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Abstract

This thesis presents new methods, theoretical results, and empirical findings that con-
tribute to the structural analysis of auction markets. One chapter develops a methodology
to study welfare and revenue impacts of fees in auction platforms. The chapter develops
and solves a structural model that describes strategic behavior of potential auction plat-
form users. It also exploits an original dataset with 15 months of wine auctions to study
these issues. Relevant model primitives are shown to be identified in the auction platform
model from observed variation in reserve prices, transaction prices, and the number of
bidders. Model estimates reveal significant network effects, which can be harnessed to im-
prove both platform profitability and user welfare. Implications for competition policy are
discussed as well. Another chapter focuses on nonparametric set-identification in English
auctions with absentee bidding, in which the number of bidders is unknown. The chap-
ter exploits additional identifying variation from drop-out values of absentee bidders and
develops a novel nonparametric identification approach based on the stochastic spacing
of order statistics. The value of the proposed method is highlighted by showing that it
identifies informative bounds on policy-relevant model primitives in practice. Both chap-
ters use original data and methods to further our understanding of auction markets and
discuss directions for future research.
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Impact statement

The knowledge, analysis, and insights presented in this thesis are of value both academi-
cally and for society as a whole. The game-theoretic equilibrium strategies in the two-stage
auction platform game, nonparametric identification results, and computationally feasible
estimation method can further the analysis of other bidding markets in future research. I
am the first to empirically study endogenous entry of both bidders and sellers in an auction
platform setting. My analysis serves as foundation for models suitable to address other
policy concerns that are unanswered today, such as whether the consolidation of auction
platforms benefits users or not, and how pricing affects users in other types of platforms.

This research comes at an opportune time: the absence of methods to quantify network
effects in online platforms has been the bottleneck for antitrust policy to catch up on this
increasingly salient marketplace. As such, my research pushes the frontier by providing
such a method and showing that it is both feasible and of economic importance to account
for entry in online platforms when evaluating welfare impacts of fees. The presented
research will therefore be informative for competition authorities and regulators, and can
be used to assess exact antitrust damages in court cases involving auction platforms.

As a direct benefit to society, I show that adjusting the fee structure on the BidforWine
auction platform can make all parties better off. Subsidizing bidders (more) by providing
them with a bid discount, and financing this by increasing seller fees, could increase
platform profitability by about 30 percent while also making both winning bidders and
sellers better off. I am in contact with the platform to disseminate these findings.

Further methodological contributions to the econometrics of auctions include my use
of the spacing of order statistics. Both the original use of the spacing concept itself and the
positive set-identification results for English auctions with absentee bidding may stimulate
productive future scholarship. I show that the method delivers informative bounds on
expected consumer surplus in practice, facilitating policy analysis of such auction markets
with more limited observables.
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Chapter 1

Introduction

Economists take an interest in auctions because they are used in practice to allocate

anything from treasury bills to highway construction contracts. Also, auctions typically

generate better data than other sale mechanisms. Moreover, auctions provide a unique

setting to analyze individual or firm behavior with game-theoretic models as they provide

relatively controlled bidding and pricing environments with clear rules and well-defined

pay-offs. The structural econometric approach to understanding auction markets uses the-

oretical properties of the auction game to uncover what is unknown (private values) from

variation in observables (bids, bidder identities). That involves a study of identification:

what can we know about the relevant unobservables given the restrictions of the model?

It also involves the question how to consistently estimate those model primitives with

limited data? How precise are these estimates? Application of these methods to auction

data then allows for the simulation of counter-factual policies to answer questions as: will

the market function better if it was designed differently? New results presented in this

thesis make progress on all these aspects of the structural analysis of English auctions

with independent private value (IPV) bidders. Chapter 2 describes in more detail how the

thesis relates to existing research.

Chapter 3 develops a new methodology to analyze welfare and revenue impacts of fees

in auction platforms. It solves a two-stage game where a stage of simultaneous bidder &

seller entry is followed by an IPV English auction stage. Besides solving for equilibrium

strategies in this game, the chapter also discusses nonparametric identification of the

latent distributions of bidder and seller valuations, and provides a computationally feasible

estimation strategy. It exploits an original dataset collected over a 15 month period from

auction platform BidforWine. Counterfactual fee simulations are used to show that the

platform could increase its revenues by merely changing how it allocates fees between
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buyers and sellers. A key result is that even sellers are better off despite paying higher

fees, because the entry of additional bidders drives up transaction prices on the platform.

Other results indicate that the current antitrust policy benchmark, which abstracts from

endogenous entry decisions, significantly underestimates welfare impacts of fee increases.

These are especially valuable results as the model is parsimonious enough to apply to

auction platforms with idiosyncratic goods in general. As such, the developed methodology

can be used to obtain exact welfare impacts of fees in these markets - thereby overcoming

a bottleneck for adequate antitrust assessment.

Chapter 4 provides a new method to set-identify the distribution of bidder valuations

in IPV English auctions with absentee bidding. It first sets out the information revealed

from traditional English auctions with absentee bidding, and relates bid order statistics to

valuations. Then, it discusses shape restrictions on the latent valuation distributions and

uses results about the spacing of order statistics to bound the distribution of valuations. As

bounds can be wide in practice, a tightening approach that relies on exogenous variation

in observables is advocated. The value of the method is highlighted by showing that

informative bounds on expected consumer surplus are estimated in an original dataset

of Sotheby’s auctions. With the number of bidders or their final bids unobserved in this

dataset, existing identification methods are infeasible.

Conclusions and directions for future research are provided for the two chapters sepa-

rately.
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Chapter 2

Related literature

This thesis contributes to various distinct strands of economic literature. Most importantly

it is rooted in the literatures on identification and estimation of model primitives in auction

models, and it also adds to empirical analysis of two-sided markets. This chapter provides

a wider perspective on the added value of the research presented in this thesis by discussing

how it relates to existing work in these fields, but does not aim to provide an exhaustive

overview of all relevant research.

2.1 Structural estimation of auction models

Structural estimation of auctions uses econometric models derived from game theoretic

representations of the bidding environment to interpret auction data. Due to the trans-

parency of pay-offs and rules in real-world auctions, they provide a tight mapping between

equilibrium strategies and observed outcomes (see e.g., Hendricks et al. (2003), Hendricks

and Porter (1988, 2007)). The structural approach starts with Paarsch (1992, 1997), Don-

ald and Paarsch (1993, 1996) introducing maximum likelihood, piecewise and constrained

maximum likelihood estimation methods. Laffont and Vuong (1993) and Laffont et al.

(1995) provide methods based on simulation for settings where the equilibrium bid func-

tion is intractable. Guerre et al. (2000) and Li et al. (2002) use two-step nonparametric

procedures to estimate the valuation distribution. Haile (2001) uses instrumental variables

to overcome endogeneity of the number of bidders. For an excellent introduction to the

practical implementation of such methods, see Paarsch and Hong (2006).

The traditional auction setting considers a fixed set of bidders and one seller, in a

set of independent auctions in which bidders have independent private information about

their willingness to pay (Paarsch and Hong (2006)). This is also the setting in Chapter 4,
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where it is the more limited set of observables in some of these auctions that complicate

identification of the latent valuation distribution. Section 2.5 sketches how my results re-

late to the literature on identification in English auctions. The next two sections reference

papers that abstract from this baseline model by either considering that auctions may not

be conducted in isolation (Section 2.2) and that the set of participants can be endogenous

(Section 2.3). Literature discussed here and in Section 2.4 relate to the auction platform

model with two-sided entry presented in Chapter 3.

2.2 Competing auctions

Peters and Severinov (1997) (and McAfee (1993)) develop a (dynamic) search model where

sellers compete with the publicly observable reserve price. Anwar et al. (2006) show that

the cross-bidding strategy found optimal in Peters and Severinov (2006) (when doing so

is costless for bidders) explains bidding behaviour for homogeneous CPUs on eBay. The

presence of competing auctions and uncertainty of rival bidder entry both agressive early

bidding (entry prevention) and late bidding (learning prevention) in the structural model

of Nekipelov (2007) estimated on data from pop-music CDs. Backus and Lewis (2016)

provide a path-breaking framework for estimating demand in a large dynamic auction

market where bidders substitute across auctions and a steady-state distribution of goods

is available. Partly building on that paper, Bodoh-Creed et al. (2013, 2016) develop an

empirically tractable search model with a continuum of buyers and sellers, accounting for

the endogenous entry of bidders and their dynamic optimization of bids. They apply it

to Kindle e-reader auctions on eBay and find that while participation costs are very low

in this market, they do regulate entry and generate inefficiencies relative to holding less

frequent multi-object sales.

None of the above-listed papers evaluate the impact of fees, nor do they model the

entry and selection of sellers into the market. Albrecht et al. (2014) do study seller entry

and selection in a market with a fixed number of bidders. In their model, seller entry

is efficient as a business stealing effect exactly compensates the information rent from

providing the additional auction. Consistent with such a model, Newberry (2015) find

that in eBay auctions for Corvettes additional listings thin out the number of bidders per

listing. Reduced form evidence from the wine auctions in my data instead reveal that

additional listings attract the same number of bidders, informing the parsimonious model

presented in Chapter 3 with simultaneous entry of bidders and sellers, and with costly

listing inspection.

Deltas and Jeitschko (2007) also study theoretical equilibrium properties of two-sided
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entry in relation to the listing fee in an auction platform for the case that bidders and sellers

have heterogeneous entry cost. In their model, bidder entry depends on the number of

listings also through its impact on the probability that bidders find what they are looking

for on the platform.1 In Chapter 3, I show that the combination of seller selection and

listing inspection cost cause the entry equilibrium to be empirically tractable and well

behaved because sellers are strategic substitutes despite feedback effects on bidder entry.

By contrast, Deltas and Jeitschko (2007) emphasize the instability of their entry equilibria

jumping to and from different participation levels for small changes in the listing fee.

2.3 Endogenous entry

Bidder entry and its consequence for how the (single) seller should design its auction

is central to a large and growing literature. Endogenous bidder entry is found to be

an important and policy-relevant feature of many real-world auction markets, such as

in Bajari and Hortaçsu (2003) (eBay coin auctions), Hendricks et al. (2003) (wildcat

auctions of oil & gas tracts), Ye (2007) (valuable assets), and Krasnokutskaya and Seim

(2011) (highway procurement). Two entry models dominate the literature; the Levin and

Smith (1994) “random” entry model where bidders are uninformed about their valuation

before they enter and the Samuelson (1985) selective entry models where bidders are

fully informed. More flexible entry models nesting both cases are studied in Gentry and

Li (2014), Roberts and Sweeting (2010, 2011, 2013), Gentry et al. (2017). Moreno and

Wooders (2011) show that when bidders face heterogeneous and private entry cost, the

seller revenue-maximizing reserve price and admission fee or subsidy are different from

models with homogeneous entry cost or exogenous participation. Other contributions to

the structural analysis of auctions with bidder entry include Li and Zheng (2009, 2012),

Fang and Tang (2014), and Marmer et al. (2013).

To the best of my knowledge, I am the first to conduct an empirical analysis of auctions

with endogenous entry of both buyers and sellers. Both the theoretical results presented

in Chapter 3 regarding the simultaneous entry of bidders and sellers into an auction

platform with idiosyncratic products and the empirical analysis of this market are novel

contributions to this literature.

1I do not explicitly model variety although the model can be estimated for different cuts of the data
when desired. Bidders are allowed to browse for free and only face entry cost after finding a listing that
matches with their high-level preferences for a certain product.
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2.4 Two-sided markets

Results in Chapter 3 also contribute to a growing literature providing evidence of policy-

relevant interdependencies of users in various two-sided markets, including: Rysman

(2004)(yellow pages), Rysman (2007) (payment cards), Gentzkow and Shapiro (2010)

(media slant in newspapers), Lee (2011) (home videogames), and Bresnahan et al. (2015)

(mobile apps) and Springel (2019) (electric vehicles). One difference with these studies

is that in the auction marketplace both sale prices and demand are endogenous to fees

set by the intermediary. My structural approach is also fundamentally different from the

existing empirical literature on two-sided markets. I use the auction structure to quantify

the network effect generated by bidder and seller entry into the auction platform, instead

of estimating it using exogenous variation in shifters of demand from the two sides. In a

sense, with this approach I provide a microfoundation of the entry elasticities and cross-

side effects of participation that form the basis of optimal pricing in two-sided markets

(e.g. the Lerner-style formula’s in Rochet and Tirole (2006) and Armstrong (2006)).

Previously, Gomes (2014) and Athey and Ellison (2011) also combined the two-sided

market pricing question in an auction model, but both study position auctions of advertise-

ment space such as that offered by search engines. While Athey and Ellison (2011) focus

on the Generalized English auction, Gomes (2014) studies optimal mechanism design.

2.5 Identification in English auctions

Athey and Haile (2002) show that, when adopting the standard “button auction model”

of Milgrom and Weber (1982), where bidders exit observably and irreversibly as the price

rises exogenously, and when bidders’ private values are independent, the transaction price

and number of bidders identify the latent value distribution. Haile and Tamer (2003) relax

the behavioral restrictions of the button auction model and show that this information set-

identifies the distribution. Song (2004) previously considered identification in IPV English

auctions when the number of bidders is unobserved, specifically exploiting the fixed end

time in eBay auctions. The focus of Chapter 4 is instead on the more traditional English

auction setting with a flexible end time, where the auction only closes after providing

bidders ample opportunity to raise the standing bid (“going, going, gone”). The method

in Song (2004) does not apply directly to traditional English auctions as observables can

only bound the third-highest valuation.

Generally, identification of the valuation distribution is not immediate in oral, open-

outcry auctions as the drop-out value of the highest bidder is never observed. An in-
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teresting development in recent structural analysis under weaker restrictions than IPV is

therefore to focus on directly identifying the policy variables that are ultimately of sig-

nificance. In a symmetric private value environment where valuations are allowed to be

correlated, Aradillas-López et al. (2013) set-identify the expected consumer surplus and

expected seller revenue when only the transaction price and the number of bidders is ob-

served. Coey et al. (2017) extend these results to asymmetric bidders and furthermore

show that the bounds can be sharpened when bidder identities are also observed. In first-

price auctions with unobserved heterogeneity, Armstrong (2013) shows that just observing

the transaction price and the number of bidders is sufficient to set-identify features re-

lated to expectations of valuations such as consumer surplus. Tang (2011) bounds seller

revenue in first price auctions with common values. What these papers have in common is

that they investigate what economic features of interest can be (set-)identified in auctions

when relaxing the auction model in important dimensions but without imposing additional

parametric structure on the problem. Results presented in Chapter 4 contribute to this

line of research, combining a concept from the statistics literature (sample spacings, see

Pyke (1965, 1972)) with additional information revealed from absentee bids.
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Chapter 3

Pricing and fees in auction

platforms with two-sided entry

Marleen R. Marra
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Abstract

Auction platforms are increasingly popular marketplaces that generate revenues from fees

charged to users. The platform faces a “two-sided market” with network effects; increased

seller entry raises its value to bidders, and vice versa. This means that both the platform

revenue-maximizing fee structure and welfare impacts of these fees are ambiguous. I

examine these issues with a new data set of wine auctions using a model with endogenous

bidder and seller entry, seller selection, and costly listing inspection. I show that relevant

model primitives are identified from observed variation in reserve prices, transaction prices,

and the number of bidders. My estimation strategy combines methods from the auction

and discrete choice literatures. Model estimates reveal significant network effects, which

can be harnessed to improve both platform profitability and user surplus. Decreasing

(increasing) the buyer premium (seller commission) by 15 percentage points increases

platform revenues by about 30 percent. It is striking that, in the face of such fee changes,

even sellers are better off as additional bidder entry drives up transaction prices. I also

estimate that welfare impacts from increasing fees individually are about twice as high as

when abstracting from endogenous entry and that 70-90 percent of the loss falls on sellers.
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3.1 Introduction

Auction platforms provide increasingly popular marketplaces for trading goods and ser-

vices, ranging from freelance jobs to vehicles to oil and gas drilling rights. Examples

include: eBay.com, BidforWine.co.uk, ClassicCarAuctions.co.uk, CarsontheWeb.com, En-

ergyNet.com, Upwork.com, uShip.com and ComparetheManwithVan.co.uk. These auction

platforms generate revenues from fees charged to buyers and sellers: eBay generated over

2 billion dollars in fee revenues in Q3 2018.1 The platform faces a “two-sided market” with

network effects given that it is more valuable to potential bidders when more sellers enter,

and vice versa. This generates complications for the platform or a benevolent planner

when determining how to optimally allocate fees among users. In fact, the two-sided mar-

ket literature highlights that both 1) the platform revenue-maximizing fee structure, and

2) welfare impacts of those fees are theoretically ambiguous and depend on the magnitude

of network effects.2

To study these two issues, I exploit a new data set of wine auctions and develop a

structural model in which network effects arise from endogenous bidder and seller entry.

A key innovation is that I leverage the transparency of payoffs in the auction game to

characterize network effects in this setting.3 This allows me to provide a tight quantitative

analysis of how fee changes affect both platform profitability and user welfare. My wine

auction data is representative of auction platforms for idiosyncratic goods for which bidders

and sellers have private information about their willingness to pay.4 As storage conditions

and provenance of these “fine, rare, and vintage wines” are important descriptors of their

quality, it is costly for bidders to inspect each listing. Empirical patterns in the data,

including thin markets and independent listings, are consistent with listing inspection

cost and set this environment apart from previously studied auction platforms for more

homogeneous goods.5

While a significant literature examines implications of costly bid preparation or value

discovery in auctions, it addresses markets in which a single seller can influence bidder

1https://investors.ebayinc.com/fast-facts/default.aspx
2See Rochet and Tirole (2003, 2006), Evans (2003), Wright (2004), Armstrong (2006).
3Previous studies that introduced a two-sided market pricing question in an auction framework are

Athey and Ellison (2011) and Gomes (2014), studying position auctions.
4This also motivates the use of auctions rather than more convenient posted prices as the selling

mechanisms on the platform. See Milgrom (1989) and Wang (1993) on auctions versus posted prices.
Some auction platforms offer both auctions and posted price listings. Einav et al. (2018) find that on
eBay.com, where sellers can choose between the two mechanisms, auctions are typically selected by less
experienced sellers and for goods that are used or more idiosyncratic. This motivates my use of this term.

5Previous auction platform models include: Anwar et al. (2006), Peters and Severinov (1997) (see also
Albrecht et al. (2012)), Nekipelov (2007), Backus and Lewis (2016) and Bodoh-Creed et al. (2013, 2016).
None of these evaluate the impact of fees.
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entry through optimal auction design.6 My emphasis on selective seller entry is novel

to the empirical auction literature. It generates an additional trade-off that is relevant

for answering the key questions in this paper. Bidders expect lower (reservation) prices

when lower-value sellers are attracted to the platform, so bidder entry depends both on

the expected number and type of sellers that enter. The importance of this dynamic was

first postulated in Ellison et al. (2004) but never implemented in practice. The authors

hypothesize that a major reason why Yahoo! and Amazon were unsuccessful as auction

platforms was their zero listing fee policy: this attracted many nonserious sellers with

high reservation prices that in turn shunned bidders from their platforms. My structural

model addresses this mechanism and allows me to incorporate the seller selection channel

in evaluating the role of fees.

In line with the wider empirical auction literature, I exploit the relatively controlled

auction environment where strategic interactions and resulting payoffs are accurately de-

scribed by Bayes-Nash equilibrium properties of an incomplete information game.7 The

observed distributions of reserve prices, transaction prices and number of bidders are en-

dogenous to the fee structure through optimal entry, bidding and reserve pricing strategies.

Variation in outcomes allows for the estimation of model primitives needed to answer how

fees affect user welfare in this market. As such, the wine auctions provide an oppor-

tune setting to understand the otherwise hard to quantify network effects by tracing fees

through the auction platform game.

The introduction of seller selection in the auction platform model does introduce em-

pirical challenges regarding nonparametric identification and estimation of the population

distribution of seller valuations. I demonstrate that using the first order optimality condi-

tion of equilibrium reserve prices the relevant distribution of seller valuations is identified

for any counterfactual fee policy that reduces expected seller surplus. Every reserve price

maps to a valuation for all sellers that entered the platform, given identification of the

distribution of bidder valuations from the observed second highest bid and number of

bidders according to Athey and Haile (2002).8 Only a subset of sellers currently listing

6See Ye (2007), Roberts and Sweeting (2010), Moreno and Wooders (2011), Krasnokutskaya and Seim
(2011), Li and Zheng (2009, 2012), Fang and Tang (2014), Marmer et al. (2013), Gentry and Li (2014)
and Gentry et al. (2015, 2017).

7See Hendricks and Porter (2007) on the close links between auction theory, empirical practice and
public policy.

8My identification result requires the assumption that all relevant auction-level heterogeneity is ob-
served. This is plausible given that the web scraping algorithm arguably delivered the same observables
that bidders get to see when bidding on the wine. Related are Roberts (2013) and Freyberger and Larsen
(2017) who use the reverse approach: variation in reserve prices traces out unobserved heterogeneity as-
suming that reserve prices and bids respond to common factors unobserved to the econometrician. To
do so, Roberts (2013) assumes that sellers are homogeneous. Freyberger and Larsen (2017) do have het-
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on the platform would enter for any counterfactual world in which platform entry is less

profitable for sellers. The positive identification result does not apply for fee structures

that make seller entry more profitable because a typical sample selection problem causes

observables to be uninformative about valuations among sellers that did not enter.

The entry equilibrium is the unique solution to a fixed point problem in seller valuation

space with a nested zero profit entry condition on the bidder side. This complicates esti-

mation of the distribution of seller valuations because: 1) the support of the distribution of

reserve prices depends on parameters and 2) the equilibrium is costly to compute for each

set of candidate parameters. To address these issues I first obtain an initial estimate based

on a concentrated likelihood using a consistent estimate of the entry threshold, suggested

in Donald and Paarsch (1993, Footnote 4) for a similar support problem. I then solve the

game once and re-estimate seller parameters based on the updated entry threshold. This

algorithm is based on the Aguirregabiria and Mira (2002, 2007) nested pseudo likelihood

method to solve estimation problems involving fixed point characterizations in (dynamic)

games. In my case, the algorithm uses the auction structure to obtain seller parameters

from a first order condition. The estimation of bidder parameters uses standard methods

from the empirical auction literature, involving a first stage that controls for auction het-

erogeneity following Haile et al. (2003) and maximum likelihood estimation of parameters

from the homogenized bidder valuation distribution as in e.g. Donald and Paarsch (1993)

and Paarsch (1997).

Model estimates reveal significant network effects in this platform, which can be har-

nessed to improve both platform profitability and user welfare. I estimate that platform

revenues can increase by up to 80 percent without reducing sale volume when implement-

ing fee structures that subsidize buyers (more) by reducing the buyer premium while at

the same time increasing the seller commission.9 As the buyer premium is currently zero

it requires providing winning bidders with a discount on the transaction price. This fully

agrees with the idea that businesses in two-sided markets should subsidize the side that

contributes most to profits, even if this results in negative fees.10 Counterfactual exper-

iments also demonstrate that all parties benefit with the adoption of some of these fee

structures. For example, combining a 15 percent buyer discount with a 15 percentage

point increase in seller commission and an increase in listing fee from 1.75 to 5 pounds

erogeneous sellers; the reserve price is additive in the common unobserved factor and an idiosyncratic
seller-specific term and they use deconvolution to separately identify the two components.

9I solve for fee revenues with my static game and impose volume constraints to capture that current
volume likely affects future revenues through e.g. brand familiarity or word of mouth. This approach
avoids having to make stronger assumptions about the exact dynamic platform objective function.

10Rochet and Tirole (2003, 2006), Evans (2003), Wright (2004), Armstrong (2006).
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increases platform revenues by about 30 percent. But even sellers are about 20 percent

better off in this scenario despite a significant increase in seller fees. This is because the

buyer discount attracts additional bidders, driving up transaction prices in the auction

mechanism.

In a second set of counterfactual exercises, I focus on welfare impacts from isolated

increases in buyer or seller commission. A key finding is that sellers are better off if their

seller commission is increased by 5 percentage points than in the case when the buyer

commission increases by the same amount. This feature of the platform setting, driven by

network effects, would be missed if bidder and seller participation is considered exogenous.

The magnitude of welfare impacts is also striking. For example, a 5 percentage point

increase in buyer (seller) commission reduces expected surplus for winning bidders by 7

(4) percent and for sellers by 17 (15) percent. These results demonstrate that abstracting

from endogenous entry and strategic interactions between platform users, as has been the

norm in antitrust policy, significantly biases estimated welfare impacts of changes in the

fee structure.

Wine auctions are a particularly relevant market in this context because two mayor

players, auction houses Sotheby’s and Christie’s, have been found guilty of commission

fixing in the mid-90s. Using this case for context, I estimate that it is plausible that

the true antitrust injury to both parties would have been about double the estimated

damages underlying the settlement of 512 million dollars (roughly 729 million dollars in

2018 prices). Especially sellers would be undercompensated: while they received only one

sixth of the total settlement, about 70-90 percent of estimated damages falls on sellers

regardless of which side the commission increase is charged to.

My empirical findings underscore the idea that economic principles underlying regula-

tion in traditional markets do not necessarily apply to two-sided markets and that both

sides should be evaluated in tandem. A competitive auction platform could combine high

fees on one side of the market with below marginal cost prices on the other side. Both

practices could be considered predatory when evaluated in isolation but they prove to be

socially optimal in the two-sided market in this paper. In recent years also competition au-

thorities and courts recognize that regulation of platform markets requires different tools

and tailored solutions, but the perceived difficulty to quantify user interactions has been

a bottleneck for practical application of these ideas.11

The rest of this paper is organized as follows. Section 3.2 provides institutional details

11See e.g. In re eBay Seller antitrust litigation (2008), Bomse and Westrich (2005), Tracer (2011), OECD
Competition Committee (2009, 2017), Evans and Schmalensee (2013).
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about online wine auctions, presents the data and empirical patterns that distinguish it

from previously studied homogeneous good auctions. Section 3.3 sets out the theoretical

auction model and solves for equilibrium entry, bidding, and reserve price strategies. Sec-

tion 3.4 explains how to identify model primitives from available data. Details about the

estimation approach are presented in 3.5 and results in 3.6. Section 3.7 presents results

from counterfactual fee policies that shed light on network effects, the economic incidence

of fees, and platform profitability. Concluding remarks are offered in Section 3.8.

3.2 Wine auctions

Fine wine is sold at auction in secondary markets, run by online wine platforms as well as

brick-and-mortar auction houses.12 Auction data for the empirical analysis in this paper

comes from online auction platform: www.Bidforwine.co.uk (BW). It offers a marketplace

for buyers and sellers to trade, akin to the eBay consumer-to-consumer format.13 When

sellers create a listing they choose the auction duration, whether or not to increase the

minimum bid amount or to set a secret reserve price. They also provide wine characteristics

and description, and information on delivery and insurance. When the sale is successful,

they receive payment from the winning bidder, ship the wine, and receive an invoice for

the amount of seller commission due. For these seller-managed lots, BW charges no buyer

premium and maintains a seller commission on a sliding scale between 8.5-5.5 percent of

the sale price (see Table 3.1). Upfront charges to sellers are: a 1.75 pounds listing fee, a

0.50 pounds minimum bid fee (optional, if increased), and a 0.25 pounds reserve price fee

(optional, if set).

Lots are sold through an English auction mechanism with proxy bidding. Bidders sub-

mit a maximum bid and the algorithm places bids to keep the current price one increment

above the second-highest bid.14 A soft closing rule extends the end time of the auction

by two minutes whenever a bid is placed in the final two minutes of the auction. There-

12The major platforms sold for 338 million dollars of wine in 2016, and have also been burgeoning in
2017 and 2018 (Wine Spectator (2017a,b, 2018)) The biggest players in 2016 were: Sotheby’s (74 million),
Zachys (66 million) and Acker, Merrall & Condit (59 million).

13Such seller-managed listings are the focus of this paper. They are distinct from wines consigned to the
platform and sold on behalf of the seller, especially because they do not undergo quality control by the
platform. BW only offers consignment services when selling a “large collection”, roughly exceeding five
cases, and charges higher fees for these auctions.

14When the highest bid is less than one increment above the second highest bid, the transaction price
remains the second highest bid. This is different from the rule at eBay, where the standing price in that
case would increase to the highest bid. Engelberg and Williams (2009), Hickman (2010) and Hickman et al.
(2017) assess implications of this alternative bidding rule that is practically a mix between a first-price
and second-price auction.
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Table 3.1: Fee structure in wine auction data

Notation Amount / rate Conditional on selling

Bidders:
buyer premium cB 0 X
Entry fee eB £0

Opportunity cost of time eoB estimated

Sellers: On part transaction price:
Seller commission cS 0.085 ≤ £200 X

0.075 £200.01- £1500 X
0.066 £1500.01- £2500 X
0.055 ≥ £2500.01 X

Listing fee eS £1.75
Reserve price fees eR £0.75

Opportunity cost of time eoS estimated

Source: www.bidforwine.co.uk. Displayed fees exclude 20 percent VAT, which are included in estimation. Opportu-
nity cost eoB and eoS are added for reference but fall outside the platform fee structure f = {cB , eB , cS , eS , eR}. As
described in the text, the reserve price fee is made up of 0.50 pounds for raising the minimum bid and 0.25 pounds
for adding a secret reserve price. Different fees apply to lots consigned to and sold by the platform on behalf of
sellers.

fore, there is no opportunity for a bid sniping strategy (bidding in the last few seconds,

potentially aided by sniping software) on the BW platform.15

3.2.1 Data collection and description

I constructed a dataset of wine auctions by web-scraping all open auctions on BW at

30-minute intervals between January 2017 and May 2018.16 At these intervals, I observe

everything that bidders observe as well. This data collection effort resulted in a wealth of

data, including: the number of bidders and bids, the current standing price, the identity

of the seller, and feedback from earlier transactions. Only a quarter of listings is created

by a seller with feedback, pointing to the consumer-to-consumer nature of the platform.

The repetitive recording of bids for ongoing auctions was necessary to approximate the

reserve price distribution. When the seller sets a reserve price without making it public in

the form of a minimum bid amount, the notifications “reserve not met” or “reserve almost

met” accompany any standing price that does not exceed the reserve. I approximate the

reserve price as the average between the highest standing price for which the reserve price

is not met and the lowest for which it is met.17 While only 26 percent of listings has an

15See Ockenfels and Roth (2006) on strategic behaviour in auctions with these two types of closing rules
and Hasker and Sickles (2010) and Bajari and Hortaçsu (2004) for an overview of various explanations for
bid sniping evaluated in the literature.

16The exact data collection times depended on when the scraping job got scheduled on the cluster, also
affected by computing node failures. An example listing page is provided in Figure 3.9.

17If all bids would be recorded in real time, this approximation would be accurate up to half a bidding
increment due to the proxy bidding system. Appendix B presents suggestive evidence that also the 30-
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increased minimum bid amount, 44 percent has a (secret) reserve price, and 3 percent

has both. The use of secret reserve prices in auction platforms remains a puzzle in the

empirical auction literature and solving that puzzle is beyond the scope of this paper.18

In the rest of this paper I group them together and refer to the “reserve price” as the

maximum of: the minimum bid amount and the approximated secret reserve price. Of

larger consequence is the choice made by a third of sellers to refrain from setting any

form of reserve. This is observable to bidders by a “no reserve price” button - even before

they enter the listing. The BW website encourages sellers to set no reserve price with

the following argumentation: “Bid for Wine’s own statistics show that lots listed without

reserve prices typically attract 50-75% more bidders and sell for up to 40% more than those

with reserves.” Section 3.5.4 endogenizes the choice to set no reserve price in tandem with

higher (optimal) bidder entry into no-reserve listings.

I also observe wine characteristics such as the type of wine, grape, vintage, region of

origin; plus the textual description, delivery and payment information. Basic summary

statistics are reported in Table 3.2. While there is a significant range in sale prices, 84

percent of all sales in the sample do not exceed the 200 pounds over which sellers pay a

higher marginal seller commission. The sample includes 3, 487 auctions after excluding

auctions with a “buy-now” option, that are consigned, sell spirits, or sell multiple lots at

once.

3.2.2 Why listing inspection and seller selection matter

Wine sold at auction is often described as fine, rare, and vintage wine. A key difference

with retail wines is that they are sold by individual collectors who stored the bottles either

in professional warehouses or in private cellars - sometimes for decades. Sellers therefore

know how much the wine is worth to them and they have their own idiosyncratic value

(taste) for it. When the platform changes its fee structure, it therefore affects both the

number and the type of sellers that enter. Moreover, this feeds back on how attractive the

platform is for potential bidders given that more serious sellers with lower valuations set

lower reserve prices.19 This is the first paper to estimate an auction platform model with

(selective) seller entry.

Listing inspection cost arise in this context because all offered wines are different.

This has to do with why there is a flourishing secondary market in the first place. The

minute scraping interval result in a good approximation of the reserve price distribution.
18See e.g. Jehiel and Lamy (2015) and Hasker and Sickles (2010).
19Ellison et al. (2004) hypothesize that seller selection was likely a main driver for why auction sites of

Amazon and Yahoo! struggled: their zero listing fees attracted non-serious sellers with high reserve prices,
shunning bidders.
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Table 3.2: Descriptive statistics: selected auction characteristics

N Mean St. Dev. Min Median Max

Transaction price 3,487 140.56 239.94 1.00 82.50 6,000.00
Is sold 3,487 0.64 0.48 0 1 1
Number bottles 3,487 3.70 4.22 1 2 72
Price per bottle if sold 2,230 74.84 124.52 0.50 35.00 2,200.00
Number of bidders 3,487 3.10 2.52 0 3 13
Seller has feedback 3,487 0.29 0.46 0 0 1
Has reserve price 3,487 0.44 0.50 0 0 1
Has increased minimum bid 3,487 0.26 0.44 0 0 1

Textual description:
- related to storage conditions 3,487 0.17 0.38 0 0 1
- related to delivery 3,487 0.58 0.49 0 1 1
- related to en primeur 3,487 0.17 0.38 0 0 1
- related to expert opinion 3,487 0.51 0.50 0 1 1
Number of words in description 3,487 84.22 79.11 1 65 851

Textual description statistics are obtained using text mining with count-based evaluation. The dummy variables
equal one if it contains a word that is associated with respectively “stored”, “delivery”, “primeur”, or “parker” (re-
ferring to wine advocate Robert Parker who maintains a 50-100 point scale for fine wines); the minimum association
threshold is a Pearson correlation of at least 0.3.

paramount influence of weather and harvesting conditions results in some vintages outper-

forming others in terms of quality.20 Older wines can be valuable as increased scarcity of

these star vintages drives up prices, given that fewer of them remain uncorked over time.

Moreover, certain high-tannin wines such as red Bordeaux age well and are thought to

reach their full potential only after many years. But the commodities are also perishable

so that humidity and temperature control are key to deliver this potential quality. As

such, assessing the wine’s idiosyncratic storage conditions, provenance, ullage and other

indicators of wine quality make it costly for bidders to bid in every auction they enter.21

Conceptually, also auctions of other idiosyncratic products such as second hand cars,

freelance jobs or house moving trips likely involve costly listing inspection by bidders.

While previous empirical studies investigate auction platforms for more homogeneous

goods, this is the first to focus on goods with listing inspection cost.22

20Ashenfelter et al. (1995) and Ashenfelter (2008) predict with surprising accuracy the value of high-end
Bordeaux wines using weather data from the growing and harvesting seasons.

21Ullage describes the unfilled space in a container; in wine auctions it refers to visible oxidation of the
wine. For example, a “Base of Neck” fill level is better than “Top Shoulder”. These apply to wines in
Bordeaux-style bottles with a visible neck and shoulders; a metric classification is used for Burgundy-style
bottles (see Figure 3.8).

22In previous literature, auction platform models are estimated using data from Kindle e-readers (in
Bodoh-Creed et al. (2013, 2016)), indistinguishable CPU’s (in Anwar et al. (2006)) and pop CD’s (in
Nekipelov (2007)).
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Table 3.3: Descriptive statistics: thin markets

Number of times a product is listed

Per market, percentiles

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 1 1 1 1 2 2 3 6 37

Total over 15 months, percentiles

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 3 8 16 28 37 68 148 215 223

This table is based on conservative product-market specifications. In this table, products are combinations of: region
of origin, wine type, and vintage decade; markets are 4 week intervals. The Independent listings section on page 36
describes other specifications used.

3.2.3 Descriptive evidence

Here, I document four empirical patterns related to the idiosyncratic nature of the goods.

1) Thin markets. The data reveals a strikingly low number of identical products per

market, even when using conservative product / market definitions. All listings are active

for at most 31 days, and most sellers pick the pre-set 5, 7 or 10 day duration. In this

paragraph, I therefore use conservative one month periods to define a market. The BW

site has filters for high level characteristics corresponding to the idea that potential bidders

enter the site with at least a rough idea of the product they are looking for. As product

specification, I take the combination of three high level filters: i) region of origin, ii) vintage

decade and iii) wine type. For example, a red Bordeaux from the 1980s and a non-vintage

Champagne are distinct products by that definition. Even with these relatively coarse

product-market specifications, for 50 percent of listings this is the only one of that product

offered in that market and for another 20 percent there are only two of these products

available (see Table 3.3). Half of the products have been listed only 28 times during the

full 15 months spanning my data, conditional on having been offered at least once.

2) Non-selective bidder entry. Whether bidders do or don’t know their valuation for

the listed products before they enter the platform is crucial in the way bidder entry affects

outcomes.23 Which case is likely to describe my data generating process can be tested; in

a selective entry model valuations are lower in the first order stochastic dominance sense

when more bidders enter the platform. Estimates presented in Figure 3.1 contest such a

selective bidder entry process. It shows that estimated distributions of second-highest bids

23If they are fully informed before they enter, as in the Samuelson (1985) selective entry model, every
additional bidder has a lower valuation so entry affects prices less than when they don’t know their valuation
when entering, as in Levin and Smith (1994). Roberts and Sweeting (2010) and Gentry and Li (2014)
capture both scenario’s as polar cases in their flexible entry models.
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Table 3.4: Descriptive statistics: non-selective bidder entry

Dependent variable: Transaction price (OLS)

Number bidders in auction 26.650∗∗∗ [1.730] 25.998∗∗∗ [2.024]
Total number bidders product/market −0.155 [0.109] −0.282 [0.248]

Product fixed effects No Yes
Observations 1,218 1,218
Adj. R2 0.163 0.143

∗ ∗ ∗: Significant at the 1% level, standard errors in square parenthesis. In this preliminary analysis, product
fixed effects here are high-level observables: wine type, region of origin, decade of production; markets are 4 week
intervals.

are similar for above-median and below-median bidder platform entry, evaluated separately

for auctions with 2-9 bidders. 24 The same conclusion can be drawn from a reduced-form

OLS regression of transaction prices on the number of bidders in the auction and total

number of bidders on all comparable listings in the same market, also when controlling

for product fixed effects in Table 3.4. Reported patterns are consistent with non-selective

bidder enter and suggest that an extra bidder in an auction is associated with a transaction

price that is on average 26-27 pounds higher. These documented empirical patterns are

consistent with bidders needing to inspect a listing before learning specifics of the wine

and how much they value these specifics.

3) Independent listings. Previous papers show that transaction and reserve prices in

homogeneous good auctions can be affected by the number of competing listings.25 An

ordinary least squares regression analysis, detailed in Appendix C suggests that, in the

wine auction data, listings are not systematically related despite ending in close proximity

of each other and offering similar items. This conclusion is robust to using different

24Distributions are estimated from auctions without a reserve price. They are obtained with fitting
nonparametric epanechnikov Kernels with optimal cross-validated bandwidths on transaction prices from
auctions with below or above median bidder participation. For example, it compares transaction prices in
months where non-vintage Champagne is more popular - in the sense of attracting more total bidders on
this type of wine - with months where there is lower bidder interest for these wines. Not observing the
pool of potential bidders precludes me from testing selection on obsevables directly as done in Roberts and
Sweeting (2011, 2013).

25Peters and Severinov (1997) and Anwar et al. (2006) consider cross-bidding, motivated by the absence
of listing-specific entry cost in auctions for homogeneous products. The incremental cross-bidding strategy
requires bidders to always submit a bid on the auction with the lowest standing price, and only one
increment above the standing price (e.g., not submit a bid once equal to their valuation). As I don’t
observe bidder identities, I cannot examine the incremental cross-bidding strategy directly, but a strong
clue for the absence of it is that on average all bidders place only 1.7 bid (median: 1.5) so at least it cannot
be a very prevalent strategy. To wit, not every bidder can be placing two bids or more in the same auction
(but they could still bid once or twice in many competing auctions - if available). Another suggestion is
that the majority of winning bidders that left feedback has only won an auction (and left feedback on it)
once or twice (58 percent) over the entire 15 months period.
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Figure 3.1: Estimated CDF transaction prices; x-axis: probability. y-axis: value

Black dotted line: estimated second-highest bid distribution for below-median total number bidders per prod-
uct/market. Cyan solid line: estimated second-highest bid distribution for above-median total number bidders
per product/market.
In these graphs, products are combinations of: region of origin, wine type, and vintage decade; markets are 4 week
intervals. Figures are based on data from auctions with no reserve price in which the number of bidders is directly
observed. Plots displayed by number of bidders per auction, n = {2, .., 9}. Sample sizes are too small to do this for
n=10-13. The Non-selective bidder entry section on page 35 describes further details.

product and market specifications. Dependent variables analyzed are: i) the number of

bidders per listing, ii) the number of bids per bidder, iii) the transaction price and iv)

the reserve price. The results rely on cross-market variation in the number of listings of

a certain product. The different market specifications considered are all auctions ending

within a rolling window of: i) 30 days, ii) 7 days, and iii) 2 days of each other. Product

specifications also vary. The coefficient on competing listings is in 68 out of the resulting 72

regressions statistically insignificant at the 10 percent level. To rule out that there are non-

linear effects, the absence of a clear structural relation between the number of (competing)

listings and these outcomes of interest is also confirmed with data visualizations.

The fact that reserve prices are not affected by competing listings is intuitive since

most of them are kept secret. As bidders cannot select on what they cannot observe,

there is no motive for sellers to compete on that margin. The absence of a cross-bidding

strategy, as suggested by the constant number of bids per bidder, can be explained by

the accumulation of listing inspection cost associated with that strategy. Overall, the fact

that transaction prices do not decrease with the number of competing listings points to

the absence of a “business stealing” effect and is also consistent with bidders entering and
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Figure 3.2: Patterns suggesting that additional listings attract additional bidders but the
mean number of bidders per listing remains constant

Figures are based on data from auctions with no reserve price in which the number of bidders is directly observed.
The blue solid lines represent the estimated coefficients in OLS regressions: on the left a slope of 0.7 (statistically
significant at the 1 percent level) and on the right an insignificant 0. The residual total bidders in a) is obtained
from a linear regression of this outcome in market m on product dummies and the residual bidders per listing
in b) is obtained from a linear regression of this outcome for product p in market m on product dummies. The
left-hand graph shows that, for example, markets with more listings of non-vintage champagne attract more bidders
on non-vintage champagne listings while the right-hand graph suggests that bidders enter only to keep the mean
number of bidders on non-vintage champagnes constant across markets. In these graphs, products are combinations
of: region of origin, wine type, and vintage decade; markets are 4 week intervals.

bidding in one listing at a time.26

4) Network effects. Network effects describe that a product is more valuable to a group

of users when it is more widely adopted by another group.27 In our auction platform

setting, network effects arise mechanically from the fact that transaction prices are en-

dogenous to the number of bidders per listing. As bidders sort over available listings, a

platform with more listings is more attractive to potential bidders c.p., and vice versa.

This positive feedback effect is observed from the positive correlation between the number

of total bidders and the availability of listings after controlling for product fixed effects

(left-hand panel of Figure 3.2). The pattern also persists when controlling for a time trend.

An equilibrium prediction from a model in which (reserve) prices are unaffected by

26In contrast, Newberry (2015) show that in eBay auctions for Corvettes more listings result in the
thinning of bidders per listing. The constant mean number of bidders per listing in my data disproves
bidder thinning.

27See Katz and Shapiro (1985) and Rochet and Tirole (2006).
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the number of listings, as shown in the next section, is that the mean number of bidders

per listing is also independent of the number of listings. The right-hand panel of Figure

3.2 supports this pattern in the BW auction data. Given that the fee structure is fixed

in the data, additional listings are not associated with higher cost sellers populating the

platform. Network effects are such that potential bidders enter to the point of keeping the

mean number of bidders per listing constant. Reported coefficients in Appendix C confirm

that this result is robust to different product/market specifications (Table 3.11 Column 1).

Implications for structural model. Informed by these empirical patterns, the struc-

tural model considers a platform where bidders have a constant cost of inspecting a listing

and therefore bid in one listing at a time. The game is static in correspondence with

the empirical pattern of a low re-occurrence of products in subsequent months.28 The

presence of other auction platforms for wine besides BW is captured by the opportunity

cost of entering and trading on BW. Hence, the (partial) equilibrium analysis is based on

an implicit assumption that competing platforms keep their fee structure unchanged.29

3.3 A model of an auction platform for idiosyncratic goods

In this section, I model bidder and seller behavior on the platform as a static multi-stage

game and study its equilibrium properties.

3.3.1 Model assumptions and game structure

Risk-neutral potential bidders and sellers consider trading on a monopoly platform with a

given fee structure and furthermore have opportunity cost of doing so. Bidders have unit

demands. The allocation mechanism in each listing is an English auction with flexible end

time and proxy bidding. Assumptions on the matching process and model primitives that

are maintained throughout are:

Assumption 1. Bidders bid in one listing at a time and enter available listings with equal

probability.

This assumption can be justified on the basis that bidders learn about the wine’s

details only after they enter the product page and spend time inspecting it. Reserve prices

are secret. In estimation, I implement the uniform allocation assumption conditional on

28Figure 3.10 in the Appendix.
29This is justified by BW being a small platform; the assumption would be more restrictive using eBay

data unless you consider it to be a monopolist in the relevant market.
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the observed “no reserve price button”, allowing bidders to enter such auctions more

numerously.

While the valuations of bidders and sellers may be correlated by their common appre-

ciation of certain wine characteristics, their individual tastes are the basis of the following

assumption:30

Assumption 2. Conditional on the vector of observed wine attributes, variation in val-

uations across buyers and sellers is of a purely idiosyncratic -private values- nature. In

addition, the idiosyncratic variation is independent.

Independence is needed for identification of the distribution of idiosyncratic bidder

valuations, but on the seller side it can be relaxed to unrestricted private values. The two

conditional distribution functions are assumed to satisfy standard regularity conditions:

Assumption 3. The distribution functions of idiosyncratic buyer and seller values are:

i) absolutely continuous, ii) defined on a bounded support, and iii) characterized by an

increasing failure rate (IFR).

Continuity is needed for identification of the distribution of bidder valuations, but

it could be omitted on the seller side. IFR is a standard restriction that guarantees

uniqueness of the optimal reserve price, and is also not needed on the seller side.31

The valuation distributions, allocation mechanism, population sizes, and all cost (fees

and opportunity cost) are common knowledge. While relatively parsimonious, this model

captures the main features of an auction platform for idiosyncratic goods detailed in

Section 3.2. The incomplete information structure and strategic interaction makes this

suitable to study with the usual game-theoretic tools.

Timing of the game.

Entry stage (t=1)
Potential sellers learn their valuation and decide whether to enter

and simultaneously, bidders decide whether to enter

Auction stage
(t = 2) Sellers set a reserve price

(t = 3) Bidders learn their valuation and bid

30The assumption is also justified by the elaborate data collection effort. In particular, it rules out the
existence of wine features observable to bidders and sellers that are not excluded from their valuations and
that are unobserved to the econometrician. Such features would render the private valuations of bidders
and sellers affiliated in the sense of Milgrom and Weber (1982) and Aradillas-López (2016), even after
controlling for observed wine attributes.

31With no reason to assume that their taste distributions differ, in estimation I use the same parametric
restrictions on both sides (although I estimate parameters for bidders and sellers separately) and therefore
I use a model with an identical set of restrictions on these distributions.
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My analysis uses only one bid order statistic: the second-highest; and its relation to

the second-highest valuation. English auctions generally allow for bidding strategies that

complicate a tight mapping between observed bids and unobserved valuations (Haile and

Tamer (2003)), and I rely on the following assumption to restrict bidder behavior:32

Assumption 4. The transaction price in each auction is the greater of the second-highest

bidder’s willingness to pay and the reserve price.

This assumption can be justified in different ways. It is the exact outcome of a model

that imposes only the behavioral assumptions of Haile and Tamer (2003) that: 1) bidders

never bid more than their valuation, and 2) never let someone else win at a price they are

willing to beat, in the case of infinitesimal bidding increments and accounting for buyer’s

premium. With these intuitive behavioral assumptions, Assumption 4 therefore holds ap-

proximately to within one bidding increment. The assumed transaction price could also

be derived from the more restrictive behavioral “button auction model” of Milgrom and

Weber (1982) in the independent private values case.

Notation.

Let fee structure f = {cB, cS , eB, eS} consist of, respectively, buyer’s premium, seller com-

mission, buyer entry cost, seller entry cost (listing fee). Opportunity cost of time equals

eoB for potential bidders and eoS for potential sellers. Random vector Z contains auction

covariates observed at the product-page. NB, NS , M , T respectively denote the number

of: potential bidders, potential sellers, bidders (on the platform) and sellers (listings).

FV0|Z and FV |Z respectively denote the conditional valuation distributions for potential

sellers and bidders, defined on bounded supports V0 ∈ [v0, v̄0] and V ∈ [v, v̄]. Random

variables are denoted in upper case and their realizations in lower case. Furthermore, v0

is the realized valuation of a generic seller while v0k indicates the realized valuation for

(potential) seller k. Similarly, v denotes the realized valuation for a generic bidder while vi

is used to denote the valuation of bidder i. Order statistics are useful as well: X(n:n) and

X(n−1:n) denote respectively the highest and second-highest draw from a sample of size n

from random variable X. I denotes the indicator function and stars denote equilibrium

values. Additional notation will be introduced where necessary.

Payoffs.

The payoff for bidder i is simply his valuation vi minus the transaction price increased

32Aradillas-López et al. (2013) previously adopt this assumption in an English auction model.

41



with buyer premium if he wins the auction. On top of that, regardless of whether he wins,

by entering he foregoes entry and opportunity cost. The transaction price is the maximum

of the second-highest bid and reserve price r, denoted by placeholder H here:

πb(vi, H) =


vi −H(1 + cB)− eB − eoB : for a bidder with valuation vi who wins

−eB − eoB : for a bidder with valuation vi who fails to win

0 : otherwise

The payoff for a seller with valuation v0k is the transaction price decreased with seller

commission minus entry and opportunity cost. If he lists the good for sale but it does not

sell, he only foregoes entry and opportunity cost but enjoys the value of the good:

πs(v0k, H) =


H(1− cS)− eS − eoS :f or a seller with valuation v0k who sells

v0k − eS − eoS : for a seller with valuation v0k who fails to sell

v0k :otherwise

3.3.2 Equilibrium strategies

In this section, I solve for players equilibrium strategies. Considering two distinct stages

of entry and auction, and given symmetry up to players’ private valuations, I restrict

attention to symmetric Perfect Bayesian-Nash Equilibria (PBE) in weakly undominated

strategies. This equilibrium concept requires that strategies are best responses given

competitors’ strategies, and that beliefs are consistent with those strategies in equilibrium.

Auction stage

Conditional on entry decisions and the matching of bidders to listings, the idiosyncratic-

good auction platform is made up of independent English auctions. I therefore derive

standard reserve pricing (as in: Riley and Samuelson (1981)) and bidding (as in: Vickrey

(1961)) strategies, up to the impact of buyer premium and seller commission.

Lemma 1. It is a weakly undominated strategy for a bidder with valuation v to bid:

b∗(v, f) ≡ v

1 + cB
(3.1)

Proof. This follows directly from Vickrey (1961), as bidding more than v
1+cB

may result in

negative utility and bidding less than v
1+cB

decreases the probability of winning without
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affecting the transaction price in that case.

Only the second-highest bid is relevant for this game and while other strategies are

allowed to have been played by bidders with lower valuations (by Assumption 4), those

strategies are not dominated by the strategy in Lemma 1 as they would lead to the same

payoffs.

Lemma 2. It is a weakly undominated strategy for a seller with valuation v0 to set a

secret reserve price that solves:

r∗(v0, f) ≡ v0

1− cS
+

1− FV |Z((1 + cB)r∗(v0, f))

(1 + cB)fV |Z((1 + cB)r∗(v0, f))
(3.2)

r∗(v0, f) is increasing in cS and decreasing in cB.

The proof can be found in Appendix G. Note that, if cS = cB = 0, the optimal reserve

price is identical to the familiar Riley and Samuelson (1981) formula for a public reserve

price in auctions with a fixed number of bidders. It is easy to see why this is the case.

Because r∗(v0, f) is secret, it does not affect the number of bidders in the seller’s listing.

This is true for any reserve price strategy of competing sellers.33

Section 3.5.4 introduces the choice between setting no reserve price or setting r∗(v0, f)

based on additional reserve price fees, eR, and lower expected participation in auctions

with a positive reserve price.

Entry stage

With their valuations materializing in the auction stage, NB identical potential bidders

adopt a mixed strategy to enter with a probability that in equilibrium leaves their op-

ponents indifferent between entering and staying out, as in Levin and Smith (1994). By

contrast, the NS potential sellers know their valuation v0 so they enter selectively. Their

expected surplus decreases in v0, so they adopt the pure strategy to enter only if their

valuation is below a threshold value that in equilibrium makes the marginal seller indiffer-

ent between entering and staying out given that his opponents adopt the same threshold

strategy. In what follows, I denote the sellers’ entry strategy by that threshold value. The

following proposition summarizes key results:

33Sellers could be better off if they would collectively adopt (e.g., find a way to enforce) a different
reserve price rule. In particular, a rule that results in a lower reserve price for any (v0, f) increases bidder
entry.
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Proposition 1. The entry stage of the game results in a unique equilibrium for any fee

structure. It is characterized by a bidder entry probability and seller entry threshold,

(p∗(f, v∗0(f)), v∗0(f)), that jointly solve: 1) potential bidders’ zero profit condition, and 2)

the marginal seller’s zero profit condition.

The remainder of this section derives the entry equilibrium. I first show that any can-

didate seller entry threshold, v̄0, maps to an equilibrium bidder entry probability, p∗(f, v̄0).

Given that p∗(f, v̄0) is strictly decreasing in v̄0, sellers are strategic substitutes and the

entry game reduces to a single agent discrete choice problem. I exclude a non-interesting

no-trade equilibrium in which nobody enters the platform. To economize on space, a more

detailed treatment is relegated to Appendix D.

Bidder entry.

Let πb(n, f, v0) denote the ex-ante expected surplus for a bidder arriving in a listing with

n − 1 other bidders, fee structure f , and seller valuation v0. The seller valuation enters

πb through optimal reserve price r∗(v0, f). In fact, this is why seller selection matters to

bidders: πb(n, f, v0) is strictly decreasing in v0. Being unobserved to bidders, they form

an expectation over V0 using v̄0: E[πb(n+1, f, v0)|V0 ≤ v̄0]. They also form an expectation

over the number of competing bidders in their listing, using its compound Binomial distri-

bution, fN (n; p, v̄0). From the perspective of a bidder who enters the platform, fN (n; p, v̄0)

combines uncertainty about: 1) the stochastic number of listings T (with realization t)

given entry threshold v̄0, and 2) how many of NB − 1 competing bidders end up in his

listing when they enter the platform with probability p and sort uniformly over available

listings. Combined with entry and opportunity cost, Πb(f, v̄0; p) denotes potential bidders’

expected surplus from entering the platform:

Πb(f, v̄0; p) =
NB−1∑
n=0

E[πb(n+ 1, f, v0)|V0 ≤ v̄0]fN (n; p, v̄0)− eB − eoB (3.3)

fN (n; p, v̄0) =
NS∑
t=0

(
NB − 1

n

)
(
p

t
)n(1− p

t
)N

B−1−n
(
NS

t

)
FV0|Z(v̄0)t(1− FV0|Z(v̄0))N

S−t

(3.4)

Lemma 3. Given candidate seller entry threshold v̄0 and fee structure f , the equilibrium

bidder entry probability solves the zero profit condition:

p∗(f, v̄0) ≡ argp∈(0,1){Πb(f, v̄0; p) = 0} (3.5)
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Equilibrium properties are:

i) p∗(f, v̄0) is unique ∀(f, v̄0)

ii) p∗(f, v̄0) is strictly decreasing in (v̄0, cB, cS , eB) so also fN (n; p∗, v̄0) decreases in the

first-order stochastic dominance sense in (v̄0, cB, cS , eB)

iii) fN (n; p∗, v̄0) is invariant to changes in NB or NS

While proofs are relegated to Appendix D and G, a short explanation suffices as in-

tuition for these results. The zero profit condition follows from bidders being indifferent

in equilibrium between staying out and entering the platform. The selection of less se-

rious sellers (through an increase in v̄0) reduces bidders’ expected listing-level surplus,

E[πb(n + 1, f, v0)|V0 ≤ v̄0]. As such, their equilibrium entry probability is lower, so that

fN places more weight on lower realizations of the number of bidders per listing. The

same holds for increases in buyer premium, seller commission, and bidder entry and op-

portunity cost; since they all decrease expected listing-level surplus. As population sizes

do not directly affect bidder surplus, the zero profit condition dictates that in equilibrium

fN (n; p∗, v̄0) remains constant. This also relates to the equilibrium prediction that is re-

ferred to in the network effects section on page 37: without affecting seller selection,

more listings increase the number of bidders, but only to keep the mean number of bidders

per listing constant.

Seller entry.

Potential sellers’ expected surplus from entering the platform involves: 1) their listing-level

expected surplus, and 2) an expectation over the number of bidders per listing, N , given v̄0

and bidders’ equilibrium best-response to this threshold. Let Πs(f, v0; p∗(f, v̄0), v̄0) denote

expected surplus for a seller with valuation v0 when NS − 1 competing sellers enter the

platform if and only if their valuation is less than threshold v̄0:34

Πs(f, v0; p∗(f, v̄0), v̄0) =

NB∑
n=0

πs(n, f, v0)fN (n; p∗(f, v̄0), v̄0)− eS − eoS (3.6)

Lemma 4. Given fee structure f , the equilibrium seller entry threshold solves the marginal

34A slight abuse of notation is that expectation involves fN (n; p∗, v̄0) (characterizing entry among NB−1
potential bidders) as defined in (3.4) instead of the distribution based on the full bidder population NB .
This avoids introduction of additional notation and the −1 will be irrelevant in the large-NB approximation
adopted for empirical tractability (page 46). In that world, the two distributions are identical by the
environmental equivalence property of the Poisson distribution (Myerson (1998)).
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seller’s zero profit condition:

v∗0(f) ≡ argv̄0s.t.FV0|Z(v̄0)∈(0,1){Πs(f, v̄0; p∗(f, v̄0)) = 0} , with p∗(f, v̄0) solving (3.5) (3.7)

Equilibrium properties are:

i) v∗0(f) is unique ∀f
ii) v∗0(f) is strictly decreasing in eB

iii) The impact of (cB, cS , eS) is ambiguous

Proofs are provided in Appendix D and G. Key intuition is the following. Sellers

have a unique best response for any competing seller entry (candidate) threshold, because

Πs(f, v0; p∗(f, v̄0), v̄0) is strictly decreasing in v0. Crucially, given that 1) p∗(f, v̄0) is

strictly decreasing in v̄0, and 2) entry of competing sellers does not affect Πs(f, v̄0; p∗(f, v̄0))

in other ways, the best response function is strictly decreasing in competing sellers entry

threshold. Symmetry then delivers a unique equilibrium threshold, v∗0(f), that is the fixed

point in seller value space solving equation 3.7 i.e., making the marginal seller indifferent

between entering and staying out.

Corollary 1. The entry equilibrium of the auction platform game is characterized by the

pair of:

(v∗0(f), p∗(f, v∗0(f))) that solves equation (3.7), which is unique for any fee structure.

Large population approximation.

The remainder of this section discusses an approximation of the entry equilibrium that is

adopted for empirical tractability. A second reason is that the approximation relaxes the

requirement that players know population sizes NB and NS , which indeed are likely to

be unobserved by potential bidders and sellers.35

Assumption 5. The population of potential bidders is large relative to the number of

bidders on the platform: NB →∞ and p∗ → 0.36

Under this assumption, the number of bidders per listing in (3.4) is approximately

Poisson distributed, and approximation error relative to the Binomial distribution is small

35Relatedly, given that the population of potential bidders is likely to be large relative to the actual
number of bidders, the Poisson approximation of the binomial distribution is a natural one, also adopted
previously in similar settings by e.g. Engelbrecht-Wiggans (2001), Bajari and Hortaçsu (2003) and Jehiel
and Lamy (2015).

36To avoid any misinterpretation (with p∗ endogenous), the population is assumed to be large and the
entry probability is assumed to be small and it is not a statement about letting the population grow large
or the entry probability go to 0.
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(vanishing to 0 as NB tends to infinity).37

Lemma 5. With large NB, small p∗, and T listings the number of bidders per listing has

a probability mass function approximated by:

fN (k;λ) =
exp(−λ)λk

k!
, λ =

NBp∗

T
, ∀k ∈ Z+ (3.8)

The equilibrium Poisson mean number of bidders per listing is endogenous to the fee

structure and depends on seller selection: λ∗(f, v∗0(f)). It is implicitly defined as solving

potential bidders’ zero profit entry condition in this slightly modified setting. Appendix

D and G show this formally; here I report only the resulting equilibrium.

Corollary 2. The entry equilibrium of the auction platform game subject to the large

population approximation is characterized by the pair of: (v∗0(f), λ∗(f, v∗0(f))) that solves

the entry problems of potential bidders and sellers, which is unique for any fee structure.

3.4 Nonparametric identification

In this section, I investigate whether model primitives are nonparametrically identified

from auction observables and the set of maintained assumptions in Section 3.3.1. Model

primitives are: the conditional valuation distributions FV0|Z and FV |Z, and opportunity

costs eoS and eoB. Endogenous observables are: the number of actual bidders (A), the

second-highest bid (B), and the reserve price (R). Exogenous observables are denoted by

X and include: fee structure f , auction characteristics Z, and population sizes NB and

NS .

I adopt terminology dating back to Hurwicz (1950) and Koopmans and Reiersol (1950)

(see also Chesher (2007) and Berry and Haile (2018)). The idiosyncratic-good auction

platform model M identifies structure [FV0|Z, FV |Z, e
o
S , e

o
B] ≡ S0 ∈ M (admitted by the

model) if and only if: ∀S ∈ M, S 6= S0, F
S0

A,B,R|X 6= FSA,B,R|X , where FSA,B,R|X indicates

the distribution of outcomes (A,B,R) given other observables X that is generated by

structure S.

3.4.1 The distribution of bidder valuations

Athey and Haile (2002, Theorem 1) prove identification of FV |Z in an English auction

model that places identical restrictions on this distribution up to the presence of binding

37In my data, it cannot be rejected at < 1 percent level that the number of bidders per listing is generated
by a Poisson distribution (see figure 3.4).
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reserve prices. Their proof relies on the relationship between the distribution of the second-

highest draw (valuation) in a sample of known size (number of bidders) from its parent

distribution and that parent distribution (see also e.g., Arnold et al. (1992)):

FV(n−1:n)
(v) = n(n− 1)

∫ v

v
FV (t)n−2(1− FV (t))fV (t)dt ≡ φ(FV (v);n) (3.9)

When n is known, given that φ(FV (v);n) is strictly increasing in FV (v), FV is identified

whenever FV(n−1:n)
is. In particular, FV (v) is identified point-wise ∀v ∈ [v, v̄] by inverting

φ(;n):

FV (v) = φ−1(FV(n−1:n)
(v);n) (3.10)

This argument also applies conditional on observed Z, so identification of FV |Z follows.

What remains to be shown is identification of FV(n−1:n)
, which is slightly different from

Athey and Haile (2002) due to the presence of binding reserve prices. In auctions without

a reserve price, an event that is known, order statistic V(n−1:n) equals the transaction

price and n is observed. Hence, replacing FV(n−1:n)
with the empirical distribution FB

from auctions without a reserve price in (3.10) completes the proof.

3.4.2 The distribution of seller valuations

Given that FV |Z is identified, in all auctions with a positive reserve price the reserve price

identifies the seller’s valuation in that listing. In particular, re-arranging the equilibrium

reserve price strategy in Lemma 2:

v0 = (1− cS)

(
r −

1− FV |Z(r(1 + cB))

(1 + cB)fV |Z(r(1 + cB))

)
≡ r, (3.11)

where r denotes the observed scalar-valued right-hand side. Its distribution function, FR,

trivially identifies the distribution of valuations among sellers who enter the platform,

point-wise ∀v ∈ [v0, v
∗
0(f)]:38

FR(v) =
FV0|Z(v)

FV0|Z(v∗0(f))
(3.12)

Dividing the number of listings, T , by the population of potential sellers, NS , delivers the

seller entry probability in the denominator of (3.12). The distribution of valuations in the

38v∗0(f) is the equilibrium seller entry threshold defined in (3.7). Previously, also Elyakime et al. (1994)
identify seller cost using a first order optimality condition on the secret reserve price in first price auctions
(in which case, the secret reserve price is equal to the seller’s valuation).
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population of potential sellers is identified pointwise ∀v ∈ [v0, v
∗
0(f)] as:

FV0|Z(v) = FR(v)
T

NS
(3.13)

Without identifying variation in v∗0(f) and unless v∗0(f) = v̄0, the population distribution

FV0|Z(v) is not identified on the part of its support exceeding v∗0(f). It is worthwhile to

point out that nonparametric identification of the right-truncated distribution of potential

seller valuations in (3.12) is sufficient for any counterfactual that reduces v∗0(f), i.e. any

scenario that reduces expected seller surplus (Πs(f, v0; p∗(f, v̄0), v̄0) defined in (3.6)). In

any such scenario, only a subset of sellers currently trading on the platform will find it

optimal to enter. As such, the distribution of valuations among sellers currently trading

on the platform would be the relevant latent distribution necessary to characterize the

counterfactual entry equilibrium and distributions of endogenous outcomes.

3.4.3 Opportunity cost

Opportunity cost are identified from the two zero profit conditions. In auctions with a

zero reserve price the number of bidders is not truncated; observables from those auctions

render the equilibrium distribution fN (; p∗(f, v∗0), v∗0(f)) identified. Other components of

expected bidder surplus Πb(f, v
∗
0(f); p∗(f, v∗0(f))) (defined in (3.3), here referring to its

equilibrium value) are: the distribution of bidder valuations (used in the definition of

πb(n+ 1, f, v0)) and the right-truncated distribution of seller valuations (to take expecta-

tions of πb(n+ 1, f, v0) over realizations of V0), which are both identified, and observed f .

Πb(f, v
∗
0(f); p∗(f, v∗0(f))) is strictly decreasing in the last remaining unobservable, oppor-

tunity cost coB. Hence coB is identified as the value that solves the zero profit bidder entry

condition in (3.5), setting Πb(f, v
∗
0(f); p∗(f, v∗0(f)) = 0.

Similarly, the surplus for a marginal seller must by equilibrium play and the zero profit

condition in (3.7) correspond to opportunity cost coS . Surplus for the marginal seller, in

equilibrium, Πs(f, v
∗
0; p∗(f, v∗0(f)), v∗0(f)) is defined in (3.6). Besides coS , it depends on: the

identified distribution of bidder valuations (used in the definition of πs(n, f, v0)), observed

fees f , the identified fN (; p∗(f, v∗0), v∗0(f)), and the value of v∗0(f). The latter is observed

as the maximum implied seller valuation in (3.11). This is a valid basis for identification of

v∗0(f) since identification analysis concerns a hypothetical environment with infinite data.39

As Πs(f, v
∗
0; p∗(f, v∗0(f)), v∗0(f)) is strictly decreasing in the seller opportunity cost, which

is the last remaining unknown, coS is identified as the value that solves the marginal seller’s

39By contrast, the finite-sample sample maximum of a noisy estimator may be far removed from the
true entry threshold, as discussed in more detail in the estimation section.
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zero profit entry condition in (3.12), setting Πs(f, v
∗
0; p∗(f, v∗0(f)), v∗0(f)) = 0.

Corollary 3. Given exogenous observables X and endogenous observables (A,B,R), the

idiosyncratic-good auction platform modelM identifies [FV |Z, e
o
S , e

o
B] and identifies FV0|Z

right-truncated at v∗0(f).

These positive identification results are not altered when (NB,NS) are unobserved and

the large population assumption (Assumption 5) is added to the model. This is because:

fN (; p∗(f, v∗0), v∗0(f)) is directly identified from observables in auctions without a reserve

price, the expectation over values of N in (3.3) is then over an infinite support, and the

results don’t rely on population sizes otherwise.

3.5 Estimation method

I estimate a parametric specification of the model, allowing me on the seller side to extrap-

olate beyond the support on which FV0|Z is identified. Parameters from the distributions

of idiosyncratic bidder and seller values are estimated separately; I refer to these as bid-

der parameters (θb) and seller parameters (θs). Even when assuming that FV |Z(; θs) and

FV |Z(; θb) are known up to finite-dimensional parameters, the fact that the entry equilib-

rium depends on those parameters complicates estimation. The equilibrium v∗0(f, θs, θb) is

the solution to a fixed point problem that itself depends on a threshold-crossing problem

on the bidder side, λ∗(f, v∗0(f ; θs, θb), θb). This equilibrium is computationally costly to

compute for each set of candidate parameters, making full maximum likelihood estimation

of all parameters infeasible. I adopt a multi-step estimation method that is based on:

1) controlling for auction heterogeneity Z (using the homogenization step in Haile et al.

(2003), also used for ascending auctions in e.g., Bajari and Hortaçsu (2003) and Freyberger

and Larsen (2017))

2) estimating θb by maximum likelihood (as in e.g. Donald and Paarsch (1996) and

Paarsch (1997)), using homogenized bids

3) estimating θs by maximum concentrated likelihood (mentioned in Donald and

Paarsch (1993, Footnote 4) to overcome a support problem in first price auctions), us-

ing homogenized reserve prices

Small sample estimation error from steps 1 and 2 affect the estimation of θs, especially

because it involves the sample maximum of estimated seller values in equation 3.11. I

therefore add the following steps:

4) solving for the entry equilibrium given estimated parameters

5) re-estimating seller parameters at the updated entry equilibrium
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These last two steps can be iterated on until convergence, but for any number of itera-

tions this method delivers a consistent estimate of θs (shown in Aguirregabiria and Mira

(2002)).40 Based on Monte Carlo simulations, the estimation includes only one iteration

on steps 4-5 (see Appendix E for Monte Carlo results and Appendix F for details about

the necessary numerical approximation of the entry equilibrium). The rest of this section

provides estimation details. Section 3.5.4 addresses the choice for sellers to set no reserve

price and estimates entry of additional bidders in these listings.

3.5.1 Auction heterogeneity: homogenizing bids and reserve prices

Considering that valuations for wines auctioned at the BW platform consist of both a

common value element (due to the importance of provenance, ullage, the expected quality

of wines from different vintages or regions) and a private “taste”, and that valuations

are plausibly non-negative, bidder- and potential seller valuations are taken to satisfy the

following log-linear single-index structure:

ln(V ) = g(Z) + U (3.14)

ln(V0) = g(Z) + U0,

with ln the natural logarithm and (U,U0,Z) mutually independent. The common g(Z)

term is interpreted as “quality”. For example, it is commonly accepted that the 1961

Bordeaux vintage is better than most other vintages as a result of favourable weather

conditions and that low fill levels relative to the age of the wine are bad.41 By additivity

40To see why I adopt this algorithm, notice that the seller entry problem resembles a discrete choice
programming problem and that the three referenced estimators based on maximum likelihood, maximum
concentrated likelihood and the iterative method correspond to three solutions for solving parameters
involving fixed point characterizations in the estimation of games. Respectively, those methods are based
on the nested fixed point algorithm by Rust (1987), two-step methods (e.g. Pesendorfer and Schmidt-
Dengler (2003), Bajari et al. (2007, 2010)) and the nested pseudo likelihood estimator of Aguirregabiria
and Mira (2002, 2007). A key difference is that in my case the auction structure allows for the estimation of
seller parameters from a first order condition instead of from the conditional choice (entry) probability. A
second difference is that by Proposition 1, potential sellers (who know θs) do not need to form beliefs about
the entry threshold competing sellers adopt as the entry game reduces to a single agent discrete choice
problem. Hence iterating on steps (4) and (5) is considered only to potentially improve precision stemming
from the fact that the true entry threshold is unknown to the econometrician, so the only “belief” that is
being updated during iteration is his (hers). Due to the unique entry equilibrium that is iterated on, so
the concerns expressed in Pesendorfer and Schmidt-Dengler (2010), Kasahara and Shimotsu (2012) and
Egesdal et al. (2015) do not apply.

41It would also be feasible to adopt an alternative specification that estimates a separate g0(Z) for sellers.
In that case, a sample of u0t is obtained as the residual plus intercept from a regression of the implied
seller valuation given ˆg(Z) and θ̂b on Z
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of the idiosyncratic taste component, for all bidders i: Vi = g(Z) + Ui so that also:

V(n−1:n) = g(Z) + U(n−1:n) (3.15)

Quality is then estimated by regressing the transaction price on auction characteristics,

using only data from auctions without a reserve price and with more than one bidder

in which the transaction price equals the second-highest valuation.42 Residuals from this

regression (plus the intercept) are the homogenized second-highest bids used for estimation

of θb in (3.16). On the seller side, the residualized implied seller tastes are used for the

estimation of θs in (3.20).

3.5.2 Bidder valuations

Both U and U0 in (3.14) are assumed to be normally distributed.43 Following the identi-

fication argument, the mean and variance of U , (µb, kb ∈ θb), are estimated by maximum

likelihood estimation in auctions with a zero reserve price. Let T , Tr0 and Tr>0 denote

the set of listings, listings with a zero reserve price, and listings with a positive reserve.

Let h(bt|nt, zt, f ; θb) denote the density of transaction prices given the number of bidders

nt, characteristics zt and fees f . For all auctions with a zero reserve price it is sim-

ply the probability that the homogenized transaction price / second-highest bid bt is the

second-highest among nt draws from FV |Z. Hence ∀t ∈ Tr0:

h(bt|nt, zt, f ; θb) = nt(nt − 1)FV |Z(bt; θb)
nt−2[1− FV |Z(bt; θb)]fV |Z(bt; θb) (3.16)

Note the tight mapping between the identification result and the estimating equation. The

log likelihood of bidder parameters given data is specified as:

L(θb; {nt, zt, bt, rt}t∈Tr0 , f) =
∑
t∈Tr0

ln((h(bt|nt, zt, f ; θb))) (3.17)

θ̂b = arg maxL(θb; {nt, zt, bt, rt}t∈Tr0 , f)

42The term refers to the homogenization step in Haile et al. (2003). This first stage regression is
standard in the analysis of ascending auctions and used in e.g., Bajari and Hortaçsu (2003) and Freyberger
and Larsen (2017).

43The lognormal distribution is commonly used to analyze bidding data in the empirical auction literature
(adopted in a variety of settings, e.g. Paarsch (1992), Laffont et al. (1995), Haile (2001), Hong and Shum
(2002)). Another common specification, the loglogistic distribution, is also considered but its heavier tails
provide a slightly worse fit to nonparametric bidder values (details below).

52



Bidder parameters are thus estimated using data from auctions with no reserve price. I use

observations from positive reserve price auctions to obtain a maximum likelihood estimate

of the (unobserved) mean number of bidders in those auctions. In particular, I estimate

that mean from variation in bids and number of observed bidders in positive reserve price

auctions together with estimated bidder parameters from equation (3.17) and the Poisson

structure. Details are provided in Section 3.5.4.

3.5.3 Seller valuations

Given estimated θ̂b and ˆg(Z), a sample of implied sellers’ valuations as in (3.11) is obtained,

∀t ∈ Tr>0:44

v̂0,t = (1− cS)

rt − 1− FV |Z(ln(r̃t)− ˆg(zt); θ̂b)

(1 + cB)fV |Z(ln(r̃t)− ˆg(zt); θ̂b)︸ ︷︷ ︸
mark-up

 , and hence: (3.18)

û0,t = ln

(
(1− cS)

(
rt −

1− FV |Z(ln(r̃t)− ˆg(zt); θ̂b)

(1 + cB)fV |Z(ln(r̃t)− ˆg(zt); θ̂b)

))
− ˆg(zt), (3.19)

with r̃t = rt(1 + cB) denoting the buyer premium-adjusted reserve price and û0,t the ho-

mogenized idiosyncratic part of the implied seller value in auction t. The sample maximum

of implied residual seller valuations, υ̂T = max({û0,t}t∈Tr>0), is a consistent estimator of

the seller entry threshold. Intuitively, sellers with higher residual value draws than v∗0(f)

will never list so υ̂T−v∗0(f) is always negative (at population values of θb and g(Z)) and the

more sellers that do list the larger the probability that the marginal seller has a valuation

equal to the threshold.45 The same holds when observed iterations of the game tend to

infinity but the number of listings in each game stays constant.

Let h(û0,t|zt, f, v∗0(f, θb, θs), θ̂b; θs) denote the density of û0,t given bidder parameters

and given the true seller equilibrium entry threshold, which follows from the relevant

identification equation (3.12):

h(û0,t|zt, v∗0(f, θs, θb), f ; θs) =
fV0|Z(û0,t; θs)

FV0|Z(v∗0(f, θs, θb); θs)
I{û0,t ≤ v∗0(f, θs, θb)} (3.20)

A complication is that the support of the implied valuations (and reserve prices) observed

44P [V ≤ r|Z = z] = P [exp(g(z) + U) ≤ r] = P [U ≤ ln(r)− g(z)] = FV |Z(ln(r)− g(z))
45A more precise statement given that valuation distributions are continuous is that the probability that

the marginal seller has a valuation within a fixed small interval around the threshold increases.
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in the data depends on θs through its effect on v∗0(f, θs, θb), so that standard regularity con-

ditions demonstrating consistency and asymptotic normality of the maximum likelihood

estimate of θs don’t apply.46

To address the support problem, I estimate seller parameters by maximizing a concen-

trated likelihood that includes the consistent estimate υ̂T in place of v∗0(f, θs, θb):
47

L(θs; {û0,t, zt}t∈Tr>0 , f, υ̂T ) =
∑

t∈Tr>0

ln(h(rt|zt, υ̂T , f ; θs)) (3.21)

θ̂s
0

= arg maxL(θs; {û0,t, zt}t∈Tr>0 , f, υ̂T )

The first order condition of the concentrated likelihood with respect to (µs, ks ∈ θs) does

not depend on υT . However, the fact that û0,t depends on estimated θ̂b and ˆg(Z) makes

it likely that in finite samples υ̂T is biased. In particular, because it is the maximum

of a noisily estimated sample of homogenized idiosyncratic seller valuations it likely an

overestimate of the true v∗0(f). Relatedly, it introduces the possibility that the largest

values of û0,t incorporate the highest bias. Monte Carlo simulations show that a noisy first

stage especially affects the shape parameter kb, and in the expected direction: the initial

k̂s overestimates the truth as the sample of implied seller values appears more disperse.

Correspondingly, the initial estimate of the seller entry threshold is also too high. Updating

this threshold by solving the entry game once and then re-estimating seller parameters

from a sample that excludes observations exceeding the threshold addresses that issue.48

In particular, it involves numerical approximation of the entry equilibrium given estimated

(θ̂b, θ̂s
0
) as detailed in Appendix F, resulting in equilibrium entry threshold v∗0(f, θ̂s

0
, θ̂b).

Then, seller parameters are estimated by maximizing:

L(θs; {û0,t, zt}t∈Tr>0 , f, v
∗
0(f, θ̂s

0
, θ̂b)) (3.22)

46This has been pointed out by Donald and Paarsch (1993) in the context of first-price auctions and ad-
dressed by Jofre-bonet and Pesendorfer (2003) for dynamic first price auctions with a Weibull specification
of bidder valuations.

47This has been suggested e.g. in Donald and Paarsch (1993, Footnote 4) in the context of a support
problem in first-price auctions.

48This describes the Nested Pseudo Likelihood estimator in Aguirregabiria and Mira (2002, 2007) used
in discrete choice games. Roberts and Sweeting (2010) are the first to apply this algorithm to the auction
literature to study auctions with selective bidder entry. Studies by Pesendorfer and Schmidt-Dengler
(2010), Kasahara and Shimotsu (2012) and Egesdal et al. (2015) provide conditions under which NPL does
(not) converge to the true equilibrium. A best-response stable equilibrium is a sufficient condition for the
NPL algorithm to converge to it and this is certainly guaranteed (Proposition 1) by the game reducing to
a single agent discrete choice problem with unique equilibrium. Aguirregabiria and Mira (2002) find that
in single-agent games asymptotic efficiency is independent of the number of iterations.
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This describes steps 4 and 5 in the outline at the beginning of this section. Based on results

from Monte Carlo simulations, I use only one update (see Appendix E). The 0 superscript

in θ̂s
0

in (3.21) indicates that this is the initial estimate of seller parameters before solving

the game and updating parameter estimates; the final estimated seller parameters are

denoted by θ̂s.

3.5.4 Incorporating zero reserve prices

I now address the fact that many sellers choose to set no reserve price, motivated by the

additional reserve price fee cR and (anticipated) additional entry of bidders in auctions

without a reserve price.49 The benefit of setting a reserve price is increasing in sellers’

valuation so the no-reserve price choice can be described by a threshold-crossing problem.

On the seller side, let pr0 denote the observed share of sellers that sets no reserve price

and v∗0,r=0 the valuation of the seller that is indifferent between setting no reserve price and

the optimal positive reserve price. This value depends on the fee structure (including but

not limited to cR), the equilibrium differential in bidder participation in the two types of

auctions, and (θb, θs). On the bidder side, let λ∗r>0 (λ∗r=0) denote the equilibrium Poisson

mean number of bidders in auctions with a positive reserve price (no reserve price). It is

informed by v∗0,r=0 and (θb, θs) through their impact on the expected distribution of reserve

prices in auctions with positive reserves. Different bidder entry into these two types of

listings is referred to as the bidder participation differential, denoted by β̂b = λ̂∗r=0− λ̂∗r>0.

Bidder participation differential

Listings with no reserve price are structurally more attractive to bidders than those with

a reserve price, increasing bidder entry. Crucially, fN in (3.8) is relaxed to the following

conditional Poisson distribution:

fN |R(k;λ) =
exp(−(λ∗r>0 + βbI{R = 0}))(λ∗r>0 − βbI{R = 0})k

k!
, ∀k ∈ Z+ (3.23)

I{R = 0} is the indicator function for the event of a zero reserve price, so that λ∗r=0 =

λ∗r>0 + βbI{R = 0}. The mean number of bidders in no reserve auctions is a consistent

estimate of λ∗r=0:

λ̂∗r=0 =
1

|Tr=0|
∑
t∈Tr=0

nt (3.24)

49Note that in theory, if sellers have non-negative valuations, it is always better to set a positive reserve
price (see e.g. Krishna (2009) or Riley and Samuelson (1981) or equation 3.2) unless the number of bidders
is a function of it (Mcafee and Mcmillan (1987), Bulow and Klemperer (1996), Albrecht et al. (2012)).
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A consistent estimate of λ∗r>0 equals the value that maximizes the likelihood of transaction

prices, bt, and number of actual bidders, at, in positive reserve auctions given estimated

bidder valuation parameters. In particular, the joint density of bt, at if the number of

potential bidders nt would be known, in auctions with a positive reserve price:

h(bt, at|nt, rt > 0, zt, f, θ̂b) = {FV |Z(r̃t; θ̂b)
nt}I{at = 0} (3.25)

{ntFV |Z(r̃t; θ̂b)
nt−1[1− FV |Z(r̃tθ̂b)]}I{at = 1}

{
(

nt
nt − at

)
FV |Z(r̃; θ̂b)

nt−at [1− FV |Z(r̃; θ̂b)]
at

at(at − 1)FV |Z(bt; θ̂b)
at−2[1− FV |Z(bt; θ̂b)]fV |Z(bt; θ̂b)}I{at ≥ 2}

Note that h(bt, at|nt, rt > 0, zt, cB, θ̂b) = 0 when nt = 0. The first line covers the prob-

ability that all nt bidders draw a valuation below the reserve price, the second line the

probability that one out of nt draw a valuation exceeding r̃ while the others don’t (in

which case bt = rt with certainty), and the final two lines capture the probability that

at out of nt draw a valuation exceeding the reserve and that the second-highest out of

them draws a valuation equal to bt. Without observing nt, a feasible specification takes

the expectation over realizations of random variable N ∼ Pois(λ∗r>0). This is the basis of

the likelihood function that λ̂∗r>0 maximizes:

g(bt, at|rt > 0, zt, f, θ̂b;λ
∗
r>0) =

∞∑
nt=at

h(bt, at|k, rt > 0, zt, f, θ̂b)fN |N≥A(k;λ∗r>0) (3.26)

L(λ∗r>0; {bt, at, rtzt}t∈Tr>0 , f) =
∑

t∈Tr>0

ln(g(bt, at|rt > 0, zt, f, θ̂b;λ
∗
r>0)) (3.27)

λ̂∗r>0 = arg maxL(λ∗r>0; {bt, at, rt, zt}t∈Tr>0 , f)

No reserve price share

The share of sellers that finds it optimal to set no reserve price is observed in the data as

pr0. To endogenize this choice, I compute the share of sellers that should optimally set

no reserve price given the maximum likelihood estimates of the bidder entry differential

and parameter estimates, denoted by p∗r0. While this share adjusts in counterfactuals, any

difference between pr0 and p∗r0 for reasons outside the model is held fixed.

To calculate p∗r0 note that it is more beneficial for sellers with higher valuations to set a

reserve price. Let Πs(f, v0, r = 0, λ̂∗r>0+β̂b; θ̂b) describe the parameterized expected surplus

for a seller with valuation v0 when he sets a zero reserve price and Πs(f, v0, r > 0, λ̂∗r>0; θ̂b)

when he sets the optimal positive reserve price. The “screening value” v∗0,r=0 describes the
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seller who is indifferent between setting a positive reserve and a zero reserve price. This

is estimated by the value v0 that solves:50

Πs(f, v0, r = 0, λ̂∗r>0 + β̂; θ̂b)−Πs(f, v0, λ̂
∗
r>0; θ̂b) + cR = 0 (3.28)

Details on computation of (entry) equilibrium values are provided in Appendix F.

3.6 Estimation results

3.6.1 Impact of observed wine characteristics

The homogenization (step 1) is done separately for auctions with transaction prices of

at most 200 pounds, referred to as the “main sample” as they contain 80.93 percent of

observations, and the remaining auctions that is referred to as the “high-value” sample.51

Estimation is done per bottle-equivalent which delivers a better fit than the lot level.

Results from this step are presented in Tables 3.9 and 3.10 in the Appendix. The estimated

(sign of) coefficients for various key variables are as expected. Among other findings,

results show that prices are higher for bottles sold in a case of 6 or 12, but conditional

on this case effect the price is lower the more bottles are included in the lot. For bottles

stored in a specialized warehouse (with optimal temperature and humidity control) and

for wines in special format bottles (e.g. magnums) prices are higher. This corresponds

to the idea that these wines are expected to be of higher quality.52 The omitted ullage

category in the Tables is “Into Neck”, the best fill level, so logically all other levels deliver

lower prices (some coefficients are insignificant). The tables furthermore report estimated

relative values for a host of wine regions, grapes, and shipping options. These observables

explain a large share of total price variation, even without controlling for the number of

bidders. The adjusted R-squared is 0.530 for the main sample and 0.855 for the smaller

high-value sample.

50Previous notation has abstracted from the screening value below which sellers find it optimal to set
no reserve price, v∗0,r=0. Observed implied seller values are only those ∈ [v∗0,r=0, v

∗
0 ]. Estimation of θs

following from equation 3.21 maximizes the concentrated likelihood based on:
fV0|Z(û0,t;θs)−pr0

υT−pr0
. The

iteration algorithm updates υT by solving for the game keeping pr0 at the observed level (while updating
the screening value according to updated θ̂s).

51Seller commissions are tiered on BW (Table 3.1): for realized transaction prices exceeding 200 pounds,
sellers pay one percentage point less in seller commission on the excess than for goods selling below 200
pounds. The benefit of this approach is that it generates a relevant dimension of product variety along
which the welfare impacts of fee changes can be assessed, even after homogenizing bids and values.

52While larger bottles may also be attractive for their fun factor, their smaller surface area conditional
on wine content is also associated with a lower oxidation rate.
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Table 3.5: Estimation results: idiosyncratic valuations and entry

Parameters of FV |Z, FV0|Z Entry equilibrium

Main High-value Main High-value

Bidders (θb)
µb

3.566 5.830

Bidders per listing
λ∗r>0

4.277 4.599
[0.031] [0.038] [0.009] [0.032]

kb
0.908 0.553

λ∗r=0
5.215 7.258

[0.002] [0.003] [0.004] [0.011]

Sellers (θs)
µs

3.702 6.211
Seller entry probability FV0|Z(v∗0)

0.859 0.816
[0.053] [0.054] [0.003] [0.006]

ks
1.048 0.320

Opportunity cost eoB(= eoS)
6.725 20.574

[0.019] [0.018] [0.154] [0.844]

Standard errors are reported in square brackets and are obtained with 250 bootstrap repetitions.

3.6.2 Estimates of idiosyncratic valuations

Estimated parameters from the distributions of idiosyncratic (potential) bidder and seller

valuations are presented in Table 3.5. Standard errors are obtained from 250 bootstrap

samples (see Horowitz (2001)) and include variability from the first-stage regressions.53

While the conditional valuation distributions for these two populations are allowed to be

different, parameter estimates reveal that the two user groups are very similar in that

dimension. In fact, the bootstrapped 95% confidence intervals for the mean and standard

deviation of the respective distributions overlap, both in the main and high-value sam-

ples. This finding is intuitive given the consumer-to-consumer nature of the wine auction

platform, also supported with the statistic that only about 30 percent of sellers has feed-

back from previous transactions. Of course, selective seller entry drives a wedge between

their valuations and those of bidders, delivering (additional) gains from trading on the

platform. In high-value samples, even conditional on observed characteristics, estimated

taste distributions have a higher mean but lower dispersion.

Fit and validation.

While a log-logistic specification is a common choice to parameterize value distributions

in the auction literature, suitability of this distribution has yet to be evaluated. I compare

estimation results with those obtained from a different distribution. The Log-logistic

distribution has a similar shape but heavier tails, which can deliver significantly different

results in auction models where bidding and reserve prices depend on these tails. Table 3.6

compares model fit of estimation results obtained with both parameterizations in the main

53In a subset of bootstrap samples the non-linear solver finds no (or an extreme) optimizer and those
cases are excluded. In my experience such cases could partly be avoided by tailoring starting values.
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sample and shows that the log-logistic has a slightly better fit - especially for predicted

reserve prices.

For the distribution of idiosyncratic valuations, I use the mean squared deviation be-

tween the observed second-highest bid and its predicted value (including the predicted

quality level ˆg(Z) from the homogenization step) as a measure of model fit. Table 3.6

provides this statistic separately for auctions with 2-10 bidders and in expectation over

all number of bidders exceeding 1. Both are reported in auctions without reserve prices to

focus only on the fit of the distribution of idiosyncratic bidder valuations. Results show

that estimated parameters replicate the second-highest bid well, even when slicing the

data in bins with 2-10 bidders. The left-hand panel in figure 3.3 supports this statement

visually; in that case it compares the homogenized estimated value distribution with the

nonparametric estimates for 2-8 bidders. Nonparametric estimation follows directly from

the identification argument of FV |Z in (3.9) by applying φ−1(.;n) to the empirical prob-

ability that the second-highest bid in auctions with n bidders is less than v (given that

cB = 0 on the BW platform).

Estimation of seller parameters is evaluated by comparing the distribution of predicted

values (including estimated quality) with the distribution of observed reserve prices. I

report the test statistic from a two-sample Kolmogorov-Smirnov test (see equation (3.29)

for details) with null hypothesis that observed reserve prices and predicted reserve prices

are drawn from the same population distribution. This statistic suggests that the log-

normal distribution has a better fit than the log-logistic. With a p-value of 0.101, I cannot

reject the null at the five or 10 percent level. The right-hand panel in Figure 3.3 plots

observed and predicted reserve prices. Values are non-homogenized so the predictions

include an expectation over draws from the empirical distribution of ˆg(Z). While the

overall fit is good, the model seems to overestimate the share of reserve prices in the

£10− 20,− bracket.

Relatedly, the implied seller value (given θ̂b, ˆg(Z)) according to (3.11) is for 3.17 percent

of sellers estimated to be negative. Assuming that their valuations are in fact non-negative,

this could be driven by a portion of sellers setting reserve prices below the optimal levels

or by small-sample estimation bias stemming from first-stage estimates θ̂b and ˆg(Z) and

potentially approximation error in the reserve price (see Appendix B). Note that the

equilibrium mark-up is highest for sellers with the lowest valuations. It is conceivable

that other sellers with low valuations set sub-optimal reserve prices. Estimation of θs

excludes the 3.17 percent of positive reserve price auctions that violate non-negativity of

(r − estimated mark-up).
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Table 3.6: Model fit and validation statistics

Parameters of FV |Z, FV0|Z (and g(Z)) Entry equilibrium

Second-highest bid Log-logistic Log-normal Probability N = n (when r = 0)
Mean squared deviation with predicted Absolute difference with Poisson
- 2 bidders 0.584 0.578 -n=0 0.001
- 3 bidders 0.397 0.397 -n=1 0.011
- 4 bidders 0.356 0.356 -n=2 0.013
- 5 bidders 0.324 0.324 -n=3 0.002
- 6 bidders 0.250 0.250 -n=4 0.022
- 7 bidders 0.210 0.207 -n=5 0.008
- 8 bidders 0.177 0.170 -n=6 0.010
- 9 bidders 0.218 0.208 -n=7 0.002
- 10 bidders 0.214 0.202 -n=8 0.001
- Expectation over N 0.431 0.431 -n=9 0.002

-n=10 0.001
Reserve price
Kolmogorov-Smirnov* statistic: 0.065 0.101

Results for auctions in the main sample. * The KS statistic refers to the Kolmogorov-Smirnov test statistic, as
explained in relation to equation (3.29), with a higher KS statistic indicating a better fit. Both predicted reserve

prices and predicted highest bids include draws from the estimated quality in the data, ˆg(Z), and estimated valuation

parameters, (θ̂b, θ̂s). The mean squared deviation statistic is the difference between predicted second-highest bid
and its observed value in auctions without a reserve price. The probability that the number of bidders N = n is
also from the sample with no reserves.

(a) Bidder valuations (b) Reserve price

Figure 3.3: Model fit and validation. On the left, a comparison of the estimated idiosyn-
cratic bidder valuation distribution (thick orange dashed line) in auctions with no reserve
price against nonparametric estimates of this distribution in auctions with n = 2, ..., 8 bid-
ders. On the right, a comparison of observed reserve prices and predicted values including
estimated quality ĝ(Z). As quality is estimated in the sample of auctions with no reserve
price, the orange bars include out-of-sample predictions.
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3.6.3 Entry estimates

The estimated Poisson parameters are λ∗r>0 = 4.3 and λ∗r=0 = 5.2, so setting no reserve

price attracts on average one additional bidder into the listing (Table 3.6). It also makes

intuitive sense that this participation differential is larger in the high-value sample; the

probability of being the sole entrant and winning the more expensive bottle for the 1 pound

opening bid contributes more to expected surplus. In high-value auctions λ∗r>0 = 4.6 and

λ∗r=0 = 7.3. The estimated opportunity cost are also significantly different. They are

estimated as the value that makes a potential bidder indifferent between entering and not

entering, following the identification argument for eoB. Estimated values are 6.7 pounds

for the main sample and 20.6 pounds for the high-value sample. This corresponds to

the idea that listing inspection cost are significant at about 5-14 percent of the average

transaction price. On the seller side, also eoS is identified from the zero profit condition

of the marginal seller, but using its empirical counterpart is less attractive as it involves

estimating seller opportunity cost from only one observation. Monte Carlo simulations

(Appendix E) confirm that the value of eoS is a normalisation for the estimation of seller

parameters, and as such I use the estimated value of eoB.

Fit and validation.

The right-hand side panel in Table 3.6 examines the fit of the assumed Poisson distribution

with the estimated λ∗r=0 and the observed Binomial distribution of the number of bidders.

It shows that for all n = 1 − 10 the Poisson fits good. Figure 3.4 support this visually.

More formally, a chi-square goodness of fit test fails to reject at the ten percent level that

N is generated by a Poisson distribution, based on auctions with no reserve price in which

the number of bidders is not censored (p-value 0.106).

It is of particular interest that the data does not reveal any overdispersion relative to

the Poisson distribution. That would point to an entry process in which bidders enter

significantly more numerously into auctions with certain characteristics - conditional on

having no reserve price. Some characteristics may be slightly more popular than others,

but a model with uniform sorting over listings captures the first order effects of entry

behavior in the BW data.54

It turns out to be complicated to explain both the share of sellers that sets a zero reserve

54By contrast, estimating a model of entry in Kindle e-reader auctions on eBay, Bodoh-Creed et al.
(2013) need to incorporate auction observables in their single-index conditional Poisson distribution to
explain the observed pattern of a higher number of bidders in listings with certain characteristics. While
it may be interesting to condition on additional characteristics in my data as well, it is not necessary to
fit the data well.
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Figure 3.4: The number of bidders per listing is approximately Poisson distributed. A
chi-square goodness of fit test fails to reject, at < 1 percent level, that N is generated by
a Poisson distribution. The test uses data from auctions with no reserve price in which
the number of bidders is not censored.

price and additional entry of bidders in no-reserve auctions, assuming these choices are

optimal to maximize both bidder and seller expected surplus. In particular, the observed

pr0 is equal to 0.3740 in the main sample while p∗r0 = 0.6322 calculated to be optimal given

model estimates and the bidder entry differential. In the high-value sample, this bias has

the same sign but a lower magnitude: pr0 = 0.2459 instead of the optimal p∗r0 = 0.4246.

As the first structural model to explain endogenous entry of both bidders and sellers in an

auction setting with interconnected pay-offs, also endogenizing the choice for sellers to set

no reserve price is perhaps a bridge too far. Instead, in my counterfactual simulations p∗r0
and λ∗r>0 adjust optimally subject to keeping β̂s = p∗r0 − pr0 and the bidder participation

differential β̂b = λ̂∗r=0 − λ̂∗r>0 at their estimated levels.55

55One potential explanation for the inconsistency could be that the platform explicitly encourages sellers
not to set a reserve price in order to attract “50-75 percent” more bidders and a “40 percent” higher
transaction price. If these rules of thumb don’t correspond with the actual benefit for sellers to adopt
no reserve price, it may explain part of the inconsistency. I estimate that no-reserve auctions attract
on average about 22 percent (main sample) to 58 percent (high-value sample) more bidders. Overall,
I do consider that enodgenizing sellers’ choice to set no reserve price to be important given the aim to
understand the impact of fees, despite the complexity in capturing this choice perfectly in this two-sided
market setting.
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3.7 Counterfactual policies

This section uses model estimates to address two key indeterminacy’s of two-sided markets

in the context of the wine auction platform. First, how should the platform allocate fees

between different platform users? Second, how do increases in fees affect users on both

sides? The latter is an open question in antitrust policy that is crucial to better understand

the unusual economic relationships in platform markets.56

3.7.1 Harnessing network effects to increase platform profitability

In this counterfactual, I simulate the game for a host of alternative fee structures. At each

fee combination, I compute platform revenue, bidder and seller surplus, and the volume of

sales.57 Many changes in fees result in a trade-off between the volume of sales and platform

fee revenue. Higher listing fees, for example, makes it less attractive for sellers to enter

and as a result fewer listings depresses the volume of sales. Even if higher fee revenues are

beneficial in a static world, if the volume of sales affects future revenues through (say) word

of mouth or brand awareness, a forward-looking platform will include this statistic in their

objective function.58 I therefore estimate both the impact of alternative fee structures on

static fee revenues as well as the volume of sales, and consider the problem of maximizing

current volume-constrained fee revenues. This approach avoids having to impose further

restrictions on the exact platform objective function.

Results show that there are significant network effects in this market that can be

harnessed to improve platform profitability.59 Contour plots in Figure 3.5 support this

visually; with the levels referring to the share of current fee revenues. The top panel

varies buyer and seller commission but holds flat fees at their current levels. For example,

adopting any (cB, cS) pair that intersects on an area of the plot with level 1 (the turquoise-

green colour) would result in the same platform revenue as generated by the current fee

56See e.g., Evans and Schmalensee (2013).
57Results expressed as changes with respect to baseline values and are computed in homogenized value

space.
58This is consistent with a model of network growth with myopic users who can terminate their par-

ticipation at no cost, as provided in Evans and Schmalensee (2010) to explain the emphasis of platforms
such as eBay, Facebook and MySpace on network growth in their early years. The idea that sale volume is
relevant is also consistent with an alternative fee structure that the platform discussed with me in general
terms. I estimate that that fee structure would reduce expected static platform revenue by as much as 22
percent while increasing the sale volume by 6 percent. As such, for this to be a smart policy they would
need to place considerable weight on the volume of sales.

59The presence of network effects is detected in the contour plot from the fact that only changing
the allocation of commissions between buyers and sellers, while keeping their total levels constant, has
significant effects on platform profitability. In particular, this is a requirement for the market to be two-
sided by its standard definition in Rochet and Tirole (2006).
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structure. The bold red line indicates the baseline volume of sales. Any fee combination

to the south west of this line increases the sale volume, and any fee combination to the

north east decreases volume. Note that it is not a coincidence that baseline volume and

revenue (level 1) intersect at the current commission allocation, the point indicated in the

Figure with a red marker.

A key take-away is that the BW platform can increase fee revenues with up to 80

percent without reducing volume by increasing cS and decreasing cB when holding current

entry fees fixed (top panel in Figure 3.5). For example, increasing the seller commission

by 15 percentage points and reducing the buyer premium by the same amount increases

platform revenues by about 30 percent. As the buyer premium is currently zero, this

would require charging a negative buyer premium, e.g. to give winning bidders a 15

percent discount on the transaction price. While negative fees may seem unintuitive, it

fully agrees with the idea that businesses in two-sided markets subsidize the side that

contributes most to profits even to the point of charging that side below marginal cost.60

Commissions, which users are familiar with in wine auction platforms, can feasibly be set

to negative values as they only apply to successful sales.

I also consider the problem with additional (self-imposed) non-negativity constraints

on cB and cS , which is reflected in the top panel of Figure 3.5 by the two grey lines. The

contour plot shows clearly that, when keeping other fees at their current levels, the platform

cannot increase its revenues without reducing volume if it does not want to set a negative

buyer commission. All commission combinations that do increase volume reduce platform

revenue. Furthermore, even a small reduction in seller commission without additional fee

changes is risky as it can lead to significantly lower platform revenue.

Figure 3.6 displays platform revenues for different combinations of seller commission

and listing fee, keeping other fees at their current levels. The non-negativity constraint

on the listing fee is in this case crucial to avoid sellers listing unsellable items to collect

the fee. The current volume constraint is displayed in red. The plot shows that there is

significant scope to increase revenues without reducing volume by increasing the listing

fee. Sellers must be rather inelastic with respect to the listing fee to generate the contours

observed.61

60See e.g., Rochet and Tirole (2003, 2006), Wright (2004), Armstrong (2006), Rysman (2007), Evans
and Schmalensee (2013) Rysman and Wright (2002). I am not aware of any (wine) auction platform that
consistently charges negative prices, although eBay does provide temporary discounts and coupons to its
posted price sales.

61This economic reality does not seem lost on current BW management. One change to the fee structure
they consider making is to increase the listing fee from 1.75 to 4 pounds. They also consider waiving this
fee for sellers that set a zero reserve price. In my assessment of the discussed fee structure I find that
this policy would increase the share of zero reserve price listings by 19 percent. However, I estimate that
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a) Holding listing fee at current level of 1.75 pounds

b) Increasing listing fee to 5 pounds

Figure 3.5: Platform revenue at counterfactual commissions, with volume constraint

Contour plots of counterfactual platform revenue as a share of current revenue, for combinations of cB and cS ,
holding entry fees (eS , eB) at current level (1.75,0) (top) and increasing eS to 5 pounds (bottom). The red line
indicates current volume of sales; fee combinations to the south west of this line increase volume.

Combining the above findings, the bottom panel in 3.5 displays revenue for combina-

tions of commissions while increasing the listing fee to 5 pounds and keeping the bidder

the impact of this significant change in listing composition does by itself not affect platform revenue or
volume by much. An interesting question that I leave for future work is whether and how a platform should
optimally nudge sellers in their pricing decisions. This is related to the theoretical observations that when
v0 > 0, sellers will set too high reserve prices from the platform’s perspective as sellers trade-off expected
sale revenues with the value of keeping the item.
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Figure 3.6: Platform revenue at counterfactual seller fees, with volume constraint

Contour plots of counterfactual platform revenue as a share of current revenue for combinations of eS and cS ,
holding (cB , eB) at current and constrained-optimal level (0,0). The red line indicates the current volume of sales;
fee combinations to the south west of this line increase volume.

entry fee at the current level of 0. It paints a remarkable picture. Even when consider-

ing only positive commissions, platform revenues increase by roughly 20 percent without

affecting volume when keeping commissions at their current levels. Alternatively, they

can increase volume by 7.5 percent without affecting revenues by combining the listing fee

increase with a reduction in seller commission of about three percentage points to 0.07.

3.7.2 Users are better off with alternative fee structures

Figure 3.7 provides contour plots for expected seller and winning bidder surplus as a share

of their current levels. The dark blue and red lines tie these values in with the platform

objective function; the dark blue swirl indicates the current level of platform revenues (any

fee combination to the north east increases it), and the red curve indicates the current

level of sale volume (any fee combination to the south west increases it). Estimates refer

to the case that increases the listing fee to 5 pounds while keeping other fees at baseline

levels. A key take-away from this picture is that for a region of combinations of cB and cS ,

implementing the negative buyer premium policy leaves both sellers and winning bidders

better off. Consider the fee structure highlighted above for example, increasing the seller

commission with 15 percentage points (to 25 percent) and providing winning bidders with

a 15 percent discount. While it is intuitive that this fee structure increases winning bidder

surplus, it also is estimated to increase seller surplus by about 20 percent. Especially the
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beneficial impact on sellers is striking because their fees go up significantly in this scenario.

This result resonates with the idea that bidder participation is very valuable to sellers in

many auction settings, as additional bidders drive up transaction prices.62

3.7.3 Ignoring entry significantly biases welfare estimates

In this counterfactual, I evaluate the impact of isolated changes in seller commission

and buyer premium on user welfare and compare it to results obtained when using a

model without entry. As this issue is relevant for antitrust policy, I use a prominent

commission-fixing case involving auction giants Sotheby’s and Christie’s (SC) to provide

context. After the conspiracy came to light, they settled with buyers and sellers for a

total of 512 million dollars (roughly 729 million dollars in 2018 prices) and five sixths of

this amount went to buyers. Civic case litigation makes clear that damage estimates are

based on direct (alleged) overcharges and not pass through or their economic incidence and

therefore abstracted from any interconnectedness between users or their entry decisions.63

I estimate the welfare impacts of a five percentage point increase in buyer commission,

which is most likely what the SC case settlement is based on, and compare results with

those resulting from a five percentage point increase in seller commission.

The empirical results in Table 3.7 show that the five percent increase in buyer premium

decreases the sale price and probability by about 4 percent, reduces the share of listings

with a zero reserve price, and reduces the number of bidders per listing. Expected winning

bidder surplus decreases by about 7 percent. I also estimate that sellers are significantly

worse off: their expected surplus decreases by 17 percent. A finding that underlines how

important it is to incorporate the interconnectedness of users in platform markets is that

sellers are better off if their seller commission goes up by 5 percentage points than when

the buyer commission increases by the same amount. In fact, this feature of the platform

marketplace would be missed if users’ endogenous entry decisions would be ignored. The

columns labelled “Without entry” in Table 3.7 provide welfare impacts when bidder and

seller participation is kept constant at baseline levels and only their bidding and reserve

pricing strategies respond to the increases in commissions. Results from such a model

suggest that sellers would instead prefer if the five percent commission increase is targeted

62For example, Bulow and Klemperer (1996) show that setting no reserve and attracting one additional
bidder is more profitable than negotiating with fewer participants and using a reservation price. The
impact of entry in the case where bidders enter selectively is theoretically ambiguous, but Roberts and
Sweeting (2010) show that for in USFS timber auctions the value of increasing the pool of (potential)
entrants also outweighs the value of setting a reserve price.

63See In re Auction Houses antitrust litigation (2001) for the full litigation text. Ashenfelter and Graddy
(2005) provide a more detailed description of the case.
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a) Expected seller surplus

b) Expected winning bidder surplus

Figure 3.7: Contour plots of expected seller and winning bidder surplus showing that all
parties could be better off under counterfactual fee structures.

Levels indicate the surplus as a share of current surplus, for combinations of buyer and seller commission when
increasing the listing fee to 5 pounds and keeping the bidder entry fee constant at 0. The red line is the platform
volume constraint: combinations to the south west increase volume. The blue swirl is the platform revenue con-
straint: combinations to the east increase revenue. An example of a fee structure that makes all parties better off
is a negative 10 percent buyer premium and a 20 percent seller commission combined with the 5 pound listing fee.

to buyers.

The estimates also depart from a third model that underlies the argumentation in

previous studies looking at welfare impacts of commissions in auctions in relation to the

SC case. Ashenfelter and Graddy (2005) conclude: though buyers received the bulk of the
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damages, a straightforward application of the economic theory of auctions shows that it is

unlikely that successful buyers as a group were injured. This conclusion relies on the idea

that buyers reduce their bid by the amount of buyer premium and sellers accept any price

so that the economic incidence of any commission or premium fully falls on sellers because

they are the price-inelastic party.64

The simulated commission increases show that in the BW data, increasing the com-

mission to one side of the market by 5 percent decreases expected surplus to that side

more than proportionally. On top of that, the other side is affected as well. Not address-

ing entry in user welfare evaluations significantly underestimates expected loss in surplus.

The 5 percent increase in buyer premium that likely was the basis of the SC settlement

negotiations decreases total user surplus by about 12 percent, so more than double the

premium increase.65

Besides the amount of total damages estimated, also awarding five-sixths of the dam-

ages to winning bidders was plausibly flawed.66 I show that in the BW data, the economic

incidence of commissions falls predominantly on sellers despite endogenous entry and also

when accounting for optimal reserve prices. The loss in user surplus resulting from a 5

percent buyer premium increase is estimated to fall for 71 percent on sellers:

cB +5% cS +5%
Two-sided No entry Two-sided No entry

Seller share of damage 0.71 0.80 0.89 0.89
Winning bidder share of damage 0.29 0.20 0.11 0.11

That the majority of the welfare loss from increasing commissions falls on sellers re-

mains a valid conclusion also when holding bidder and seller participation fixed at baseline

levels. My estimates furthermore reveal that sellers shoulder 71-89 percent of the loss in

user surplus regardless of which commission increases by 5 percentage points.

3.7.4 Larger effects in high-value auctions

Results in the previous section are estimated with the main sample that excludes auctions

exceeding 200 pounds. This section exploits the remaining data to examine whether results

64This argumentation also underlies evaluation of the role of commissions in (wine) auctions by Marks
(2009) and McAfee (1993). I have referred to this as the “one-sided market perspective”.

65Relating this statistic to the numbers in Table 3.7; a 5 percent buyer premium increase reduces total
user surplus by 11.87 percent: 100∗(((1−0.07169)∗7.719+(1−0.17243)∗6.757)−(7.719+6.757))/(7.719+
6.757) = −11.87.

66Ashenfelter and Graddy (2005) and Marks (2009) hypothesized this before based on the one-sided
market perspective with inelastic sellers in which case winning bidders logically avoid a reduction in
surplus by reducing their bid proportionally to any buyer premium increase.

69



Table 3.7: Welfare impacts of commission changes in comparison to benchmark without
endogenous entry

Baseline Increase buyer premium 5% Increase seller commission 5%
Two-sided Without entry Two-sided Without entry

Buyer premium, cB 0 0.05 0.05 0 0
Seller commission, cS 0.10 0.102 0.10 0.15 0.15

Percentage change w.r.t. Baseline:

Platform revenue (x10.000) 2.715 25.774 31.734 30.944 36.064
Volume of sales (x10.000) 20.769 -10.597 -5.613 -3.882 -0.460

Expected surplus sellers (x10.000) 6.757 -17.243 -10.777 -14.665 -13.355
Expected surplus winning bidders (x10.000) 7.719 -7.169 -2.428 -3.943 -1.395
Expected surplus per seller 25.12 -15.782 -10.777 -12.387 -13.355
Expected surplus per winning bidder 28.695 -5.530 -2.428 -1.379 -1.395

Seller entry probability, FV0|Z(v∗0) 0.855 -1.903 0 -2.633 0

Mean number bidders per listing, λ∗r>0 4.759 -5.177 0 -1.853 0
Share listings with no reserve, pr0 0.374 -8.881 0 -2.062 0
Sale probability 0.869 -3.834 -2.228 -1.13 -1.215
Sale price 91.189 -4.175 -2.286 -0.147 1.516

Table 3.8: Opposing fee structures and their differential impact on high-value lots

Combined High-value Regular Combined High-value Regular
Charge seller commission Charge buyer premium

buyer premium, cB 0 0 0 0.1 0.1 0.1
Seller commission, cS 0.1 0.1 0.1 0 0 0

Platform revenue (x10.000) 5.133 2.468 2.665 4.064 1.662 2.402
Volume of sales (x10.000) 44.120 23.317 20.803 33.079 15.153 17.926
Share revenue from high-value 0.481 1 0 0.409 1 0
Share volume from high-value 0.528 1 0 0.458 1 0
Share of listings high-value 0.179 1 0 0.185 1 0
Share of bidders high-value 0.158 1 0 0.122 1 0

Expected surplus sellers (x10.000) 8.542 1.761 6.781 7.51 1.063 6.447
Expected surplus winning bidders (x10.000) 12.267 4.534 7.733 10.336 3.047 7.289
Expected surplus per seller 27.565 29.948 25.182 20.544 17.308 23.78
Expected surplus per winning bidder 11.596 17.56 5.631 11.31 16.983 5.637

Seller entry probability, FV0|Z(v∗0) 0.881 0.996 0.855 0.862 0.863 0.861

Mean number bidders per listing, λ∗r>0 4.559 3.745 4.748 4.023 2.543 4.455
Share listings with no reserve, pr0 0.354 0.243 0.378 0.299 0.142 0.335
Sale probability 0.828 0.646 0.868 0.757 0.45 0.826
Sale price 188.21 633.052 91.072 176.159 584.581 83.657
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are different in auctions that are of higher “quality”.

The first three columns in Table 3.8 report estimated platform revenue, user surplus

and other relevant platform descriptors at (cS = 0.1, cB = 0) and the last three columns

show these statistics for the reverse fee structure (cS = 0, cB = 0.1). The first take-away

from the Table supports the importance of high value listings. When charging cS = 0.1 for

instance, while less than one fifth of listings and bidders is high value, those interactions

generate about half of both platform revenue and volume. Columns 3 and 6 correspond to

auctions with transaction prices below 200 pounds, e.g. those in the main sample central

to the previous experiment. Platform revenue, total seller surplus and total surplus for

winning bidders is all higher when charging sellers rather than buyers, reinforcing earlier

findings to that effect. But while these differences are relatively modest, in high value

auctions all parties are significantly better off when charging a 10 percent commission to

sellers rather than buyers.

The different commission elasticities may be part of the explanation for the observed

variation in fee structures in various wine auction platforms.67 Another suggestion offered

in Table 3.8 is that a platform targeting only high-value users (those offering and bidding

for high-value lots) can generate similar revenues as a platform attracting lower-priced lots

with only one fifth of listings.

3.8 Conclusions

In this paper I examine the welfare impacts of fees charged in auction platforms using a

new dataset of wine auctions web-scraped from an online wine auction platform. Despite

the platform marketplace, empirical patterns suggest an absence of dependencies between

listings. This is inconsistent with theoretical predictions from previous auction platform

models tailored to explain strategic behaviour in auction platforms for more homogeneous

goods but can be explained by costly inspection of the idiosyncratic goods for sale. The

structural auction platform model that also includes endogenous entry of bidders and

sellers and seller/listing selection plausibly captures the main features of other auction

platforms as well, such as those for freelance jobs and second hand cars.

Empirical findings suggest that it would be a mistake for antitrust authorities or the le-

gal system not to consider interconnectedness of bidders and sellers on an auction platform.

67Many wine auction platforms take a comparable portion of transaction prices in total commissions
but allocate commissions very differently to the two user groups. For example, the US-based higher-end
Acker, Merrall & Condit charges 21 percent buyer- and no seller commission, the Chicago Wine Company
has the reverse structure charging nothing to buyers and 28 to sellers and Winebid.com charges both sides
evenly at respectively 15 and 18 percent.
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Increasing fees to one side of the market affects both types of users, and network effects

from entry are such that sellers are better off when the seller commission increases than

when the buyer premium increases by the same amount. Results are placed in the context

of a prominent commission-fixing case involving auction giants Sotheby’s and Christie’s.

I show that relative to the benchmark rule that does not consider the economic incidence

of the alleged overcharge or endogenous entry, total estimated damages are more than

twice as high. Also, while sellers in the civic case received only one sixth of total damages,

the economic incidence of increasing commissions by 5 percentage points falls to 71-89

percent on sellers. More conceptually, these counterfactual fee experiments highlight that

it is feasible to estimate exact welfare impacts of platform fees from publicly available

data, despite strategic interactions rendering these effects ex-ante ambiguous and despite

the auction mechanism causing transaction prices to be endogenous to the fees.

Results also show that the platform can increase revenues from fees without reducing

the volume of sales by (further) subsidizing bidders. Platform profitability can increase

up to 80 percent when introducing a negative buyer premium, e.g. providing winning

bidders a discount on the transaction price, paid for by a higher seller commission. When

implemented right, this policy could even increase expected surplus for sellers and winning

bidders on the platform. Although no auction platform currently charges negative fees, this

recommendation is in line with the practice in other two-sided markets such as payment

cards. I demonstrate that this fee policy could be implemented in a way that also increases

expected surplus for potential bidders and sellers on the platform.

Building on the model and results in this paper, a logical next step is to consider the

platform fee setting problem more explicitly. The resulting structure could be used to

predict the impact of mergers between auction platforms, thereby contributing to an em-

pirical literature studying (price-)impacts of consolidation in two-sided markets (including

e.g. Chandra and Collard-Wexler (2009), Song (2013) and Fan (2013)).

Another direction for further research is to test predictions from this paper using

experimental variation in fees. This would be in line with e.g. Ostrovsky and Schwarz

(2016) who conduct a field experiment to show that revenues from Yahoo! ad auctions

increase significantly when adopting the optimal Myerson (1981) and Riley and Samuelson

(1981) reserve prices.
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Appendices

A Omitted tables and figures

Figure 3.8: Ullage classification and interpretation

Source: Christie’s (2013). Numbers refer to auction house Christie’s interpretation of the fill levels, which are for
Bordeaux-style bottles: 1) Into Neck: level of young wines. Exceptionally good in wines over 10 years old. 2) Bottom
Neck: perfectly good for any age of wine. Outstandingly good for a wine of 20 years in bottle, or longer. 3) Very
Top-Shoulder. 4) Top-Shoulder. Normal for any claret 15 years or older. 5) Upper-Shoulder: slight natural reduction
through the easing of the cork and evaporation through the cork and capsule. Usually no problem. Acceptable for
any wine over 20 years old. Exceptional for pre-1950 wines. 6) Mid-Shoulder: probably some weakening of the cork
and some risk. Not abnormal for wines 30/40 years of age. 7) Mid-Low-Shoulder: some risk. 8) Low-Shoulder:
risky and usually only accepted for sale if wine or label exceptionally rare or interesting. For Burgundy-style bottles
where the slope of the shoulder is impractical to describe such levels, whenever appropriate [due to the age of the
wine] the level is measured in centimetres. The condition and drinkability of Burgundy is less affected by ullage
than Bordeaux. For example, a 5 to 7 cm. ullage in a 30 year old Burgundy can be considered normal or good for
its age.
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Table 3.9: First stage estimation results, main sample

Dep. var: log transaction price per bottle with 2 or more bidders Estimate Std. error p-Value

Intercept 4.042 0.165 0
Case of 6 bottles 0.276 0.096 0.004
Case of 12 bottles 1.473 0.2 0
Stored in warehouse 0.506 0.211 0.016
Special format (not 75cl) 0.229 0.068 0.001
Number bottles in lot -0.215 0.017 0
Fill level: Base of Neck (BN) -0.215 0.068 0.002
Fill level: High Shoulder (HS) -0.394 0.148 0.008
Fill level: Low Shoulder (LS) or worse -0.364 0.19 0.056
Fill level: Missing 0.012 0.055 0.83
Fill level: Mid Shoulder (HS) -0.427 0.159 0.007
Fill level: Top Shoulder (TS) -0.401 0.136 0.003
Fill level: Very Top Shoulder (VTS) -0.139 0.116 0.23
Duty estimate -0.026 0.009 0.004
VAT estimate 0.008 0.006 0.173
Shiping quote 0.007 0.004 0.091
Percentage range provided shipping quotes -0.923 0.094 0
Percentage range provided shipping quotes, squared 0.361 0.048 0
Delivers to UK 0.066 0.044 0.136
Seller accepts returns -0.14 0.151 0.355
Bottles can be collected from seller 0.027 0.044 0.535
Buyer can only collect bottles from seller -0.237 0.11 0.032
Shipping with Royal Mail 0.025 0.05 0.622
Shipping with ParcelForce -0.155 0.046 0.001
Mentions fast shipping 0.444 0.066 0
Insurance for loss or breakage is included in shipping cost 0.098 0.041 0.016
Can pay by bank 0.336 0.089 0
Can pay by Paypall -0.033 0.045 0.461
Can pay by cheque -0.139 0.047 0.003
Can pay in cash -0.088 0.113 0.436
Wine Type: Assorted 0.009 0.068 0.895
Wine Type: White -0.247 0.079 0.002
Wine Type: Sparkling 0.176 0.105 0.094
Wine Type: Fortified -0.161 0.125 0.198
Wine Type: Rose -0.186 0.324 0.566
Region of origin: Tuscany -0.375 0.106 0
Region of origin: Bordeaux -0.199 0.069 0.004
Region of origin: Australia -0.377 0.112 0.001
Region of origin: Burgundy -0.154 0.095 0.106
Region of origin: Rhone -0.061 0.094 0.518
Region of origin: Champagne 0.161 0.124 0.195
Region of origin: Provence -0.43 0.242 0.076
Region of origin: Veneto -0.358 0.172 0.038
Region of origin: Rioja -0.337 0.176 0.056
Region of origin: Alsace -0.191 0.195 0.328
Region of origin: Piedmont/Lombardy -0.397 0.133 0.003
Region of origin: South Australia -0.348 0.113 0.002
Region of origin: Douro -0.349 0.195 0.074
Region of origin: Mendoza -0.438 0.347 0.206
Region of origin: Scotland 0.228 0.26 0.381
Region of origin: Oporto -0.217 0.197 0.272
Region of origin: Assorted 0.098 0.084 0.244
Region of origin: Bekaa Valley 0.103 0.366 0.78
Region of origin: United States -0.103 0.197 0.6
Region of origin: California 0.002 0.159 0.992
Region of origin: Spain -0.418 0.265 0.115
Region of origin: Cognac 0.672 0.301 0.026
Region of origin: Portugal 0.111 0.195 0.571
Region of origin: Loire -0.759 0.268 0.005
Region of origin: Cuba -0.115 0.346 0.74
Region of origin: Italy -0.328 0.145 0.024
Region of origin: Oregon -0.704 0.266 0.008
Region of origin: Ribera del Duero -0.368 0.334 0.271
Region of origin: South Africa -0.586 0.343 0.088
Region of origin: Islay 0.681 0.473 0.15
Region of origin: South West France 0.166 0.481 0.73
Region of origin: Other -0.155 0.105 0.14
... Continued on next page
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Dep. var: log transaction price per bottle with 2 or more bidders Estimate Std. error p-Value

Grape: Sangiovese 0.348 0.107 0.001
Grape: Corvina -0.027 0.238 0.91
Grape: Rhone Blend 0.034 0.123 0.783
Grape: Syrah 0.213 0.151 0.157
Grape: Bordeaux Blend 0.153 0.066 0.019
Grape: Other -0.088 0.099 0.37
Grape: Riesling -0.008 0.198 0.968
Grape: Nebbiolo 0.253 0.145 0.082
Grape: Cabernet Sauvignon 0.163 0.167 0.328
Grape: Chardonnay 0.207 0.117 0.076
Grape: Tempranillo 0.334 0.209 0.111
Grape: Malbec -0.19 0.381 0.619
Grape: Pinot Noir -0.01 0.107 0.926
Grape: Syrah/Shiraz 0.246 0.107 0.022
Grape: Port Blend 0.744 0.243 0.002
Grape: Semillon-Sauvignon Blanc Blend 0.631 0.258 0.015
Grape: Merlot -0.337 0.193 0.08
Grape: Champagne Blend 0.673 0.228 0.003
Grape: Barbera -0.367 0.309 0.234

Observations 2007
Adjusted R2 0.530
F-statistic versus constant model (p-value) 16.8 (8.96e−244)

Excluded from table: popular vintage and market month fixed effects. Estimated coefficients = 141.

Table 3.10: First stage estimation results, high-value sample

Dep. var: log transaction price per bottle with 2 or more bidders Estimate Std. error p-Value

Intercept 6.242 0.319 0
Case of 6 bottles -0.881 0.105 0
Case of 12 bottles -0.514 0.131 0
Stored in warehouse -0.705 0.248 0.005
Special format (not 75cl) 0.393 0.145 0.007
Number bottles in lot -0.121 0.011 0
Fill level: Missing -0.082 0.09 0.361
Fill level: Base of Neck (BN) 0.03 0.14 0.83
Fill level: Mid Shoulder (HS) 0.1 0.229 0.661
Fill level: Top Shoulder (TS) 0.265 0.355 0.456
Fill level: Very Top Shoulder (VTS) -0.039 0.164 0.812
Fill level: High Shoulder (HS) 0.177 0.253 0.485
Fill level: Low Shoulder (LS) or worse -0.13 0.334 0.696
Duty estimate 0.023 0.01 0.021
VAT estimate -0.003 0.004 0.459
Shipping quote 0.005 0.004 0.16
Percentage range provided shipping quotes -0.192 0.321 0.549
Percentage range provided shipping quotes, squared 0.064 0.15 0.672
Delivers to UK -0.293 0.096 0.002
Seller accepts returns 0.002 0.164 0.992
Bottles can be collected from seller 0.036 0.086 0.676
Buyer can only collect bottles from seller -0.546 0.196 0.006
Shipping with Royal Mail -0.052 0.099 0.605
Shipping with ParcelForce -0.218 0.12 0.071
Mentions fast shipping 0.124 0.129 0.336
Insurance is included in shipping cost -0.133 0.076 0.081
Can pay by bank -0.146 0.211 0.491
Can pay by Paypall -0.092 0.083 0.27
Can pay by cheque -0.091 0.078 0.244
Can pay in cash 0.015 0.225 0.948

Observations 390
Adjusted R2 0.855
F-statistic versus constant model (p-value) 18.7 (4.77−83)

Excluded from table: popular vintage, wine type, region, grape and market month fixed effects. Estimated coeffi-
cients = 133.
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Figure 3.9: Listing page example: Nuits St George Les Boudouts, Domaine Leroy
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Figure 3.10: The survival probability of product listings

The survival probability is defined as the empirical probability that the same product is listed in consecutive months.
For example, a survival probability of 0.2 at 5 months indicates that 20 percent of all products that were offered
in the first month are also offered in months 2-6. The solid black line (bottom) pertains to the median product, of
which only one is listed in a typical month, and the dash-dotted blue line (top) pertains to products in the 90th
percentile of availability in a typical month. See Table 3.3 for deciles of the distribution of the number of comparable
products per month. A key take-away from this plot is that about 7

8
th of typical listings doesn’t survive one month,

i.e. doesn’t get listed in the next period.
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Figure 3.11: Testing equality of reserve price distribution and approximation
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B Testing the reserve price approximation

I approximate the reserve price as the average between the highest standing price for

which the reserve price is not met and the lowest for which it is met. If all bids would be

recorded in real time, this approximation would be accurate up to half a bidding increment

due to the proxy bidding system. But to relieve traffic pressure on the site I only track

bids on 30-minute intervals. The reserve price approximation could be more than half a

bidding increment off if the bids are not placed at regular intervals. As a compromise with

constant high website traffic a separate dataset is collected that accesses open listings at

30-second intervals for the duration of two weeks, to test the reserve price approximation

in the main sample.

My estimation method requires that the estimated distribution of reserve prices is

consistent for its population counterpart. Equality of the distribution of approximated

reserve prices in the main sample and the distribution of (approximated) reserve prices in

the smaller high frequency sample is tested with a two sample nonparametric Kolmogorov-

Smirnov test. To account for different listing compositions the empirical reserve price

distributions are right-truncated at the 90th percentile of the high frequency reserve price

sample. The null hypothesis is that the two right truncated reserve price distributions are

the same. In particular, letting FHR and FMR respectively denote the empirical distribution

of right truncated approximated reserve prices in the high frequency (H) and main (M)

sample, the Kolmogorov-Smirnov test statistic is defined as:

Dh,m = sup
x
|FHR (x)− FMR (x)|, (3.29)

with supx the supremum function over x values and h and m respectively denoting the

relevant number of observations in the high frequency and main samples, which are 330 and

596 (only for sold lots). With Dh,m = 0.059, the null cannot be rejected at the 5 pervent

level (Dh,m > 1.36
√

(h+m
hm ), the p-value = 0.4406). The two empirical distributions are

plotted in Figure 3.11.
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C Independent listings: additional results

This section reports descriptive statistics that point to listings being independent of each

other conditional on entry and the matching of bidders to listings.

a) Number bids per bidder
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c) Transaction price
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Figure 3.12: Empirical patterns suggesting that bidders do not cross-bid, thin out, and
sellers do not compete

The box edges indicate the 25th to 75th percentile, the black line indicates the median, and whiskers indicate the
25th (75th) percentile minus (plus) 1.5 times the interquartile range or the sample extremes if those are less extreme.
The residual reserve and transaction price in plot b) and c) are obtained from a linear regression of these outcomes
Ypm on product dummies αp in: Ypm = αp+εpm. Plots display the relation between εpm and the number of listings
of product p in market m, Tpm.

80



T
ab

le
3.

11
:

E
v
id

en
ce

st
y
li

ze
d

fa
ct

s:
in

d
ep

en
d

en
t

li
st

in
gs D

ep
en

d
en

t
va

ri
ab

le
:

N
r

b
id

d
er

s
li

st
in

g
B

id
s

p
er

b
id

d
er

T
ra

n
sa

ct
io

n
p

ri
ce

R
es

er
v
e

p
ri

ce
C

om
p

et
in

g
li

st
in

gs
:

a
n
y

w
in

e

-
E

n
d

in
g

w
it

h
in

30
d

ay
s

(o
f

ea
ch

o
th

er
..

.
)

-0
.0

01
0
.0

00
02

-0
.0

00
1

0
.0

1
6

-
E

n
d

in
g

w
it

h
in

7
d

ay
s

-0
.0

01
-0

.0
00

2
0
.0

08
-0

.0
6
7

-
E

n
d

in
g

w
it

h
in

2
d

ay
s

-0
.0

03
∗

0.
00

03
0.

06
2

-0
.1

5
6

C
om

p
et

in
g

li
st

in
gs

:
sa

m
e

w
in

e
ty

p
e

(e
.g

.
re

d
)

-
E

n
d

in
g

w
it

h
in

30
d

ay
s

-0
.0

01
0.

00
00

4
0.

01
2

0
.0

74
-

E
n

d
in

g
w

it
h
in

7
d

ay
s

-0
.0

0
03

-0
.0

00
2

0.
08

4
-0

.0
6
0

-
E

n
d

in
g

w
it

h
in

2
d

ay
s

-0
.0

03
0.

00
1

0.
16

7
-0

.3
7
5

C
om

p
et

in
g

li
st

in
g
s:

sa
m

e
w

in
e

re
g
io

n
(e

.g
.

B
or

d
ea

u
x
)

-
E

n
d

in
g

w
it

h
in

30
d

ay
s

-0
.0

04
0.

00
1

0.
15

5
0
.2

6
5

-
E

n
d

in
g

w
it

h
in

7
d

ay
s

-0
.0

01
0.

00
2

0.
37

6
-0

.3
3
6

-
E

n
d

in
g

w
it

h
in

2
d

ay
s

-0
.0

20
∗∗

0.
00

6∗
∗

0.
17

1
-0

.5
2
5

C
om

p
et

in
g

li
st

in
gs

:
re

g
io

n
x

w
in

e
ty

p
e

(e
g
.

re
d

B
or

d
ea

u
x
)

-
E

n
d

in
g

w
it

h
in

30
d

ay
s

-0
.0

03
0.

00
1

0.
22

8
-0

.0
2
4

-
E

n
d

in
g

w
it

h
in

7
d

ay
s

0.
01

1
0.

00
4

1.
13

4∗
∗

-0
.5

3
2

-
E

n
d

in
g

w
it

h
in

2
d

ay
s

-0
.0

19
0.

00
7∗

0.
90

5
-1

.9
9
4

C
om

p
et

in
g

li
st

in
g
s:

re
g
io

n
x

w
in

e
ty

p
e

x
v
in

ta
ge

d
ec

a
d

e
(e

.g
.

re
d

B
or

d
ea

u
x

fr
om

19
80

s)

-
E

n
d

in
g

w
it

h
in

30
d

ay
s

-0
.0

12
0.

00
1

-0
.5

61
-0

.9
3
8

-
E

n
d

in
g

w
it

h
in

7
d

ay
s

-0
.0

06
0.

00
5

-0
.4

65
-1

.3
7
1

-
E

n
d

in
g

w
it

h
in

2
d

ay
s

-0
.0

61
0.

00
4

-0
.9

38
-0

.6
6
9

C
om

p
et

in
g

li
st

in
gs

:
su

b
re

gi
o
n

x
w

in
e

ty
p

e
x

v
in

ta
ge

d
ec

ad
e

(e
.g

.
re

d
M

a
rg

a
u

x
fr

o
m

1
98

0s
)

-
E

n
d

in
g

w
it

h
in

30
d

ay
s

-0
.0

09
0.

00
1

0.
43

3
-0

.3
0
3

-
E

n
d

in
g

w
it

h
in

7
d

ay
s

0.
00

3
0.

00
3

1.
91

4∗
∗

-1
.6

7
7

-
E

n
d

in
g

w
it

h
in

2
d

ay
s

-0
.0

34
0.

00
7

0.
77

5
-3

.0
2
6

P
ro

d
u

ct
fi

x
ed

eff
ec

ts
:

Y
es

Y
es

Y
es

Y
es

O
b

se
rv

a
ti

o
n

s
1,

15
0

2,
89

8
2,

23
0

2
,3

3
7

S
am

p
le

:
ze

ro
re

se
rv

e
al

l
so

ld
lo

ts
so

ld
lo

ts
A

d
ju

st
ed

R
2

0.
14

7
0.

01
6

0.
10

2
0
.0

5
6

S
ig

n
ifi

ca
n

ce
le

v
el

s:
∗
p
<

0
.1

;
∗∗

p
<

0
.0

5
;
∗∗
∗
p
<

0
.0

1
.

A
ll

re
p

o
rt

ed
co

effi
ci

en
ts

a
re

fr
o
m

a
se

p
a
ra

te
re

g
re

ss
io

n
o
f

th
e

d
ep

en
d

en
t

v
a
ri

a
b

le
o
n

th
e

n
u

m
b

er
o
f

co
m

p
et

in
g

li
st

in
g
s,

ea
ch

ro
w

o
f

th
e

ta
b

le
co

rr
es

p
o
n

d
in

g
to

a
d

iff
er

en
t

d
efi

n
it

io
n

,
in

cl
u

d
in

g
p

ro
d

u
ct

fi
x
ed

eff
ec

ts
.

T
h

e
p

ro
d

u
ct

fi
x
ed

eff
ec

t
re

la
te

s
to

th
e

p
ro

d
u

ct
a
sp

ec
t

o
f

th
e

co
m

p
et

in
g

li
st

in
g

sp
ec

ifi
ca

ti
o
n

(s
o

ty
p

es
o
f

w
in

e,
o
r

re
g
io

n
s,

et
c.

).
T

h
e

a
d

ju
st

ed
R

2
is

fr
o
m

th
e

re
g
re

ss
io

n
w

it
h

(s
u

b
re

g
io

n
x

ty
p

e
x

v
in

ta
g
e

d
ec

a
d

e
fi

x
ed

eff
ec

ts
).

81



D Further details entry equilibrium

This appendix describes in more detail the entry equilibrium presented in the main text.

In what follows, r̃ denotes the optimal reserve price increased with buyer premium, r̃ =

(1 + cB)r∗(v0, f). Before knowing their valuation, the expected bidder surplus in a listing

with n bidders equals:

πb(n, f, r) ≡
1

n
E[V(n:n) −max(V(n−1:n), r̃)|V(n:n) ≥ r̃][1− FV(n:n)(r̃)], (3.30)

with the last term denoting the sale probability and the max(.) term the transaction price

including buyer premium. Expected surplus for a seller with valuation v0 in a listing with

n bidders68:

πs(n, f, v0) ≡ (E[max(Vn−1:n, r̃)|Vn:n ≥ r̃](1− cS)− v0) [1− FV(n:n)(r̃)] (3.31)

The following properties are also useful for solving the entry stage; Appendix G pro-

vides proofs.

Lemma 3A. The listing-level impacts of number of bidders, commissions, and the seller’s

valuation are:

a) Expected listing-level bidder surplus is decreasing in n, cB, cS and v0

b) Expected listing-level seller surplus is increasing in n and decreasing in cB, cS and v0

Outline.

To characterize the entry equilibrium, I first consider equilibrium bidder entry as a function

of a candidate seller entry threshold (Lemma 3). The equilibrium seller entry threshold

is characterized as a fixed point in seller value space conditional on bidders’ unique best

response to it (Lemma 4). I end the section by approximating the entry equilibrium

using results from Myerson (1998) on games with population uncertainty (Lemma 5).

68Two observations are useful to make here. The first is also made in Ginsburgh et al. (2010): in a
model without entry, the allocation of (cB , cS) does not affect outcomes as long as a commission index
cB+cS
1+cB

remains constant. I mention this here because this setting is previously used to study the impact

of cB and cS on welfare in Ashenfelter and Graddy (2003, 2005) and Marks (2009). I refer to this as a
“one-sided market perspective” (on the impacts of auction fees), by the definition in Rochet and Tirole
(2006) of a market in which only the level and not the allocation of fees matters. I provide a numerical
example of this case in the Appendix on page 95. The platform market with entry decisions involving
sunk entry cost constitutes a two-sided market (Rochet and Tirole (2006)). The second is that a seller
maximizing πs(n, f, v0) by his choice of reserve sets a reserve price that is too high from the platform’s
perspective. To see why, note that the seller trades off the expected transaction price with v0 while the
platform revenue only involves a share of the transaction price. This observation does not seem lost in
practice: eBay charges a reserve price fee equal to 4 percent of the reserve price (unconditional on selling)
and BW platform has flat reserve price fees.
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This renders the entry game feasible to estimate while also relieving an assumption about

players’ common knowledge and being consistent with the data. The results in this section

are summarized in the following proposition:

Proposition 1. The entry stage of the game results in a unique equilibrium for any

fee structure characterized by a bidder entry probability and seller entry threshold that

jointly solve: 1) potential bidders zero profit condition and 2) the marginal seller’s zero

profit condition. Given that any candidate seller entry threshold maps to an equilibrium

bidder entry probability, which is strictly decreasing in the threshold, sellers are strategic

substitutes and the entry game reduces to a single agent discrete choice problem. Assum-

ing that the population of potential bidders is large, the equilibrium is described by the

seller entry threshold and mean number of bidders per listing.

Bidder entry.

Consider first a world in which the number of listings T would be known to potential

bidders. Let v̄0 denote a candidate seller entry threshold and Πb(T, f, v̄0; p) potential

bidders’ expected surplus from entering the platform as a function of their entry probability

p, again if they knew the number of listings T :

ΠT
b (f, v̄0; p) =

NB−1∑
n=0

E[πb(n+ 1, f, v0)|V0 ≤ v̄0]fTN (n; p)− eoB, (3.32)

It takes the expectation of πb(n, f, v0) (equation 3.30 with optimal r as in equation 3.2)

over: i) possible seller values given sellers’ entry threshold and ii) the number of competing

bidders given their entry probability. T superscripts in ΠT
b (f, v̄0; p) and fTN (n; p) (equation

3.34) emphasize that they relate to the thought exercise in which T is known, while the

true game’s simultaneous entry requires taking the expectation over T given candidate

entry threshold v̄0 and NS . This is done to show more clearly that, in equilibrium, fTN
is independent of the realization of T which implies that it must also be independent of

the expectation over T . Bidding in one listing at a time, the entry problem for potential

bidders is then equivalent to one in which they consider entry into a listing (also given that

opportunity cost (listing inspection) eoB are associated with each listing). Components of

equation (3.32) are then:

E[πb(n+ 1, f, v0)|V0 ≤ v̄0] =

∫ v̄0

0
πb(n+ 1, f, v0)fV0|V0≤v̄0(v0)dv0 (3.33)

fTN (n; p) =

(
NB − 1

n

)
(
p

T
)n(1− p

T
)N

B−1−n (3.34)
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where fTN (n; p) denotes the Binomial probability that n out of NB − 1 competing po-

tential bidders arrive in the same listing as the potential bidder who considers entering

the platform. πb(n + 1, f, v0) is strictly decreasing in n due to the increasing failure rate

assumption on FV |Z, which delivers a decreasing spacings property (Li (2005), discussed

in more detail in the proof of Lemma 3A. Hence, the bidder entry problem is equivalent to

the Levin and Smith (1994) entry equilibrium (which starts from expected bidder surplus

decreasing in n). Given T , the equilibrium bidder entry probability pT∗ solves zero profit

condition:69

pT∗(T, f, v̄0) ≡ argp∈(0,1) ΠT
b (f, v̄0; p) = 0 (3.35)

In this equilibrium the number of (competing) bidders per listing follows a Binomial dis-

tribution with mean (NB − 1)p
T∗

T and variance (NB − 1)p
T∗

T (1− pT∗

T ).70

A key property is that p∗T

T is independent of T : bidders only derive positive surplus

from the listing that they are matched to (e.g. T does not affect E[πb(n+1, f, v0)|V0 ≤ v̄0])

so the zero profit condition guarantees that in equilibrium a change in T causes pT∗

to adjust to keep fTN constant. The same reasoning applies when T is the stochastic

outcome of the simultaneous seller entry process: the seller entry threshold only affects

the equilibrium mean number of bidders per listing through E[πb(n + 1, f, v0)|V0 ≤ v̄0]

and not through its effect on the distribution of T . Lemma 3 states these points more

formally and defines the bidder entry equilibrium in our simultaneous-move entry game.

The following notation reflects that bidders form an expectation over T given candidate

seller entry threshold v̄0:

Πb(f, v̄0; p) =
NB−1∑
n=0

E[πb(n+ 1, f, v0)|V0 ≤ v̄0]fN (n; p, v̄0)− eoB (3.36)

fN (n; p, v̄0) =

NS∑
t=0

(
NB − 1

n

)
(
p

t
)n(1− p

t
)N

B−1−n
(
NS

t

)
FV0|Z(v̄0)t(1− FV0|Z(v̄0))N

S−t

(3.37)

Lemma 3. Given candidate seller entry threshold v̄0 and fee structure f , the equilibrium

69p∗T is used to distinguish the entry probability from the central one pertaining to the central case
where T is not known. A no-trade entry equilibrium at p = 0 that trivially solves (3.5) always exists and
excluding it (also in the remainder of this text) requires the profit-maximizing platform to set fees such
that entry is profitable for players on both sides and for players not to believe that the other side enters
with zero probability.

70For completeness this is derived in the Appendix. The variance of N would be larger when also taking
the expectation over T given NS and v̄0.

84



bidder entry probability solves the zero profit condition:

p∗(f, v̄0) ≡ argp∈(0,1) Πb(f, v̄0; p) = 0 (3.38)

Equilibrium properties are:

i) p∗(f, v̄0) is unique ∀(f, v̄0)

ii) p∗(f, v̄0) is strictly decreasing in (v̄0, cB, cS , eB) so also fN (n; p∗, v̄0) decreases in the

first-order stochastic dominance sense in (v̄0, cB, cS , eB)

iii) fN (n; p∗, v̄0) is invariant to changes in NB or NS

Proof. The zero profit condition follows from bidders being indifferent in equilibrium be-

tween staying out and entering the platform. The entry probability is decreasing in v̄0

because πb(n + 1, f, v0) is decreasing in v0 (Lemma 3A) so that the expectation over v0,

E[πb(n+ 1, f, v0)|V0 ≤ v̄0] is decreasing in v̄0. πb(n+ 1, f, v0) is furthermore decreasing in

(cB, cS) (Lemma 3A), so the zero profit condition dictates that higher commissions must

result in a lower entry probability, and the same holds for a higher sunk entry cost eB.

Seller entry cost eS do not affect expected bidder surplus so conditional on v̄0 they do not

affect p∗(f, v̄0). Given that NB and NS do not affect E[πb(n + 1, f, v0)|V0 ≤ v̄0] the zero

profit condition dictates that p∗(f, v̄0) is such the equilibrium distribution fN (n; p∗, v̄0) is

invariant to NB and NS .

Seller entry.

On the seller side, potential sellers’ expected surplus from entering decreases in their

private valuation, which makes it optimal for them to adopt a pure strategy to enter if

and only if their valuation is less than threshold v̄0 that in equilibrium makes the marginal

seller indifferent. In what follows I denote the strategy by the threshold itself. Potential

sellers’ expected surplus from entering the platform involves: i) their listing-level expected

surplus and ii) an expectation over N given v̄0 and bidders’ equilibrium best-response to

this threshold:71

Πs(f, v0; p∗(f, v̄0), v̄0) =

NB∑
n=0

πs(n, f, v0)fN (n; p∗(f, v̄0), v̄0)− eS − eoS (3.39)

71A slight abuse of notation is that expectation involves fN (n; p∗, v̄0) (explaining entry among NB − 1
potential bidders) as defined in (3.37) instead of the distribution based on the full bidder population NB .
This avoids introduction of additional notation and the −1 will be irrelevant in the large-NB approximation
in which case the two distributions are identical by the environmental equivalence property of the Poisson
distribution (Myerson (1998)).
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Lemma 4. Given fee structure f , the equilibrium seller entry threshold solves the

marginal sellers’ zero profit condition:

v∗0(f) ≡ argv̄0s.t.FV0|Z(v̄0)∈(0,1) Πs(f, v̄0; p∗(f, v̄0)) = 0 , with p∗(f, v̄0) solving (3.38) (3.40)

Equilibrium properties are:

i) v∗0(f) is unique ∀f
ii) v∗0(f) is strictly decreasing in eB

iii) The impact of (cB, cS , eS) is ambiguous

Proof. Since πs(n, f, v0) is strictly decreasing in v0 (Lemma 3), for any v0 for which

a potential seller finds it profitable to enter he would also enter with a lower value.

Hence their pure strategy entry decision is characterized by a threshold value that makes

the marginal seller indifferent when competing sellers adopt the same entry threshold.

Πs(f, v̄0; p∗(f, v̄0)) denotes the expected seller surplus for the marginal seller with valua-

tion equal to candidate threshold v̄0 when competing sellers follow that threshold strategy.

An equilibrium exists because sellers reaction function is continuous in their own value and

competing sellers threshold. Sellers have a unique best response for any competing seller

entry threshold given that ∂Πs(f,v̄0;p∗(f,v̄0))
∂v0

< 0. Given that 1) p∗(f, v̄0) is strictly decreas-

ing in v̄0 (Lemma 4), and 2) entry of competing sellers does not affect Πs(f, v̄0; p∗(f, v̄0))

in other ways, the best response function is strictly decreasing in competing sellers v̄0:
∂Πs(f,v̄0;p∗(f,v̄0))

∂v̄0
< 0. Symmetry then delivers a unique v∗0(f) that is the fixed point in

seller value space that solves equation 3.40.

The equilibrium threshold must be decreasing in eB because it reduces p∗(f, v̄0) for any

candidate threshold (Lemma 4) and does not affect expected seller surplus otherwise.
∂v∗0(f)
∂cB

< 0 unless 1) the impact of a lower entry threshold on p∗(f, v̄0) outweighs the direct

negative impact of cB on p∗ and 2) the resulting higher p∗ outweighs the negative direct

impact of higher cB on πs(n, f, v0). The same goes for cS . A slightly modified argument

holds for seller entry fees that do not directly impact p∗(f, v̄0):
∂v∗0(f)
∂eS

< 0 unless the

positive impact of a lower entry threshold on p∗(f, v̄0) (increasing expected seller surplus)

outweighs the direct negative impact of a higher listing fee.

Corollary 1. The entry equilibrium of the auction platform game is characterized by the

pair of: (v∗0(f), p∗(f, v∗0(f))) that jointly solves equation (3.40), which is unique for any

fee structure.
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Large population approximation.

The remainder of this section discusses an approximation of the entry equilibrium that

is adopted for the following reasons. First of all, it is computationally costly to imple-

ment the equilibrium literally, especially due to the expectation over realizations of T in

(3.37). A second reason is that the approximation relaxes the requirement that players

know population sizes NB and NS , which indeed are likely to be unobserved by poten-

tial bidders and sellers. Relatedly, given that the population of potential bidders is likely

to be large relative to the actual number of bidders, the Poisson approximation of the

binomial distribution is a natural one, also adopted previously in similar settings by e.g.

Engelbrecht-Wiggans (2001), Bajari and Hortaçsu (2003) and Jehiel and Lamy (2015).

Finally and not unimportant, the empirical distribution of bidders on the BW platform

resembles a Poisson distribution (Figure 3.4). Formally, a chi-square goodness of fit test

fails to reject at the five percent level that N is generated by a Poisson distribution, based

on auctions with no reserve price in which the number of bidders is not censored.

Assumption 5. The population of potential bidders is large relative to the number of

bidders on the platform: NB →∞ and p∗ → 0.72

Under this assumption the number of bidders per listing in (3.37) is approximately

Poisson distributed, and approximation error relative to the Binomial distribution is small

(vanishing to 0 as NB tends to infinity). The Poisson mean is endogenous to the fee

structure. It is implicitly defined by solving a bidder zero profit entry condition in this

slightly modified setting with the Poisson distributed number of bidders per listing. The

result is formalized in the following Lemma.

Lemma 5.

With large NB, small p∗ and T listings the number of bidders per listing has a probability

mass function approximated by:

fN (k;λ) =
exp(−λ)λk

k!
, λ =

NBp

T
, ∀k ∈ Z+ (3.41)

72To avoid any misinterpretation (with p∗ endogenous), the population is assumed to be large and the
entry probability is assumed to be small and it is not a statement about letting the population grow large
or the entry probability go to 0.
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The approximate equilibrium is the pair of (v∗0(f), λ∗(f, v∗0(f))) that solves:

v∗0(f) ≡ argv̄0s.t.FV0|Z(v̄0)∈(0,1) Πs(f, v̄0;λ∗(f, v̄0)) = 0 , subject to : (3.42)

λ∗(f, v̄0) ≡ argλ∈(0,∞) Πb(f, v̄0;λ) = 0,

where Πs(f, v̄0;λ∗(f, v̄0)) and Πb(f, v̄0;λ) refer to players’ expected surplus when the num-

ber of potential bidders follows PMF in equation (3.41). Poisson mean λ∗ is endogenous

to the fee structure and seller entry threshold but independent of NS , NB and T .

Proof. The limiting distribution of the Binom(NB, p) is Poisson with mean NBp, and with

uniform sorting of bidders over T listings the number of bidders per listing is Poisson with

mean NBp
T by the decomposition property of the Poisson distribution as set out in Myerson

(1998). Appendix G shows this formally, and also provides an alternative argument based

on the same property of the Binomial distribution. Given that the number of listings T

does not enter expected bidder surplus, it does not affect the equilibrium distribution of N

by the same zero profit condition argument that supported that fN (n; p∗, v̄0) is invariant to

changes in NB or NS in Lemma 4. Hence all three do not impact λ∗ while the fee structure

and seller entry threshold do affect expected bidder surplus and therefore λ∗.

Corollary 2.

The entry equilibrium of the auction platform game, subject to the large population

approximation, is characterized by the pair of: (v∗0(f), λ∗(f, v∗0(f))) that jointly solve

equation (3.42), which is unique for any fee structure.

88



E Monte Carlo simulations: a recursive algorithm

This Section discusses the Monte Carlo simulations and provides details about numerical

approximation of the entry equilibrium. Simulated auctions are structured according to

the idiosyncratic-good auction platform model presented before with:

Input parameters: Equilibrium values:

g(Z) = 0.5Z,Z ∼ N (0, 2) v∗0 = 5.999, FV |Z(v∗0) = 0.8847

(U0, U) ∼ N (5, 0.5) λ∗r>0 = 4.499, λ∗r=0 = 6.112

eoB = 10, eoS = 5, f = {eS = 5, eB = 0, cB = 0, cS = 0.1}
pr0 = 0.10, NS = 4000

Hence with the chosen valuation distributions, opportunity cost and platform fees, the

seller entry threshold equals 5.599 so that in equilibrium 88.47 percent of the 4000 poten-

tial sellers enter the platform. The marginal seller, or any seller who sets a positive reserve

price receives on average 4.499 bidders in his listing. Furthermore, the mean number of

bidders in zero reserve auctions is calculated to be 6.112 and 10 percent of listings have

no reserve price (exogenously determined here).

A recursive algorithm.

Recall the multi-step estimation method outlined on page 50. I will now provide details

on steps 4 and 5:

4) solving for the entry equilibrium given estimated parameters

5) re-estimating seller parameters at the updated entry equilibrium.

When iterating on these estimation steps until convergence, they describe the iterative

nested pseudo likelihood (NPL) in Aguirregabiria and Mira (2002, 2007). Roberts and

Sweeting (2010) are the first to apply this algorithm to the auction literature to study

auctions with selective bidder entry. Studies by Pesendorfer and Schmidt-Dengler (2010),

Kasahara and Shimotsu (2012) and Egesdal et al. (2015) provide conditions under which

NPL does (not) converge to the true equilibrium. A best-response stable equilibrium is a

sufficient condition for the NPL algorithm to converge to it and this is certainly guaranteed

(Proposition 1) by the game reducing to a single agent discrete choice problem with unique

equilibrium. Aguirregabiria and Mira (2002) find that in single-agent games asymptotic

efficiency is independent of the number of iterations.

Monte Carlo (MC) simulations evaluate the proposed estimation method in Steps (1)-

(3) and the updating according to steps (4)-(5), either once or iterating until the maximum

difference between updated and previous seller parameters is less than 1e−3. This choice
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of convergence objective is motivated by the centrality of θs as structural parameters in

contrast to the seller entry probability or threshold. Furthermore, calculation of v∗0 depends

on opportunity cost to the marginal seller eoS , which, following its identification argument,

is a function of both seller parameters and the entry threshold. If the initial estimate υT is

an overestimate of the truth that will be reflected in low opportunity cost that reinforce a

high v∗j0 in the recursion. To address this, an exponentially vanishing trimming parameter

τ j is subtracted from the seller entry probability obtained in iteration j to enforce that

υT > v∗0. Using τ j = 0.05 exp(−j) the trimming parameter at j = 1 equals 0.05 and

vanishes quickly to virtually zero in than 5 iterations.

Four sets of 500 MC experiments are conducted. The first implements the algorithm

with the true value of eoS , the second imposes a fixed but wrong value of twice eoS , and

the third recursively solves for eojS given θ̂s
j−1

. Columns 1-3 of Table 3.12 show that all

three ways to deal with eoS (the true value, a wrong value, solving recursively) deliver

virtually identical estimates of θs. This confirms that equating seller opportunity cost to

some fixed value (usually 0, for instance in Seim (2006) for a discrete choice entry game

with firm heterogeneity) is truly a normalisation for the estimation of seller parameters

in our setting. Another take-away is that when the first stage is estimated precisely and

the resulting initial estimate υT is close as well, the recursive method delivers no benefits

only computational cost. Intuitively, this is because seller parameters are obtained using

the first order condition of optimal reserve prices that is independent of the threshold for

all observations not censored by it.

Column 4 of Table 3.12 shows the benefit of updating at least once in the presence

of small sample estimation bias. In this MC experiment Z is measured with noise, im-

plemented by adding draws from Unif(−1, 1) to it after simulating values and bids. The

initial estimate of the seller entry probability now overestimates the truth (0.978 compared

to 0.885). Especially shape parameter ks is affected. One iteration effectively addresses

this problem, and further iterations remain consistent but do not deliver benefits or im-

prove precision.

Based on MC simulation results, estimation in the remainder of this paper is done

with one update of θs based on solving the equilibrium and normalising eoS = eoB. The

gray colored rows in Table 3.12 correspond to the single recursion solution.
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F Numerical approximation of the entry equilibrium

Computation of the surplus functions is based on Monte Carlo integration with importance

sampling. For details on numerical methods see Judd (1998); I will summarize only their

application. The following is implemented on homogenized values and with estimated

parameters but for brevity I omit the conditioning on Z and (θ̂b, θ̂s). A grid of 150 points

vm0 is drawn from FV0 . For all values on that grid, and for n = 0, 1, .., 15 the value of

πs(n, f, v
m
0 ) in (3.31) is calculated for two scenario’s: when setting r = r∗(vm0 ) and when

setting r = 0. Also the value of πb(n+1, f, vm0 ) is calculated for n = 0, 1, ..., 15 and for both

scenario’s, which involves the expectation over values of Vn:n and also an inner integral

over realizations of Vn−1:n conditional on Vn:n = vn:

πb(n, f, r) =

∫ v̄

r̃
vn −max((1 + cB)r,

∫ vn

v
vn−1dFVn−1:n|Vn:n=vn(vn−1))dFVn:n(vn)

(3.43)

FVn:n(vn) =

∫ vn

v
nFV (x)n−1fV (x)dx

FVn−1:n|Vn:n=vn(vn−1) =

∫ vn

v

(n− 1)FV (y)n−2fV (y)

FV (vn)n−1
dy

Samples from both distributions are obtained with globally adaptive quadrature (on sup-

port [0, v̄] with v̄ the 1-1.0000e−9th percentile of FV ) setting the inverse of the distribu-

tion equal to 250 equally spaced probabilities on [0, 1], and then evaluated on 2500 points

with linear interpolation, separately for each n. Then for each r ∈ {r∗(vm0 )}250
m=1, 0},

πb(n+ 1, f, r) is calculated by drawing 250 values from the simulated highest and second-

highest valuation samples conditional on vn ≥ r̃ and taking averages. For the positive

reserve price case, πs(n, f, v
m
0 ) and πb(n+ 1, f, vm0 ) are linearly interpolated on finer grids

with 500 points for each n. These four matrices are pre-calculated once for each set of

parameter draws so essentially for each iteration (and fee combination, in the counterfac-

tual experiment). Let Sr=0 and Br=0 of dimension [16x1] denote the listing-level surplus

matrices for sellers and bidders when the seller sets no reserve price and Sr>0 and Br>0

the matrices of dimension [16x150] in the positive reserve price case.

The entry equilibrium solves equation (3.42), where Πb(f, v̄0, λ) includes:

E[πb(n1, f, v0)|V0 ≤ v̄0]. In the optimal positive reserve price case it is approximated, for

each n, by the elementwise product of the n+1th row of Br>0 with vector [fV0(v1
0), ..., fV0(vm0 )]

such that fV0(vm0 ) = 0 for vm0 > v̄0, using local linear interpolation on the margin and with
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the resulting non-zero elements of the row summing to 1.73 Also subtracting bidder entry

cost delivers the expected bidder surplus for each number of n competing bidders, and for

each v̄0 the equilibrium Poisson parameter λ∗r>0 is approximated as the value that sets

Πb(f, v̄0, λ) = 0 to within a 1e−6 tolerance of either the function value or the parameter.

The calculation of λ∗r>0 is nested in the seller entry equilibrium. Every candidate

v̄0 maps to a λ∗r>0. For the two columns in Sr>0 corresponding to the values nearest

to v̄0 the expected surplus is calculated by placing weight on row k corresponding to

fN (k − 1;λ∗r>0(v̄0), linear interpolation to get expected surplus at v̄0 for each n = k − 1,

and summing over all k. The equilibrium v∗0 is approximated within a 1e−6 tolerance level.

73Section 3.5.4 explains that, unless all sellers find it optimal to set a zero reserve price, the marginal
seller will set a positive reserve price and there is also a “screening value” of V0 below which sellers will set
no reserve price. Given that in the data only about one third of sellers sets a reserve, the entry problem
is about the marginal seller who will set a positive reserve price and expects corresponding bidder entry.
To economize on notation I disregard the screening value here but it is incorporated in the computation
of λ∗r>0 and hence in v∗0 .
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G Omitted proofs

Optimal reserve price.

Proof Lemma 2. For brevity I omit conditioning on characteristics Z, and define hat and

check notation as: x̂ = x(1 + cB) and x̌ = x
1+cB

. Let R denote expected revenue for a

seller with valuation v0 when setting reserve price r in an auction with n bidders:

R = v0FV (r̂)n + (1− cS)rnFV (r̂)n−1[1− FV (r̂)]+

(1− cS)

∫ v̄

r̂
x̌n(n− 1)FV (x)n−2[1− FV (x)]fV (x)dx

The three terms in the above equation for R cover three cases: i) no sale takes place, ii) a

sale takes place but the second-highest bid is less than the reserve price and iii) the sale

takes place and the second-highest bid exceeds the reserve. Maximizing R with respect to

r:

∂R

∂r
= v0nFV (r̂)n−1fV (r̂)(1 + cB) + (1− cS)nFV (r̂)n−1[1− FV (r̂)]

+ (1− cS)rn(n− 1)FV (r̂)n−2fV (r̂)(1 + cB)[1− FV (r̂)]

− (1− cS)rnFV (r̂)n−1fV (r̂)(1 + cB)

− (1− cS)rn(n− 1)FV (r̂)n−2[1− FV (r̂)]fV (r̂)(1 + cB)

r{(1− cS)nFV (r̂)n−1fV (r̂)(1 + cB)} = v0nFV (r̂)n−1fV (r̂)(1 + cB)

+ (1− cS)nFV (r̂)n−1[1− FV (r̂)]

Re-arranging, this delivers the optimal reserve price r∗(v0, f) which solves:

r∗(v0, f) ≡ r =
v0

1− cS
+

1− FV (r(1 + cB))

(1 + cB)fV (r(1 + cB))

The optimal reserve price has the familiar Riley and Samuelson (1981) reserve price form.

A unique r∗(v0, f) solves this equation ∀(v0, f) given that FV is assumed to satisfy the

increasing failure rate (IFR) property. It has the following properties:

i)
∂r∗(v0, f)

∂v0
> 0

ii)
∂r∗(v0, f)

∂cB
< 0

iii)
∂r∗(v0, f)

∂cS
> 0
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Property ii also relies on the IFR assumption and requires (r, cB) to be small enough s.t.

FV (r(1 + cB))) < 1.74

Non-neutrality of fees.

The fee structure is non-neutral if not just their total amount but also their allocation

between different sides of the platform affect platform profitability (Rochet and Tirole

(2006)). Non-neutrality is a prerequisite for the central questions in this paper to be of

relevance. The presence of transaction cost, in the case of the auction platform stemming

from costly listing inspection on the bidder side, entry cost, listing fees and opportunity

cost for sellers, is known to generate non-neutrality (Rochet and Tirole (2006)). When

taking entry as given, the fee structure is neutral in the auction stage when the non-linear

commission index cB+cS
1+cB

remains constant. I illustrate this point with a simple numerical

example with optimal reserve prices.

Example 1. Bidder valuations are distributed according to U [0, 1], n = 2. Sellers have

a valuation of v0 and set the optimal reserve price: r = v0
2(1−cS) + 1

2(1+cB) (solving the

optimal reserve price formula with uniformly distributed valuations). The sale probability

equals 1 − F (r(1 + cB))2 = 1 − [v0(1+cB)
2(1−cS) + 1

2 ]2. Let X denote: max(E[Vn−1:n], r
1+cB

).

Because bidders scale their bid down by cB and sellers pay a commission on the transaction

price the expected seller profit equals: πs = (X 1−cS
1+cB

− v0){1 − [v0(1+cB)
2(1−cS) + 1

2 ]2}. It is

independent of the allocation of commissions to buyers and sellers as long as the fraction
1−cS
1+cB

remains constant. For example, their expected surplus is the same when respectively

i) cS = 0.1, cB = 0 and ii) cS = 0.01, cB = 0.1, both cases result in 1−cS
1+cB

= 0.9:

i)(0.9X − v0){1− [
v0

2 ∗ 0.9
− 1

2
]2}

ii)(
0.99

1.1
X − v0){1− [

v0 ∗ 1.1

2 ∗ 0.99
− 1

2
]2}

In particular, the optimal reserve price adjusts to keep the sale probability constant and

therefore also the expected transaction price will be the same. However, neutrality does

not refer to the seller’s profit but to that of the platform who designs the fee structure.

Expected platform revenue is a slightly modified function accounting for the fact they

retain the share cS + cB of a transaction. The below shows that the platform fee structure

is neutral when holding constant the fraction 1−cS
1+cB

(coming from the seller maximization

problem, or cB+cS
1+cB

as in Ginsburgh et al. (2010)). Expected platform revenue is the same

74My calculations differ slightly from Ginsburgh et al. (2010) who I believe omit that a successful sale
requires the highest value to exceed the reserve price increased by buyer premium, r(1 + cB).
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for fee structures i and ii:

i)0.1X{1− [
v0

2 ∗ 0.9
− 1

2
]2}

ii)
0.11

1.1
X{1− [

v0 ∗ 1.1

2 ∗ 0.99
− 1

2
]2}

On take-away from this example is that in the auction stage sellers should be slightly

better off with a say 10 percent seller commission and no buyer premium than with a 10

percent buyer premium and no seller commission. They are equally well off with a 10

percent buyer premium and a 1 percent seller commission.

Proof Lemma 3. Expected bidder surplus increases in number bidders.

i)
∂πb(n, f, v0)

∂n
≤ 0

It holds strictly in the uninteresting case when v0 s.t. FV (r∗(v0, f)(1+cB)) = 1. Otherwise,

expected bidder surplus decreases in the number of bidders in a listing because FV satisfies

the increasing failure rate (IFR) property. Li (2005) prove that IFR implies decreasing

spacings so that E[V(n+1:n+1) − V(n:n+1)] − E[V(n:n) − V(n−1:n)] ≤ 0. This holds without a

reserve price or fees and since both are independent of n this proves the statement.

ii)
∂πb(n, f, v0)

∂cB
≤ 0

While expected bidder surplus conditional on a sale is independent of cB, the probability

of selling is decreasing in cB. The optimal reserve price decreases in cB, but not enough

to keep the sale probability constant given that sellers trade this off against the sale price.

Formally, denote r = r∗(v0, f) and using hat notation r̂ = r∗(v0, f)(1 + cB):

The sale probability and expected bidder surplus decreases in cB and cS.

∂(1− FV(n:n)(r̂))
∂cB

= −fV(n:n)(r̂)(1 + cB)

which is negative because fV(n:n) is a PDF and therefore ∈ [0, 1].The same result follows

from the derivative of the sale probability with respect to cS .As cS does not affect bidder

surplus in other ways it also follows that:

iii)
∂πb(n, f, v0)

∂cS
≤ 0

96



Expected bidder surplus decreases in the seller valuation.

iv)
∂πb(n, f, v0)

∂v0
≤ 0

This intuitively follows from the reserve price strictly increasing in v0 and expected bidder

surplus decreasing in the reserve price. The latter is necessary for sellers to have a unique

optimal r∗ (less than v̄0), so it relies on the IFR assumption. Formally, let r̂ = r∗(v0, f)(1+

cB) and Fn−1(x|vn) = P [Vn−1:n ≤ x|Vn:n = vn] with similar notation for conditional

densities, and Fn = FVn:n . For n > 0:

πb(n, f, v0) = E[Vn:n −max(Vn−1:n|Vn:n ≥ r̃, r̃)|Vn:n ≥ r][1− Fn(r̃)]

∂πb(n, f, v0)

∂v0
=

∫ v̄

r̃
[vn − Fn−1(r̃|vn)r̃ −

∫ vn

r̃
xfn−1(x|vn)]︸ ︷︷ ︸

≡H(vn,r̃)

fn(vn)dvn

= −r̃fn(r̃)(1 + cB)−H(r̃, r̃)fn(r̃)(1 + cB) +

∫ ∞
r̃

∂H(vn, r̃)fn(vn)

∂r
dvn

= −r̂fn(r̃)(1 + cB) + Fn−1(r̂|vn = r̂)r̃fn(r̂)(1 + cB)+∫ v̄

r̂
fn(vn)[−(1 + cB)Fn−1(r̂|vn)− fn−1(r̂|vn)(1 + cB)r̂

+ fn−1(r̂|vn)r̂(1 + cB)]dvn

=

∫ v̄

r̂
−(1 + cB)Fn−1(r̂|vn)fn(vn)dvn

The third line follows from applying the Leibnitz rule. The last line follows from the fact

that in the fourth line Fn−1(r̃|vn = r̃) = 1 so that the two remaining terms on the first

line cancel out and also the last two terms in square brackets on the fifth line cancelling.

Given that fn and Fn−1(|vn) are both always ≥ 0, ∂πb(n,f,v0)
∂r ≤ 0. The derivative equals

0 if: i) r̂ ≥ v̄, or ii) n = 0 which results in Fn−1(.|vn) = 0 and otherwise the derivative is

strictly negative.

Expected seller surplus increases in the number of bidders.

v)
∂πs(n, f, v0)

∂n
≥ 0

E[V(n−1:n)] increases in n without restrictions on FV (unlike for the bidder side in i) and

the sale probability increases in n as r∗(v0, f) is independent of n and FV(n:n) is stochas-

tically increasing in n. No other aspects of ∂πs(n, f, v0) relate to n so this delivers the

result.
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Expected seller surplus decreases in commissions.

vi)
∂πs(n, f, v0)

∂cB
≤ 0

vii)
∂πs(n, f, v0)

∂cS
≤ 0

In addition to the sale probability decreasing in cB and cS (in parts iii and iv above),

the share of the transaction price received by the seller in the event of a sale when the

reserve price is set at 0,
E[V(n−1:n)]

1+cB
(1 − cS) is decreasing in both cB and cS . The reserve

price is furthermore decreasing in cB so that completes the proof for vi. The reserve price

is increasing in cS but vii holds because if the reserve price is binding the increased cS

in r∗(v0, f) exactly cancels out with the higher share of the transaction price to pay to

the platform. Commissions have no impact (vi and vii hold with equality) only in the

uninteresting case when FV(n:n)(r∗(v0,f)) = 1.

Expected seller surplus decreases in v0.

iv)
∂πs(n, f, v0)

∂v0
≤ 0

Intuitively, a higher seller valuation reduces gains from trade. The decreased sale proba-

bility is not offset by a benefit from a higher v0. Formally, relating the result to iv above:

H(vn, r) equals expected payment to the seller if the highest valuation equals vn and the

reserve is set at r. It follows directly that ∂πs(n,f,v0)
∂v0

< 0 because the derivative adds to

the derived effect of v0 on πb(n, f, v0) the negative terms: i) −rfn(r)(1 + cB) and ii) the

contribution from the loss of higher value when the seller sells the item:

πs(n, f, v0) =

∫ v̄0

r
H(vn, r)fn(vn)dvn − v0(1− Fn(r))

∂πb(n, f, v0)

∂v0
=
∂v0

∂r
[

∫ v̄

r
−(1 + cB)Fn−1(r|vn)fn(vn)dvn

+ (v0 − r)fn(r)(1 + cB)]

This is negative due to ∂r
∂v0

> 0 and v0 < r.

The equilibrium bidder entry probability is decreasing in the seller entry

threshold.

Proof Lemma 4. It remains to be shown formally that ∂E[πb(n,f,v0)|V0≤v̄0]
∂v̄0

< 0, the rest of

98



the proof is provided in the main text.

∂E[πb(n, f, v0)|V0 ≤ v̄0]

∂v̄0
= πb(c, v̄0, n)fV0|V0≤v̄0(v̄0) +

∫ v̄0

0

∂πb(n, f, v0)fV0|V0≤v̄0(v0)(v̄0)

∂v̄0
dv0

=
πb(c, v̄0, n)fV0(v̄0)

FV0(v̄0)
−
∫ v̄0

0

πb(n, f, v0)fV0(v0)fV0(v̄0)

(FV0(v̄0))2
dv0

=
fV0(v̄0)

FV0(v̄0)

[
πb(c, v̄0, n)−

∫ v̄0

0

πb(n, f, v0)fV0(v0)

FV0(v̄0)
dv0

]
=
fV0(v̄0)

FV0(v̄0)

[∫ v̄0

0
(πb(c, v̄0, n)− πb(n, f, v0))

fV0(v0)

FV0(v̄0)
dv0

]

The last line follows from:
∫ v̄0

0

fV0 (v0)

FV0 (v̄0)dv0 = 1 and πb(c, v̄0, n) ⊥ v0. Finally given that

∂πb(n,f,v0)
∂v0

≤ 0 so ∀v0 < v̄0 the derivative is negative. A qualifier is that the no trade

equilibrium is excluded from consideration.

Poisson decomposition property for number of bidders per listing

Proof Lemma 6. The proof concerns the statement that when NB potential bidders enter

a platform with T listings with probability p, the distribution of the number of bidders

per listing is approximately Poisson with mean NBp
T . Let M denote the total number of

bidders on the platform, distributed Binomial(NBp,NBp(1−p)). The limiting distribution

of M when the population of potential bidders NB →∞ and associated p→ 0 s.t. NBp

remains constant is Poisson(λ = NBp). Bidders on the platform get uniformly allocated

over T listings, entering each listing with probability q = 1
T . Due to the stochastic number

of bidders on the platform, the probability that m bidders get allocated in listing t and n

enter into other listings also includes the probability that m+n bidders enter the platform.

fNt,N−t(m,n) =
exp(−λ)λ(m+n)

(m+ n)!

(m+ n)!

m!n!
(q)m(1− q)(n) (3.44)

This joint distribution can be manipulated to reach the conclusion. The (m+ n)! cancels

out:

fNt,N−t(m,n) =
exp(−λ)λ(m+n)

m!n!
(q)m(1− q)(n) (3.45)

Using that x(a+b) = xaxb, and rewriting the multiplications:

fNt,N−t(m,n) = exp(−λ)
λn(1− q)n

n!

λmpm

m!
= exp(−λ)

(λ(1− q))n

n!

(λq)m

m!
(3.46)

99



Taking a convex combination of λ:

fNt,N−t(m,n) =
exp(−λq)(λq)m

m!

exp(−λ(1− q))(λ(1− q))n

n!
(3.47)

The marginal probability of havingm bidders in listing t takes the expectation over possible

values of bidders allocated to other listings, N−t:

fNt(m) =

∞∑
n=0

exp(−λq)(λq)m

m!

exp(−λ(1− q))(λ(1− q))n

n!
=

exp(−λq)(λq)m

m!
(3.48)

This shows that if the number of bidders on the platform follows a Poisson distribution

with mean λ = NBp, and bidders enter T listings with equal probability q = 1
T , the

number of bidders in each listing follows a Poisson distribution with mean NBp
T . This is

referred to as the decomposition property of the Poisson distribution*, e.g. in Myerson

(1998). Note that this result does not require the number of bidders to be independent

of the number of listings. Hence the decomposition property also applies to the auction

platform where the expected number of bidders is a function of the (expected) number of

listings. The t subscript is dropped from fNt as the distribution is identical for all listings

t = {1, .., T}.

*Binomial decomposition property

This result can also be derived from a decomposition property of the Binomial distribution.

If NB potential bidders enter the platform with probability p and get allocated over T

listings with equal probability 1
T , the below shows that the number of bidders per listing

follows a Binomial distribution, N ∼ Binom(NB p
T , N

B p
T (1 − p

T )) by the law of iterated

expectations and iterated variance:

P [N = n] =

NB∑
m=0

P [N = n|m]P [M = m]︸ ︷︷ ︸
EM [P [N=n|m]]

=

NB∑
m=0

(
NB

m

)
pm(1− p)NB−m

(
m

n

)
1

T

n

(1− 1

T
)m−n

E[N ] = EM [E[N |m]] = EM [
m

T
] =

E[M ]

T
=
NBp

T

The law of iterated variance states that V ar(N) = EM [V ar(N |M = m)]+V ar(EM [N |M =
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m]):

EM [V ar(N |M = m)] = EM [m
1

T
(1− 1

T
)] = (NB)p

1

T
(1− 1

T
) = NBp

1

T
− (NB)p(

1

T
)2

V ar(EM [N |M = m]) = V ar(
M

T
)

= (
1

T
)2V ar(M) = (

1

T
)2NBp(1− p) = −(

1

T
)2NBp2 + (

1

T
)2NBp

V ar(N) = EM [V ar(N |M = m) + V ar(EM [N |M = m]) = NB p

T
(1− p

T
)

The last line follows from the last terms on the first and second line cancelling out and

rearranging. The large population assumption combined with success probability of en-

tering in listing t (for any t ∈ {1, .., T}) equal to p
T also renders fN Poisson with mean

NBp
T .
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Abstract

The practice of absentee bidding in English auctions obscures the number of bidders re-

quired for nonparametric identification of the distribution of valuations, which is key to

structural analysis of auction data. In this paper I exploit additional identifying variation

in observables from such auctions and I develop a novel nonparametric identification ap-

proach based on the spacings of order statistics. In combination with a shape restriction

this delivers bounds on both the latent value distribution and expected consumer surplus.

The value of the proposed method is highlighted by showing that it identifies informative

bounds on policy-relevant model primitives in a sample of traditional English auctions

collected at Sotheby’s that does not contain the number of bidders and their final bids.
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“It is at least worth considering whether by a study of the distribution of intervals the

statistician can give the epidemiologist any help” (epidemiologist Major Greenwood

in a paper presented to the Royal Statistical Society in 1946, quote taken from Pyke

(1965) in his paper on sample spacings).

4.1 Introduction

Attend a traditional English auction and you will find that it is less transparent than

you remember from your game theory classes. In the Milgrom and Weber (1982) “button

auction” model, the price rises exogenously and bidders observably let go of their button

at their maximum willingness to pay. The auction stops when the bidder with the second-

highest value drops out. Data generated from this stylized auction environment includes

a vector of highest bids and the number of bidders. In practice, auction observables are

more limited. Most importantly, the number of bidders is often unknown because of the

common practice of absentee bidding. Bidders report their maximum willingness to pay

to the auctioneer who then bids on their behalf during the live auction. This provides

a challenge for structural analysis of bid data because the number of bidders is required

for nonparametric identification of the valuation distribution, as established by Athey and

Haile (2002) for auctions with independent private value (IPV) bidders. The proof relies

on the fact that the distribution of any order statistic from an i.i.d. sample of known size

from a continuous distribution is a unique function of its parent distribution (e.g. David

and Nagaraja (2004)). Hence also in Haile and Tamer (2003), who relax the behavioural

restrictions of the button auction model, the number of bidders is needed to set-identify

valuations.

The main contribution of this paper is to provide a new approach to set-identify the

distribution of valuations without knowing the number of bidders. I leverage observed

absentee bids that reveal additional information about bidders’ willingness to pay to pin

down a lower bound on the third highest valuation. Sample spacings, a concept from

the order statistics literature (Pyke (1965, 1972)) is then used to derive an upper bound

on the highest valuation. I discuss various shape restrictions that can be used to obtain

this bound, of which log-concavity is the weakest restriction already implied by the In-

creasing Failure Rate assumed in many auction studies (Bagnoli and Bergstrom (2005)).

Together with observed bids this delivers bounds on the distribution of the highest valua-

tion sufficient to bound both expected consumer surplus and seller revenue. The implied

sample extremes also bound the latent distribution of valuations of primary interest in

structural work. I then analyze the identifying power of additional restrictions to tighten
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these bounds, including exogenous variation in the number of bids. As these bounds can

be wide, I discuss what features of the data generating structure are most conducive to

this approach delivering bounds that are informative in practice.

Generally, identification of the valuation distribution is not immediate in oral, open-

outcry auctions as the drop-out value of the highest bidder is never observed. An in-

teresting development in recent structural analysis under weaker restrictions than IPV is

therefore to focus on directly identifying the policy variables that are ultimately of sig-

nificance. In a symmetric private value environment where valuations are allowed to be

correlated, Aradillas-López et al. (2013) set-identify the expected consumer surplus and

expected seller revenue when only the transaction price and the number of bidders is ob-

served. Coey et al. (2017) extend these results to asymmetric bidders and furthermore

show that the bounds can be sharpened when bidder identities are also observed. In first-

price auctions with unobserved heterogeneity, Armstrong (2013) shows that just observing

the transaction price and the number of bidders is sufficient to set-identify features re-

lated to expectations of valuations such as consumer surplus. Tang (2011) bounds seller

revenue in first price auctions with common values. What these papers have in common is

that they investigate what economic features of interest can be (set-)identified in auctions

when relaxing the auction model in important dimensions but without imposing additional

parametric structure on the problem. My results contribute to this line of research.

Also Song (2004) provides a method to nonpametrically identify the distribution of

valuations in certain IPV English auctions when the number of bidders is unknown. A

key insight is that observing a pair of adjacent order statistics is sufficient to point identify

the distribution. As usual, the second-highest valuation is equal to the transaction price

(when abstracting from bidding increments). To pin down the third-highest valuation,

Song (2004) exploits the fixed end time rule used in eBay auctions. I instead focus on

the more traditional English auction setting with a flexible end time, where the auction

only closes after providing bidders ample opportunity to raise the standing bid (“going,

going, gone”).1 The method in Song (2004) does not apply directly to traditional English

auctions as observables can only bound the third-highest valuation.

To emphasize the limited information directly observable in English auctions with

absentee bidding, highest bids cannot be discerned from the vector of bids when identities

are not known and when live bidders may not get the chance to place a bid at their

1Besides being the norm in offline auctions for e.g. cattle, real estate, art, or machinery, the
flexible end time rule is also used in online auctions outside of eBay. Examples in no particular
order are: www.cattleusa.com, www.bonhams.com, www.taylerandfletcher.co.uk. www.sothebys.com,
www.chiswickauctions.co.uk, www.liveauctioneers.com, www.i-bidder.com, www.easyliveauction.com,
www.bontragerauction.com, www.auctionsnewengland.com, www.christies.com
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maximum valuation. This limited information content diverges from what is assumed

known in previous studies, including Paarsch (1997) using all bidders’ drop-out values

and the number of bidders, Haile and Tamer (2003) and Chesher and Rosen (2015, 2017)

using a vector of highest bids and the number of bidders, Song (2004) using a vector of

bids that includes the second and third-highest drop-out values, and Aradillas-López et al.

(2013) using the second highest drop-out value and number of bidders. These papers are

all ground breaking in their econometric use of bid data from English auctions, but it is

problematic to apply their identification strategies to the limited bid data central to this

paper. For the analysis developed here, the econometrician needs to observe only: 1) a

vector of bids and 2) which bids are submitted by absentee bidders.

The rest of the paper is organized as follows. Section 4.2 introduces the theoretical

auction model. Section 4.3 explains the informational content of bids from absentee bidders

and the use of sample spacings to identify bounds on valuation order statistics. Section 4.4

presents identification results. Section 4.5 discusses nonparametric Kernel estimation of

the relevant distribution functions. In Section 4.6 the method is applied to a new dataset

of fine wine auctions in which the number of bidders and their highest bids is unknown.

The Appendix contains all proofs, results from Monte Carlo simulations and a section on

inference.

4.2 Auction model

The mechanism is an English auction with a flexible closing rule, fixed bidding increments

and a secret reserve price. Bidders have the option to place a sealed bid ahead of the

auction. Ex-ante symmetric, risk neutral bidders have unit demands and face negligible

entry and bidding cost. Key assumptions on model primitives are:

Assumption: (IPV). Bidders independently draw a valuation from a common distribu-

tion. This distribution is assumed to satisfy the following regularity conditions: i) it is

absolutely continuous, ii) it is defined on the bounded support [v, v̄], and iii) it satisfies the

Increasing Failure Rate.

The main part of this paper relies on the conditional independence assumption that is

the main tenet in the structural analysis of English auctions (Paarsch and Hong (2006)).

Where possible it is discussed how the results apply to auctions in which bidders have

unrestricted private values.

Assumption: (Symmetry). Bidders are symmetric. In particular, their preference for
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live or absentee bidding is independent of their valuation.

This assumption rules out that absentee bidders differ systematically in their valuation

for the auctioned objects. In practice, even in brick and mortar auction houses live bidding

does usually not require a bidder to be present in the auction room as he can participate

online or on the phone. As it is not necessarily more or less costly to submit an absentee

bid in writing before the auction, the model assumes a random preference for absentee

bidding.

I follow the convention to denote random variables in upper case and their realizations

in lower case. Auction observables are denoted by random vector Z. The marginal distri-

bution of valuation Vi conditional on Z is denoted by FVi|Z for bidder i. FV|Z is shorthand

notation for the joint distribution of valuations in auctions with n bidders. Their respec-

tive densities are: fVi|Z and fV|Z. Symmetry makes that FV is a joint distribution of

exchangeable random variables and consequently FVi|Z reduces to FV |Z ∀i. Independence

implies that FV|Z = FnV |Z which is the latent distribution targeted in structural models

with IPV bidders.

The following assumption restricts variation of the unobserved number of bidders n.

Assumption: (Exogenous participation). If n varies across auctions with identical co-

variates, FV |Z(.|n) = FV |Z(.|n′) ∀n 6= n′, ∀z ∈ Z.

The assumption formalizes what is already implied by the combination of IPV and

negligible entry cost: the number of potential bidders does not vary due to auctioned

items being more or less valuable. This is important to stress because without observing

the number of bidders, identification of the valuation distribution requires that this dis-

tribution is either independent of the number of bidders or that the number of bidders is

fixed across auctions. Exogenous participation is an assumption that has been previously

imposed to aide identification or testing in various auction settings (e.g. Athey and Haile

(2002), Haile and Tamer (2003), and Aradillas-López et al. (2013)). Song (2004) shows

that in order to also identify the distribution of the number of bidders this number must

be assumed fixed across auctions, which is more restrictive.

4.2.1 Absentee bidding

While the absentee bidding component of English auctions is hardly mentioned in the

literature there are some notable exceptions: Ginsburgh (1998), Rothkopf et al. (1990)

and Thiel and Petry (1995). Lucking-reiley (2000) finds that this practice has been used

since at least 1878 for stamp auctions. Auction mechanisms with absentee bidding are

108



designed in a way that does not disadvantage absentee bidders. To see why, if the opening

bid would be the highest submitted absentee bid all their rent would be depleted instantly

and it would be more attractive to participate in the live bidding. If only one absentee

bid is submitted for an item, the opening bid must start below that value and the exact

opening bid rule varies by institution. Some start at the reserve price, some start at a

predetermined share of the absentee bid. The following explanations by different auction

houses provide additional intuition about absentee bidding in practice. The first one is

taken from the Sotheby’s wine auction catalog provided for the auctions in my data:

Absentee bids are to be executed as cheaply as permitted by other bids or reserves and in

an amount up to but not exceeding the specified amounts. Bids will be rounded down to the

nearest amount consistent with the bidding increment. In the case of identical (rounded)

bids, the earliest submitted form will take precedence.2

A commission/absentee bid is a figure left with the auctioneers by the interested party

on the premise that we will bid on their behalf in their absence. We will only bid up to

wherever the bidding stops in the room for any given item.3

You may hear an auctioneer say that he’s got a “commission bid” or that he has a bid

“on the book”. What that means is that someone who is unable to attend the auction has

completed a commission bidding form and entered a maximum price for which he will pay

for a particular lot.4

The empirical observations that: i) my data contains various auctions with multiple

absentee bids before live bidding starts and ii) after initial absentee bids the live bidding

alternates with absentee bids motivate the following stylized representation of the data:

Bidding sequence. With one absentee bid, the opening bid equals the minimum of the

reserve price and that bid. With multiple absentee bids, the opening bid equals the mini-

mum of the absentee bids. Subsequent bids follow fixed bidding increments until all but one

absentee bidder drops out. Afterwards, live bids are alternated against the last remaining

absentee bidder unless he has dropped out.

Most importantly this guarantees that absentee bidders do not have a disadvantage

compared to live bidders.5 Accuracy of the opening bid rule cannot be verified in the data.

2Source: Sotheby’s (2014)
3Source: http://www.cheffins.co.uk/en/auctions/fine-art/buying-and-selling/buying/how-to-bid
4Source: http://www.wilsonsauctions.com/ways-to-bid
5The assumed opening rule depends on the empirical application. If instead no more than two absentee

bids precede live bidding, it is more plausible that the opening bid equals the second-highest absentee bid
when there are more than two absentee bids.
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While it is helpful to specify this sequence for analyzing bids, results do not depend on it:

another rule that does not disadvantage absentee bidders and is consistent with the data

is also allowed.

To see how this restriction compares to structural analysis of bid data in other IPV

English auction studies, consider the two benchmark models. Paarsch (1997) assume that

data is generated by the button auction model in which case all bids are assumed to be a

different bidder’s maximum willingness to pay. But even when relaxing the behavioral re-

strictions of the button auction model and using the incomplete model of Haile and Tamer

(2003) for structural analysis of bid data, it is required to observe a vector of highest bids.

This is explicitly stated in Chesher and Rosen (2015, 2017) who extend the work of the

Haile and Tamer (2003) by providing sharp bounds on the valuation distribution. A vector

of highest bids may indeed be readily observable in some English auctions. For example,

eBay provides bidder identities alongside with submitted bids, but in the traditional En-

glish auctions that are the focus of this paper this information is often unavailable. Instead

of needing to know highest bids and the number of bidders, the following information is

necessary for the approach in this paper:

Informational requirement: The econometrician observes: i) a vector of bids, ii) which

ones are absentee bids.

4.2.2 Equilibrium strategies

The only restriction on bidder behavior is that it is rational and that bidders are attentive.

In particular, the two intuitive behavioral assumptions that define bidding strategies in

the incomplete model of Haile and Tamer (2003) are imposed. While these assumptions

are satisfied in all symmetric separating equilibria of the button auction model of Milgrom

and Weber (1982), they also allow for alternative behavior including not bidding at all or

bidding less than one’s valuation.

Assumption: (Haile & Tamer bidding). Potential bidders never bid more than they are

willing to pay and never let an opponent win an auction at a price they are willing to beat.

Recall that absentee and live bidders are symmetric up to their preference for absentee

bidding and their valuation draw. However, there is a crucial difference in their poten-

tial bidding strategies. Live bidders can squat, jump, not bid, bid once or many times

incrementally (see Hasker and Sickles (2010) and the references therein). For absentee

bidders their strategy only consists of the height of their maximum bid submitted to the

auctioneer. Even under the weak behavioral assumption this bid will be truthful.
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Lemma 6. The unique symmetric Bayes Nash equilibrium in weakly undominated strate-

gies is for absentee bidders to bid their valuation.

The proof of Lemma 6 is relegated to the Appendix, but the result is intuitive as for

absentee bidders the environment is strategically equivalent to an IPV second-price sealed

bid auction. It is well-known that truthful revelation is a weakly undominated strategy in

that setting (Vickrey (1961)).6

Note that Lemma 6 does not correspond to the so-called ‘sealed-bid abstraction’ of-

ten employed in eBay auction studies (e.g. Bajari and Hortaçsu (2003), Song (2004)).7

Zeithammer and Adams (2010) argue that some eBay bidders tend to ‘proxy bid’ below

their valuation, in order to potentially increase their bid at a later time, invalidating this

abstraction (see also the commentary by Hortaçsu and Nielsen (2010)). Absentee bidders

however cannot raise their bids at a later stage.

4.3 The identifying power of (absentee) bids and spacings

In this section, I leverage additional information revealed by absentee bids to bound an

additional order statistic of the valuation distribution. The second step is to use results

from the statistics literature on the stochastic spacing of order statistics depending on the

shape of the underlying valuation distribution.

4.3.1 Relation of bids to values

Lemma 1 established that the maximum amount that absentee bidders report to the auc-

tioneer is equal to their valuation. The sequence of observed bids also include intermediate

bids because the auctioneer is to obtain the lot for the absentee bidder at the lowest pos-

sible price. Following the modelled bidding sequence, it is possible to determine which

bids correspond to absentee bidders drop-out values rather than intermediate bids. For

example, the lowest bid is one such value if there are multiple absentee bids placed before

live bidding starts. The highest absentee bid if it is not the winning bid also corresponds

6Restriction of the strategy space to weakly undominated strategies is required for uniqueness of the
equilibrium (Bikhchandani et al. (2002)) Imposing a weaker notion of “posterior implementability” as in
the button auction model instead allows for losing bidders to not regret bidding less than their valuation.

7Bajari and Hortaçsu (2003) split the auction up into two parts; the first part is modeled as a regular
English auction but the second part as a second-price sealed bid auction where bidders bid truthfully at
the last-minute, so that the revelation of their private information to the other common value bidders
is inconsequential. Song (2004) introduces a last ‘personal monitoring opportunity’ where private value
bidders will bid their valuation in eBay auctions, driven by second-price sealed-bid motives.

111



to a drop-out value. Example 1 shows this in more detail and additional examples are

provided in the appendix.

Example 2. Ai and Lj respectively denote the ith lowest overall bid, which came from

an absentee bidder, and the jth lowest overall bid in the bid vector, which came

from a live bidder. So the first and lowest absentee bid is A1 if there is an absentee

bidder, and the other bids follow according to the defined bidding sequence.

Auction 1: A1, A2, A3, L4, L5

Auction 2: A1, L2, A3, L4, L5

Auction 3: A1, L2, A3

In Auction 1 there must be more than one absentee bidder as there are multiple ab-

sentee bids placed before live bidding starts, any other explanation would violate

that the auctioneer acts in the best interest of the absentee bidder. Hence, A1 is

one drop-out value. A second one is A3. Also note that L4 and L5 must be placed

by different (live) bidders because nobody would outbid himself.

In Auction 2, live bidding starts immediately after the first bid, indicating that there

is just one absentee bidder. Here, one drop-out value is A3, and two other ones are

L4 and L5 (again because nobody outbids himself).

In Auction 3, A3 is the lowest drop-out value of an absentee bidder and L2 is another

drop-out value.

Practically, due to the fixed bidding increments (and rounding of absentee bids) all

these drop-out values are lower bounds on the valuations of the corresponding bid-

ders. For absentee bidders, upper bounds can be established that add two bidding

increments to their identified drop-out values. To see why, consider the bid A3 in

Auction 2. If the absentee bidder for whom the auctioneer submits this bid had a

valuation that was more than two bidding increments above A3, it would show up as

a higher absentee bid, replacing L5. By contrast, due the flexibility of their bidding

strategies, live bidders could have a valuation larger than two bidding increments

above their drop-out value.

Let b denote the number of submitted bids in an auction and ∆ the minimum bidding

increment. Using order statistic notation, Bb:b is the highest submitted bid, Bb−1:b the

second-highest and Bx the highest observed drop-out value less than Bb−1:b. As explained

above, Bx is a different bid order statistic in different circumstances.8 It is not new that

8In Example 1, in Auction 1 and 2 Bx = Bb−2:b and in Auction 3 no Bx can be identified. Given the
assumption of exogenous variation in the number of bidders this sample selection problem is not an issue.
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the second-highest valuation is bounded between Bb−1:b and Bb:b + ∆ (Haile and Tamer

(2003)) and it is clear that the highest valuation must exceed Bb:b. These observations

explain (4.1)-(4.3) below.

I use additional information revealed by the bidding sequence including absentee bids

to bound the third-highest valuation. Equation (4.4) holds by the definition of Bx. This

statistic is identified in auctions where a drop-out value is observed that is less than the

two highest observed bids.9 Furthermore, nobody outbids themselves so the highest two

bids are submitted by different bidders. As Bx must be submitted by another bidder by

definition, this bid is a lower bound on the third-highest valuation as in (4.4).

This provides the following (incomplete) list of order statistics:10

Vn:n ≥ Bb:b ≡ V L
n:n (4.1)

Vn−1:n ≥ Bb−1:b ≡ V L
n−1:n (4.2)

Vn−1:n ≤ Bb:b + ∆ ≡ V U
n−1:n (4.3)

Vn−2:n ≥ Bx ≡ V L
n−2:n (4.4)

The observed right-hand side variables place bounds on valuation order statistics of in-

terest. As per the above, subscrips L and U respectively denote the lower and upper

bound on the order statistic pinned down by observable bids. I will now show how sample

spacings can be used to bound the distribution and expected value of the highest valua-

tion given distributions of observed ordered bids. Bounds on highest and second-highest

valuations can be used directly to identify expected consumer surplus as Aradillas-López

et al. (2013) do for unrestricted private value English auctions (crucially, relaxing IPV).

In Section 4.4 I also investigate the usefulness of (bounds on) sample extremes in combi-

nation with additional restrictions to tighten these bounds to set-identify the distribution

of valuations directly.

9It could be submitted by an absentee bidder or another live bidder if it can be distinguished from the
highest two bids (by being submitted on the phone versus in the room, for example).

10Also bounding the fourth-highest valuation (a worst case bound is the opening bid but further infor-
mation is available in the bidding sequence of some auctions) could be useful. In particular, it may help to
evaluate what is the strongest shape assumption (introduced shortly) not falsified by the data. I have not
yet implemented this in the current version of this paper. The qualification that the list of order statistics
is incomplete specifically refers to the point that ∀i ∈ {0, ..., n − 1} Vn−i:n ≤ Bb:b + ∆, but these other
order statistics are not useful here given that n is unobserved.
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4.3.2 Sample spacings and shape restrictions

Due to the censoring problem in English auctions, the fact that the auction stops when

the bidder with the second-highest valuation drops out (after adding one increment to

his drop-out value), it is a standard issue that the highest valuation is never observed.

I discuss three nonparametric shape restrictions of increasing power that impose enough

structure to identify informative upper bounds on Vn:n. It is then trivial to translate these

into lower bound on the distribution of the highest valuation. While restrictive, the three

cases are general enough to be valid in a variety of empirical settings: i) log-concavity,

ii) concavity, and iii) symmetry of fV |Z. Proofs of lemma’s presented in this section are

relegated to the appendix.

Definitions for spacings and stochastic ordering. Following Pyke (1965, 1972) spac-

ings Di between two adjacent order statistics are defined as: Di = Vi:n−Vi−1:n, ∀i = 2, .., n.

Normalized spacings are defined as: D̃i = (n− i+ 1)(Vi:n − Vi−1:n), ∀i = 2, .., n. Both Di

and D̃i are random variables with CDF’s FDi and FD̃i ∀i = 2, ..., n. Random variable X

is said to be stochastically smaller than Y if FX(a) ≥ FY (a) ∀a, which also implies that

E[X] ≤ E[Y ]. When the sample spacings D = {D2, D3, .., Dn} are said to be stochastically

decreasing if: FD1(a) ≥ FD2(a) ≥ ... ≥ FDn(a) ∀a.

The first shape restriction uses the result that normalized spacings of order statistics

based on an i.i.d. sample drawn from a log-concave density function are stochastically

decreasing (Pyke (1965, 1972)). For reference, normalized spacings from an exponential

distribution are independent and identically distributed. Also, the right tail of a log-

concave density function is at most as convex as the right tail of the exponential density

function.

Lemma 7. [Log-Concave density] Let fV |Z be (weakly) log-concave. Observing V U
n−1:n and

V L
n−2:n in auctions with Z = z ∀z, identifies a lower bound on the distribution of Vn:n,

∀v ∈ [v, v̄]:

FVn:n|Z(v) = P [Vn:n ≤ v|Z = z] ≥ P [V U
n−1:n + 2(V U

n−1:n − V L
n−2:n) ≤ v|Z = z] ≡ FL(lc)

Vn:n|Z(v)

(4.5)

In the case that fV |Z is weakly log-concave (exponential) and ∆ = 0 F
L(lc)
Vn:n|Z(v) is only an

upper bound if the bidder with the third-highest valuation had no opportunity (or reason)

to drop-out at his valuation. Otherwise, (4.5) holds with equality in this case.

The superscript “L(lc)” in Equation 4.5 indicates that this is a lower bound for valua-
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tion distribution functions satisfying a log-concave density. Log-concavity is a commonly

used restriction in the auction literature. Distribution functions that satisfy the restriction

(at least for certain parameter values) include the: extreme-value, gamma, beta, Weibull

and power distributions. Some distribution functions that are used in practice, including

the Pareto and log-normal, do not have log-concave density functions for any parameter

values (Bagnoli and Bergstrom (2005)).11

As log-concavity is least restrictive and often imposed in empirical auction studies

F
L(lc)
Vn:n|Z(v) is the basis of results in the rest of this paper. However, to provide some addi-

tional insight into the identifying power of shape restrictions I also examine the usefulness

of concavity and symmetry. At this point I’d like to emphasize that these restrictions do

not exhaust the options. It is likely that other, perhaps more appropriate for some data

generating processes, shape restrictions can be combined with results from the statistical

literature on sample spacings to aid the structural analysis of data from auction markets.

Furthermore, more can be done when having access to a vector of highest bids or to at

least three order statistics. The log-concavity assumption that is commonly imposed (or

implied by it: the Increasing Failure Rate assumption that is necessary for the Riley and

Samuelson (1981) optimal reserve price to be unique) can be tested using spacings. It’s

increasing normalized spacings implication can be directly tested with such data, as more

formally shown in An (1995).

Regarding concavity: spacings of order statistics based on an i.i.d. sample drawn from

a concave density function are stochastically decreasing (Pyke (1965, 1972)) For reference,

the right-tail of a concave density function is at most as convex as the uniform density

function (on the same support). This provides a tighter lower bound on the distribution

of the highest valuation as formalized in the following Lemma.

Lemma 8. [Concave density] Let fV |Z be (weakly) concave. Observing V U
n−1:n and V L

n−2:n

in auctions with Z = z ∀z, identifies a lower bound on the distribution of Vn:n, ∀v ∈ [v, v̄]:

FVn:n|Z(v) = P [Vn:n ≤ v|Z = z] ≥ P [V U
n−1:n + V U

n−1:n − V L
n−2:n ≤ v|Z = z] ≡ FL(c)

Vn:n|Z(v)

(4.6)

The superscript “L(c)” in Equation 4.6 indicates that this is a lower bound for valuation

distribution functions satisfying a concave density. As concavity is (much) stronger than

log-concavity, this bound is (much) tighter than the bound derived under the assumption

of log-concavity in Equation (4.5).

11Also see Bagnoli and Bergstrom (2005) for references to the use of log-concavity or restrictions implied
by it in economic analysis of games including auctions and for an elaborate overview of results for log-
concave densities and distributions.
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Regardless of whether the density is convex or (log-)concave, and uni-modal or not,

when it is symmetric the following result holds:

Lemma 9. [Symmetric density] Let fV |Z be symmetric. Observing V U
n−1:n and V L

n−2:n in

auctions with Z = z ∀z, identifies a lower bound on the distribution of Vn:n, ∀v ∈ [v, v̄]:

FVn:n|Z(v) = P [Vn:n ≤ v|Z = z] ≥ P [V U
n−1:n + V U

n−1:n− V L
1:n ≤ v|Z = z] ≡ FL(s)

Vn:n|Z(v) (4.7)

The superscript “L(s)” in Equation 4.7 indicates that this is a Lower bound for valu-

ation distribution functions satisfying a symmetric density.

All results in this section assume that the econometrician observes a large set of in-

dependent auctions. Exogenous variation in the unobserved number of bidders (if there

is variation) guarantees that it is inconsequential to select auctions with at least three

bidders. Three bidders is a necessary condition for Bx to be known.

4.4 Set-identification of bidder valuations and consumer sur-

plus

This section presents new nonparametric identification results using the derived bounds

on the highest valuation, without knowing the number of bidders. I also discuss previous

findings to highlight distinguishing features of different identification methods. In this

section I omit auction observables Z for brevity.

Generally, in auctions with a binding reserve price, observables are uninformative for

this distribution on the truncated part of the support (Athey and Haile (2002)). Positive

nonparametric identification results however extend to the distribution that is truncated

from below at the reserve price, which is typically the structural feature of interest when

that reserve is known.12 Due to the secret reserve price in my data (and typical in tra-

ditional English auctions), the distribution of interest in this paper is instead truncated

at the opening bid. Since absentee bids are called out at the start of the auction, this

has a similar censoring effect on potential live bidders as starting the bidding at a known

reserve price. Without conditioning on B1:b the latent distribution of interest is a mixture

that takes the expectation over opening bids.13

12Another approach is to impose parametric structure (e.g. Donald and Paarsch (1996), Paarsch (1997)),
as advocated by Paarsch and Hong (2006), as the only way to calculate the optimal reserve price without
imposing that it must be at least equal to the actual reserve.

13The mixture distribution equals: ∀v ∈ [v, v̄]:
∫ FV |Z(v)−FV |Z(b1:b)

1−FV |Z(b1:b)
dFB1:b|Z(b1:b|z), with dFB1:b|Z the

density of opening bids and b1:b a specific realization of random variable B1:b. Haile and Tamer (2003,
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I now briefly discuss nonparametric identification in IPV English auctions as estab-

lished by Athey and Haile (2002) when the number of bidders is known. Symmetry makes

that identifying any marginal CDF implies identifying the marginal CDF for all bidders,

but the results generally go through for asymmetric bidders when also the identities of the

bidders are known. A key insight is that the distribution of Vi:n is a strictly increasing,

known, function of its parent distribution. Hence any order statistic from an i.i.d. sample

of known size from a continuous distribution uniquely pins down its parent distribution.

In particular, the distribution of the (n− i+ 1)th order statistic of valuations:

FVi:n(v) =
n!

(i− 1)!(n− i)!

∫ v

v
FV (t)i−1[1− FV (t)]n−ifV (t)dt (4.8)

Defining this monotone transformation as ψ (FV (v);n, i), FV(v) can be obtained as:[
ψ−1 (FVi:n(v);n, i)

]n
, ∀v ∈ [v, v̄] and where ψ depends crucially on i and n. For instance,

in a button auction rationalization of the auction the highest bid (as equivalent to the

second-highest valuation) and the number of bidders point-identifies the distribution of

valuations. In the incomplete model of Haile and Tamer (2003), bounds on the parent

distribution are identified using the known transformation in Equation (4.8) and stochas-

tic dominance relationships of the distributions of certain bid order statistics bounding

valuations.

Other objectives in structural auction analysis are pinning down expected consumer

surplus (CS) and expected seller revenue (SR). The ex-ante consumer surplus in auction

t only depends on the valuation of the highest bidder and the final price in each auction

t: CSt = V t
(n:n) − p

t, with pt being the observed total price (including commissions):

CSt =

∫ ∞
Btb:b

xfVn:n(x)dx− pt (4.9)

Bounds on the highest valuation obtained in part with the method outlined in the previous

section deliver bounds on fVn:n(x), denoted again with U and L subscripts. Bounds on

fVn:n(x) trivially bound CSt by stochastic dominance:∫ ∞
Btb:b

xfUVn:n(x)dx− pt ≤ CSt ≤
∫ ∞
Btb:b

xfLVn:n(x)dx− pt (4.10)

footnote 17) present a discrete version of this mixture distribution when FV |Z is left-truncated by a stochas-
tic reserve price when not conditioning on that reserve price. The proposed identification strategy is only
useful for counterfactuals that do not affect distribution of opening bids. As in English auctions typically
the right-tail of the distribution is of interest for counterfactual policies, this is likely an inconsequential
restriction. In particular, if in doubt the econometrician can also specify the latent distribution of interest
to be left-truncated at another exogenous cut-off value.
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Bounds on marginal distributions FVn−1:n and FVn:n can also be used to bound expected

CS and SR as shown by Aradillas-López et al. (2013).14

4.4.1 Set-identification using sample spacings

The following results regard the latent distribution of valuations using sample extremes.

Lemma 10. [Sample extremes under IPV] In symmetric IPV English auctions, observing

V L
1:n and V U

n:n identifies FV within bounds:

FV L1:n
(v) ≥ FV (v) ≥ FV Un:n(v) (4.11)

Intuitively, the valuation of any bidder must be at least as much as the valuation of

the bidder with the lowest valuation but at most the valuation of the bidder with the

highest valuation. Clearly, that statement does not require the independence assumption

and is valid for unrestricted private values as well. In that case sample extremes bound

the joint distribution of valuations. The distribution of the lowest valuation bounds the

joint distribution of valuations for all bidders and the distribution of the highest valuation

is equivalent to the joint distribution.

Lemma 11. [Sample extremes under unrestricted private values] In symmetric (unre-

stricted) private value English auctions, observing V L
1:n and V U

n:n identifies FV within

bounds:

FV L1:n
(v) ≥ FV(v) ≥ FUVn:n(v), (4.12)

where FV(v) = FV1,...,Vn(v, ..., v).

As a result, the proposed identification approach for latent valuations is attractive

even beyond the auction environment motivating this paper where the number of bidders

is unobserved but where bidders have conditionally independent private values.

Partly relaxing both the information requirements and the structural restrictions to

identify bounds on the valuation distribution and the winning bidders’ surplus cannot

come without a cost.15 Indeed, it is not surprising that using only the bid sample extremes

14Practically, since reserve prices are unobserved, this would multiply the surplus and revenue functions
with the sale probability that is pinned down from the data, separately for each Z = z.

15The information set is ‘partly’ weakened because although the number of bidders is not required, it is
assumed that all bids including which ones are from absentee bidders is known. The structural restrictions
are also ‘partly’ weakened because an assumption on the bidding sequence (and for the lower bound on
the shape of the distribution) is added. Yet as both types of added requirements are modeled to reflect
actual traditional English auctions, for such environments it can be concluded that this paper imposes a
less restricting structure.
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rather than the infimum and supremum over a number of pinned-down bid order statistics

(with IPV and a known number of bidders) in Haile and Tamer (2003) results in wider

bounds on the valuation distribution; especially if the lower bound results from a fairly

conservative shape restriction.

This statement by itself goes to show the importance of the number of bidders. With-

out that statistic it is difficult to make sense of auction data. The identification approach

proposed in this paper should be considered in tandem with a strategy to sharpen the

bounds. I consider identifying variation from the observed number of bids. By the ex-

ogenous participation assumption, the distribution of valuations doesn’t vary due to the

number of bidders. Within this context it makes sense that also variation in the number

of bids arises due to factors exogenous to bidder valuations. Conditional on bidder valu-

ations, the English auction model allows utter flexibility of bidding strategies in terms of

the number (and timing) of bids placed by live bidders. They can actively participate from

early on by placing multiple bids below their valuation, or wait with bidding initially, bid

once a high amount or incrementally.16 Furthermore, the lowest maximum bid submitted

by absentee bidders is stochastic so just variation in their value draws generates different

number of bids without the latent valuation distribution itself being affected.

Let the number of bids for auctions with covariates Z be denoted as random variable

BZ with realization b:

Assumption: (Conditionally Independent Number of Bids (CINB)). FV |Z ⊥ BZ, so

∀(b 6= b
′
) ∈ BZ: FV |Z(v|b) = FV |Z(v|b′), ∀v ∈ [v, v̄] and ∀z ∈ Z.

FV |Z ⊥ BZ is the exclusion restriction necessary for the tighter bounds to be valid.

Imposing CINB, those bounds (indicated with a prime) are obtained as:∀v ∈ [v, v̄],

∀z ∈ Z:

FL
′

V |Z(v) ≡ max
b∈BZ

FV Un:n|Z(v|b) (4.13)

FU
′

V |Z(v) ≡ min
b∈BZ

FV L1:n|Z
(v|b)

Alternatively, if the econometrician has access to other observables that are excluded

from bidder valuations the same strategy can be used to get the pointwise minimum and

maximum over realizations of that random variable. This is more generally proposed as an

identification strategy in Athey and Haile (2007) and also used to tighten bounds in e.g.

Aradillas-López et al. (2013) who exploit exogenous variation in the number of bidders. For

16Cho et al. (2014) for instance provide empirical evidence for an interesting range of exercised bidding
strategies including those mentioned here, although for a different bidding environment.

119



empirical settings where it is more plausible that valuations are stochastically increasing

or decreasing in an observed variate, the same strategy applies to tighten only one of the

bounds.

4.4.2 Extension of existing method relying on two order statistics

Song (2004) takes another approach to identification in IPV English auctions when the

number of bidders is unknown, using the fixed closing rule of eBay auctions. The model

pins down the second- and third-highest valuation and identification uses the order statistic

result that the distribution of Vi:n conditional on Vj:n (for j < i) equals the distribution

of Vi:j−1 from a sample truncated from below at the realization of Vj:n (as more generally

shown in David and Nagaraja (2004)). Using this additional third-highest order statistic

of valuations cleverly avoids needing to know the number of bidders since the monotonic

transformation depends on the distance (j − 1) between the order statistics. Song uses

this idea to identify FV by taking limits: limvj→v̄ FVi:n|Vj:n(vi|vj) = FV(i:j−1)
(vi) for (j < i).

The limit assumption supports the identification strategy of Song (2004) (and based

on her results Adams (2007) and il Kim and Lee (2014)) and is valid if the relevant third-

highest order statistic is indeed sufficiently spread out. In that case, FV is identified off

auctions with few bidders and a low third-highest valuation.

I explore this result when instead all order statistics are only known within bounds, as

in traditional English auctions that do not benefit (in this one sense) from a fixed closing

rule.

Lemma 12. [Based on Song (2004)] In symmetric IPV English auctions, knowing two

ordered valuations Vi:n and Vj:n, with i = n − k and j = n − l (0 ≤ k < l ≤ n − 1)

nonparametrically identifies FV |V≥vj (.).
17

A complete auction model with IPV that pins down any pair of order statistics of

the distribution of valuations thus does not require the number of bidders to identify the

marginal distribution of valuations that is truncated at the realization of the conditioning

order statistic.18 It is then natural, in the spirit of Haile and Tamer (2003), to use

a stochastic dominance argument based on monotonicity of the ψ transformation (see

Equation (4.8)) to support that an incomplete English auction model that set-identifies

17Equivalently, for procurement auctions, knowing Vi:n and Vj:n, with i = k and j = l (1 ≤ k < l ≤ n)
nonparametrically identifies FV |V≤vj (.)

18I say ‘pair’ here to emphasize that without knowing the sample size it is important that these ordered
values are either the ith and jth highest values or the ith and jth lowest values. Otherwise their distance
is unknown as any number of bidders could have a valuation in between.
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at least one of these order statistics delivers bounds on the truncated distribution.19

Lemma 13. [Based on Song (2004) and Haile and Tamer (2003)] In symmetric IPV

English auctions, knowing bounds on at least one of two ordered valuations Vi:n and Vj:n,

with i = n − k and j = n − l (0 ≤ k < l ≤ n − 1) nonparametrically identifies bounds on

FV |V≥vj .
20

Usefulness of this truncated distribution and informativeness of the bounds depends

on the auction model and the empirical application. One can then adopt the identification

at infinity strategy from Song (2004) by taking the truncation point to the lower bound

of its support to deliver bounds on the untrucated distribution.

4.5 Nonparametric estimation method

Bounds on the valuation distribution are asymptotically revealed by relevant bid order

statistics, which provide observable bounds on ordered valuations. To emphasize this,

estimated bounds on FV are denoted in terms of the distribution of ordered bids. GBi:b
denotes the distribution of the (b− i+ 1)th highest out of b bids. Smooth nonparametric

estimates are obtained using Kernels, such as for the upper bound on FV that is estimated

from the distribution of lowest bids:

F̂UV (v) = ĜB1:b
(v) =

1

T

T∑
t=1

K

(
Bt

1:b − v
hT

)
, (4.14)

∀v ∈ [v, v̄]. K(u) is the integral of the familiar Parzen-Rosenblatt kernel density estimator:

K(u) =
∫ u
−∞ k(t)dt with k(.) the Epanechnikov Kernel function. Under the conditions that

GB1:b
(v) is continuous (on its support) and hT → 0 as T → ∞, Nadaraya (1964) estab-

lishes uniform convergence of this estimator.21 Cross-validated least-squares bandwidths

are selected optimally to minimize integrated mean squared error. As for the empirical

19While Haile and Tamer (2003) left the question of sharpness of their bounds undetermined, Chesher
and Rosen (2015) prove that together with the marginal distributions of final bids its joint distribution
exhausts the available information, and together they provide sharp bounds on the distribution of interest.
In this context also the joint CDF of the lowest Vi:n, ..., Vk:n conditional on Vj:n (for i < k < j) is identical
to the joint CDF of Vi:j−1, ..., Vk:j−1 from a sample truncated from above at vj:n. Hence I expect that
bounds on the truncated distribution based on bounds on the joint distribution of two or more ordered
valuations conditional on Vj:n leads to a weakly sharpening of the bounds obtained from their marginal
(conditional) distributions. However, this is beyond the scope of the paper.

20Equivalently, for procurement auctions, knowing bounds on at least one of two ordered valuations Vi:n
and Vj:n, with i = k and j = l (1 ≤ k < l ≤ n) nonparametrically identifies bounds on FV |V≤vj .

21Unlike with kernel density estimation, ThT → ∞ is not a necessary condition (see Chacón and
Rodŕıguez-Casal (2010) for a discussion)
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application in this paper, this estimation strategy can easily be applied to estimate bounds

conditional on auction observables. Data-driven optimal bandwidth selection extends to

conditional CDF estimation using the method in Li et al. (2013), which can incorporate

multi-dimensional, mixed categorical/discrete and continuous conditioning variables and

automatically ‘smooths out’ irrelevant covariates.22

For the lower bound on FV I use the strategy set out in Section 4.3 and use the

weakest shape restriction that fV satisfies log-concavity. As shown, a lower bound on the

distribution of Vn:n that also bounds the distribution of FV from below is defined as the

distribution of the following bid statistics:

Bb:b + ∆ + 2(Bb:b + ∆−Bx), (4.15)

which I denote by BX in the estimator below. Estimation of this bound is done for

all auctions in which a lower bound on the third-highest order statistic of valuations is

discernable, which requires at a minimum that the number of bids exceeds three. Let

I{Bt
x 6= ∅} indicate this event and Tx ≡

∑T
t=1 I{Bt

x 6= ∅} the number of auction that

satisfy the requirement. As for the upper bound, I use the Kernel estimator with cross-

validated bandwidth:

F̂LV (v) = F̂LVn:n(v) = ĜBX (v) =
1

Tx

Tx∑
t=1

K

(
Bt
X − v
hTx

)
, (4.16)

∀v ∈ [v, v̄]. For the tighter bounds in Equation (4.13), the above is repeated separately

for each number of bids placed after which point-wise minima and maxima are taken.

The baseline simulations have a sample of T = 1000. Conditioning on realizations of b

exacerbates the problem of small sample bias. Number of bid-specific samples are only

included as long as they have at least 50 auctions. Since this excludes some auctions, the

tighter bounds are calculated as the minima and maxima over the estimated b-dependent

bounds and the unconditional bounds to utilize the data best.

I also estimate the bounds on the consumer surplus CSt presented in Equation (4.10).

Bounds on fVn:n are estimated using Kernel density estimates with optimal cross-validated

bandwidths. For the density used to calculate respectively the lower and upper bound on

22The “np” package in R is well equipped for nonparametric Kernel estimation and bandwidth selection
and it is used for estimation of all ordered bid distributions in this paper. See Hayfield and Racine (2008)
for documentation.

122



CSt:

ˆfVn:n
U

(x) =
1

ThT

T∑
t=1

k

(
Bt
b:b − x
hT

)
(4.17)

ˆfVn:n
L

(x) =
1

ThTx

Tx∑
t=1

k

(
Bt
X − x
hTx

)
(4.18)

∀x ∈ [v, v̄]. Here, k(.) is the Epanechnikov Kernel function. Uniform consistency requires:

hT → 0 and ThT →∞ as T →∞ and for the lower bound that hTx → 0 and TxhTx →∞
as Tx → ∞ (Nadaraya (1965), see also Härdle and Linton (1994) for details of the non-

parametric estimation methods applied here). A lower (upper) bound on CSt is calculated

by evaluating this density for auction t on the grid from Bt
b:b (Bt

X) to v̄ and subtracting

pt that is observed. Essentially, the value of the integral is approximated by summing the

gridpoints multiplied by their estimated probabilities that are based on the relevant bid

order statistics. For the domain of integration v̄ is set to the maximum Bb:bt (across all

auctions) plus one standard deviation. The approximated densities are adjusted to sum

to one.

The Appendix presents results from Monte Carlo simulations to provide some intuition

behind the applicability of the bounds and the circumstances that lead them to be tighter

and more informative in practice.

4.6 Application of methodology to wine auctions at Sotheby’s

In this section the proposed identification and estimation strategies are applied to a unique

dataset of fine wine auctions. As the number of bidders in this data is unknown, the

method results in informative bounds on otherwise unobtainable model primitives of in-

terest.

4.6.1 Data description

The unique dataset covers the 884 lots from the “Finest and Rarest Wines & Vintage

Port” auction, held on November 19th 2014 at Sotheby’s London. I collected the data

by simply registering as an online bidder, recording the complete auction, and translating

the video material into a dataset of bids.23 The dataset contains all bids, which bids are

23The paper took a different turn after I collected the data. I went to the auction room to count the
number of bidders that I needed for structural analysis of the bid data, only to find that there were just
two others in that room although there was plenty of activity on the phone, online, and in the auctioneer’s
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Table 4.1: Descriptive statistics of Sotheby’s fine wine auctions

Statistic N Mean St. Dev. Min Median Max

Opening bid (£) 716 1,145.68 1,797.87 50 670 30,000
Highest bid (£) 716 1,375.67 2,161.06 90 750 32,000
Increment (£) 716 77.85 149.78 10 30 2,000
Number of bids (b) 716 4.30 3.01 2 3 25
Is lot sold? (1=YES) 716 0.92 0.28 0 1 1
Number bottles per lot 716 8.28 4.79 1 7 36
Sotheby’s low estimate (£) 716 1,220.64 1,787.55 80 680 26,000
Sotheby’s high estimate (% higher than low estimate ) 716 27.42 6.62 9.09 27.27 62.50
Vintage 672 1,998.91 10.32 1,929 2,001 2,012

The unit of observation is a single lot. The vintage is missing for Non-Vintage champagnes and for mixed lots of
various vintages.

from absentee bidders, and further auction descriptives. A key descriptive of interest is

the value bracket estimated by the Sotheby’s wine department and that is provided for all

auctions in the auction catalogue.

Of the 884 lots, 766 auctions have at least two bids and in 716 of those an absentee drop-

out value can be identified. No other auctions are excluded from the sample. Table 4.1

contains descriptive statistics of the data used for estimation, with as unit of observation

a single lot. For some lots the vintage is missing as the auction is either a mixed lot with

multiple vintages or (a) non-vintage champagne(s).

Conforming to standard practice in the structural estimation of auctions, these 716

auctions are treated as independent of each other. This abstracts from a range of interest-

ing issues. Some groups of lots could be described as sequential (multi-unit) auctions as

they make up a ‘parcel’ of identical or almost identical lots. Lots in these parcels contain

exactly the same wine (and vintage) but may still differ in quality24, bottle format, or

number of bottles. The winning bidder in any of the lots in the parcel has the liberty to

also purchase subsequent lots for the same price. In 55 lots of the wine auction sample a

bidder had this option, and in 43 of these cases it is exercised.25

“book” with absentee bids. Unfortunately, the wine department declined my request for access to statistics
about the number of bidders.

24For instance, having lower ullage levels, damaged labels or otherwise unfavorable package conditions
are related to potential oxidation.

25Related to these parcels, the empirical literature has noticed what is termed a “decreasing price
anomaly” in wine (and art) auctions: identical lots that are auctioned later generally fetching a lower
price. Various explanations have been provided for this (in (Ashenfelter (1989), McAfee and Vincent
(1993), Beggs and Graddy (1997), Ginsburgh (1998), Ashenfelter and Graddy (2003, 2006)): lots are
systematically ordered in order of decreasing quality, risk-averse bidders add a risk premium for earlier lots
to cover the risk that a winning bidder exercises his option to buy subsequent lots, or absentee bidders bid
sub optimally. In this analysis I abstract from any dependencies between auctions.
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The auctions have a secret reserve price, which is commonplace in auctions of wine

and art (Ashenfelter (1989)), as well as in online auctions (Bajari and Hortaçsu (2003)).

It is known that the reserve price will be at most the value of Sotheby’s low estimate for

the lot (Sotheby’s (2014)). Ashenfelter (1989) suggests that a secret reserve may function

to weaken bidding rings.26 As a result of not meeting the reserve, 8% of the lots in the

sample remain unsold. Since this is only announced after all bids are placed, these lots

are kept in the sample to estimate bounds on the joint distribution of bidders’ valuations.

4.6.2 Testing independent private values

The presence of absentee bidding requires bidders to be willing to announce their bids

before others do, which is a strong indication that they are not afraid of a ‘winners curse’

and that the assumption of private values is justified. Correlated values are allowed,

but it is reasonable to expect that correlation in valuations is completely captured by

auction observables, as the specialists at Sotheby’s Wine Department are unlikely to be

outperformed by potential buyers in establishing the current value of the wines.

I test empirically whether the IPV is a reasonable assumption or whether additional

correlation cannot be ruled out. In the IPV case the conditional distribution of valuations

implied by the distribution of the (i : n)th bid order statistic and implied by the (i′ : n)th

bid order statistic should be identical i 6= i′ (Athey and Haile (2002)). This is also

verifiable without knowing the number of bidders if three adjacent order statistics of

valuations would be point-identified so that the identification strategy of Song (2004) based

on conditional densities could be applied twice and two implied conditional distributions

can be compared, as also exploited in il Kim and Lee (2014).27

Here, the conditional distributions obtained from the lowest and second-highest bid

are compared, ignoring bidding increments. More specifically, given that my model is not

point-identifying, an equilibrium selection assumption is needed. For the purpose of this

test I rely on the assumption that the second-highest bid equals the second-highest valua-

tion and the lowest bid is equal to the lowest valuation. Under that assumption, estimated

distributions should be indistinguishable if there is no common value component. Table

26Eklof and Lunander (2003) finds that for English auctions of real estate seller revenue is higher with
publicly announced reserve prices than with secret ones. This last finding may however be related to real
estate auctions decreasing in value when auctioned multiple times. In particular, Adams (2007) (with
ascending eBay auctions of Corvettes) finds that secret reserve prices are generally set for goods that lend
themselves for being up for auction multiple times.

27In an auction setup comparable to the wine auction, they claim that the second third and fourth
highest observed bids are truthful. This requires assuming that bidders are restricted to bid once and only
once, in which case it is a weakly dominant strategy to bid one’s valuation. I am not willing to impose
that here.
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Table 4.2: P-values Kolmogorov-Smirnov tests for IPV

2 4 6 8 10 12 14 16 18 20

None (unconditional) 0.47 0 0 0 0 0 0 0 0 0
Low estimate 1 0.99 0.81 0.70 0.70 0.70 0.58 0.58 0.58 0.58

+ Nr of bottles 1 0.99 0.70 0.58 0.47 0.47 0.47 0.47 0.47 0.47
+ Vintage 1 0.99 0.81 0.58 0.58 0.58 0.58 0.58 0.58 0.58

P-values test equality unconditional distributions (first row) and conditional distributions with different covariates.
When conditioning on covariates, p-values are reported from tests of the equality of the distributions at the median
of covariates. Test are repeated assuming a different number of bidders in the data, results are reported in different
columns.

Table 4.3: Estimated E[CS] by tertile of Z (averages, £ per lot)

1st 2nd 3rd overall

N 244 235 237 716
Highest Bid 310 794 3050 1376
Low bound E[CS] 181 179 2018 1248
95%CI Low bound [ 178 , 192 ] [ 160 , 185 ] [ 2039 , 2116 ] [ 872 , 1415 ]
Up bound E[CS] (shape) 170 330 3446 1637
95% CI Up bound (shape) [ 170 , 179 ] [ 318 , 347 ] [ 3434 , 3560 ] [ 1248 , 2001 ]

Wine auctions consumer surplus statistics using estimated valuation distributions conditioning on tertiles of Z =
Sotheby’s low value estimate. “N” is the number of auctions in each Z-bracket and the last column “Overall” simply
takes the average of the estimated statistics in all 716 auctions. For the other columns, the mean statistic in all
N auctions in that Z-bracket are reported. The estimates are in (£) per lot, which contains on average about 8
bottles. The confidence intervals are calculated from 500 bootstrap samples.

4.2 reports p-values from different nonparametric Kolmogorov-Smirnov tests to formally

evaluate the IPV assumption (in fact, jointly with the equilibrium assumption). p-values

indicate the probability that the two estimated distributions are as different as they are

while being sampled from the same parent distribution. The number of bidders n is held

fixed at different values in the arbitrary range n ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. Results

shows that with the exception of n = 2, without conditioning on covariates IPV is rejected

with certainty. This is not surprising given that the provided value bracket contains sig-

nificant information from an expert assessment of the wine quality. Results show that it

is indeed much more likely that valuations are independent conditional on Sotheby’s low

estimate. Adding as additional covariates the number of bottles in the lot and the vintage

of the wine does not improve the p-values.
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Figure 4.2: Boxplots: Estimated bounds on E[CS] wine auctions by Z-decile

Z includes Sotheby’s pre-auction low estimate of the value. The vertical lines indicate the sample medians.

4.6.3 Estimation results

Conditioning on Z = Sotheby’s low value estimate only, sample bounds on the joint valu-

ation distribution are estimated for the median of Z = 1221 pounds. As Z is continuous,

conditioning on it means selecting a subset of auctions with values not too far away from its

median. There is a trade-off between small sample bias and bias from estimating bounds

on the joint distribution from different realizations of Z. To include enough auctions to

also tighten the bounds conditional on the total number of bids, auctions are selected if

the absolute difference between the selected Z and the sample realization is at most 600

pounds, which arbitrarily selects 233 out of 716 auctions for the median Z. Due to the

even smaller sample size, for the tightened bounds the minimum number of auctions with

a given number of total bids is set to 25 (instead of 50 in MC simulations in the Ap-

pendix). Results are displayed in Figure 4.1, also for the estimated bounds on E[CS]. It

shows that despite the relaxed information requirements data can still be informative for

structural features of interest. The bounds obtained under CINB, the exclusion restriction

that assumes that conditional on other observables the number of bids is independent of

valuations, are significantly better than the bounds obtained using only log-concavity and

sample spacings.

More details for the estimated consumer surplus are provided Table 4.3. Results high-

light how informative the estimated bounds are, especially in relation to the average
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highest bid. Auctions are tabulated for tertiles of Z and related auctions are selected in a

bandwidth of 500 pounds around those values. The (point estimate of the) lower bound

on expected consumer surplus is equal to 91 percent of the average highest bid and the

upper bound is not far removed from it at 119 percent of the average highest bid. Figure

4.2 shows that especially for auctions with the highest pre-auction value estimate the vari-

ability in expected surplus is the largest. Another pattern is that for mid-value auctions

estimated surplus tends to be lower than for auctions with the lowest pre-auction value

estimates.

Bootstrapped confidence intervals are also reported in Table 4.3, pointing to consider-

able small sample variation. They are obtained as follows. For both the complete dataset

and the subsets by tertile of Z, 500 bootstrap samples are drawn with replacement. In all

of these, the bounds on the expected surplus are estimated as before and their lowest 2.5th

and highest 97.5th quantiles are reported as CI. Obtaining an analytical expression of the

limiting distribution of the expected consumer surplus based on bounds that involve kernel

density estimation and constructing an interval that satisfies a 95% coverage probability is

beyond the scope of this draft. In the Appendix I discuss preliminary results and related

literature on inference of bounds.

4.7 Conclusions

This paper explicitly models absentee bidding that is common in traditional English auc-

tions, and characterizes how order statistics of bids relate to order statistics of valuations.

It is shown that these bid order statistics identify bounds on the letent distribution of

valuations without needing to know the number of bidders that is often obscured in En-

glish auctions. The identification strategy is novel in that it relies on sample extremes to

bound the joint distribution of valuations, which not only is a solution to not knowing the

number of bidders but also applies when conditional valuations are not independent.

Censoring of the highest valuation is a central problem in structural econometrics

of ascending auctions, since the auction stops when the bidder with the second-highest

valuation drops out. To identify a lower bound on the distribution, an identifying shape as-

sumption is introduced. I propose three different shape restrictions of which log-concavity

is the weakest and often already imposed in the auction literature. I also discuss a con-

cavity and a symmetry restriction and how additional bid order statistics can be used to

test the shape restriction imposed. Thinking about the implications of the spacings of or-

der statistics may be a useful direction for future research involving structural analysis of

auction markets. It is suggested to combine the method of spacings and sample extremes
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with identifying variation in the data to sharpen the bounds, such as observable variation

in the number of bids or auction covariates that are excluded from valuations. I show

that the identified bounds on the joint valuation distribution deliver informative bounds

on the expected consumer surplus. Performance of the bounds is assessed in Monte Carlo

simulations, and I propose a nonparametric estimation method based on Kernels.

To show the value of the proposed identification strategy I apply it to a unique dataset

of fine wine auctions in which the number of bidders is unknown. I examine expected

consumer surplus. Results include: i) auctions with the highest pre-auction value estimates

have the largest variation in expected consumer surplus, ii) consumer surplus is generally

lower in auctions with mid-range pre-auction value estimates than for lower pre-auction

value estimates, and iii) on average bidders have an estimated consumer surplus of about

90-119 percent of the highest bid.
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Áureo de Paula and conference participants at PET and EEA/ES for useful comments.

Thanks to Sebastian Fahey for going over some practicalities of auctions at Sotheby’s with

me and to Alan Crawford for introducing us. I am also grateful for financial support from

the Economic and Social Research Council (PhD Studentship). All remaining errors are

my own.

131



Appendices

H Further details absentee bidding

Figure 4.3: Partial outcome tree absentee bidders

Absentee bidder i bids true valuation bi = vi.

bi (rounded) = highest absentee bid?

Exists (rounded) absentee bid bj = bi?
Exit 1: N

bi placed earlier than bj? Live bids placed?

Live bids placed? Exit 5: N

Is i highest bidder?

Exit 2: Y

Is i highest bidder?

Exit 6: Y

Exit 8: Y Exit 7: N

Exit 4: Y Exit 3: N

yes no

yes no

yes no yes no

yes no

yes no

yes no

At exit points, the game finishes for the absentee bidder: exiting with an “N” means that he failed to win the lot
and exiting with an “Y” means that he placed the highest bid. Clearly, this bidder doesn’t regret not bidding less
than his valuation at Exits 1, 3 and 7 because he is overbid. Exits 2 and 4 reflect a second-price auction where he
doesn’t regret not bidding less than his valuation, as that would mean potentially losing the auction without paying
less. At Exit 5 he simply placed his bid too late. Exits 6 and 8 reflect a first-price auction where the absentee bidder
doesn’t regret not bidding less because he would for sure have lost the auction to the other absentee bidder with
the identical bid.
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Obtaining valuations from bids

Identification in English auctions relies on pinning down valuations from bid data, for

auctions consistent with the model. Motivated by online, phone, and absentee bidding

obscuring the number of bidders and their identities to everyone but the auction platform,

the following is assumed observable:

Information Requirement. The econometrician observes: 1) the vector of bids, and 2)

which bids are from absentee bidders. Not needing to observe highest bids or the num-

ber of bidders makes obtaining suitable auction data much easier and less time-consuming.

Lemma 6 established that the maximum amount that absentee bidders report to the

auctioneer equals their valuation. The sequence of observed bids could however also include

lower values because the auctioneer is to obtain the lot for the absentee bidder at the lowest

possible price. Knowing which bids come from absentee bidders and following the modeled

bidding sequence, it is possible to determine the lowest bid that is certainly truthful: it

is the opening bid when there are two or more absentee bids and otherwise the value

where the absentee bidder drops out if that is not the highest bid. Example 3 provides

an example of how this lowest truthful commissioned bid can be identified from bidding

data.

Example 3.

Ai and Lj are respectively the ith lowest overall bid, which came from an absentee bidder,

and the jth lowest overall bid in the bid vector, which came from a live bidder. So the

first and lowest (commissioned) bid is A1 if there is an absentee bidder, and the other bids

follow according to the assumed bidding sequence.

Auction 1: A1, A2, A3, L4, L5

Auction 2: A1, L2, A3, L4, L5

In Auction 1 there must be more than one absentee bidder as there are multiple commis-

sioned bids placed before live bidding starts: the opening bid is here the lowest truthful

commissioned bid. In Auction 2, live bidding starts immediately after the first bid, indi-

cating that there is just one absentee bidder. Here, the lowest truthful commissioned bid

is the value where the absentee bidder drops out: A3. But in auctions with fixed bidding

increments one has to account for “footing”: where someone’s highest bid is below his

valuation due to the bidding sequence and increments. The absentee bidder in Auction 2

could for example have had a valuation within two increments above A3.
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I Monte Carlo simulations

This section provides some intuition about how the identified bounds vary with auction

characteristics in sets of auctions simulated conform the theoretical model.

Potential bidders draw independent valuations from a common distribution, and has

a fixed number of absentee and live bidders. The bidding strategy of potential absentee

bidders is to submit a bid equal to their valuation if this is at least 80% of the population

mean value.28 Simulations follow the assumed bidding sequence and the algorithm records

which bids are from absentee bidders. In particular, with multiple absentee bids, the

bidding sequence at the lowest absentee value and places bids according to fixed increments

until at most one absentee bidder has a value exceeding that bid. Bids then alternate

between the last remaining absentee bidder, if there is one, and live bidders. If there

are multiple live bidders with a valuation exceeding the current bid (who did not placed

the current bid), the algorithm randomizes between those bidders.29 For auctions that

received at most one absentee bid, the opening bid is 80% of the mean population value

(to account for a secret reserve), while the rest of the bidding process is identical.

The resulting bid vector resembles what can be directly observed from attending or

recording traditional English auctions. To emphasize its limited information, highest bids

cannot be discerned from the vector of bids when identities are not known and live bidders

may end up not bidding when the bidding sequence passes their valuation before they

get the chance to bid. The information content diverges from what is assumed known

in previous studies, including Paarsch (1997) using all bidders’ drop-out values and the

number of bidders, Haile and Tamer (2003) and Chesher and Rosen (2015, 2017) using a

vector of highest bids and the number of bidders, Song (2004) using a vector of bids that

includes (for some auctions, depending on the timing of bids) the second and third-highest

drop-out values, and Aradillas-López et al. (2013) using the second highest drop-out value

and number of bidders. These papers are all ground breaking in their econometric use of

bid data from English auctions. I list them here only to highlight how my setting departs

from theirs in the assumed information available for the analysis.

Distribution functions, number of bidders, number of auctions, and bidding increments

vary in the simulations to highlight how these features of the data generating process affect

tightness of the identified bounds in practice. There are no covariates in the simulations.

28This arbitrary 80% rule can be interpreted as potential bidders accounting for the secret reserve price,
which is present in the application as well as in many other traditional English auctions. This provision is
solely made for the simulations to generate some variation in the number of absentee bids placed without
varying the number of bidders and it can be relaxed without consequences.

29I stress this to make the link with real life English auctions apparent, but since bidder identities are
not used in the analysis this randomization is actually redundant here.
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Figure 4.4: Simulation results: Tightness of upper bound

Difference between the estimated upper bound and F ∗V . The left-hand panel has IPV and shows the effect of having
a higher dispersion, more potential bidders, smaller bidding increments, and estimation on a subsample with smaller
n. The right-hand panel shows validity of the bounds for correlated private values, simulated as being mixture of
a LogNormal(0,0.5) and Lognormal(1,0.5) with equal probability and also compared to the tightness of the bound
when valuations are LogNormal(0,0.5) for all auctions.
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Left-hand figure: Examples of distribution functions and the ratio of the expected spacing between the second
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(E[D(n − 1, n)]/E[D(1, n − 1)]) as the number of bidders increases, assuming IPV. Right-hand figure: examples of
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Figure 4.6: Simulation results: Bounds on E[CS]

Estimated upper and lower bounds on E[CS] based on two sets of simulated auctions. In the left-hand panel
valuations are Weibull(4,1) and in the right-hand panel Weibull(2,1) with in both cases 2 potential live and 2
potential absentee bidders. In both cases IPV is assumed, and the displayed bounds are for random subsamples of
20 auctions.
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Figure 4.7: Simulation results: Tigher bounds on E[CS]

Valuations are independently distributed U(0,1) and auctions are designed to have 4 potential live and 4 potential
absentee bidders. For the the b-dependent bounds, the sample size (number of auctions) is restricted to be at least
50 as described in the text. All reported values are calculated on a 10% random subsample of all 1.000 auctions.
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Figure 4.4 shows the distance between estimated upper bounds and FV to address

sensitivity to certain features of the data in empirical settings. Settings that result in

tighter bounds include: i) a relatively small n, ii) more correlated valuations, iii) the

valuation distribution having a relatively low dispersion, iv) smaller bidding increments,

and v) larger samples. The left-hand panel shows results for auctions where valuations are

independent draws from a Weibull(4,1) distribution with 2 potential live bidders and 2

potential absentee bidders. A higher dispersion makes the bound less tight, as exemplified

by the results when valuations are Weibull(2,1) distributed. Changing the increment from

10% to 1% of the standing bid has a minimal effect, but the bound is visibly wider when

estimated on the subsample with a higher n. The right-hand panel shows the validity

of the upper bound for auctions with correlated private values. This is simulated as

valuations being drawn from a mixture of a LogNormal(0,0.5) and LogNormal(1,0.5) with

equal probability.

Figure 4.5 provides intuition for the shape assumption. The left-hand panel displays

the ratio of the expected distance between the highest and second-highest valuation to

the expected distance between the second-highest and lowest valuation, assuming inde-

pendence. On the x-axis are the number of bidders. The shape assumption assumes that

the distribution and number of bidders is such that this ratio is at most 1, which is at the

horizontal dashed line. For symmetric distributions, with the number of bidders greater

than 3, this is always satisfied. For other distributions this may be violated at low n,

but as the graph shows, the ratio falls down sharply when n increases. The right-hand

panel shows how this translates into the lower bound on FV : the closer the ratio is to one

without exceeding it, the sharper this bound is. For Weibull(2,1) with n = 3 the ratio

is larger than one, which also makes that the resulting difference between the bound and

FV in the right-hand panel slightly dips below 0. This emphasizes that when the shape

assumption is not satisfied, the lower bound on the joint distribution may not be valid.

Figure 4.6 shows how the bounds translate into bounds on E[CS]. Valuations are

either Weibull(4,1) in the left-hand panel or, with higher dispersion, Weibull(2,1) in the

right-hand panel. Bounds are calculated for a random subsample of 20 auctions for speed.

Although the distance between the truth and the bounds depends on the functional form

of the valuation distribution, the upper bound that is a function of the relatively weak

upper bound on the highest valuations, is generally wider than the low bound on E[CS].

Figure 4.7 shows that the assumption of b-independence can tighten the bounds on

FV significantly. In this example, 8 potential bidders are simulated to have independent

valuations distributed as Uniform(0,1). The grey lines represent the estimated bounds

conditional on the total bids b. As a tighter upper bound, the thick dashed line takes the
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pointwise minimum over all b-dependent estimated upper bounds and as a tighter lower

bound it takes the pointwise maximum over all b-dependent estimated lower bounds, as

described in the previous section. Using these tightened bounds on FV the right-hand

panel shows how this affects tightness of the bounds on E[CS]. It supports that using an

auction model with absentee bidding, allowing for correlated private values and without

observing the number of bidders, informative bounds on the expected consumer surplus

can be obtained with the proposed method.

J Inference

A growing literature studies inference for partially identified objects and models with mo-

ment conditions. Two main complicating issues with bound estimators are that i) closed

form characterizations of their asymptotic distributions are often hard to obtain, and ii)

substantial finite sample bias may cause bounds to cross. Standard bootstrapping or

subsampling methods, applied as a solution to i), have been found to be generally incon-

sistent in models defined by moment inequalities but suitable alternative implementation

has been proposed (by e.g. Chernozhukov et al. (2007), Andrews and Han (2009), Bugni

(2010), Canay (2010)). Rosen (2008) constructs confidence intervals based on an inverted

test statistic with an analytical asymptotic distribution, which does not require inferential

methods but can be asymptotically conservative.

Problem ii) as noted by Manski and Pepper (2000, 2009) could cause estimated bounds

to be much tighter than population bounds. Haile and Tamer (2003) address this issue by

introducing a smoothing parameter that vanishes as the sample grows to make sure the

estimated upper bound of the valuation distribution is always above the lower bound. As

they remark, this problem is due to their bounds being infima and suprema of estimated

objects, which is the case in many moment condition models. Chernozhukov et al. (2009)

suggest an asymptotically valid inference method particularly for such models with inter-

section bounds. This problem concerns our tightened bounds, too, and a valid inference

approach still needs to be implemented.

Inference on the population distribution is less complicated for the original (untight-

ened) bounds in this paper as they do not involve extremum opterators and an analytical

characterization of their limiting distributions can be obtained. The method proposed in

Imbens and Manski (2004) is suitable for such settings and results in a confidence inter-

val that asymptotically covers the true population parameter (instead of covering both

bounds with a fixed probability as in Horowitz and Manski (2000)).

To simplify the exposition, let FU (v) and FL(v) represent the population upper and
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lower bounds on the object of interest that is denoted by F (v) as derived in Section 4.4

and let F̂U (v) and F̂L(v) be the finite sample kernel estimates of these bounds. Let T

denote the relevant sample sizes and h the selected bandwidth. Asymptotic properties of

the estimated bounds are (for B = {U,L}):

(i)
√
T (F̂B(v)− FB(v))

d−→ N (0,ΣB(v))

(ii) with probability one sup
v<v<v̄

|F̂B(v)− FB(v)| −→ 0 as T −→∞ and h −→ 0

Which respectively represent
√
T consistency of the estimated bounds (e.g. Li and Racine

(2007)) and uniform convergence with probability one (Nadaraya (1964)).30

Besides uniform convergence of the estimated bounds, the existence and uniform con-

vergence of Σ̂U , Σ̂L, and boundedness of their population counterparts, Imbens and Manski

(2004) implictly assume that ∆̂ is locally superefficient as noted by Stoye (2009). He pro-

vides a weaker assumption, for which a sufficient condition is that with probability one the

estimated upper bound is at most the estimated lower bound. This is generally true when

the bounds are ordered by construction, as they are in this paper due to their one-to-one

mapping to bid order statistics. In other words, ∆ is bounded from below by 0. So the

Imbens and Manski (2004) confidence intervals are valid here, with the remark that they

are based on the weaker notion of superefficiency as in Stoye (2009).

Having established these asymptotic properties of the estimated bounds, the method

obtains a CI that covers population F (v) with at least probability (1 − α). Let ∆̂(v) =

F̂U (v) − F̂L(v), σ̂nB(v) a consistent estimate of the sample standard deviation for bound

B = {U,L} and Φ the standard normal CDF.

CIF (v)
α =

[
F̂L(v)− Cα(v)

σ̂nL(v)√
T

; F̂U (v) + Cα(v)
σ̂nU (v)√

T

]
(4.19)

Where Cα(v) is the solution to:

Φ(Cα(v) +

√
T ∆̂(v)

max(σ̂L(v), σ̂U (v))
)− Φ(−Cα(v)) = (1− α) (4.20)

Defining the identified set Λ(v) as Λ(v) = F ′(v) ∈ [0, 1] : {FL(v) ≤ F ′(v) ≤ FU (v)},
30Note that unlike with kernel estimation of a PDF, no bias term appears in (i), (ii) and convergence is

faster. The limited sample variance equals: ΣnB(v))= 1
T
FB(v)(1−FB(v))− θf(v) h

T
+ o( h

T
) for B = {U,L}

and θ = 2
∫∞
∞ v′K(v′)k(v′)dv′ (Li and Racine (2007)). Nadaraya (1964) established that the limiting

variance of the kernel CDF estimate equals the population variance, e.g. ΣB(v) = 1
T
FB(v)(1− FB(v)). I

explicitly denote all relevant statistics as a function of (v) to emphasize that these are calculated at any
point v ∈ [v, v̄] and that they are not invariant over this range.
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Imbens and Manski (2004) prove that CI
F (v)
α has a coverage rate that converges uniformly

in (F ′(v),∆): limT→∞ infF ′(v)∈Λ,∆∈[0,1] Pr(F (v) ∈ CIF (v)α = (1 − α), which means that

the probability that any F ′(v) ∈ CIF (v)
α is at least (1− α), which of course also holds for

F ′(v) = F (v). The identified set adds a natural restriction on any candidate F ′(v) to lie

within [0, 1] for it to be a proper CDF. In practice, the CI is restricted to lie within these

bounds as well, but this doesn’t affect the coverage probability because any F ′(v) ∈ Λ is

certainly ∈ [0, 1] for any T - and thus also in the limit.

The intuition behind CI
F (v)
α in Imbens and Manski (2004) is that F (v) can be arbi-

trarily close to either of the bounds but it is unknown to which one. If it would be close

to the upper bound the asymptotic probability that F (v) < FL(v) can be ignored so that

the entire α probability of mischaracterizing the population CDF can be allocated to the

upper bound, and the same goes in the opposite case for the lower bound. This means that

one-sided CIs need to be constructed around both bounds. Consequentially, this method

also applies to the population distribution if only one bound would be identified. For

example, if one wouldn’t want to impose the shape assumption to obtain the lower bound,

and only FU (v) based on the lowest bid would be identified. Denoting the population

CDF the is only bounded from above by F̃ (.) and also incorporating that F̃ (.) ∈ [0, 1] as

discussed above, the CI is obtained as:

CI F̃ (v)
α =

[
0; min(1, F̂U (v) + Cα(v)

σ̂nU (v)√
T

)

]
(4.21)

Where Cα(v) is the solution to:

Φ(Cα(v) +

√
T F̂U (v)

σ̂U (v)
− Φ(−Cα(v)) = (1− α) (4.22)

Of course, a similar CI can be constructed when only an informative lower bound

would be identified. For the tighter bounds, inference still needs to be addressed. In

the application I use the bootstrap method to calculate confidence intervals for estimated

consumer surplus directly. See Horowitz (2001) for details on this approach.

K Omitted proofs

Truthful revelation by absentee bidders

The auction constitutes a strategic game with incomplete information, described com-

pletely by the set of bidders N and ∀i ∈ N : a set of types Vi ∈ [v, v̄], strategy profiles Si

with si : Vi → Si and payoff functions ui(si, s−i, vi). The auction mechanism and private
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values structure are common knowledge, but other bidders’ valuations are unknown. The

below proves that the unique symmetric Bayes Nash equilibrium in weakly undominated

strategies is for absentee bidders to bid their valuation, relying on the modeled bidding

sequence.

Lemma 1. The unique symmetric Bayes Nash equilibrium in weakly undominated strate-

gies is for absentee bidders to bid their valuation.

Proof Lemma 1. Let uai = u(vi, p(b
a
i , b−i, r,∆)) be the utility of absentee bidder i as

a function of his valuation vi and price p that he needs to pay upon winning, which is a

function of his maximum bid bai , the vector of other players’ maximum bids b−i, secret

reserve price r, and bidding increment ∆. Since quasi-linear preferences come for free

with risk-neutral players who are ex-ante symmetric and not budget constrained, uai =

(vi−p(bai , b−i, r,∆))I{bai = B(b:b)}, where vector B records all bids including commissioned

bids, b is the number of total bids placed, and I{bai = B(b:b)} = 1 if i’s commissioned bid

is the highest bid placed in the auction and 0 otherwise.

Vector C records all commissioned bids, and c denotes the number of commissioned

bids. Conform the auction rules, two identical absentee bids are both recorded but one

placed earlier is ordered as a higher bid. Hence, if C(c:c) = C(c−1:c) the highest two

commissioned bids have the same value but C(c:c) was placed earlier. Also, bai = B(b:b)

implies that bai = C(c:c), but the reverse is not true if there are live bids higher than bai .

Conditional on winning, the absentee bidder pays:

p(bai , b−i, r,∆)|(bai = B(b:b))


max{B(b−1:b) + ∆, r} if C(c:c) 6= C(c−1:c), b

a
i ≥ r

B(b:b) if C(c:c) = C(c−1:c), b
a
i ≥ r

no sale if bai < r

From this it can be deducted that absentee bidder i has no incentives to bid less than his

valuation. Doing so would reduce both the probability that his bid is the highest overall

bid and that it beats the reserve price, potentially reducing his utility. This loss isn’t

offset by having to pay a lower price upon winning. In the first case there is no equally

high commissioned bid, so the hammer price is max{B(b−1:b) + ∆, r} which is independent

of bai under the requirement that the secret reserve cannot be raised (illegally). If there is

an identical commissioned bid placed later, the hammer price is bai = B(b:b). Yet, also in

this case the absentee bidder has no incentive to lower his bid because wouldn’t win the

auction then. Finally, bidding bai > vi is not optimal either as it could result in negative
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utility.

Hence it is an undominated strategy for player i to bid truthfully, and this holds for

all absentee bidders. Another Nash equilibrium where only the absentee bidder with the

highest valuation bids truthfully and the others don’t bid (or bid 0) is ruled out as it is

weakly dominated by the symmetric equilibrium where everybody bids truthfully (but it

would be allowed with a weaker notion of posterior implementability). There are no other

equilibria.

Spacings

Lemma 2. [Log-Concave density] Let fV |Z be (weakly) log-concave. Observing V U
n−1:n

and V L
n−2:n in auctions with Z = z ∀z, identifies a lower bound on the distribution of Vn:n,

∀v ∈ [v, v̄]:

FVn:n|Z(v) = P [Vn:n ≤ v|Z = z] ≤ P [V U
n−1:n + 2(V U

n−1:n − V L
n−2:n) ≤ v|Z = z] ≡ FL(lc)

Vn:n|Z(v)

(4.23)

In the case that fV |Z is weakly log-concave (exponential) and ∆ = 0 F
L(lc)
Vn:n|Z(v) is only an

upper bound if the bidder with the third-highest valuation had no opportunity (or reason)

to drop-out at his valuation. Otherwise, (4.23) holds with equality in this case.

Proof Lemma 2. Normalized spacings from an exponential distribution are independent

and identically distributed, while normalized spacings based on a log-concave density

function are stochastically decreasing (e.g. Pyke (1965, 1972)). By the definition of Dn,

FV(n:n)(x) = P [V(n:n) ≤ x] = P [(V(n−1:n) + Dn) ≤ x] ∀x. By the definition of normalized

spacings D̃n = Dn and D̃n−1 = 2Dn−1, so P [(V(n−1:n)+Dn) ≤ x] = P [(V(n−1:n)+D̃n) ≤ x].

Due to D̃n being weakly stochastically smaller than D̃n−1: P [(V(n−1:n) + D̃n) ≤ x] ≥
P [(V(n−1:n) + D̃n−1) ≤ x], ∀x (holding with equality when valuations are drawn from the

exponential distribution). This implies that FV(n:n)(.) ≥ FV(n−1:n)+D̃n−1
(.).

When n = 3, observing V(n−1:n) and V(1:n) identifies the normalized spacing D̃2. Since

by log-concavity FD̃3
(x) ≥ FD̃2

(x) ∀x, this establishes the lower bound as: FV(3:3) ≥
FV(2:3)+D̃2

(.).

When n > 3 the difference between V(n−1:n) and V(1:n) consists of Dn−1 and at least

one other spacing. This distance is per definition stochastically larger so the lower bound

derived from it is weaker: ∀n ≥ 3

FV(n:n)(.) ≥FV(n−1:n)+2(V(n−1:n)−V(n−2:n))(.) ≥ FV(n−1:n)+2(V(n−1:n)−V(1:n))(.), ∀n ≥ 3. As n
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doesn’t need to be observed to obtain the right-hand side of this equation, this completes

the proof.

Lemma 3. [Concave density] Let fV |Z be (weakly) concave. Observing V U
n−1:n and V L

n−2:n

in auctions with Z = z ∀z, identifies a lower bound on the distribution of Vn:n, ∀v ∈ [v, v̄]:

FVn:n|Z(v) = P [Vn:n ≤ v|Z = z] ≤ P [V U
n−1:n + V U

n−1:n − V L
n−2:n ≤ v|Z = z] ≡ FL(c)

Vn:n|Z(v)

Proof Lemma 3. Uniform spacings (spacings of an ordered sample of independent

draws from a uniform distribution) are interchangeable random variables (Pyke (1965)):

FDi(.) = FDj (.) ∀i, j ∈ {2, .., n}. But spacings based on a concave fV are stochastically

decreasing since this holds for log-concave density functions (see Lemma 8) and since

any concave function that is non-negative on its domain is also log-concave. This means

that ∀n ≥ 3, ∀x: P [V(n:n) ≤ x] = P [(V(n−1:n) + Dn) ≤ x] ≥ P [(V(n−1:n) + Dn−1) ≤ x];

holding with equality when valuations are drawn from the uniform distribution. Hence:

FV(n:n)(.) ≥ FV(n−1:n)+Dn−1(.). The spacing between the second-highest and lowest valua-

tion is per definition weakly larger than Dn−1 (strictly when n > 3) so this delivers a valid

lower bound.

Lemma 4. [Symmetric density] Let fV |Z be symmetric. Observing V U
n−1:n and V L

n−2:n in

auctions with Z = z ∀z, identifies a lower bound on the distribution of Vn:n, ∀v ∈ [v, v̄]:

FVn:n|Z(v) = P [Vn:n ≤ v|Z = z] ≤ P [V U
n−1:n + V U

n−1:n − V L
1:n ≤ v|Z = z] ≡ FL(s)

Vn:n|Z(v)

Proof Lemma 4. With n = 3, V(n−1:n) coincides with median (and mean) so that

FD2(.) = FD3(.) as the lowest and the highest valuation are of equal distance to the

median under the symmetry assumption. This implies that FV(3:3)(.) = FV(2:3)+D2(.).

With n > 3, the median will be stochastically smaller than V(n−1:n) and the differ-

ence between the second-highest and lowest valuation will be stochastically larger than

the difference between the highest and second-highest valuation. Hence, FV(n:n)(.) ≥
FV(n−1:n)+(V(n−1:n)−V(1:n))(.).
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Bounds on the latent distribution of valuations

Lemma 5. [Sample extremes] In symmetric English auctions, knowing (a lower bound

on) V(1:n) nonparametrically identifies an upper bound on FV(.). Knowing V(n:n) nonpara-

metrically identifies FV(.) and an upper bound on V(n:n) identifies a lower bound on FV(.).

Proof Lemma 5. Let V= {V1, V2, ..., Vn} be a sample of size n unrestricted (independent,

positively correlated, negatively correlated) draws from FV . Since V(1:n) ≡ min(V1, ..., Vn)

it follows that FV(1:n)(v) ≥ FV(v), regardless of the sample dependence: FV(1:n)(v) =

P [min(V1, ..., Vn) ≤ v] ≥ P [V1 ≤ v ∩ V2 ≤ v ∩ ... ∩ Vn ≤ v]. This holds with equality if

n = 1 or valuations are perfectly correlated. Let V L
(1:n) be a lower bound on the 1st order

statistic: V L
(1:n) ≤ V(1:n) implies FV L

(1:n)
(v) ≥ FV(1:n)(v) so that observing a lower bound on

V(1:n) will be informative as a weaker upper bound on FV(v).

This provides an upper bound on FV(v) = FV1,V2,...,Vn−1,Vn(v, v, ..., v, v), which is only

a diagonal slice of the full joint distribution. Now, consider a value w off the diagonal:

FV1,V2,...,Vn−1,Vn(v, v, ..., v, w). For w > v: P [min(V1, ..., Vn) ≤ v] ≥ P [V1 ≤ v ∩ V2 ≤
v ∩ ... ∩ Vn−1 ≤ v ∩ Vn ≤ v] ≥ P [V1 ≤ v ∩ V2 ≤ v ∩ ... ∩ Vn−1 ≤ v ∩ Vn ≤ w], meaning that

FV(1:n)(v) is still a valid upper bound for this joint probability. More generally, it holds

that: FV(1:n)(v) ≥ FV1,V2,...,Vn−1,Vn(a, b, ..., y, z) ∀a, b, ..., y, z ≥ v,∀v ∈ [v, v̄].

Due to the definition of the sample maximum, V(n:n) ≡ max(V1, ..., Vn), it follows that:

FV(n:n)(v) = P [max(V1, ..., Vn) ≤ v] = P [V1 ≤ v ∩ V2 ≤ v ∩ ... ∩ Vn ≤ v] = FV(v). Let

V U
(n:n) be an upper bound on the nth order statistic: V U

(n:n) ≥ V(n:n) implies FV U
(n:n)

(v) ≤
FV(n:n)(v) so that observing an upper bound on the nth order statistic will be informative

as a lower bound on FV(v), regardless of sample dependence.

This provides a lower bound on FV(v) = FV1,V2,...,Vn−1,Vn(v, v, ..., v, v). Now, consider

a value u off the diagonal: FV1,V2,...,Vn−1,Vn(v, v, ..., v, u). For u < v:

P [max(V1, ..., Vn) ≤ v] = P [V1 ≤ v ∩ V2 ≤ v ∩ ... ∩ Vn−1 ≤ v ∩ Vn ≤ v] ≤ P [V1 ≤ v ∩ V2 ≤
v ∩ ... ∩ Vn−1 ≤ v ∩ Vn ≤ u], meaning that FV(n:n)(v) is a valid lower bound for this

joint probability. More generally, it holds that: FV(n:n)(v) ≤ FV1,V2,...,Vn−1,Vn(a, b, ..., y, z)

∀a, b, ..., y, z ≤ v,∀v ∈ [v, v̄].

Lemma 7. [Based on Song (2004)] In symmetric IPV English auctions, knowing two

ordered valuations and their distance from above Vi:n and Vj:n (j < i) nonparametrically

identifies FV |V≥vj (vi). Equivalently, knowing two ordered valuations and their distance

from below Vi:n and Vj:n (j > i) nonparametrically identifies FV |V≤vj (vi).
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Proof Lemma 7 (using two ordered valuations from above, the other case is omitted.)

Knowing the ith and jth highest values of X, e.g. Xn−i+1:n and Xn−j+1:n, with i > j, the

density of Xn−j+1:n conditional on Xn−i+1:n equals the density of Xi−j:i−1 from an i.i.d.

sample truncated from below at Xn−i+1:n = xi:

fX(n−j+1:n)|X(n−i+1:n)(xj |xi) =
fX(n−j+1:n),X(n−i+1:n)(xj , xi)

fX(n−i+1:n)(xi)
= (4.24)

n!
(n−1)!(i−j−1)!(j−1)!FX(xi)

n−i[FX(xj)− FX(xi)]
i−j−1[1− FX(xj)]

j−1fX(xi)fX(xj)

n!
(n−i)!(i−1)!FX(xi)n−1[1− FX(xi)]i−1fX(xi)

(4.25)

=
(i− 1)!

(i− j − 1)!(j − 1)!

{
[1− FX(xi)]

(
[FX(xi)− FX(xj)]

[1− FX(xi)]

)}i−j−1

(4.26)

{
[1− FX(xi)]

(
[1− FX(xj)]

[1− FX(xi)]

)}j−1 [1− FX(xi)]
fX(xi)

[1−FX(xi)]

[1− FX(xi)]i−1

=
(i− 1)!

(i− j − 1)!(j − 1)!
[FX|X≥xi(xj)]

i−j−1[1− FX|X≥xi(xj)]
j−1fX|X≥xi(xj), (4.27)

∀xj > xi (and 0 otherwise). Equation (4.27) follows from noticing that [FX(.)]/[1−FX(xi)]

and fX(.)/[1−FX(xi)] equal respectively the CDF and PDF of X truncated from below at

xi, and that the additional [1− FX(xi)]’s cancel out. The CDF’s are related accordingly,

∀x ∈ (xi, x̄], ∀xi ∈ [x, x̄), ∀i > j:

FX(n−j+1:n)|X(n−i+1:n)(x|xi) = FX(i−j:i−1)|X≥xi(x) (4.28)

=
(i− 1)!

(i− j − 1)!(j − 1)!

∫ x

xi

FX|X≥xi(t)
i−j−1[1− FX|X≥xi(t)]

j−1fX|X≥xi(t)dt (4.29)

Again, the distribution of the (i− j)th order statistic from a sample of (i− 1) i.i.d. draws

from FX|X≥xi(x) is a known and strictly monotonic function of its parent distribution,

which can renders FX|X≥xi(x) identified.

Lemma 8. [Based on Song (2004) and Haile and Tamer (2003)] In symmetric IPV En-

glish auctions, knowing bounds on at least one of two ordered valuations Vi:n and Vj:n,

with i = n − k and j = n − l (0 ≤ k < l ≤ n − 1) nonparametrically identifies bounds on

FV |V≥vj .
31

31Equivalently, for procurement auctions, knowing bounds on at least one of two ordered valuations Vi:n
and Vj:n, with i = k and j = l (1 ≤ k < l ≤ n) nonparametrically identifies bounds on FV |V≤vj .
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Proof Lemma 8. Let X l
i:n and Xu

i:n be known lower and upper bounds on the unknown

ith order statistic, and let Xj:n be a known order statistic, with i < j. From X l
i:n ≤

Xi:n ≤ Xu
i:n it follows that: FXl

i:n
(x) ≥ FXi:n(x) ≥ FXu

i:n
(x), ∀x ∈ [x, x̄]. These stochastic

dominance relations remain when conditioning on the same value of Xj:n, so that ∀x ∈
[x, xj ], ∀xj ∈ (x, x̄]:

FXl
i:n|Xj:n

(x|xj) ≥ FXi:n|Xj:n(x|xj) ≥ FXu
i:n|Xj:n(x|xj) (4.30)

By Lemma 2, these conditional distributions identify the distributions truncated at the

value of Xj:n. Since ϕ (.; j, i, xj) is a strictly increasing function that is identical for the

conditional CDF’s above (having the same j, i, xj) it follows that on the same support:

FXl|X≤xj (x) ≥ FX|X≤xj (x) ≥ FXu|X≤xj (x) (4.31)

where FXl|X≤xj (x) and FXu|X≤xj (x) respectively refer to the CDF’s identified from the

lower and upper bound on Xi:n. This identifies bounds on FX|X≤xj (x).

Suppose instead that Xj:n is unknown, but that it is known within bounds such that:

X l
j:n ≤ Xj:n ≤ Xu

j:n while Xi:n is known. By definition, X(j:n)l must be greater than X(i:n)

(otherwise X l
j:n is not a sharp lower bound when X(i:n) is known). Logically, P [Xi:n ≤ x]

conditional on Xj:n ≤ xj is at least as much as this probability conditional on the lower

bound on Xj:n being less than xj , and the reverse is true for the upper bound on Xj:n.

Hence, by this simple stochastic dominance argument, ∀ x ∈ [x, xj), ∀ xj ∈ (x, x̄],:

FXi:n|Xu
j:n

(x|xj) ≥ FXi:n|Xj:n(x|xj) ≥ FXi:n|Xl
j:n

(x|xj), (4.32)

which requires that FXu
j:n

(xj) > 0. Relating to the parent distribution by the same mono-

tonic transformation ϕ (.; j, i, xj) it follows that on the same support:

FX|Xu≤xj (x) ≥ FX|X≤xj (x) ≥ FX|Xl≤xj (x) (4.33)

where FX|Xu≤xj (x) and FX|Xl≤xj (x) refer to the CDF’s conditional on respectively the

upper and lower bound on Xj:n.

Finally, when both order statistics are only known within bounds, combining above

results it follows that an upper bound on FX|X≤xj (x) is identified from FXl|Xu≤xj (x) and

a lower bound is identified from FXu|Xl≤xj (x).
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