) = {O}. By the
Poincaré-Bendixson theorem, α(x0) contains a steady state p and as q1, q2

are stable nodes p 6∈ {q1, q2}. Moreover, p 6= x∗ since x0 6∈ W u(x∗). Hence
p = O. The remainder of the proof is similar to that of Lemma 5.1.

In this case the balance manifold

H = ∂R(0) = ∂R(∞) = W u(x∗).

To summarise, we have shown:

Theorem 5.3. For a balance manifold (connecting all non-zero steady states)
to exist for the system (1) in the case where there is a unique interior steady
state x∗, the following conditions are sufficient:

1. f(0, 0) > 0, g(0, 0) > 0; the origin is repelling.

2. Infinity is repelling.
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3. There exists a unique axial steady state q2 on the x2-axis satisfying
g(q2) = 0, ∂g

∂x2
(q2) < 0 and f(q2) 6= 0.

4. There exists a unique axial steady state q1 on the x1-axis satisfying
f(q1) = 0, ∂f

∂x1
(q1) < 0 and g(q1) 6= 0.

5. f(q2)g(q1) > 0; both axial steady states are of the same stability-type
and are hyperbolic.

6. There exists a unique interior steady state x∗ > 0 satisfying f(x∗) =
0 = g(x∗).

7. There is intraspecific competition for each species; ∂f
∂x1

< 0, ∂g
∂x2

< 0 in

R2
>0.

6. Structural stability

For dynamical systems, it is important to ask whether they are structurally
stable [18], especially those which are used to model real systems [19]. A
system is structurally stable if it remains topologically unchanged when the
system (i.e. its vector field) is affected by a small perturbation. Consider
two systems for x ∈ R2 in some closed region Ω ⊂ R2

dx

dt
= F (x), (9)

dx

dt
= G(x). (10)

The ‘distance’ between these two systems can be measured by the following
metric [20, 21]:

Definition 6.1. The distance between systems (9) and (10) in a closed region
Ω ⊂ R2 is given by:

d1 = sup
x∈Ω
{‖F (x)−G(x)‖+ ‖J (F )− J (G)‖} (11)

where J is the Jacobian matrix and the norm is the Frobenius norm in the
relevant dimension. The systems are ε-close in Ω if d1 ≤ ε; in which case
(10) is considered a small perturbation of (9).

Theorem 6.1 (Andronov and Pontryagin [21, 20]). A smooth dynamical
system (9) is structurally stable in a region Ω ⊂ R2 if and only if:

13



1. it has a finite number of equilibria and limit cycles in Ω, all of which
are hyperbolic,

2. there are no saddle points with a homoclinic orbit and there are no
heteroclinic orbits connecting two saddle points in Ω.

The system (1) we consider with conditions from Theorems 4.2 or 5.3 is
therefore structurally stable as it satisfies the conditions of Theorem 6.1.
Indeed, we restrict all steady states to be hyperbolic. In the case where
two steady states are saddle points, we know there must be three non-zero
steady states total. In Theorem 5.3 we imposed conditions to ensure both
axial steady states will be the saddle points in this scenario. In Lemma 5.1,
we showed there is no heteroclinic orbit between these saddle points.
Therefore the balance simplex we have found (composed of heteroclinic or-
bits) is also structurally stable in the sense that it still exists when the system
is affected by a small perturbation. This means the balance simplex is not a
rare or atypical structure, but occurs in a range of systems, characterised by
the conditions in Theorems 4.2 and 5.3.

7. Example models

7.1. Lotka–Volterra equations

In [13], we considered a general Lotka–Volterra 2-species model where the
intrinsic growth rates and intraspecfic interaction coeffecients are all equal
to 1 for both species. In this case, we can find an analytic solution for the
balance manifold. This system is

dx1

dt
= x1(1− x1 − αx2),

dx2

dt
= x2(1− βx1 − x2), (12)

where the interspecific interactions are α and β (which can be any sign). The
solution is given in terms of Gaussian hypergeometric functions and a variable
T ∈ [0,∞), where T = tan(θ) from polar co-ordinates. Consider the case
where β < 1, and 1 < α < 2−β (this system may not be competitive). There
is no interior steady state and the balance manifold is given in parametric

14



form by:

x1 = 2F1

[
α

α− 1
, 1,

β − 2

β − 1
,
T

T ∗

]
,

x2 = T 2F1

[
α

α− 1
, 1,

β − 2

β − 1
,
T

T ∗

]
, (13)

where T ∗ = (β − 1)/(α − 1) < 0. Here 2F1 is the Gaussian hypergeometric
function [22, 23, 24] which is defined for a, b, c, z ∈ C with the integral form
[22]:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt (14)

and Γ is the Gamma function. An example of this system is shown in Figure
3a.
In other cases, where the interior steady state exists, the solution will be
defined piecewise and joined at the interior steady state (see Figure 3b). The
solution in this case, along with the other cases, can be found in [13].

7.2. Higher order polynomial per-capita growth rates

We can also consider higher order polynomial functions for the per-capita
growth rates f and g, as long as our assumptions are still satisfied. This
enables the nullclines f = 0 and g = 0 to be slightly more complex, affecting
the shape of the orbits in the phase plane. In Figure 4, we have the system:

dx1

dt
= x1f(x1, x2)

= 10x1

[
x2

1 − (x2 − 1)(2x2 − 6)(2x2 − 1)
]
,

dx2

dt
= x2g(x1, x2)

= x2

[
14− 0.2x2

1 − 3x2
2

]
. (15)

This system satisfies our assumptions in the case where there is a unique
interior steady state apart from the final condition (requiring intraspecific
competition). In this model, ∂f

∂x1
> 0 in R2

>0. From Figure 4, we can see
that there are no periodic orbits and x∗ is a stable node. This demonstrates
that our requirement of intraspecific competition (A4) is sufficient but not
necessary for the existence of a balance manifold.
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(a) No interior steady state. α =
1.2, β = −0.9.
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(b) A unique interior steady state. α =
−0.5, β = 0.7.

Figure 3: A class of Lotka–Volterra systems [COLOUR: ONLINE ONLY].
Phase planes of the system (12), where the solid (green) and dashed (orange) solution
curves are the balance manifold. When the interior steady state exists, the solution is
defined by joining two orbits together.

7.3. Facultative mutualism

In co-operative Lotka–Volterra models, if the interspecific interaction rates
are too large, population densities can become unbounded which goes against
our assumption that infinity is repelling. Wolin [25] introduced facultative
mutualism models for which the orbits are always bounded. A facultative
mutualist is a species which can exist without the presence of its mutualistic
partner species. We consider a model where both species have a per-capita
birth rate which is increased by high recipient densities through a hyperbolic
functional response:

dx1

dt
= x1

(
r1 −

b1x1

1 + α12x2

− d1x1

)
,

dx2

dt
= x1

(
r2 −

b2x2

1 + α21x1

− d2x2

)
, (16)

(here all parameters are positive). There is a unique interior steady state x∗

which always exists and is stable. This model satisfies our assumptions for
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Figure 4: A system with higher order polynomial per-capita growth rates [CO-
LOUR: ONLINE ONLY].
A phase plane of the system (15) with a close-up of the interior steady state in the right
figure. The balance manifold is the solid (red) curve and the (black) points are steady sta-
tes. In this system, there is a unique interior steady state and species 1 does not experience
intraspecific competition in R2

>0.

the case with one interior steady state. An example of this system, along
with its balance manifold, is shown in Figure 5.

7.4. Holling type-II Predator-Prey interaction

Consider the system

dx1

dt
= x1

[
ρ
(

1− x1

K

)
− γx2

A+ x1

]
,

dx2

dt
= x2

[
σx1

A+ x1

+ µ− αx2

]
. (17)

Here, x1 is the prey and x2 is the predator density, and all parameters are
positive. The equation for the prey shows a type-II Holling functional re-
sponse [26], where there is a maximal feeding rate γ for the predator. The
model has been modified from the classic predator-prey model as the preda-
tor has an alternative food source that supports logistic growth to carrying
capacity µ/α in the absence of prey. An example of this is if the predator is
omnivorous [27].
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Figure 5: A system with facultative mutualism [COLOUR: ONLINE ONLY].
A phase plane of the co-operative system (16). The balance manifold is the solid (red)
curve and the (black) points are steady states.

There is a unique axial steady state on each axis; (K, 0) and (0, µ/α). There is
also intraspecific competition for both species and at most one interior steady
state x∗. In this model, infinity is repelling. Note that dx1

dt
< 0 for any x1 > K

and x2 ≥ 0. This means there exists some time T ≥ 0 such that x1(t) ∈ [0, K]
for all t > T . In this case, note that dx2

dt
≤ x2 (σK(A+K)−1 + µ− αx2) for

all t > T . The expression on the right hand side is negative when x2 >
α−1 (σK(A+K)−1 + µ). This means that for any initial condition, there
is some time TB such that for all t > TB the solution (x1(t), x2(t)) lies in
the compact box B = [0, K] × [0, α−1 (σK(A+K)−1 + µ)]. Thus infinity is
indeed repelling in this model.
When the parameters of (17) are all positive, the model satisfies our condi-
tions of the existence of a balance manifold in both of the cases where x∗

does and does not exist. An example of the former case, with the balance
manifold depiected, is shown in Figure 6.

8. Conclusions

We have provided several computable conditions in Theorems 4.2 and 5.3
which lead to the existence of what we have called the balance manifold in
planar Kolmogorov systems, where solutions that are growing from the ori-
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Figure 6: A predator-prey system with a Holling type-II response [COLOUR:
ONLINE ONLY].
A phase plane of the system (17) with a close-up of the interior steady state in the right
figure. The balance simplex is the solid (red) curve and the (black) points are steady
states. In this model of predator-prey dynamics, there is no possibility of periodic orbits
since both species always experience intraspecific competition.

gin, with those declining from infinity are balanced. We have discussed the
cases where there is at most one interior steady state x∗. The next logical
step would be to consider systems where there is more than one interior ste-
ady state. For example, Zhang et al. [28] considered a two-species model
with transitions between types of population interactions; the interspecific
interactions can change sign with species density. In their model they found
up to three interior steady states, an example of which is shown in Figure 7.
Unlike our previous examples, in this case the boundary of the basin of re-
pulsion of the origin and of infinity are not equal, but R(O) ⊂ R(∞) and the
balance manifold is ∂R(∞) This is why we use the union of these boundaries
in Definition 3.7 instead of being equal to both of these boundaries.
Some of the conditions we have provided are necessary for a balance manifold
to exist. For example, the requirement that there is exactly one axial steady
state on each axis. This condition is equivalent to requiring the existence of
the balance manifold in all the 1-dimensional cases of the system. Some of
our conditions are sufficient but not necessary for the existence of a balance
manifold, such as intraspecific competition in R2

>0 (see Figure 6).
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Figure 7: A system with varying interspecific interactions [COLOUR: ONLINE
ONLY].
A phase plane of a system from [28] with varying interspecific interactions. The balance
simplex is the solid (red) curve and the (black) points are steady states. In this case
the boundary of the basin of repulsion of the origin and of infinity are not equal and the
balance manifold is ∂R(∞).

The balance manifold differs from the competitive carrying simplex as some
properties of the carrying simplex no longer hold. For example, in non-
competitive cases where there is an interior steady state, the balance manifold
may no longer be smooth at this point. The balance manifold can also have a
curvature which changes sign, and may not project 1-to-1 on the line joining
both axial steady states. An example of these can be found in Figure 6 where
we consider a predator-prey type model.
Finally, the planar balance manifold is an important part of understanding
similar manifolds in higher-dimensional Kolmogorov models. For example,
where there are 3 species, in seeking to define a balance manifold we need a
balance manifold to exist when one of the species is absent, i.e. in a planar
model of the kind studied here.
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