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Summary 

Background Alzheimer’s disease (AD) biomarkers are important for early diagnosis in 

clinical routine and trials. Three core AD cerebrospinal fluid (CSF) biomarkers (Aβ42, T-tau, 

and P-tau) have been evaluated in numerous studies and there are several emerging AD 

markers. However, there is no comprehensive meta-analysis of their diagnostic performance.  

Methods We screened PubMed and Web of Science for articles on CSF and blood 

biomarkers reflecting neurodegeneration (T-tau, NFL, NSE, VLP-1, and HFABP), amyloid 

precursor protein (APP) metabolism (Aβ42, Aβ40, Aβ38, sAPPα, and sAPPβ), tangle 

pathology (P-tau), blood-brain-barrier function (albumin ratio) and glial activation (YKL-40, 

MCP-1, and GFAP). Based on inclusion criteria, 231 of 13,319 screened articles were 

included. Biomarker performance was rated on fold change between AD and controls and 

between mild cognitive impairment (MCI) who later converted to AD (MCI-AD) and stable 

MCI who had at least a follow-up time of two years.  

Findings Core biomarkers differentiated AD from controls with excellent performance; CSF 

T-tau (2·54, CI 2·44-2·64, p<0·0001, 152 studies), P-tau (1·88, CI 1·79-1·97, p<0·0001, 91 

studies), and Aβ42 (0·56, CI 0·55-0·58, p<0·0001, 131 studies). Differentiation between 

MCI-AD and stable MCI was also strong (0·66-1·81). Furthermore, CSF NFL (2·35, 95% CI 

1·90-2·91, p<0·0001) and plasma T-tau (1·95, 95% CI 1·12-3·38, p=0·02) had large effect 

sizes, while CSF NSE, VLP-1, HFABP, and YKL-40 were more moderate (1·28-1·47). 

Remaining biomarkers had marginal effect sizes or were non-significant.  

Interpretation Core CSF AD biomarkers and NFL, as well as plasma T-tau, are strongly 

associated with AD. Emerging biomarkers CSF NSE, VLP-1, HFABP, and YKL-40 are 

moderately associated with AD, while plasma Aβ42 and Aβ40 are not. 
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Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disease. Its 

neuropathological hallmarks are amyloid β (Aβ)-containing plaques, and tau-containing 

neurofibrillary tangles.1 It is generally acknowledged that several drug candidates, most 

targeting Aβ, have failed in large, multi-centre clinical trials in part because a large proportion 

of clinically diagnosed patients show no evidence of amyloid pathology on PET scans, and 

thus do not have AD.2 This diminishes the possibility of identifying a clinical benefit of the 

tested drug and points to the need for validated biomarkers in drug development and clinical 

practice. 

Over the past 25 years, three core AD cerebrospinal fluid (CSF) biomarkers have been 

identified and tested in hundreds of studies. These are the 42 amino acid form of Aβ (Aβ42) 

with low levels due to cortical amyloid deposition, total tau (T-tau) with high levels due to 

cortical neuronal loss,3-6 and phosphorylated tau (P-tau) with high levels reflecting cortical 

tangle formation.7,8 High diagnostic accuracy of these biomarkers has been demonstrated for 

AD, with sensitivity and specificity reaching 85-90%, and also for prodromal AD in the mild 

cognitive impairment stage of the disease (MCI-AD).9 Biomarkers have also been 

incorporated in modern diagnostic criteria. 10 However, individual studies vary greatly and no 

comprehensive meta-analysis has evaluated their diagnostic performance. Nor has emerging 

biomarkers reflecting neurodegeneration, glial cell activation, and amyloid precursor protein 

(APP) metabolism, which show promise as diagnostic tools,11 yet been meta-analyzed. 
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In the present paper, we have examined the literature on 15 biomarkers in both CSF and 

blood, covering core AD biomarkers as well as other markers of neurodegeneration, glial and 

blood-brain-barrier (BBB) function, and APP metabolism, to determine which ones separate 

AD from controls and MCI-AD from stable MCI.  

Methods 

Search strategy and selection criteria 

We did this study according to the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) statement.12 We screened articles published in PubMed and Web 

of Science between 1984 (when the first diagnostic criteria were published)13 and June 30th, 

2014, which reported data on biomarkers of neurodegeneration (T-tau,3-6 neurofilament light 

protein (NFL),14 neuron-specific enolase (NSE),15 visinin-like protein 1 (VLP-1),16 and heart 

fatty acid binding protein (HFABP)17), APP metabolism (Aβ42, Aβ40, Aβ38, α and β cleaved 

soluble amyloid precursor protein (sAPPα, and sAPPβ)), tangle pathology (P-tau),7,8 BBB 

function (CSF/serum albumin ratio) and glial activation (YKL-40,28,29 monocyte chemotactic 

protein 1 (MCP-1),18 and glial fibrillary acidic protein (GFAP)19) in CSF and blood (serum or 

plasma) in AD vs. controls or MCI-AD vs. stable MCI (Table 1). It is important to note that 

only a few of these markers have been validated against neuropathology and that the precise 

process their CSF levels reflect is tentative until such studies have been performed.20 For 

detailed search terms, see Supplemental Methods. The review protocol can be found at 

http://www.alzforum.org/alzbiomarker/about-alzbiomarker/methods. Additional records were 

identified through reference lists of included articles (Figure 1). Data was independently 

extracted by ten authors. Plasma and serum analyses for each biomarker were meta-analyzed 

together. Data were curated from cross-sectional cohort studies as well as from baseline 

measurements in longitudinal studies with clinical follow-up. All entered data was checked by 

http://www.alzforum.org/alzbiomarker/about-alzbiomarker/methods
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two researchers. Stable MCI was defined as having a follow-up of at least 2 years without 

meeting dementia diagnosis. MCI-AD was defined as baseline MCI with progression to AD 

dementia at follow-up. Controls included cognitively normal volunteers (spouses or 

volunteers recruited by other means from the population) or individuals who were sampled 

when admitted to hospital, e.g., for a surgical procedure that required spinal anaesthesia, and 

who proved cognitively normal when tested.  

Exclusion criteria for entire studies or individual cohorts were: 1) Articles not written in 

English. 2) Studies not containing AD and a control cohort, or MCI-AD and a stable MCI 

cohort. 3) Cohorts with fewer than ten individuals. 4) Data reported in a format other than 

mean±SD or mean±SEM (study authors were contacted and asked to supply this information). 

5) Biomarker data from urine, saliva, or cellular blood fractions. 6) Studies using non-

quantitative methods, e.g., explorative proteomics or western blot. 7) Cohorts lacking 

diagnostic criteria for AD or MCI, or cohorts representing a mix of diagnoses. 8) Cohorts of 

stable MCI with less than two years follow-up. 9) Cohorts of individuals younger than 18 

years of age. 10) Studies lacking appropriately referenced methods, with the exception of 

CSF/serum albumin ratio which we accepted as a well-established routine analysis. 11) 

Previously published data. This also includes large initiatives such as ADNI where the same 

biomarkers are listed in many articles but only measured once and therefore only the first 

article where a biomarker is presented was included in this study. Finally, for longitudinal 

cohorts with several publications on the same baseline data, we included the publication that 

had the longest follow-up. 12) Control cohorts containing subjects with inflammatory, 

neurological, or psychiatric diagnoses that may affect CSF biomarker levels.  

Här måste vi beskriva QUADAS (inklusive ta med QUADAS-referenserna som finns i SBU-

dokumentet), ungefär så som du skriver i referee-svaret. Resultatet av QUADAS (hur många 

som hade high och medium quality) skall stå i Results första paragraf.  
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Statistical analysis 

There is a large variation in how different laboratories establish cut-points. Some use 

historical in house data, some establish optimal cut-off points within the same cohort or from 

an external cohort and some use reference limits established on healthy subjects; these are just 

some of the approaches used. Furthermore, there is significant variability in biomarker levels 

between laboratories and assays.21 The application of fold change reduces these problems. 

Hence, we performed meta-analyses using the AD/control ratios and the MCI-AD/stable MCI 

ratios; each specific ratio was generated within a single study. In studies with more than one 

control cohort, only the most cognitively normal (i.e., healthy controls over hospital controls) 

and age appropriate cohort was used. In studies with more than one AD cohort, all AD 

cohorts were included and divided by the control group to generate multiple ratios per study. 

In cohorts where a biomarker was analyzed with more than one assay we included only one of 

them and chose a commercial assay over an in-house assay. Standard error of the ratio of the 

mean values was calculated using the delta method.22,23 Random effects meta-analysis using 

the method of DerSimonian and Laird with the estimate of heterogeneity taken from the 

inverse-variance fixed-effect model was applied in Stata 13.1 (metan command sbe24_3).24 P-

values ≤0·05 were considered significant. Publication bias was assessed using funnel plots. 

The study protocol is listed on http://www.alzforum.org/alzbiomarker/about-

alzbiomarker/methods. 

 

Role of the funding source 

Funders of the study had no role in study design, data collection, analysis, interpretation, or 

writing of the report with the exception of the Biomedical Research Forum LLC, employees 

of which were involved in the development of the AlzBiomarker database, revised the 

http://www.alzforum.org/alzbiomarker/about-alzbiomarker/methods
http://www.alzforum.org/alzbiomarker/about-alzbiomarker/methods
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manuscript, and are co-authors here. All authors had full access to all the data in the study and 

had final responsibility for the decision to submit for publication. 

Results 

The initial screening identified 13,319 articles, 675 full-text articles were assessed for 

eligibility and 231 articles were included (Figure 1). 

Core biomarkers 

We found most eligible studies for T-tau. A total of 165 AD and 154 control cohorts in 152 

studies had data on CSF T-tau, comprising 11,341 AD patients and 7,086 controls. All studies 

had an AD/control ratio above one, with an average of 2·54 (95% CI 2·44-2·64, p<0·0001; 

Fig 2A). For CSF P-tau, we combined data from studies using single or multiple epitopes for 

detection. In 91 studies, a total of 7,498 AD patients from 98 cohorts and 5,126 controls from 

91 cohorts were included. As was the case for T-tau, all AD/control P-tau ratios were above 

one, with an average of 1·88 (95% CI 1·79-1·97, p<0·0001; Fig 2B). In the meta-analysis of 

Aβ42, we included studies using assays covering the 1-42 as well as the x-42 epitopes. A total 

of 143 AD cohorts and 135 control cohorts in 131 studies with 9,949 AD patients and 6,841 

controls were included. The CSF Aβ42 ratio between AD and controls was below one in all 

comparisons but one, with an average of 0·56 (95% CI 0·55-0·58, p<0·0001; Fig 2C). The 

funnel plots suggested publication bias for all three core biomarkers. 

Markers of neurodegeneration 

Data on NFL in CSF were available from nine AD and eight control cohorts comprising 245 

AD patients and 292 controls (average ratio 2·35, 95% CI 1·90-2·91, p<0·0001; Fig 3A), and 

on NSE from seven cohorts including 258 AD patients and 160 controls (average ratio 1·47, 

95% CI 1·08-2·00, p=0·01; Fig 3B). VLP-1 was analyzed in four AD (n=252) and control 

(n=486) cohorts (average ratio 1·46, 95% CI 1·31-1·62, p<0·0001; Fig 3C) and HFABP in 
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five AD (n=285) and control (n=297) cohorts (average ratio 1·39, 95% CI 1·24-1·57, 

p<0·0001; Fig 3D). The funnel plots suggested no publication bias for markers of 

neurodegeneration. 

Glial markers  

The microglial and astrocyte marker YKL-40 was analyzed in six AD and five control cohorts 

with 298 and 330 subjects, respectively. It was significantly elevated with an average ratio of 

1·28 (95% CI 1·23-1·35, p<0·0001; Fig 3E). In contrast, the astrocyte marker GFAP did not 

differ between AD and controls (average ratio 1·12, 95% CI 0·58-2·15, p=0·74, from two AD 

and control cohorts of 59 and 39 subjects respectively; Fig 3F). The microglial marker MCP-1 

had a small but significant effect size in three cohorts of AD and controls with 59 subjects in 

each group (average ratio 1·12 95% CI 1·06-1·18, p<0·0001; Fig 3G). The funnel plots 

suggested no publication bias for glial markers. 

Marker of BBB 

We analyzed CSF/serum albumin ratio in AD (20 cohorts, n=854) vs. controls (16 cohorts, 

n=441). The ratio was significantly elevated but the effect size was small (average ratio 1·10, 

95% CI 1·01-1·20, p=0·04; Fig 3H). The funnel plots suggested no publication bias for the 

marker of BBB. 

Markers of APP metabolism  

APP cleavage generates a host of quantifiable products besides Aβ42. Aβ40 was the second-

most studied amyloid marker. It was analyzed in 25 AD and 24 control cohorts with 1,079 

and 784 subjects, respectively. The average effect size was significant but minor 0·94 (95% 

CI 0·90-0·99, p=0·02; Supplementary fig 1A). Aβ38 was analyzed in eight studies with 251 

AD patients and 195 controls (average ratio 0·99, 95% CI 0·88-1·12, p=0·89, Supplementary 

fig 1B). Both sAPPα and sAPPβ are cleavage products from APP. Neither sAPPα (average 
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ratio 1·03, 95% CI 0·93-1·14, p=0·55), from nine AD (n=572) and control (n=415) cohorts 

(Supplementary fig 1C), nor sAPPβ (average ratio 1·02, 95% CI 0·95-1·09, p=0·61), from ten 

cohorts of 631 AD and 439 controls (Supplementary fig 1D) differed between AD patients 

and controls. The funnel plots suggested no publication bias for markers of APP metabolism. 

Plasma and serum biomarkers  

In contrast to the significantly lower CSF levels of Aβ42 in AD compared with controls, the 

average ratio of plasma Aβ42 between AD and controls was non-significant and close to one 

in the analysis of 22 AD and 20 control cohorts comprising 1,872 AD and 3,855 controls 

(average ratio 1·04, 95% CI 0·96-1·12, p=0·32; Supplementary fig 2A). Besides Aβ42, the 

plasma and serum literature had sufficient data for meta-analysis only for Aβ40, T-tau, YKL-

40, NSE, MCP-1, and HFABP. Aβ40 was not significantly different between AD and controls 

(average ratio 1·04, 95% CI 0·98-1·11, p=0·17) in 21 AD (n=1,661) and 19 control cohorts 

(n=3,668; Supplementary fig 2B). Data from six AD and five control cohorts on T-tau, 

comprising 271 AD and 394 controls, showed a large effect size (average ratio 1·95, 95% CI 

1·12-3·38, p=0·02; Supplementary fig 2C). There were no differences between AD and 

controls for NSE (average ratio 1·00, 95% CI 0·86-1·17, p=0·99) in three AD (n=102) and 

control cohorts (n=97; Supplementary fig 2D) or for HFABP (average ratio 1·05, 95% CI 

0·83-1·33, p=0·69) in two AD (n=55) and control (n=74) cohorts (Supplementary fig 2E). For 

YKL-40, the effect size was large but just not significant in three AD and two control cohorts 

with 155 AD and 233 controls, respectively (average ratio 1·95, 95% CI 0·99-3·84, p=0·053; 

Supplementary fig 2F). However, there was no difference between AD and controls for MCP-

1 (average ratio 1·00, 95% CI 0·89-1·13, p=0·99) in six AD (n=540) and control (n=344) 

cohorts (Supplementary fig 2G). The funnel plots suggested no publication bias for plasma 

and serum biomarkers. 
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Biomarkers in MCI 

All 12 eligible comparisons of CSF T-tau between MCI-AD (n=307) and stable MCI (n=570) 

had a ratio above one, with an average of 1·76 (95% CI 1·64-1·89, p<0·0001; Supplementary 

fig 3A). Likewise, all nine comparisons of CSF P-tau between MCI-AD (n=251) and stable 

MCI (n=501) had a ratio above one, with an average of 1·72 (95% CI 1·46-2·02, p<0·0001; 

Supplementary fig 3B). CSF Aβ42 concentrations were also significantly lower in MCI-AD 

(12 cohorts, n=352) compared with stable MCI (12 cohorts, n=610), albeit with a smaller 

effect size than between AD and controls (average ratio 0·67, 95% CI 0·63-0·73, p<0·0001; 

Supplementary fig 3C). In contrast, CSF Aβ40 was not significant between three cohorts each 

with 152 MCI-AD and 189 stable MCI patients (average ratio 0·98, 95% CI 0·90-1·07, 

p=0·71; Supplementary fig 3D). Neither was the average ratio of plasma Aβ42 from three 

MCI-AD (n=308) and stable MCI (n=379) cohorts (average ratio 0·81, 95% CI 0·53-1·24, 

p=0·32; Supplementary fig 3E). However, the average ratio of plasma Aβ40 was significantly 

different between three MCI-AD (n=308) and stable MCI (n=379) cohorts, but the effect size 

was negligible (average ratio 1·07, 95% CI 1·03-1·10, p=0·0002; Supplementary fig 3F). 

Neither sAPPα nor sAPPβ was significantly changed in CSF between MCI-AD and stable 

MCI; sAPPα from three MCI-AD (n=118) and stable MCI (n=169) cohorts (average ratio 

1·09 95% CI 0·96-1·25, p=0·20; Supplementary fig 3G) and sAPPβ from three MCI-AD 

(n=118) and stable MCI (n=169) cohorts (average ratio 1·06, 95% CI 0·87-1·28, p=0·59; 

Supplementary fig 3H). The funnel plots suggested no publication bias for biomarkers in 

MCI. 

Biomarker performance 

Head-to-head biomarker performance is shown in Figure 4A-B. 

Discussion 
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Our study provides by far the most comprehensive meta-analysis of the rapidly growing 

biomarker literature in AD. It shows unequivocally that AD is associated with lower CSF 

levels of Aβ42 and higher CSF levels of T-tau and P-tau compared with controls. 

Furthermore, AD is associated with increased CSF levels of NFL, NSE, VLP-1, HFABP, 

YKL-40, and increased plasma levels of T-tau. 

Fluid biomarker measurement in AD is marked by variability between laboratories and 

batches of commercial assays, which are research-grade but not clinically certified.21 This 

precluded a traditional meta-analysis based on existing cut-off levels. Furthermore, our 

analysis included a multitude of in-house assays, some of which used different epitopes in the 

same molecule, particularly for Aβ42 and P-tau. Some Aβ42 assays use antibodies targeting 

the first and last amino acids, i.e. Aβ1-42, or a mid-domain epitope in combination with an 

end-specific antibody, designated Aβx-42. Tau is phosphorylated at multiple sites, but most 

assays only detect the phosphorylation of one specific amino acid. To circumvent this 

methodological variability, we used ratios of AD/control and MCI-AD/stable MCI biomarker 

levels for meta-analysis and combined the analyses of relevant forms of a specific protein into 

one. Neither for Aβ42 nor for P-tau did the literature indicate superiority of a particular 

epitope. In our meta-analysis, different assays using different antibody combinations against 

Aβ42 generated similar results (Supplement). For P-tau, the other epitopes besides P-tau181 

were analyzed in too few studies to evaluate differences in performance.  

The picture was unanimous for T-tau and P-tau; all studies had an AD/control ratio above 

one. The results were also remarkably consistent for Aβ42 in CSF, with 139 studies finding 

an AD/control ratio below one, with just one outlier, Jensen et al,25 finding a ratio above one. 

A plausible explanation for this anomaly is that the Aβ42 levels of the controls in their study 

were exceptionally low, only 40% of the levels in a simultaneously analyzed cohort with 
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depression. Normally, CSF Aβ42 levels are similar between controls and patients with 

depression.26  

The CSF signature of elevated T-tau and P-tau and reduced Aβ42 was also observed in MCI-

AD compared with stable MCI, although the effect was somewhat less pronounced. Most 

likely, some individuals categorized as stable MCI were in fact developing prodromal AD 

thereby diverging in their biomarker profile from healthy controls. This interpretation is 

supported by results showing that the drop in CSF Aβ42 levels precedes AD dementia by at 

least ten years.27-29 To minimize this problem, we excluded all mixed MCI cohorts and 

required that stable MCI cohorts had a follow-up period of at least two years with cognitive 

stability. Even so, this problem cannot be totally avoided since the only way to estimate early 

non-clinical signs of progression, except for very long follow-up or post-mortem 

examinations, is through the use of CSF or imaging markers of AD pathology, which would 

be a form of catch 22 if taken into account. It is also worth to note that clinical AD does not 

guarantee AD pathology and that normal cognition does not guarantee absence of AD 

pathology. However, this is an issue that we cannot solve in this study since we have to rely 

upon the clinical diagnostic criteria that were listed in the studies since only very few have 

autopsy confirmed diagnoses. 

Among the new or less studied CSF biomarkers, NFL showed a large effect size (2·35). NFL 

is the light protein of neurofilament and, with either the medium or the heavy counterpart, 

makes up neurofilament bundles that determine axonal caliber and conduction velocity.14 

Thus, our data indicate that axonal destruction is prominent in AD. Furthermore, NSE, VLP-

1, HFABP, and YKL-40 had a moderately large (1·28-1·47) and significant effect size 

between AD and controls. NSE is a neuron-enriched enzyme of the glycolytic pathway,15 

VLP-1 is a calcium-sensor protein found in the neuronal cytoplasm,16 HFABP is an 

intracellular fatty acid transport protein expressed in skeletal muscle heart and neurons,17 and 
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YKL-40 is a marker of activated microglia and astrocytes.30,31 None of these markers reflect 

the core pathology of AD; nevertheless, this meta-analysis suggests that they could be useful 

in clinical trials of anti-AD drugs as tau- and Aβ-independent measures of neurodegeneration 

and glial activation. In contrast, although CSF Aβ40 and MCP-1 and CSF/serum albumin 

ratio were statistically different between AD and controls, their small effect size precludes 

their use as diagnostic markers. Moreover, our meta-analysis suggests that sAPPα, sAPPβ, 

and Aβ38 are not useful in AD diagnostics.  

Acceptance of lumbar puncture by physicians varies from country to country, therefore 

plasma is considered a desirable matrix for AD biomarker analyses. When all studies were 

weighed in, we found no significant differences between Aβ markers in AD and controls, 

supporting the hypothesis that plasma Aβ levels reflect peripheral Aβ generation more than 

AD brain pathology. In contrast, plasma levels of T-tau were significantly associated with 

AD. Variation in the few available studies was large, therefore more data are needed to verify 

this association.  

Despite conducting exhaustive PubMed and the Web of Science searches, we might have 

missed some eligible studies. Some studies reported data in a format unsuitable for our 

analysis; for these studies we requested the missing data from the corresponding authors and 

most responded. All studies for T-tau and P-tau had a ratio above one and all but one a ratio 

below one for Aβ42 indicating that the results for these biomarkers are solid. However, there 

was publication bias for all three core biomarkers between AD and controls and therefore the 

results will have to be interpreted in the light of this. Furthermore, this indicates that the 

heterogeneity is small for the core biomarkers. In contrast, some heterogeneity can be 

observed in the forest plots for the other biomarkers in spite of the use of the fold change 

approach. Potential reasons for heterogeneity in the results of the less established biomarkers 
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include smaller studies and less established and validated assays compared with the core 

biomarkers, as well as less knowledge on potential confounding pre-analytical factors.   

To extract maximal knowledge from the abundance of fluid biomarker studies published in 

recent years, data must first be extracted, aggregated, and organized. Therefore, in 

conjunction with this manuscript, we have developed an open-access database containing the 

curated data and meta-analyses shown here. The AlzBiomarker database, which is hosted at 

www.alzforum.org, contains additional curated data, such as mean age of subjects, MMSE 

scores, and duration of disease. In addition, interactive visuals allow users to compare results, 

explore promising biomarkers, methods and assays, as well as to identify knowledge gaps.  

The database will be updated with new data and meta-analyses as additional studies are 

published. 

In conclusion, CSF Aβ42, T-tau, P-tau, and NFL are biomarkers that, at least on a group level, 

robustly separate AD patients from controls, while CSF NSE, VLP-1, HFABP, and YKL-40 

show more moderate differences. Importantly for earlier detection, CSF Aβ42, T-tau, and P-

tau also discriminate between MCI-AD and stable MCI. Plasma T-tau is the only blood 

biomarker that separates AD from controls; this finding needs verification in larger cohorts. 
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Table 1. Biomarkers analyzed where available in AD vs. CTRL and MCI-

AD vs. stable MCI in CSF, serum and plasma.  

Neurodegeneration 

T-tau NFL NSE VLP-1 HFABP 

APP metabolism 

Aβ42 Aβ40 Aβ38 sAPPα sAPPβ 

Tangle pathology 

P-tau     

Glial activation 

YKL-40 MCP-1 GFAP   

BBB function 

Albumin ratio     

 

 

Figure legends 

Figure 1: Study selection.  

 

Figure 2: AD/control ratios for CSF core biomarkers.  

CSF ratios of T-tau (A), P-tau (B) and Aβ42 (C) between AD and control groups. Individual 

AD/control ratios and their corresponding 95% CIs are indicated by filled squares. The size of 

the square indicates the weight of the study. All average ratios and their corresponding 95% 
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CIs are indicated by clear diamonds. The solid line indicates a ratio of one and the dotted 

indicates the average ratio.  

 

Figure 3: AD/control ratios for CSF markers of neurodegeneration, glial activation, and 

blood-brain barrier function.  

CSF ratios of NFL (A), NSE (B), VLP-1 (C), HFABP (D), YKL-40 (E), GFAP (F), MCP-1 

(G) and CSF/serum albumin ratio between AD and control groups. Individual AD/control 

ratios and their corresponding 95% CIs are indicated by filled squares. The size of the square 

indicates the weight of the study. All average ratios and their corresponding 95% CIs are 

indicated by clear diamonds. The solid line indicates a ratio of one and the dotted indicates the 

average ratio.  

 

Figure 4: AD/control ratios for CSF markers of APP metabolism.  

CSF ratios of Aβ40 (A), Aβ38 (B), sAPPα (C) and sAPPβ (D) between AD and control 

groups. Individual AD/control ratios and their corresponding 95% CIs are indicated by filled 

squares. The size of the square indicates the weight of the study. All average ratios and their 

corresponding 95% CIs are indicated by clear diamonds. The solid line indicates a ratio of one 

and the dotted indicates the average ratio.  

 

Figure 5: AD/control ratios for plasma biomarkers.  

Plasma or serum ratios of Aβ42 (A), Aβ40 (B), T-tau (C), NSE (D), HFABP (E), YKL-40  

(F), MCP-1 (G) between AD and control groups. Individual AD/control ratios and their 
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corresponding 95% CIs are indicated by filled squares. The size of the square indicates the 

weight of the study. All average ratios and their corresponding 95% CIs are indicated by clear 

diamonds. The solid line indicates a ratio of one and the dotted indicates the average ratio.  

 

Figure 6: MCI-AD/stable MCI ratios for CSF and plasma markers 

CSF ratios of T-tau (A), P-tau (B), Aβ42 (C), Aβ40 (D), sAPPα (G), sAPPβ (H) and plasma 

ratios of Aβ42 (E) and Aβ40 (F) between MCI-AD and stable MCI groups. Individual MCI-

AD/stable MCI ratios and their corresponding 95% CIs are indicated by filled squares. The 

size of the square indicates the weight of the study. All average ratios and their corresponding 

95% CIs are indicated by clear diamonds. The solid line indicates a ratio of one and the dotted 

indicates the average ratio.  

 

Figure 7: Biomarker performance rating in AD vs. controls. 

Head-to-head biomarker performance in CSF (Panel A) and in serum and plasma (Panel B) 

based on average AD/control ratios. The biomarkers in green circles were significant with 

good effect size and the ones in blue squares were significant with moderate effect size and 

the ones in red diamonds were non-significant or significant with minor effect size T-tau 2·54 

(95% CI 2·44-2·64, p<0·0001), NFL 2·35 (95% CI 1·90-2·91, p<0·0001), P-tau 1·88 (95% 

CI 1·79-1·97, p<0·0001), Aβ42 0·56 (95% CI 0·55-0·58, p<0·0001), NSE 1·47 (95% CI 

1·08-2·00, p=0·01), VLP-1 1·46 (95% CI 1·31-1·62, p<0·0001), HFABP 1·39 (95% CI 1·24-

1·57, p<0·0001), YKL-40 1·28 (95% CI 1·23-1·35, p<0·0001), MCP-1 1·12 (95% CI 1·06-

1·18, p<0·0001), GFAP 1·12 (95% CI 0·58-2·15, p=0·74), albumin ratio 1·10 (95% CI 1·01-

1·20, p=0·04), Aβ40 0·94 (95% CI 0·90-0·99, p=0·02), Aβ38 0·99 (95% CI 0·88-1·12, 
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p=0·89), sAPPα 1·03 (95% CI 0·93-1·14, p=0·55), and sAPPβ 1·02 (95% CI 0·95-1·09, 

p=0·61). Plasma and serum markers are depicted in black circles T-tau 1·95 (95% CI 1·12-

3·38, p=0·02), YKL-40 1·95 (95% CI 0·99-3·84, p=0·053), HFABP 1·05 (95% CI 0·83-1·33, 

p=0·69), Aβ40 1·04 (95% CI 0·98-1·11, p=0·17), Aβ42 1·04 (95% CI 0·96-1·12, p=0·32), 

MCP-1 1·00 (95% CI 0·89-1·13, p=0·99), and NSE 1·00 (95% CI 0·86-1·17, p=0·99). The 

AD/control ratios of CSF Aβ42, Aβ40, and Aβ38 were inverted to allow for a clearer 

comparison with the other biomarkers. The dotted line indicates a ratio of one. 

 


