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Abstract
Bayesian models of legal arguments generally aim to produce a single integrated 
model, combining each of the legal arguments under consideration. This combined 
approach implicitly assumes that variables and their relationships can be represented 
without any contradiction or misalignment, and in a way that makes sense with 
respect to the competing argument narratives. This paper describes a novel approach 
to compare and ‘average’ Bayesian models of legal arguments that have been built 
independently and with no attempt to make them consistent in terms of variables, 
causal assumptions or parameterization. The approach involves assessing whether 
competing models of legal arguments are explained or predict facts uncovered 
before or during the trial process. Those models that are more heavily disconfirmed 
by the facts are given lower weight, as model plausibility measures, in the Bayes-
ian model comparison and averaging framework adopted. In this way a plurality of 
arguments is allowed yet a single judgement based on all arguments is possible and 
rational.
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1  Introduction

Bayesian models of legal arguments have been developed with the aim of pro-
ducing an integrated model which combines each of the legal arguments under 
consideration, such as those presented by the defence and prosecution in a trial 
(Aitken and Taroni 2004; Bex et  al. 2007, 2010; Fenton et  al. 2013; Fienberg 
and Finkelstein 1996; Taroni et al. 2014; Dawid and Mortera 2008; Fenton et al. 
2016). This approach implicitly assumes that the resulting integrated model can 
represent variables and their relationships without any contradiction or misalign-
ment and in a way that makes sense with respect to the competing argument nar-
ratives. We call this approach to legal argumentation the “integrated Bayesian 
perspective” [see Fenton et  al. (2016), for an account of the history and status 
of this research area]. However, the integrated approach can be challenging in 
practice. By seeking to unify disparate arguments in a single consistent model we 
encounter modelling difficulties that are hard to overcome, such as those reported 
in Fenton et al. (2016) relating to the basic requirement of mutual exclusivity, and 
the requirement that conditional or causal dependencies remain consistent despite 
competing or contradictory argument narratives. Finally, the integrated approach 
assumes an omniscient fact-finder capable of rationally fusing all relevant infor-
mation all at once when, in practice, the fact-finder is part of an evolving legal 
process that culminates in a decision.

Whilst the integrated approach represents a noble ideal for determining the 
‘true’ state of the world, we can find no practical requirement or legal stipulation 
to adopt the integrated approach and neither can we assume that, for any legal 
case, there are only ever two competing arguments requiring unification. Indeed, 
each party in a trial process may present more than one argument, each mutually 
exclusive of the other, positing different causal conjectures, assigning different 
weights to evidence or even ignoring some kinds of evidence altogether.

Indeed, non-Bayesian approaches to legal argumentation have tended to be 
narrative-based with a focus on comparisons between competing stories and 
explanations with much less emphasis on formal integration (Bex et  al. 2007, 
2010; Fenton et  al. 2013, 2016). Recent work that incorporates scenario-based 
approaches with Bayesian networks has attempted to partly address this problem 
(Vlek et al. 2015, 2016). Likewise, a convincing attempt at integrating narrative 
and probabilistic perspectives has been presented in Urbaniak (2018), with an 
emphasis on modelling more than mere evidence but also considering competing 
narratives, explanations and notions of credibility and resiliency. However, the 
main weakness in the approach taken in Urbaniak (2018) is that it fails to offer a 
convincing and operational means to structure and compare competing narratives. 
More recent work Verheij (2014, 2017) has attempted to connect arguments, 
probability and scenarios-based approaches.

This paper presents an approach to modelling legal arguments that main-
tains the separation of each legal argument in separate Bayesian network models 
(described in Sect. 3). This approach allows differences in the variable definitions 
and causal dependencies that each argument may contain. Thus, in principle, 
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defence and prosecution models may contain different variables with radically 
different causal dependencies and dissimilar probability assignments. Addition-
ally, the paper aims to be consistent with the hypothetico-deductive method in 
that more accurate empirical inferences made by one legal argument, rather than 
another competing legal argument, are given more weight.

The overall objective of the approach proposed is to model legal decision-making 
from the perspective of an observer or fact-finder (such as a judge or jury member) 
who observes the different arguments and facts presented by both sides of a case. 
Such an observer will formulate prior beliefs about the integrity and coherence of 
the arguments and will then revise their beliefs after they observe witnesses present 
their evidence and defend it under cross-examination. The observer’s subsequent 
belief in the credibility of the witnesses will drive their revised belief in the cred-
ibility of the narratives.

This paper is structured as follows: Sect.  2 describes and motivates the under-
lying ideas and Sect.  3 summarises the Bayesian modelling approaches underpin-
ning our framework. Section 4 presents the proposed framework. In Sect. 5 we use 
an example to show how the framework might be applied as a trial develops. Sec-
tion 6 presents an integrated model and discusses how it compares with the example 
results. In Sect. 7 we offer some discussion and finally give conclusions in Sect. 8.

2 � The underlying idea and its motivation

The aim of our paper is to compare Bayesian models of legal arguments, even if they 
have been built independently and with no attempt to make them consistent in terms 
of variables, causal assumptions or parameterisation. We consider the situation in a 
criminal trial, where a suspect has been charged with some crime, and where prose-
cution and defence arguments each can be represented by a Bayesian model. Several 
facts (primary pieces of evidence), such as the results of forensic analysis and wit-
ness statements, have been established; but the weight, relevance and interpretation 
of those facts are disputed by the two sides. During court hearings, by cross-exami-
nation and argument, further evidence of secondary nature comes to light which we 
call source credibility evidence. This source credibility evidence may or may not 
change our judgement of source credibility. How reliable is a witness? What kinds 
of errors can be made when calling on forensic evidence?

We suppose that the Bayesian model produced by each of the two parties allows 
them to express the arguments about both guilt and innocence of the defendant.1 
Each is a model of the joint probability distribution of several random variables: 
some of which are supposed to have been observed, others of which (“hidden vari-
ables”) have not. The variables in the two models need not be the same since the two 
parties have different pictures of the causality relations between what is observed in 
the real world on the one hand, and the guilt or innocence of the defendant on the 

1  Note that throughout this paper we use argument and model interchangeably, since we propose that 
each argument can be represented by a model.
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other hand. The model of the prosecution should somehow explain the facts by tak-
ing the defendant to be guilty, while the model of the prosecution is an explanation 
of the same facts by taking the defendant to be innocent. But the two models do not 
typically assume a priori guilt and innocence respectively. They might even contain 
the same a priori probabilities of guilt. Typically, prosecution and defence will both 
have arguments concerning motive and opportunity, which describe the situation in 
the real world at times prior to the crime, as well as arguments about forensic evi-
dence, which typically bears on actions or events at the time of the crime. If the 
model of the prosecution deals with evidence for (i.e., facts relating to) motive and 
opportunity, then it must admit that absent those facts, innocence must have been 
a real possibility, hence it will imply a non-zero prior probability of innocence; by 
prior we mean prior to knowledge of the facts. The prosecution model is put forward 
to show that a posteriori, i.e., given the facts, innocence is highly unlikely. Con-
versely, the defence model is put forward to show that a posteriori, thus given the 
same facts, innocence is quite possible.

Both models are in fact models for the joint probability distribution of guilt/
innocence and the facts. They each define their own prior for guilt, as well as their 
own conditional probabilities for the facts given guilt or innocence. We consider a 
third party, the fact-finder, who has to evaluate the arguments of the two sides. This 
could be a judge, or judges’ bench, or a jury, or an academic studying historical 
cases to model either actual or ideal behaviour of triers of fact. Whether our frame-
work should be considered descriptive or prescriptive is left open. As we said, both 
models should allow guilt and innocence to be expressed within the model, and both 
models should allow us to express realisation or actualisation of certain facts. The 
various hidden variables in the two models model the causal relations between what 
can be observed in a way which is consistent with our understanding of “how the 
world works”.

An argument that fails to explain any of the facts of the case or any supplemen-
tary facts that arise during the case should be believed less than an argument that 
successfully explains all facts. Therefore, arguments that do not explain facts should 
be penalised by the fact-finder. However, unlike in science where models are judged 
by how well they predict facts, here legal arguments are partly and initially “fitted” 
to the facts and thus do not have the status of scientific predictions. Nonetheless, 
some underlying operating conditions are shared between science and law: in a court 
case an argument is tested by cross examining witnesses. This process may reveal 
new, previously unknown, contradictory facts that discredit the sources used in an 
argument and, hence, undermine the argument itself. This process closely parallels 
scientific practice and so our view is to judge legal arguments in a scientific way 
based on how well they explain (historical) facts and how well they predict (new) 
facts revealed during the trial. Indeed, it has been cogently argued that the adversar-
ial fact finding process, as practiced in England and Wales, shares the same Enlight-
enment values and methods of enquiry as the empirical scientific process (Roberts 
2013).

We propose that the plausibility the fact-finder has in a model should be a function 
of how well it explains the facts of the case and by its ability to anticipate future facts, 
revealed during the case. We propose measuring plausibility as the joint probability 
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that all facts are confirmed by a model. Under this framework a model that makes 
incorrect predictions would suffer penalty and a model that relies on too many aux-
iliary hypotheses and assumptions will be more fragile and easier to refute. There is 
persuasive evidence to support the idea that lay people think this way too (Lagnado and 
Harvey 2008).

Contradictions between hypotheses that attempt to explain old facts and new facts 
are mediated in our framework by the credibility the fact-finder places in the sources of 
those facts. If a source is discredited by new facts that contradict older ones, then those 
elements of the argument that rely on that source will be disbelieved. Hence, source 
credibility and observations (facts) about source credibility play a prominent role. 
Accordingly, the original Bayesian models produced by each party are enhanced by the 
fact-finder such that it reflects their own judgements about these factors.

3 � Bayesian inference methods applied

There are two types of Bayesian inference in our framework. The first is Bayesian 
Model Comparison and Averaging (BMCA) and the second are Bayesian Networks 
(BNs). Bayes Theorem underpins both approaches and is a good starting point to 
understand BMCA and BNs. Bayes Theorem states that the probability of a hypothesis 
variable, H = hi , with i = 1,… , n states, given evidence variable, E, is:

where P(H = hi|E) is the posterior probability of the hypothesis being true; 
P
(
E|H = hi

)
 is the likelihood of observing the evidence, E, given the hypoth-

esis; P
(
H = hi

)
 is the prior probability of the hypothesis being true; and 

P(E) =
∑n

i=1
P
�
E�H = hi

�
P
�
H = hi

�
 is the probability of observing the evidence 

over all hypotheses.
BMCA is widely used to compare and average predictions, sourced from different 

models that, despite differences in content and accuracy, allow their combination using 
the same observed data (Mackay 2003; Hoeting et al. 1999). BMCA applies a standard 
norm of scientific investigation by identifying those models that predict or explain the 
available data, more or less well and weighs each model by the plausibility of their per-
formance. Assuming we have several different models, each competing to explain and 
predict the same phenomena, the decision maker can then either select the ‘best’ model, 
or by producing an ensemble model, average all the model predictions, weighted by 
the performance of each. We can ‘solve’ the BMCA problem using Bayes Theorem by 
replacing hypotheses with models, M = mi , and evidence with data, D:

(1)P(H = hi�E) =
P
�
E�H = hi

�
P
�
H = hi

�

∑n

i=1
P
�
E�H = hi

�
P
�
H = hi

�

(2)P(M = mi�D) =
P
�
D�M = mi

�
P
�
M = mi

�

∑n

i=1
P
�
D�M = mi

�
P
�
M = mi

�
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where P
(
D|M = mi

)
 is the likelihood of observing that data under model; M = mi ; 

and P
(
M = mi

)
 is the prior probability of the model being true. Assuming equal pri-

ors, those models with higher likelihood probabilities will have equivalently higher 
posterior probabilities. We can then select and use the most plausible model as being 
equal to the one with the highest posterior probability. Alternatively, we can average 
the resulting predictions for a given variable of interest, � , made by the ensemble of 
models:

where the posterior probability, P(�|D) , is the average of the predictions sourced 
from each model and weighted by their performance using formula (2).

A BN (also known as a graphical probabilistic model) is a Bayesian model that 
is composed of a graphical structure and a set of parameters. The graphical struc-
ture of a BN is a Directed Acyclic Graph (DAG). Each node of the DAG repre-
sents a random variable and each directed edge represents a relation between those 
variables. When one or more parent nodes are connected by a directed edge to a 
child node a set of probability assignments (the parameterization) is used to define 
their Conditional Probability Table (CPT). An example BN is the joint distribu-
tion P(A,B,C,D) = P(D|C)P(B|A,C)P(A)P(C) , shown by Fig.  1. Bayes theo-
rem can then be applied to the DAG to query any probability from the model (e.g. 
P(A,C) =

∑
B,D P(D�C)P(B�A,C)P(A)P(C)).

The DAG encodes conditional independence assertions between its variables. For 
example, a node is conditionally independent from the rest of the BN given that its 
parents, children and the parents of their children are observed (see Pearl 1988; Fen-
ton and Neil 2018) for more information on BNs and their conditional independence 
properties). The conditional independence assertions encoded in the DAG enables 
a BN to represent a complex joint probability distribution in a compact and factor-
ized way. In some circumstances the DAG may be chosen to represent causal asser-
tions connecting known and unknown events and the CPTs assigned may represent 
our subjective beliefs (probabilities) about these events. In Fig. 1 the factorization 
P(D|C)P(B|A,C)P(A)P(C) may therefore be considered as assertion that variables 
A,C jointly cause variable B, while D is a consequence of C alone.

BNs have established inference algorithms that make exact and approximate 
inference computations by exploiting the conditional independence encoded in the 

(3)P(�|D) =
n∑

i=1

P
(
�|M = mi,D

)
P(M = mi|D)

Fig. 1   A simple 4 variable BN
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structure. Popular exact algorithms, such as the Junction Tree algorithm (Fenton and 
Neil 2018), which are available in commercial and free software packages, (Agena 
Ltd 2019), provide efficient solutions computations for BNs with only discrete 
variables.

4 � Our framework

Our framework is a direct application of BMCA, stylised to fit a legal context. We 
assume legal arguments are represented by BN models whose outputs, in the form of 
plausibility probabilities and assessments of guilt/innocence, are used by BMCA to 
compare and average. For simplicity we assume there are two sides to the case, each 
presenting a single defence and a prosecution argument, where each of these can be 
represented by a single BN model. Yet, in practice more arguments may be ‘in play’.

Denoting the prosecution and defence BN models respectively by mP and mD , we 
shall take the Bayesian point of view that the fact-finder’s uncertainty about which 
model is correct is expressed by prior probabilities. Note that the prior distribution 
over models is not the same as a prior distribution of guilt/innocence.

The two sides’ arguments each specify a joint probability distribution of a whole 
list of further variables, conditional on a random variable M taking the value either 

Fig. 2   Initial prosecution, m
P
 , and defence models, m

D
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mP or mD . BN models for the defence and prosecution arguments are shown in 
Fig. 2, for the example we will cover in detail in Sect. 5.

The two lists of model variables can differ, but they do have some commonali-
ties—after all, they are both models for the same case. We will list those common-
alities later, but first we make some remarks concerning notation. Here we adopt 
the notational convention that random variables are denoted by upper case letters, 
realised values of random variables are denoted with lower case letters. We take the 
Bayesian point of view that probabilities which depend on unknown parameters are 
just conditional probabilities. Hence, mathematically, unknown parameters are just 
unobserved values of random variables. We denote guilt by a Boolean variable G 
(where G = false represent innocence); we take the collection of observed facts to be 
F = f  . Furthermore, we denote by C the collection of expressions of credibility of 
each source of observed facts, F = f  , where each variable in C is simply the belief 
in the accuracy of a source of evidence. We can differentiate credibility in the two 
models respectively as C = CP and C = CD . We can do the same for fact nodes such 
that we have F = FP and F = FD because models may agree on some facts but not 
on others. Likewise, a fact variable may be agreed by both sides or presented by one 
side but unchallenged by the other, and hence have no associated credibility variable 
in one or both models (hence a credibility variable may not appear in one model but 
do so in another if its associated fact variables are ignored in one but not the other).

Each model will include one or more hypothesis variables, H = h , representing 
unknowns (such as whether some event happened or not), that are causally associ-
ated with any observed facts providing evidence about the hypotheses. Each side 
will share at least one hypothesis—guilt, G, but will differ in the number and role 
of additional hypothesis nodes included in their model. Within our framework we 
therefore give special status to guilt, G, to differentiate between it and other hypoth-
esis variables, H. However, despite their necessary role in each model unknown 
hypothesis variables play no prominent part in our framework and are therefore 
removed by marginalization.

Both models must include variable G and collections of variables F, C and rang-
ing over the same possible values. But everything else can be different. Prosecution 
and defence agree on the facts, but they disagree on their meaning and interpretation 
in numerous ways: they have different understandings of how the facts are causally 
related to guilt/innocence, both qualitatively (DAGs) and quantitatively (CPTs); dif-
ferent hypothesis variables can be involved; and finally, they have different a priori 
positions concerning the reliability of different sources of evidence, but ultimately it 
is the fact-finder’s assessment of these that is pre-eminent.

Marginalizing over the hypothesis nodes, the prosecution’s Bayesian model deter-
mines a joint probability distribution of ( G,F,C ) conditional on M = mP . Similarly, 
the defence’s model determines a joint probability distribution of ( G,F,C ) condi-
tional on M = mD . Together with a prior distribution of M this gives us a joint prob-
ability distribution of ( M,G,F,C).

The prosecution believes that C = CP and the defence believes that C = CD . Each 
believes that their own model is correct, conditioned on the facts and the credibility 
of the sources of these facts. They then assert that the defendant is guilty or inno-
cent, respectively, because:
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The court hearings allow the fact-finder to get their own opinion as to the value 
of C. We suppose that this opinion is summarised by a definitive understanding that 
C = c . We furthermore define model plausibility as the probability of observing the 
facts given model m is true, the credibility of the sources of those facts, conditioned 
on the model conclusion made by each party (guilt or innocence):

The model plausibility “belongs” to the fact-finder—the party who must make 
assessments of the likelihood that F = f .

From now on we will abuse notation in the conventional way by rewriting model 
plausibility as:

Using the definition of conditional probability, we obtain the following result2:

Which shows how model plausibility, p(f |c, g,m) , impacts on our posterior belief 
in which model is true, p(m|c, g, f ) . Moreover, model plausibility also enters our 
posterior belief in guilt or innocence (writing g for the value ‘guilty’ of the variable 
G), resulting in the theorem:

Essentially, the court proceedings might well give the fact-finder more insights 
into the two models. Can the assumed causal structures be taken seriously, along 
with all their hidden variables; are the accompanying causal relations acceptable? 
It seems to us that the court proceedings could lead the fact-finder to wish to adjust 
the two models or to re-evaluate the prior over the two models. More seriously still, 
the fact-finder might conclude that, even after such modifications, neither model can 
be accepted. If the two possibilities are not exhaustive, then a probability of guilt 
given that just one of the two is true could be terribly misleading; we will return 
to this issue in Sect. 5. Also, note that the prior distribution over the two models is 
not the same as the prior probability of guilt or innocence. It is rather some kind of 

(4)(prosecution) P(G = guilty|F = f ,C = CP,M = mP) is close to one

(5)(defence) P(G = guilty|F = f ,C = CD,M = mD) is not close to one

(6)(prosecution) P(F = f |C = c,G = guilty,M = mP)

(7)(defence) P(F = f |C = c,G = ¬guilty,M = mD)

(8)P(F = f |C = c,G = g,M = m) = pF|C,M(f |c, g,m) = p(f |c, g,m)

(9)p(m�c, g, f ) = p(f �c, g,m)p(c, g�m)p(m)
∑

m� p
�
f �c, g,m�

�
p(c, g�m�)p(m�)

(10)
p(g�c, f ) =

∑
m p(g�c, f ,m)p(m�c, g, f )

∑
m p(m�c, g, f )

=

∑
m p(g�c, f ,m)p(f �c, g,m)p(c, g�m)p(m)

∑
m p(f �c, g,m)p(c, g�m)p(m)

2  For simplicity we use a simple conditioning here, but each model might be represented by different 
conditioning assumptions. Likewise, to simplify the presentation we have also dropped other variables, 
such as those representing unknown hypotheses, which are marginalized out in any case.
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meta-prior: the subjective prior probability that one or the other of two whole com-
plexes of arguments is correct. That makes it all the harder to evaluate, and more 
likely that further analysis could reveal large inadequacies of both models. Signifi-
cant differences between assumptions about causal structure could make clear that 
different aspects of both models must be rejected. The scientific method tells us to 
reject models which make false predictions, but it does not tell us how to amend the 
models when that happens, and Bayesian methodology is not much help here. These 
and other open questions are revisited at the end of the paper.

Our framework makes use of the evidence accuracy idiom described in (Fenton 
et al. 2013), which represents how a fact-finder reasons about evidence reliant on the 
credibility of a source providing that evidence. It is implemented as a BN to distin-
guish between the truth of a hypothesis (such as whether some event happened or 
not) and the source (such as a witness) that provides evidence about the hypothesis 
(which could be direct, such as asserting that the hypothesis is true, or indirect such 
as making an assertion which supports the hypothesis). Figure 3 presents the basic 
BN form of this idiom.

The extent to which the fact-finder can infer the truth of the hypothesis from the 
source assertion obviously depends on the source credibility. If the source is cred-
ible then their evidence will increase the fact-finder’s belief in the hypothesis being 
true; if the source is discredited, then their testimony will have little or no impact on 
the fact-finder’s belief in the hypothesis. In practice, the evidence about source cred-
ibility might take the form of oral contradictions, obfuscations, untruths or physical 
or emotional displays that are taken to betray the credibility of the source; or impec-
cable credentials and cogent reasoning that make them believable. Evidence about 
source credibility generally does not fix the values of source credibility nodes. Such 
evidence (together with the facts F = f  ) only update the prior distributions over 
their values within each of the prosecution and defence models. This is the sense in 
which the two sets of variables may be collapsed together; however, it usually will 
not allow us to instantiate C (with certainty) for both models simultaneously. We can 
simply consider evidence about source credibility as “just another kind of evidence”, 
i.e., we add it to the facts F. The credibility variables C become “hidden variables”. 
We just have two models for the joint distribution of F and G, and a prior over the 

Fig. 3   Model showing evidence 
accuracy idiom
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models; both models include many “hidden variables”, including the credibility 
sources. They are used to express the causal relations between what is observed. We 
compute the posterior probabilities of the models, and the posterior probability of 
guilt, using even simpler versions of the earlier formulas, for instance:

What has become more complex is that f now stands for the combination of 
evidence obtained prior to the trial and evidence obtained during the trial. If one 
is interested, one can look at posterior probabilities of source credibility given 
the evidence f. This makes sense given both prosecution and defence mod-
els contain the same source credibility nodes in the sense that the probabilities 
P(C = c|M = mi) are well defined in each model m. Indeed, given it is the fact-
finder who is judging credibility then it should be the same in each model. If the 
evidence f consists of two parts 

(
f1, f2

)
 , one can also use the same formula itera-

tively, first updating the prior using the information 
(
F1 = f1

)
 , and then updating 

the “intermediate posterior” using the information 
(
F2 = f2

)
 , representing further 

evidence of a secondary nature coming to light during the case, which we call 
source credibility evidence. This is, of course, equivalent to using the earlier for-
mula p(g|c, f ) , where the two steps are combined into one.

The defence model might only deal with a subset of the facts. The same can be 
true for the prosecution. Nor are either side required to challenge the credibility of 
sources by cross examination. In Bayesian terms this means that a model m is a 
model for some part Fm = fm of the facts. We can write F̄m for the remaining facts, 
the overline standing for “complement”. In this circumstance some variables in a 
model will be causally disconnected from those others playing a full role in the 
legal argument. But the defence or prosecution may not just be ignoring F̄m = f̄m ; 
they may claim irrelevance, which in strict Bayesian terms translates into condi-
tional independence: the defence model might claim independence of the event part 
F̄m = f̄m given innocence and given Fm = fm . The problem is that defining a position 
on the value of the conditional probabilities for these “ignored facts” is difficult if 
they are irrelevant. As we saw from (7), we do need the values of p(f |m) for both 
models m, where f =

(
fm, f̄m

)
 is the combination of all facts, so we cannot simply 

drop facts from one model but keep them in the other. One solution is to allow the 
fact-finder to consider the relevance of an ignored fact to a model, either by adjust-
ing the prior belief in the model or by assigning a probability distribution to each 
ignored fact. If judged genuinely irrelevant, a non-informative distribution might be 
assigned to each ignored fact, resulting in p(f̄m|m) equaling one half to the power of 
the number of ignored facts nodes, the dimension of Fm . That way, ignoring more 
facts becomes more heavily penalised. This has the side effect of allowing us to 
compute the probability of a model making a random guess of the facts, thus provid-
ing a baseline. On the other hand, some facts may be ignored for legitimate reasons, 
and thus may be assigned higher or lower probability, conditional on background 
knowledge. In these ways ignored facts play a crucial role in our framework.

(11)p(g�f ) =
∑

m p(g�f ,m)p(f �m)p(m)
∑

m p(f �m)p(m)
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In law, the defence is not obliged to come up with a complete scenario dealing 
thoroughly with all facts brought to the case. As we have said the defence’s posi-
tion might well be that the accused is innocent, and certain facts are simply quite 
irrelevant. Therefore, the fact-finder should be allowed flexibility to deal with what 
we call “silent facts”. Silent facts may represent a deliberate strategy to avoid self-
incrimination, or, alternatively, where the defendant simply has not had access to 
the resources or time needed to muster a credible counter argument to explain these 
facts. Likewise, there may be suspicion that the prosecution might be suppressing 
evidence to help secure a conviction. These reasons serve to “explain away” ignored 
facts in a model which, although they may be missing from the argument made, are 
nevertheless very informative. We suggest handling this by allowing the fact-finder 
to construct explanations for ignored facts that reflect their beliefs about the reasons 
for silence i.e. they explain them away by extending the causal model.

Of course, during a court case, or indeed during the process of investigation, argu-
ments do not remain static. They change as defence and prosecution react to new 
evidence. At its most basic we can consider two kinds of narratives: the story of the 
crime (and its investigation) and the story of the court case (Burns 2001; Lagnado 
and Gerstenberg 2017). In one we have causal conjectures about what happened and 
in the other we deal with causal conjectures that seek to undermine or support the 
first. In the latter the timing of the presentation of evidence, as well as the type and 
strength of evidence, can be crucial in testing the causal narrative about the crime. 
For instance, an advocate may keep some information back for cross examination in 
order to unbalance a witness or they may call a witness who presents ‘surprising’ 
testimony that may overturn the opposing case (Christie 1948). Similarly, at vari-
ous stages in the legal process one party may be privy to information not available 
to the other. This information asymmetry is rightly considered unfair in most legal 
jurisdictions and in such cases all information must be disclosed to all parties. Inter-
estingly, this unfairness property is mimicked in Bayes’ because we cannot carry out 
Bayesian model comparison if the models are being compared against different data. 
So, in this way Bayes theorem enforces the legal requirement of fairness. It is our 
intention that our framework be flexible enough to deal with dynamic shifts in the 
case and asymmetry.

In our framework some probabilities are provided by the fact-finder, as inputs, 
and some are computed, as outputs, either manually using the mathematics of prob-
ability theory or automatically using Bayesian Network software such as Agena Ltd 
(2019). Thus in (9) the fact finder estimates the probabilities p(f |c, g,m) , p(c, g|m) 
and p(m) and these are then used as inputs, via software or manually, to compute 
p(m|c, g, f ) and p(g|f ).

As a final word it should be clear that, in practice, each legal argument will 
be constructed independently and with different objectives in mind, and so 
there is no guarantee that the variables and states specified in one are identical 
or consistent with those presented in another. An example where this is obvious 
occurs when a prosecutor may define the variable for guilt, G, as having mutu-
ally exclusive states {murder,¬murder} whilst the defence might specify the vari-
able innocent, I, with mutually exclusive states {suicide,murder} . Here ¬murder 
includes the possibility of an accident, a state that cannot even be recognised in 
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the defence model since this model admits only two events and neither of which 
includes accident. Therefore, whilst it cannot be practically guaranteed that vari-
able definitions are uniform and standardized across arguments, we assume that 
the fact-finder is able to impose some uniformity at least for the purposes of 
applying this framework.

5 � Applying the framework to an example

To illustrate the framework, consider the following hypothetical case:

A victim is known to have been murdered. A defendant is accused of the 
murder. The prosecution argument is based on these facts

•	 the defendant previously threatened to kill the victim, and this was wit-
nessed

•	 an eyewitness who claims to have been at the crime scene and asserts to 
having seen the defendant kill the victim

•	 a forensic expert witness asserts that DNA collected from the crime scene 
matches that of the defendant.

While the defence is silent on the fact that the defendant previously threat-
ened the victim and has no comment on the eyewitness statement, their 
argument is based on the claim that the defendant was not at the scene of the 
crime at the time—a claim supported by the defendant’s partner who asserts 
that she was in a cinema with him at the time of the crime. Also, the defence 
claim that the victim and the defendant were friends (and hence there was 
no motive)

These initial arguments may be those represented in the prosecution and defence 
opening statements. The BN models representing the fact-finder’s understanding 
of these prosecution and defence arguments is shown in Fig. 2, along with a leg-
end showing the different types of nodes used. The CPTs for the example are 
listed in the Appendix; note that this includes the prior values for the credibility 
nodes which are never instantiated directly with evidence.

The facts, f, of the prosecution model, mP , are:

•	 “Forensic witness asserts DNA collected from scene” = True
•	 “Forensic witness asserts DNA tested was from defendant” = True
•	 “Eye witness says they saw defendant attack victim” = True
•	 “Witness claims that defendant previously threatened them” = True

The facts, f, the defence model, mD , are:

•	 “Defendant partner says he was with her in cinema” = True
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•	 “Witness claims that defendant friends with victim” = True.

Notice that the defence makes no attempt to explain several facts that support the 
prosecution model. Also, the prosecution does not include the two defence facts. 
Hence, both models (implicitly) contain ignored facts. These are ignored facts in our 
framework. Also, notice that the fact “Defendant friends with victim” = True does not 
have an associated credibility source variable. This is because this fact is introduced in 
the defence argument but never addressed nor challenged by the prosecution, hence any 
judgement about source credibility is unnecessary in either model.

Let’s assume the fact-finder decides to weigh the models according to how well 
they explain the facts of the case, giving higher weight to the prosecution model: 
p(mP) = 0.8, p

(
mD

)
= 0.2 . Let’s also assume that the fact-finder assigns their own 

prior beliefs in the source credibility variables, C = c , as given in the Appendix.
The facts observed, f  , update the fact-finder’s source credibility variables to provide 

new posterior beliefs that then affect the inference of G in each model. By executing 
the models we compute the marginal probability of guilt directly from the guilt node, 
G = guilty(True) , named: “Defendant killed the victim”, conditioned on the facts: 
p(g|c, f ,mP) = 0.999 , p(g|c, f ,mD) = 0.0014 . As expected, the fact-finder’s perceives 
that the prosecution argument is very certain of guilt and the defence argument is con-
vinced of innocence.

Under our framework we first measure the plausibility the fact-finder should have 
in each model. This is the joint probability of all facts given the model, assuming guilt 
or innocence respectively. For the prosecution the plausibility is the probability of the 
joint event: {“Forensic witness asserts DNA collected from scene” = True, “Forensic 
witness asserts DNA tested was from defendant” = True, “Eye witness says they saw 
defendant attack victim” = True, “Defendant previously threatened witness” = True, 
“Defendant partner says he was with her in cinema” = True, “Defendant friends with 
victim” = True} conditioned on G = guilty . For the defence it is the same joint event 
conditioned on, G = ¬guilty . Here we assume the fact-finder is happy to assign non-
informative distributions to the ignored facts. Putting these observations into our model 
and Eqs. (6) and (7) gives us:

Therefore, the probability of the prosecution argument explaining the facts is 0.33 
and for the defence is 0.05 . A random assignment of truth values to the facts would 
yield P(F = f ) = 1∕26 = 0.015625 , so the prosecution model is significantly better 
than a guess, but the defence model less so. The plausibility of the defence model is low 
because of the number of ignored facts in the model: had more facts been explained the 
plausibility would have been higher.

We now put the model priors and the plausibility probabilities into Eq. (6), yielding 
these posterior beliefs in each model:

(prosecution) P(F = f |C = c,G = guilty,M = mP) = 0.330

(defence) P(F = f |C = c,G = ¬guilty,M = mD) = 0.050
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So, at the opening of the trial the fact-finder already believes the prosecution 
model is better at explaining the facts of the case. Next, we need to calculate the 
probability of guilt given the two models, using Eq. (10):

For the fact-finder, the probability of guilt is 0.962 based on their plausibility in 
the two models, the credibility of the sources of evidence, the facts presented, and 
the causal and probabilistic assumptions made in each model.

Our framework has successfully combined two models with different assumptions 
and produced a single assessment, belonging to the fact-finder, in a way that gives 
greater weight to the model that explains the facts better. Of course, we also wish 
to model the dynamic nature of an evolving case, especially using new facts gained 
during the cross-examination process. As a last step let’s now assume that a cross 
examination has taken place and new supplementary facts have been discovered:

The defendant is much more likely to have left DNA at the scene than the 
prosecution assumes because the defendant was a frequent visitor to the scene 
of the crime in a way that is consistent with the DNA findings.

During the defence witness cross examination, she claims her partner would 
have shown up on the cinema’s CCTV system. It turns out the police had col-
lected the CCTV video but not made it available to the defence. Subsequently 
it was made available to the court, and despite not being of high quality, the 
fact-finder believed it showed someone matching the accused description at 
the cinema at the time of the crime.

It is revealed by the eye witness that she failed to pick out the defendant on an 
identity parade

p(mP|c, g, f ) =
p
(
f |c, g,mP

)
p(c, g|mP)p

(
mP

)

p
(
f |c, g,mP

)
p(c, g|mP)p

(
mP

)
+ p

(
f |c, g,mD

)
p(c, g|mD)p

(
mD

)

=
0.330(0.8)

0.050(0.2) + 0.330(0.8)
= 0.964

p(mD|c, g, f ) =
p
(
f |c, g,mD

)
p(c, g|mD)p

(
mD

)

p
(
f |c, g,mP

)
p(c, g|mP)p

(
mP

)
+ p

(
f |c, g,mD

)
p(c, g|mD)p

(
mD

)

=
0.050(0.2)

0.050(0.2) + 0.330(0.8)
= 0.036

p(g�f ) =
∑

m p(g�f ,m)p(m�f )
∑

m p(m�f )
=

p(g�f ,mD)p(mD�f ) + p(g�f ,mP)p(mP�f )
p(mD�f ) + p(mP�f )

=
0.0367(0.0014) + 0.964(0.999)

0.0367 + 0.964
= 0.962
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Finally, under cross examination the character witness admitted to being in a 
rival gang.

The new source credibility evidence (facts), f2, to add to the initial facts in the mod-
els, f1, are:

•	 “CCTV from camera corroborates description” = True
•	 “Identity parade failure” = True
•	 “Character witness in rival gang” = True

These new facts lead to newly revised models as shown in Fig. 4.3 In the defence 
model the facts from the forensic witness do not imply guilt and the CPT for the 

Fig. 4   Revised prosecution, m
P
 , and defence models, m

D

3  Note that Fig. 4 shows two separate BN models, but the underlying computation uses one model. This 
is because we need to ensure the probabilities computed for the source credibility variables are identical 
and consistent in each model. So, during computation we combine credibility variables to enable us to 
produce a single model containing two sub-models linked to a single common collection of credibility 
nodes belonging to the fact-finder. This does not mean to say that each model contains the same credibil-
ity variables; in Fig. 4 “Partner credibility” is linked to variables in the defence model only.
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variable “Defendant left DNA at the scene” assumes it is just as likely to be DNA at 
the scene if the defendant murdered the victim or not.

Crucially, two facts are now no longer ignored in the defence model: “Forensic 
witness asserts DNA collected from scene” = True and “Forensic witness asserts 
DNA tested was from defendant” = True. Likewise, in the prosecution model the 
evidence “CCTV from camera corroborates description” = True is judged by the 
fact-finder to be so remote, within the context of the prosecution scenario, that it 
is assigned a probability value of 0.001: perhaps not unreasonable, given the evi-
dence was supressed.

In both models, the probability of guilt, conditioned on the facts and 
fact-finder’s beliefs about source credibility, has not changed significantly: 
p(g|c, f ,mP) = 0.9636 2, p(g|c, f ,mD) = 0.000271.

We can now update the relevant probabilities for Eq. (6) and (7) to give:

We can now see that the fact-finder’s plausibility in the prosecution model 
has collapsed from 0.33 to 0.00001. Their plausibility in the defence model has 
increased by a factor of two, from 0.05 to 0.091.

Equations (9) and (10) now give:

Thus, the posterior belief in the defence model has risen dramatically from 
0.036 to 0.999956 and the posterior belief in the prosecution model has decreased 
to 4.38E − 5 from 0.964.

Also, the probability of guilt for the defence model has changed slightly to 
p(g|c, f ,mD) = 0.0027 given the new causal structure in the model. The new prob-
ability of guilt using Eq. (10) is:

(prosecution) P(F = f |C = c,G = guilty,M = mP) = 0.00001

(defence) P(F = f |C = c,G = ¬guilty,M = mD) = 0.091

p(mP|c, g, f ) =
p
(
f |c, g,mP

)
p(c, g|mP)p

(
mP

)

p
(
f |c, g,mP

)
p(c, g|mP)p

(
mP

)
+ p

(
f |c, g,mD

)
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(
mD

)

=
0.00001(0.8)

0.091(0.2) + 0.00001(0.8)
= 4.38E − 5

p(mD|c, g, f ) =
p
(
f |c, g,mD

)
p
(
mD

)

p
(
f |c, g,mP

)
p
(
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)
+ p

(
f |c, g,mD
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p
(
mD

)

=
0.091(0.2)

0.091(0.2) + 0.00001(0.8)
= 0.999956

p(g�f ) =
∑

m p(g�f ,m)p(m�f )
∑

m p(m�f )
=

p(g�f ,mD)p(mD�f ) + p(g�f ,mP)p(mP�f )
p(mD�f ) + p(mP�f )

=
0.000271(0.999956) + 0.96362(4.38E − 5)

0.999956 + 4.38E − 5
= 0.000313
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So, by now explaining the DNA facts and providing damning evidence that 
cannot be explained by the prosecution, the fact-finder’s revised conclusion 
would dramatically change from p(g|f ) = 0.962 to p(g|f ) = 0.000313 . Note this 
would be a change in the fact-finder’s belief rather than that of the advocates.

6 � Comparison with an integrated Bayesian model

Here we present a Bayesian integrated model developed from our example, using 
all the information available to the fact-finder up to and including the final step in 
our example. This integrated model is shown in Fig. 5.

Combining the prosecution and defence arguments requires the fact-finder to 
merge the models using established methods (Fenton et  al. 2013; Taroni et  al. 
2014). Bayesian model integration involves the production of a single model 
including all relevant variables (hypotheses, facts and credibility sources etc.) 
associated with the defence and prosecution positions. By seeking to unify dispa-
rate arguments in a single integrated model encounters modelling difficulties that 
are hard to overcome, such as those reported in Fenton et al. (2016) relating to the 
basic requirement of mutual exclusivity, and the requirement that conditional or 
causal dependencies remain consistent despite competing or contradictory argu-
ment narratives. Likewise, the integrated approach assumes an omniscient fact-
finder capable of rationally fusing all relevant information. Whilst the integrated 
approach represents a noble ideal for determining the ‘true’ state of the world, 

Fig. 5   Integrated Bayesian model (model and scenario variables are shown as rectangles)
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each party in a trial process may present more than one argument, each mutu-
ally exclusive of the other, positing different causal conjectures, assigning differ-
ent weights to evidence or even ignoring some kinds of evidence or elements of 
the argument altogether. This last strategy—ignoring some kinds of evidence or 
argument altogether—does of course reflect a real choice open to the fact-finder 
and one that has the benefit of simplicity but obviously at the expense of dis-
carding information that the fact finder either doesn’t agree with or cannot easily 
reconcile.

Given that some irresolvable differences may not be easy to ignore then the way 
to handle these during Bayesian integration is to explicitly model them. This can be 
done by conditioning subsets of the integrated model representing these irrevocable 
differences on new scenario variables, representing these differences as uncertain 
variables. These scenario variables are in turn themselves conditioned on a model 
variable which directly represents the fact-finder’s prior belief in each model. In 
this way scenario and model variables are interwoven into the BN to connect facts, 
hypotheses and credibility sources together with the different variables and depend-
encies associated with the defence and prosecution arguments. This strategy is 
investigated in Vlek et al. (2013, 2016) but without emphasis on model integration.

In our example three distinct irresolvable differences, or contradictions, arise 
from the models that are important, and it is worth focusing on how these are han-
dled by an integrated model:

•	 The defence argument makes distinctly different assumptions about the prior 
motive of the defendant from that made by the prosecution.

•	 The assumptions made about the hypothesis variable “DNA left at the scene” 
differ

•	 The treatment of ‘ignored facts’ differs in each model

These differences are reflected in the different CPT tables in each model, as listed 
in the Appendix. They therefore have an impact on the structure of the integrated 
model—the integrated model now must accommodate distinct and mutually exclu-
sive sets of assumptions and these are defence or prosecution model dependant. This 
dependency is represented by explicitly including several conditioning scenario var-
iables that act as “switches” to switch prosecution or defence scenarios on or off. 
In Fig. 5 these scenario variables are shown as the rectangular nodes “Model scene 
assumption”, to represent different assumptions about the past frequency of the 
defendant visiting the scene, and “Model motive assumption”, to represent different 
assumptions for motive. The third issue relating to how ‘ignored facts’ are treated 
also has a significant structural effect on the model, because, again, for each argu-
ment the CPTs and conditioning changes. This is accommodated by the scenario 
variables “Model ignored facts” in the integrated model. Each of these scenario 
switch variables is then ultimately conditionally dependent on a “Models” variable 
with mutually exclusive states M =

{
mP,mD

}
 (this node replaces the “meta prior” 

used in our framework).
Obviously, armed with the integrated model we can answer how likely 

the facts are given the model, and we can infer the belief in the model 
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given the facts and the belief in guilt. Assuming the same prior as before, 
p(M = mP) = 0.8, p

(
M = mD

)
= 0.2 , from the integrated model this is simply cal-

culated to give:

With the result for G = guilty:

This result looks directly close and comparable to the result calculated using our 
framework, giving us some comfort that by using different frameworks we can reach 
similar conclusions.

However, we have argued that it is worthwhile to keep models separate for sev-
eral reasons: our framework can tolerate differences in causal structure, disagree-
ments of parameterisation and also a difference in the prior beliefs in the arguments. 
In contrast, from this integrationist example we can see that whilst integration can 
be enabled using scenario nodes (thus treating a single model as a mixture of differ-
ent models) this comes at a cost in model legibility and malleability. Also, we would 
need to add scenario nodes for differences in causal structure and it is a considerable 
challenge to do this, especially so as the model grows in size and the accompanying 
potentiality for contradiction.

7 � Discussion

The framework we have described assumes that exactly one of the two models put 
forward by prosecution and defence is true. However, in criminal law this may be 
unrealistic as the fact-finder may come to entertain other pictures of how the world 
works beyond those initially put forward by defence and prosecution. The fact-finder 
may arrive at their own picture of how facts in the case are related, and this picture 
may well combine some elements of both parties’ explanations of the facts, and at 
the same time reject other elements of both parties’ explanations. In other words: the 
fact-finder is free to come up with an integrated model which, in effect, contradicts 
both models initially brought to the court by the two parties. In some legal jurisdic-
tions this ‘freewheeling’ approach may present a problem in that the fact-finder may 
arrive at conclusions independently of the evidence, arguments and cross examina-
tions related to the case. Indeed, given the way the jury system operates in Anglo-
Saxon countries this can and does occur.

A second weakness is that the approach gives little guidance on how to choose 
the prior  distribution over the two models. Because the approach is an una-
shamed subjective Bayesian  approach, the initial probabilities of the two mod-
els are subjective or personal probabilities. They are the personal probabilities of 
the fact-finder. They represent the fact-finder’s prior  beliefs about the integrity 
and coherence of the arguments which have been presented by the  two parties: 
they “reflect judgements the fact-finder might make about the global  rationality 

p(M = mP|c, g, f ) = 0.002397

p(M = mD|c, g, f ) = 0.997603

p(g|c, f ,M) = 0.002849
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of the argument”. Crucially, they do not represent the fact-finder’s prior beliefs in 
guilt or innocence. However, more than just global rationality needs to be evalu-
ated. How is a fact-finder to quantify their prior relative  degree of plausibility 
in the two pictures of the world provided by the two parties in the case? These 
two pictures are actually very detailed; they consist of more than just an attempt 
to  express rational knowledge about what depends on what in graphical form. 
They also entail strengths of dependence in precise quantitative form. An outline 
sketch is transformed into an oil-painting. Also, any remaining uncertainties are 
quantified and expressed in terms of probability distributions representing, hope-
fully, rational degrees of belief in different possible values.

Moreover, trial proceedings could well lead to dissatisfaction with both mod-
els, even if the prosecution model was significantly more plausible than the 
defence model. This makes computation of posterior probabilities conditional on 
just one of the two quite meaningless. In our framework we allow the fact-finder 
to revise the prior distribution of the two models, as well as their parameters, 
but there is not a formal (Bayesian or other) way to do this. If the fact-finder 
truly is trying to identify the true facts of the matter, flexibility and creativity is 
required. Even if the fact-finder is merely an adjudicator between two fixed points 
of view, Bayesian thinking cannot tell the fact-finder how to weigh two “wrong 
arguments”. It seems to us that many miscarriages of justice, both in jurisdictions 
in the adversarial tradition and those in the inquisitorial tradition, may have been 
caused by uncritical acceptance of badly flawed models, even when the defects 
of those models were explicitly brought to the attention of the court. Subjective 
confidence in expert evidence can easily depend more on the showmanship of the 
expert and the simplicity of the expert’s message, than on the actual content of 
the expert’s evidence. Similarly, the subjective prior probability of a model could 
be influenced by the model’s simplicity even though it contains logical inconsist-
encies. We hope our framework might help in analysing such cases.

We recommend our approach as a basis for investigating issues in the compari-
son of incomparable Bayesian models of incompatible legal arguments; this is, 
in essence, the problem facing a fact-finder in a criminal case. We do not claim 
to provide a fool-proof solution. No one does. In the inquisitorial approach the 
fact-finder is a truth seeker and may creatively generate new models. In the adver-
sarial approach the fact-finder is a referee and is under no obligation to gener-
ate new models. One option would be to extend our framework to add a third 
model, a kind of default model, where the fact-finder should allocate some prior 
probability to a model in which the accused is “not proven guilty or innocent” 
[the Scottish model whereby jurors in Scotland can return one of three verdicts: 
one of conviction, “guilty”, and two of acquittal, “not proven” and “not guilty” 
(Barbato 2004)]. Inconsistencies in the prosecution and defence models could 
lead to an increase in the prior probability of this third model. Court hearings 
can reveal inconsistencies in the argument of the prosecution so large, that the 
prior probability of the default innocence model should increase. Whether or not 
the defence arguments are reasonable should then become irrelevant. The third, 
default model, takes over. The subjective Bayesian prior over the models could 
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then only be decided after the court proceedings, not in advance; especially if we 
allow the parties to modify their models as the trial proceeds.

Clearly what we have proposed is a theoretical framework; while the working 
example we provided demonstrates that it can be applied in a non-trivial case, we 
accept that this is very far from being any kind of serious validation of its prac-
ticality or usefulness. We hope that such validation will be the subject of future 
research.

8 � Conclusions

In previous approaches Bayesian models of legal arguments have been developed 
with the aim of producing a single integrated model, combining each of the legal 
arguments under consideration. This combined approach implicitly assumes that 
variables and their relationships can be represented without any contradiction or 
misalignment and in a way that makes sense with respect to the competing argument 
narratives. Rather than aim to integrate arguments into a single model, this paper 
has described a novel approach to compare and ‘average’ Bayesian models of legal 
arguments that have been built independently and with no attempt to make them 
consistent in terms of variables, causal assumptions or parameterization.

In our framework competing models of legal arguments are assessed by the extent 
to which the facts reported are confirmed or disconfirmed in court, as judged by 
the fact-finder. Those models that are more heavily disconfirmed are assigned lower 
weights, as model plausibility measures, in the Bayesian model comparison and 
averaging approach adopted. We have presented a simple example to describe the 
ideas and method and contrasted it with an equivalent integrated Bayesian model.

We believe that our framework approach borrows strengths from the Bayesian 
and non-Bayesian narrative approaches to legal argumentation without introduc-
ing any new significant weaknesses. We would suggest that our approach might 
be more consistent with legal practice, where plurality in arguments is crucial, yet 
it does so in a novel way that views elements of the legal process as one consist-
ent with empirical scientific methodology.

Acknowledgements  We would like to thank Ros Archer, Christian Dahlman, Anne Ruth Mackor, Paul 
Roberts, and William Thompson for their extremely helpful comments on earlier versions of the paper. 
This work was supported in part by European Research Council Advanced Grant ERC-2013-AdG339182-
BAYES_KNOWLEDGE and in part by the Isaac Newton Institute for Mathematical Sciences (EPSRC 
Grant No EP/K032208/1 and the Simons Foundation) and also the Leverhulme Trust under Grant RPG-
2016-118 CAUSAL-DYNAMICS.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/


1 3

Modelling competing legal arguments using Bayesian model…

Appendix

CPTs for prosecution BN model at initial stage

Defendant had motive, Defendant partner says he was with her in cinema 
(ignored fact), Defendant friends with victim (ignored fact)

False 0.5
True 0.5

Character witness credibility, Eye witness credibility, Forensic witness credibility 

False 0.1
True 0.9

Defendant previously threatened witness|Character witness credibility, 
Defendant had motive 

Character witness credibility False True

Defendant had motive False True False True

False 0.5 0.5 0.99 0.2
True 0.5 0.5 0.01 0.8

Defendant killed the victim|Defendant had motive 

Defendant had motive False True

False 0.99 0.3
True 0.01 0.7

Eye witness says they saw defendant attack victim|Defendant killed the victim, 
Eye witness credibility 

Eye witness credibility False True

Defendant killed the victim False True False True

False 0.5 0.5 0.99 0.01
True 0.5 0.5 0.01 0.99

Defendant left DNA at scene|Defendant killed the victim 

Defendant killed the victim False True

False 0.999999 0.0
True 1.0E−6 1.0
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Forensic witness asserts DNA tested was from defendant|Forensic witness 
credibility, Defendant left DNA at scene 

Forensic witness credibility False True

Defendant left DNA at scene False True False True

False 0.5 0.5 0.9999 0.0
True 0.5 0.5 1.0E − 4 1.0

Forensic witness asserts DNA was collected from scene|Forensic witness cred-
ibility, Defendant left DNA at scene 

Defendant left DNA at scene False True

Forensic witness credibility False True False True

False 0.5 1.0 0.5 0.0
True 0.5 0.0 0.5 1.0

CPTs for defence BN model at initial stage

Defendant had motive 

False 0.99
True 0.01

Defendant friends with victim|Defendant had motive 

Defendant had motive False True

False 0.1 0.8
True 0.9 0.2

Partner credibility 

False 0.2
True 0.8
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Defendant killed the victim|Defendant had motive 

Defendant had motive False True

False 0.99 0.3
True 0.01 0.7

Defendant partner says he was with her in cinema|Partner credibility, Defendant 
killed the victim 

Defendant killed the victim False True

Partner credibility False True False True

False 0.5 1.0E − 5 0.5 0.99
True 0.5 0.99999 0.5 0.01

Forensic witness asserts DNA tested was from defendant (ignored fact), Forensic 
witness asserts DNA was collected from scene (ignored fact), Eye witness says they 
saw defendant attack victim (ignored fact), Defendant previously threatened witness 
(ignored fact)

False 0.5
True 0.5

New CPTs for prosecution BN model at revision stage

CCTV from cinema corroborates description (ignored fact)

False 0.999
True 0.001

Character witness in rival gang|Character witness credibility 

Character witness credibility False True

False 0.01 0.99
True 0.99 0.01
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Identity parade fail|Eye witness credibility 

Eye witness credibility False True

False 0.01 0.99
True 0.99 0.01

New CPTs for defence BN model at revision stage

Character witness in rival gang|Character witness credibility 

Character witness credibility False True

False 0.01 0.99
True 0.99 0.01

Identity parade fail|Eye witness credibility 

Eye witness credibility False True

False 0.01 0.99
True 0.99 0.01

CCTV from cinema corroborates description|Partner credibility 

Partner credibility False True

False 0.999 0.001
True 0.001 0.999

Defendant left DNA at scene|Defendant killed the victim 

Defendant killed the victim False True

False 0.5 0.0
True 0.5 1.0
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Forensic witness asserts DNA tested was from defendant|Forensic witness credibil-
ity, Defendant left DNA at scene 

Defendant left DNA at scene False True
Forensic witness credibility False True False True

False 0.5 0.5 0.9999 0.0
True 0.5 0.5 1.0E−4 1.0

Forensic witness asserts DNA was collected from scene|Forensic witness credibility, 
Defendant left DNA at scene 

Forensic witness credibility False True
Defendant left DNA at scene False True False True

False 0.5 1.0 0.5 0.0
True 0.5 0.0 0.5 1.0
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