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Abstract: 

Response surface methodology (RSM) coupled with central composite design (CCD) was used 

to monitor and optimize species specific interaction of trihalomethane (THM) precursors in a 

scaled up distribution network (DN). Independent variables such as applied chlorine (Cl2), 

contact time (t), humic acid (HA) and bromide ions (Br-) were analyzed using full factorial CCD. 

Analysis of variance (ANOVA) revealed a good agreement between experimental data and 

proposed a two factor interaction (2FI) model (p = 0.04, R2 = 0.7983). As a precursor, Cl- and Br-

interaction with HA in various combinations was observed to affect THMs speciation. These 

precursor molecules were perceived least significant as discrete elements but product of HA: Br-

ratio and pH significantly impacted TTHM formation (r= 0.998, p = 0.007).  This mutual 

interactive fraction was observed to be pH-dependent and influenced TTHM yield. 

Dibromochloromethane (DBCM) and Bromoform (BF) formation were observed pH dependent 
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provided sufficient Br-in the system. Applied chlorine was significant (p = 0.01) while time had 

insignificant (p = 0.75) effect. Multiple response optimization suggested pH range between 6.0-

7.6 and HA:Br-ratio between 1.3-5.9 were satisfactory for maintaining TTHM concentration 

below ≤ 80µg/L in drinking water DN with a desirability function (D) of approximately 

0.88.Their respective concentration may be minimized by changing precursor’s individual 

concentration and possible combinations. 

 

Key words: Trihalomethanes, Distribution network, Precursors, Chlorine, Response surface 

methodology (RSM) 

 

1. Introduction 

A water distribution network (DN) acts as a large chemical and biological reactor where 

numerous reactions take place. Chlorination of drinking water containing natural organic matter 

(NOM), mainly humic substances, leads to disinfection by-products (DBPs) formation [1-2]  

such as  TTHM i.e., chloroform (CHCl3), bromodichloromethane (CHCl2Br), 

dibromochloromethane (CHClBr2) and bromoform (CHBr3). The later three brominated 

trihalomethanes (Br-THMs) are produced by reaction of hypo-bromite with humic acid [3].  

Hassani et al.[4] showed that higher TTHM concentrations formed within DN while El-Shafeyet 

al.[5] reported that 45% of TTHMs were formed in treatment plant; the rest formed in pipelines. 

The carcinogenic and non-carcinogenic health effects showed an association between ingestion 

of chlorinated water and esophagus, pancreas, urinary tract, stomach, colon and rectal cancers 

and reproductive/developmental anomalies in laboratory animals [6-9]. Therefore recommended 

TTHM concentration in drinking water is set to be ≤80 µg/L by World Health Organization 

(WHO) [10]. This has led to the monitoring of their presence in drinking water for regulatory 

compliance, health risk assessment, epidemiological evaluation and water quality control 

purposes so measures may be taken to minimize or eliminate their presence. Moreover, as 

bromide ion concentration is not lowered by conventional drinking water treatment processes 

[11], the  effect of Br- concentration on trihalomethane formation potential (THMFP) is an 

important area of study. 
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TTHM species formation and their concentration depend on amount of organic matter, Br-

concentration, pH, water temperature (T), chlorine dose (Cl2), residence time (t) and residual 

chlorine in DN [12-13]. In addition, their level in DN may increase due to continued presences of 

chlorine residuals [14].On the other hand, it is now accepted that pH plays a significant role in 

TTHM formation by affecting base-catalyzed reaction. Hua and Rekhow [15] observed TTHM 

concentration nearly three times higher at pH 10 than at pH 5. While discussing individual 

THMs species, Chaudhary et al. [16] found that by increasing pH from 6 to 8.5, chloroform 

increased while BDCM and DBCM formation was decreased. By increasing Br- concentration, 

TTHM speciation shifted from chlorinated species to mixed bromochloro species to brominated 

species [17]. Zhu et al.[18] observed that when 1mg/L of Br- was used at pH 8, TTHMs yield 

reached up to 270 % of that without bromide ions at pH 6. Earlier literature reports that it is not 

Cl- or Br- concentration that plays an important role in TTHM speciation in a DN but 

combination of TTHM precursor ratios. For instance, Nokeset al.[19] reported that formation of 

brominated trihalomethanes depends on (NaOBr):(NaOCl) or more simply Br-: Cl-. The 

hypochlorite ion (HClO) reacts effectively with humic acid in oxidation reactions but 

hypobromous acid (HBrO-) is more predominant in electrophilic substitution. So in excess of 

NaOCl, NaOBr addition enhanced Br-THMs formation and reduced CHCl3 formation. However, 

this formation was found to be pH independent and reaction time [3]. Working on effect of pH 

on TTHM formation, Singh et al.[20] in a five-factor Box– Behnken experimental design, found 

that water pH followed by reaction time and temperature were the most significant factors 

defining TTHM formation,and this is also consistent with Nikoloau [21].  

 

Describing modeling of TTHM formation and speciation, most reported modeling and simulation 

were performed in closed systems like glass bottles, volumetric flasks and batch systems with 

high doses of chlorine for longer periods of time; from one week to twenty days. But complexity 

of the reactions between TTHM precursors and their relative importance could be better 

understood by a modeled simulation of a DN. Furthermore, a detailed insight into TTHMs 

formation/speciation with different precursors and various environmental conditions could be 

achieved relatively easily within a DN. Therefore in this workreal field conditions were 

replicated in the form of a DN reactor to model and simulate TTHM formation/speciation using 

response surface methodology (RSM). This was done by mapping the fine details in the area of 
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optimal response, determining the most desirable input values to get the optimal output and 

defining the permissible values for maximum process responses.   

2. Materials and Methods 

2.1 Design of Experiment (DoE) using CCD 

RSMis useful for designing experiments, building models, analyzing and optimizing effects of 

several independent variables [22-23]. It also analyses the relationship between independent 

variables and resulted response [24-25]. Design Expert software (Trail version 9, Stat-Ease, Inc., 

MN) was used for experiment designing (DoE) tool involving CCD. The CCD is helpful to 

identify combined effectof independent variable by selecting experimental points at which 

response should be evaluated and optimized [26]. In the present study, time (A), pH (B), HA: Br- 

ratio (C) and applied chlorine (D) were used as independent variables. The HA concentrations 

were 5, 7 and 10 mg/L while Br- ions concentrations were 0.5, 1 and 1.5 mg/L(Table 1), stated 

as HA: Br- ratio. TheDoE, constructed using RSM-CCD, consisted of a fullfactorial 30 points(24 

noncenter + 6 center)experimental runs to simultaneously optimize levels of these variables with 

optimized system performance 

2.2 Construction of scaled-up DN 

A scaled-up DN was built using high density poly ethylene (HDPE) pipe of 220 meters in two 

concentric loops connected to a main water reservoir.  A continuous plug flow was maintained 

with a peristaltic pump and flow meter within the network (Fig. 1). Nine sampling ports, 22.5 

meter apart, were provided to collect samples at various time/distance intervals. De-chlorinated 

tap water was introduced with various combinations of humic acid (HA) and Br- for investigation 

of the factors affecting TTHM formation.  

2.3 Standards and reagents 

Prepared TTHM standards, dissolved in methanol, 5000µg/mL each, (Supelco; 99.9% purity) 

with Fluorobenzene (FB) (2000µg/mL) as internal standard were used. Stock solution of HA 

(Sigma-Aldrich) and commercial sodium hypochlorite (10.5 %) were freshly prepared and 

different dilutions were applied as per experimental design. Samples were taken at various time 
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intervals and residual chlorine concentration was quenched by adding 0.01N sodium thio-

sulphate (Na2S2O3) to cease further reaction [27]. 

2.4 TTHM extraction and analysis 

TTHM extraction was performed by liquid-liquid extraction (LLE). In 10 mL of water sample, 

1g sodium sulphate (anhydrous) was added and mixed vigorously for 30 sec followed by 

addition of 1 ml Methyl-ter-butyl ether (MtBE; Sigma-Aldrich), mixed on a vortex mixer for 90 

sec and left undisturbed for two minutes. This salt addition, called salting out, enhances organic 

layer separation from water. One microliter (µl) of organic layer containing TTHMs was 

analyzed by gas chromatography (GC) (Model Claurus 500) with column (Restek Rxi-5ms, 30m 

x0.25mmID) coupled with mass spectroscopy (MS) for identification and quantification of 

TTHM composition. GC analytical conditions with MS configuration are given in Table 2 

whereas respective chromatograph is illustrated in Fig. 2. 

3. Results and Discussion 

3.1 Effect of HA: Br- on speciation of TTHMs  

Various combinations of HA and Br- species, as precursors of TTHMs, along with other 

independent variables were analyzed in a continuous system as per DoE depicted in Table 3. 

Results showed significant impact of both HA and Br- species as B*C (product of HA: Br- and 

pH) on TTHM formation with pH (r= 0.998, p = 0.007) as illustrated in Table 4. 

 

Three dimensional (3D) plots were drawn to investigate the interactive effect of these factors on 

TTHMs speciation within experimental ranges given in Table 1. Observing the effect of HA:Br- 

and pH on TTHMs formation in Fig. 3 (B = pH, C=HA: Br-), it is evident that TTHM is high at 

low HA:Br- concentration. This may be due to high availability of Br- ions which resulted in a 

shift towards brominated species and an overall increase in TTHM concentration.  

 

This fact was also explained by Hong et al. [28] that during chlorination, bromide quickly 

oxidized to bromine forming hypobromous acid (HOBr), a more powerful halogenating agent 

than hypochlorous acid (HOCl).  The chlorinated species initially formed may be subsequently 
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attacked by HOBr to form brominated species in the presence of sufficient Br- [29]. On the 

contrary, increasing the HA:Br- ratio decreased TTHM species due to less brominated species 

formation. In absence or insufficient Br- concentration, chlorinated species were the only 

products formed, resulting in decreased TTHM concentration, also shown by Liang et al.[30]. 

The role of HA:Br- was observed to be dependent on pH of the system as at higher pH, THM 

formation yield was comparatively high even at the lower HA:Br- ratios (x-axis, B=pH). The 

reasons for this could be the quick oxidation of bromide to highly reactive OBr- or HOBr 

species, which are pH dependent [17]. 

 

Comparing pH and applied chlorine effect in Fig. 4(D = Chl., B = pH), TTHMs concentration at 

pH 8 was approximately 6 times higher when observed at pH 5, corroborating well with 

Rodriguez and Erodes [31]. This is due to the fact thatin TTHMformation,actual hydrolysis step 

is base-catalyzed, therefore boosted as hydroxyl concentration increases [9, 32]. Observing the 

individual species, BF concentration was formed almost twice times the other chlorinated 

species, showing thatmulti-brominated species formation is pH dependent provided sufficient Br- 

within the system.  On the other hand, when time was taken into consideration, TTTHM 

concentration increased with time (Fig. 5: C = HA: Br-, A = Time). Hong et al.[28] also 

described that longer reaction times had a positive effect on TTHMs formation. 

 

The significance of studied factors was analyzed by regression coefficients and ANOVA (Table 

4).  The factors having a p value less than 0.05 showed a positive impact on TTHM formation.  

The quality of the polynomial model equation was judged statistically by the coefficient of 

determination R2as the model fit was controlled by the coefficient of determination R2. The 

R2value of 0.79, Adj. R2 value of 0.57 and Pred. R2 indicated a better response overall.  

 

A significant two factor interaction model (2 FI, p = 0.040) was applied for best fit, based on 

95% confidence level. The small valueof prediction error sum squares (PRESS) also signifies the 

present model [33], given as 7.87 suggesting that the developed model could predict response 

very well.Adequate precision greater than 4 is recommended by Yunardi et al.[34] and the results 

showed a value of 7.02 in this case. As expected, among the most significant factors, chlorine 

was observed to be a major contributor (p = 0.01) towards TTHMs formation. While product of 



7 
 

HA:Br- and pH (BC) was observed significant (p= 0.007) to affect the TTHMs formation and 

speciation. Therefore according to the data analysis, it is a two factor interaction (2FI) model (p 

= 0.040) as shown in Table 4, describing the effect of two factor’s mutual interaction in defining 

the overall process.    

 

To represent the comparative significanceof the independent variables (Table 1) on TTHM 

formation, a Pareto chart of effects was created (Fig. 6). The minimal effect is presented in the 

upper portion which progresses to maximal effect in lower portion of the chart. These were 

observed as B (pH), C (HA: Br-) and D (Chl), all being significant and BC (pH*HA: Br-), CD 

(HA:Br-*Chl) and BD (pH*Chl).  

 

3.2 TTHM modeling 

Regression modeling by RSM was performed on the responses of corresponding independent 

variables such as HA concentration, Br- ion concentration, applied chlorine dose (Cl2), pHand 

timeto the dependent variable i.e., TTHM concentration. Statistically significant factors are 

summarized in the form of a model equation for the formation and speciation of TTHMs in a 

distribution network as follows: 

 

THMs (mg/L) = 2.61 +0.99 B - 0.71 C +1.74 D – 0.44 AB - 2.26 BC +0.64 BD-0.89 CD 

Eq. 1 

Where: A = Time (hours) 

 B = pH 

C = HA:Br- ratio 

D = Applied chlorine (mg/L) 

The proposed mathematical approach provides a critical analysis of individual and simultaneous 

interactive influences of the selected independent variables. The coefficient of the equation 

demonstrated that they were sensitive in predicting TTHM formation.  
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3.3Verification of model 

The proposed CCD matrix was tested to analyze and compare the effects of independent 

variables described in Table 1 on TTHM formation, and the experimental and predicted results 

are summarized in Table 3. From the normal probability plots of the residuals, it is evident that 

the data points are situated around the same straight line (Figure 7) confirming a very good fit to 

the model [35]. These data points indicate that neither response transformation was required nor 

was there any apparent problem with normality. 

 

4. Multiple response optimization 

Optimization of the operational conditions for studying the response (TTHM formation) was 

carried out for practical purposes.  

4.1 Numerical optimization  

Numerical optimization finds one point in independent variable’s range that would maximize the 

response (TTHMs formation/speciation) as objective function. It involves combining the goals 

into an overall D function that ranges from zero outside of the limits to one at the goal [36]. 

Having a D value closer to 1 is considered most desirable. For an HA:Br-=7.5, pH = 7.3 and 

Cl2=5.61, the probability of TTHM formation was optimized as lower than the recommended 80 

µg/L in approximately 12 hours with a D value of approximately 0.88 (Fig.8).  

 

4.2 Graphical optimization 

The overlay plots allow for a visual selection of the optimum conditions according to a certain 

criterion, i.e., to minimize TTHMs concentration (Fig.9). The yellow/shaded areas show that the 

criterion was fully met in this region. The region of pH between 6.0 -7.6 and HA:Br- between 

1.3-5.9 seems safe with respect to the formation of TTHMs below the recommended level (Fig. 

9).  
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5. Conclusions 

Thecurrent study shows that CCD may be applied in modeling of the contribution of TTHM 

precursors and optimization of associated factors in formation and speciation of TTHMs in a 

scaled up DN.  

 

TTHM formation and speciation is controlled by various factors in a DN and chlorine was 

observed as the most significant factor. The other important factors were pH, time and HA: Br- 

ratio. These factors were observed to be least significant as discrete elements but the product of 

HA:Br- ratio and pH significantly impacted TTHMs formation more than the individual 

contributions (r= 0.998, p = 0.007). The pH of the solution was found to be synergistic to 

TTHMs formation as 2FI mechanism resulted in higher yield of TTHMs, whilst brominated 

species formation was observed pH dependent, provided sufficient Br- in the system. The 

graphical optimization and overlay plots showed formation of TTHM could be kept below the 

WHO recommended level i.e., 80 µg/L at a pH range between 6.0-7.6 and HA:Br- between 1.3-

5.9.   
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Table 1. DoE using independent variables with their low and high levels values by CCD 

Coded values -α -1 0 +1 +α 

Variables Lowest Low Centre High Highest 

Time (Hours) A 0 4 16 24 32 
pH B 5 6 7 8 9 
HA: Br- C 1.5 3.33 4.44 6.66 7.5 
Applied chlorine 
(mg/L) 

D 1 3 5 7 9 

 

 

                                                                    Fig.  1 Scaled-up distribution network  

 
 
 
 
 
 
 
 
 
 
 
 
 

Pipe loop system Sampling ports 
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Table 2.  GC/MS operating conditions and MS configurations for TTHMs  

Injection Auto sampler 

Experimental time (min) 30.0  

Injection volume (µL) 1.0  

Delay time (min) 0.00 min 

Initial temperature 52ºC for 5 min 

Ramp 7ºC/min to 180ºC 

Hold time (min) 2  

Compounds 
Retention 
time (min) 

m/z 

Chloroform 3.16 50,70, 95, 96 

Fluorobenzene (Internal Standard) 4.41 47, 83,85,87 

Bromodichloromethane 5.44 47,48,83,85 

Dibromochloromethane 8.61 47,48,127,129,131 

Bromoform 11.89 91, 93, 171, 173, 175 

 

 
 

Fig. 2 The GC chromatograph of THM4 compounds 
 

 

BF 

FB 
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Table 3.  DoE using CCD with respective experimental and predicted results 

Std. 
Order 

Run 
Order 

Pt. 
Type 

Blocks 
Time 

(Hours) 
pH 

HA/Br-
Ratio 

Applied 
Chl. 

(mg/L) 

TTHMs 
Experimental 

(µg/L) 

TTHMs 
Predicted 

(µg/L) 

4 1 1 1 24 8 3 3 1734.78 1713.54 

20 2 -1 1 16 9 4.5 5 3732.58 3700.21 

13 3 1 1 8 6 6 7 10599 10500.14 

12 4 1 1 24 8 3 7 34158.4 33541.7 

5 5 1 1 8 6 6 3 683.344 676.75 

11 6 1 1 8 8 3 7 16618.1 16435.2 

28 7 0 1 16 7 4.5 5 2069.1 2054.7 

6 8 1 1 24 6 6 3 101.726 99.465 

7 9 1 1 8 8 6 3 2083.27 2079.8 

8 10 1 1 24 8 6 3 1143.55 1134.67 

9 11 1 1 8 6 3 7 1594.17 1591.7 

21 12 -1 1 16 7 1.5 5 1313.73 1301.99 

17 13 -1 1 0 7 4.5 5 461.358 458.67 

25 14 0 1 16 7 4.5 5 2470.45 2450.99 

2 15 1 1 24 6 3 3 1105.49 1100.65 

23 16 -1 1 16 7 4.5 1 796.278 787.9 

3 17 1 1 8 8 3 3 3815.29 3799.98 

26 18 0 1 16 7 4.5 5 1298.9 1300.00 

22 19 -1 1 16 7 7.5 5 1329.27 1315.90 

1 20 1 1 8 6 3 3 1453.28 1440.24 

31 21 0 1 16 7 4.5 5 1608.76 1600.45 

15 22 1 1 8 8 6 7 1139.18 1138.69 
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10 23 1 1 24 6 3 7 999.099 1000.56 

30 24 0 1 16 7 4.5 5 1686.82 1680.98 

16 25 1 1 24 8 6 7 945.452 943.50 

14 26 1 1 24 6 6 7 22973.6 22960.40 

29 27 0 1 16 7 4.5 5 1789.47 1781.87 

19 28 -1 1 16 5 4.5 5 658.301 656.541 

27 29 0 1 16 7 4.5 5 1830.4 1827.8 

18 30 -1 1 32 7 4.5 5 1869.98 1860.67 

 

 

 

 

 

 

                                 Fig.3. 3D graph of TTHM formation showing effect of HA: Br- and pH   
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                 Fig.4. 3D graph of TTHM formation showing effect of pH and chlorine (mg/L)   
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                         Fig.5. 3D graph of TTHM formation showing effect of HA: Br- and Time  
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Table 4.  Analysis of Variance (ANOVA) for TTHMs formation  

Source Sum of 
Squares 

df. Mean square F value p value 

Model 214 10 21.40 2.40 0.040 

A-Time 0.89 1 0.89 0.10 0.7548 

     B-pH 23.38 1 23.38 2.62 0.1218 

  C- HA: Br- 11.98 1 11.98 1.34 0.2606 

D- Chl 72.40 1 72.40 8.12 0.0102 

A*B 2.70 1 2.70 0.30 0.5881 

A*C 1.27 1 1.27 0.14 0.7095 

A*D 0.89 1 0.89 0.10 0.7551 

B*C 81.40 1 81.40 9.13 0.0070 

B*D 6.46 1 6.46 0.72 0.4015 

C*D 12.61 1 12.61 1.42 0.2488 

Residual 169.31 19 8.91 -- -- 

Lack of fit 167.90 14 11.99 42.58 0.0003 

Pure error 1.41 5 0.28 -- -- 

Corrected total 383.31 29 Mean 2.61 

SD 2.99 Press 
 

7.87 

CV 114.42 Adeq*. Pre 
 

7.208 

R2 0.7983 Adj*. R2 
 

0.5758 

Pred. R2 
 

-1.0540 

Note: SD = Standard deviation, CV= Covariance, Adeq. = Adequate, Adj. = Adjusted,  
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Fig.6. Pareto chart of standardized effects of independent variables and their interactions with 
percent contribution; Note: * is the multiplication sign.   
 

 

p < 0.001 - 0.04 
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                      Fig.7. Verification of the model showing Normal plot of Residuals  
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Fig.  8.  Ramp function shows the region of optimal conditions of studied precurors for TTHM 
formation, ≤ 80 µg/L  
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Fig.  9. Overlay plot shows the region of optimal conditions of HA/Br- and pH for TTHM 
formation, ≤ 80 µg/L as response 
 
 
 

 

 

 

 

 

 

 

 

HA/Br- ratio 
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