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Letter to the Editor,

We read with interest the paper by Middlebrooks et al. [October
2018] titled “Structural connectivity-based segmentation of the tha-
lamus and prediction of tremor improvement following thalamic deep
brain stimulation of the ventral intermediate nucleus” (Middlebrooks
et al., 2018), which described hard-segmentation of the thalamus,
performed in 40 patients with essential tremor who had received ven-
trointermedialis (Vim) deep brain stimulation (DBS), using connectivity
to 7 cortical regions.

Meaningful in-vivo segmentation of the human thalamic nuclei
continues to be a challenge in the field of neuroimaging. This is mainly
due to the lack of contrast between these nuclei on conventional MRI
(Lemaire et al., 2010), potentially a consequence of the lack of distinct
anatomical borders between these structures in the first place (Ilinsky
et al., 2018). Complicating things further, the disparities between the
various histological and cytochemical classification systems have led to
a diverse range of grouping and naming conventions (Hassler, 1950;
Hirai and Jones, 1989; Ilinsky et al., 2018).

In the last decade, connectivity based segmentation, utilising dif-
fusion MRI (dMRI), has emerged as a promising approach of seg-
menting the thalamic nuclei in-vivo (Behrens et al., 2003). This ap-
proach has stirred significant interest in the field of functional
neurosurgery as the thalamic targets for the treatment of tremor are not

visible on conventional MRI. Since the publication of the study by
Behrens et al. in 2003 (Behrens et al., 2003), several studies have set
out to replicate these results using hard-segmentation algorithms to
form boundaries between thalamic nuclei (Kim et al., 2016;
Middlebrooks et al., 2018; Pouratian et al., 2011). Although the results
of these studies show similar patterns of segmentations, they all have
individual inconsistencies. This can be explained by: the high varia-
bility in dMRI acquisition and processing; the known susceptibility to
geometrical distortion leading to registration inaccuracies; and the
variability in the cortical seed region of interest definition. Further-
more, tractography has inherent limitations related to the laterality of
the seed region whereby medially located regions of interest (i.e. the
supplementary motor area - SMA) will have stronger connectivity to the
thalamus when compared to a more laterally located region (i.e. the
cortical hand area). This can result in an erroneously large thalamic-
SMA region.

It is concerning that these thalamic nuclei, constructed with diffu-
sion connectivity to cortical areas and demarcated with a hard-seg-
mentation algorithm, differ in their neuroanatomical orientation,
shapes, and relative sizes when compared to a ground truth model
(Ilinsky et al., 2018). The biggest differences are seen in the lack of
overlap between the nuclei and in the mediolateral orientation which is
almost perpendicular to the midsagittal plane as opposed to the ex-
pected 45° orientation (Ilinsky et al., 2018).
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These inaccuracies in diffusion connectivity-based segmentation
may not be significant for illustration purposes but are detrimental
when using these maps in surgical targeting where a good outcome
hinges on millimetric accuracy. Therefore, in order to rely on these
computational models in surgery, multiple validation methods are re-
quired (e.g. the overlapping of the M1-thalamic segment with the cer-
ebellar input into the thalamus (Akram et al., 2018)). Moreover, the
findings from these models must comply with established anatomical
and neurophysiological wisdom; when this is not the case, findings
should be dismissed.

The paper by Middlebrooks et al. contains numerous methodolo-
gical limitations, several of which are alluded to by the authors. The
most pertinent weaknesses include the use of a hard-segmentation al-
gorithm, the reliance on retrospective legacy diffusion data, the lack of
reverse phase-encode directional acquisition pairs to address suscept-
ibility distortion and potential errors introduced during CT/MR fusion.

Moreover it is suggested that, during DBS, a larger volume of tissue
activation (VTA) in the SMA/ Premotor cortex (PMC) but not the M1
area is associated with a significant improvement in tremor scores
(Middlebrooks et al., 2018). This position clashes with the observation
that a smaller, not a larger, VTA is required when the DBS electrode is
in the “sweet spot”. The manuscript subsequently implies that the
modulated thalamic sweet spot connects the cerebellar outflow to the
SMA/ PMC and not the M1. This conclusion is at odds with the majority
of previously published studies that used diffusion connectivity (Akram
et al., 2018; Hyam et al., 2012; Klein et al., 2012; Tian et al., 2018;
Wintermark et al., 2014), with established knowledge from non-human
primate studies (Percheron et al., 1993; Sakai et al., 2000), and with
numerous anatomical and neurophysiological studies (Hellriegel et al.,
2012; Raethjen and Deuschl, 2012; Schell and Strick, 1984). A Mag-
netoencephalography (MEG) study, published in the same issue of this
journal, shows that Vim DBS evoked cortical responses localized espe-
cially in the sensorimotor cortex, not the SMA/ PMC (Hartmann et al.,
2018). These points must be duly considered before accepting the
conclusions presented by Middlebrooks et al.
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