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Encapsulation of macrophages enhances their retention and
angiogenic potential
Francesca E. Ludwinski1, Ashish S. Patel1, Gopinath Damodaran1, Jun Cho1, Joanna Furmston1, Qingbo Xu2, Suwan N. Jayasinghe3,
Alberto Smith1 and Bijan Modarai1

Cell therapies to treat critical limb ischaemia have demonstrated only modest results in clinical trials, and this has been partly
attributed to poor cell retention following their delivery directly into the ischaemic limb. The aim of this study was to determine
whether alginate encapsulation of therapeutic pro-angio/arteriogenic macrophages enhances their retention and ultimately
improves limb perfusion. A reproducible GMP-compliant method for generating 300 µm alginate capsules was developed to
encapsulate pro-angio/arteriogenic macrophages. Longitudinal analysis revealed no detrimental effect of encapsulation on cell
number or viability in vitro, and macrophages retained their pro-angio/arteriogenic phenotype. Intramuscular delivery of
encapsulated macrophages into the murine ischaemic hindlimb demonstrated increased cell retention compared with injection of
naked cells (P= 0.0001), and that this was associated both enhanced angiogenesis (P= 0.02) and arteriogenesis (P= 0.03), and an
overall improvement in limb perfusion (P= 0.0001). Alginate encapsulation of pro-angio/arteriogenic macrophages enhances cell
retention and subsequent limb reperfusion in vivo. Encapsulation may therefore represent a means of improving the efficacy of
cell-based therapies currently under investigation for the treatment of limb ischaemia.
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INTRODUCTION
Critical limb ischaemia (CLI) is a severe manifestation of peripheral
arterial disease (PAD) that is characterised by pain and gangrene.1

The limb salvage rate for patients with CLI remains poor,2 with a
significant proportion of patients not amenable to standard
treatments, including surgical bypass and angioplasty. This has
been the driver for the development of angiogenic cell-based
therapies aimed at limb salvage in these no option patients.
Clinical trials of cell therapy to date have only shown a modest
benefit with disappointing results attributed to the lack of potency
of cells injected, including a functional impairment of autologous
cells harvested from patients with multiple co-morbidities.3–10

The poor retention of cells after injection into the target site is
also thought to limit their potential for effecting robust
collateralisation. Cells injected directly into the calf muscle are
susceptible to clearance by immune cells or apoptosis triggered
by the hypoxic, pro-inflammatory environment.11 Mononuclear
cells injected intramuscularly in the ischaemic hindlimb have a
short-lived survival, which is not improved with repeated
injection.12 There are currently no studies to assess retention of
cells injected into the ischaemic limb in man, but clinical studies of
therapeutic cell injection into the heart reveal a similar precipitous
loss, with only ~12% of cells retained after 1 h.13

The use of implantable biomaterials, containing therapeutic
cells, to enhance cell-based therapies is gaining traction in a
number of cell therapy areas, including the use of bone marrow-

derived mesenchymal stem cells for revascularisation of infarcted
myocardium and ischaemic hindlimbs.14,15 Encapsulation in
polymeric matrices, including alginate, can be used to deliver
therapeutic cells as it not only enhances cellular retention and
survival,16,17 but also provides a semi-permeable membrane for
diffusion of nutrients, stimulants and waste products.18

Alginate is an unbranched algae-derived polysaccharide, which
gels upon contact with divalent cations.19 Its biocompatibility,
paired with ease of use makes it an attractive option for the
development of cell therapy. We have previously identified a
subset of human monocyte/macrophages that promote limb
revascularisation in mice20 and carried out a first in man study
involving delivery of this subset in patients with limb ischaemia
(unpublished data). Here, we use murine pro-angio/arteriogenic
macrophages to optimise and standardise a good manufacturing
practice (GMP)-compliant encapsulation strategy, and to study the
effect of this procedure on their viability and capacity to enhance
revascularisation of the ischaemic limb, in readiness for clinical
trials in patients with limb ischaemia.

RESULTS
Optimisation of alginate capsule generation
A number of encapsulation parameters were optimised to allow
reproducible generation of capsules of a consistent shape and
diameter, prior to generating cell-seeded capsules for subsequent
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in vitro and in vivo experiments. Capsule diameter was affected by
increasing the flow rate of alginate solution through the cell
encapsulator, but varying the concentration of sodium alginate
had little effect (Fig. 1a). Increasing the voltage applied to the
alginate suspension decreased the capsule diameter (Fig. 1b). A
flow rate of 12 ml/min, with 1.0% sodium alginate and 6.8 kV
reliably produced capsules of 300 µm diameter and a round shape
(Fig. 1a, c).
In order to standardise experimental conditions, we encapsu-

lated immortalised murine bone marrow-derived macrophages
engineered to express the Tie2 receptor (Tie2-iBMMs, see
Methods) to provide a uniform population of angiogenic cells
for these proof-of-concept studies aimed at developing a
standardised GMP-compliant encapsulation method and deci-
phering the effect of encapsulation on cells. Uniformly seeded
capsules were produced when Tie2-iBMMs were seeded into the
alginate solution at a concentration of 1 × 107 cells/ml, with
capsules containing approximately 200 cells each (Fig. 1c).

The effect of encapsulation on Tie2-iBMM viability and phenotype
Encapsulated Tie2-iBMMs (eTie2-iBMMs) were assessed long-
itudinally, in vitro, for cell viability and phenotype in order to
ascertain whether encapsulation was detrimental to cell health
(Fig. 2, Table 1). Microscopic analysis of the capsules demonstrated
maintenance of capsule integrity and retention of the cells within
the capsules up to day 21 postencapsulation (Fig. 2a–d). There was
no significant loss of cells from the capsules in vitro up to day 21
(Fig. 2e, day 0: 196 ± 2.5 vs. day 21: 188 ± 1.4 cells/capsule).
Analysis of cell viability by annexin V and propidium iodide (PI)
staining (Fig. 2f, g, Table 1), across 7 days in vitro, demonstrated
that the majority of cells remain viable.
We assessed the phenotype of macrophages following long-

term in vitro culture of Tie2-iBMMs in alginate capsules. After
21 days, the expression of Tie2 and the mouse macrophage
marker, F4/80, on naked Tie2-iBMMs (nTie2-iBMMs) remained
constant and was comparable to that of eTie2-iBMMs (Fig. 2h,
Supplementary Data, Table S1). Expression of the ‘M1’
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Fig. 1 Optimisation of capsule generation. a The diameter of alginate capsules generated under a range of alginate concentrations (0.8% and
1.0%), and encapsulator flow rates (2–12ml/min) was measured microscopically (n= 10/group). b Variation of the encapsulator voltage
settings influenced the diameter of capsules generated (n= 5/group, error bars= s.d.). c Consistently round 300 µm diameter capsules were
generated using 1.0% alginate with a flow rate of 12ml/min and were used to encapsulate Tie2-iBMMs at a cell density of 1 × 107 cells/ml.
Scale bar= 100 µm
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Fig. 2 The effect of prolonged encapsulation on Tie2-iBMMs. a-d Alginate capsules seeded with Tie2-iBMMs at days: a 1, b 7, c 14 and d 21
postencapsulation. e Tie2-iBMM retention within the capsules was quantified up to day 21 following encapsulation (n= 5/group, P= n/s by
one-way ANOVA). f Flow cytometric analysis of cell viability using annexin V/PI staining (Q1= cell debris; Q2= dead cells; Q3= apoptosing
cells; Q4= live cells). g Quantification of annexin V/PI staining of encapsulated Tie2-iBMMs at days 1, 2, 3 and 7 post-encapsulation (n= 4/
group, P= n/s by two-way ANOVA and Bonferroni post-test). h Measurement of cell phenotype by flow cytometry in nTie2-iBMMs (green) and
eTie2-iBMMs (grey) up to 21 days in vitro (n= 5/group, P= n/s P < 0.001 by two-way ANOVA and P= n/s Bonferroni post-test). Error bars= s.d.
Scale bar= 100 µm
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macrophage markers CD80 and CD86 did not differ between
nTie2-iBMMs and eTie2-iBMMs at any time point (Fig. 2h,
Supplementary Data, Table S1). Expression of Mannose receptor
C-type 1 (MRC1), an ‘M2’macrophage marker, was not significantly
different between nTie2-iBMMs and eTie2-iBMMs at any time
point (Fig. 2h, Supplementary Data, Table S1).

The effect of alginate encapsulation on Tie2-iBMM function
Quantification of human umbilical vein endothelial cell (HUVEC)
tubule formation induced by culturing in the presence of either
empty capsules (Fig. 3a), vascular endothelial growth factor (Vegfa,
Fig. 3b), nTie2-iBMMs (Fig. 3c) or eTie2-iBMMs (Fig. 3d) demon-
strated increased EC tubule area in eTie2-iBMM co-cultures
compared with empty capsules (Fig. 3e, P= 0.002), and this was
comparable to that induced by the Vegfa positive control (P > 0.1)
and nTie2-iBMMs (P > 0.9).
In order to determine whether encapsulation of Tie2-iBMMs

affected the secretion of factors that may promote or inhibit
angiogenesis, we compared the conditioned media produced by
nTie2-iBMMs and eTie2-iBMMs left in culture up to 21 days. We
found a significantly higher expression of Placenta growth factor-2
(PlGF-2) and Vegfa 7, 14 and 21 days following encapsulation of
Tie2-iBMMs compared with non-encapsulated cells (Fig. 3f,
Supplementary Data, Table S2). Expression of Matrix
metalloproteinase-9 (MMP9) was significantly higher in eTie2-
iBMMs compared with nTie2-iBMMs at days 3, 7 and 14 post-
encapsulation (Fig. 3f, Supplementary Data, Table S2). Secretion of
the pro-inflammatory cytokine Interleukin-1β (IL-1β) was not
affected by encapsulation, however, expression of the anti-
inflammatory cytokine Interleukin-10 (IL-10) was significantly
greater at day 7 following encapsulation (Fig. 3f, Supplementary
Data, Table S2).
We sought to establish whether cell encapsulation hindered the

signalling of pro-angio-/arteriogenic cells via soluble ligand
binding (angiopoietins), as the cytokine milieu in the ischaemic
limb is thought to modulate injected therapeutic cells in this
manner.20 Moreover, for encapsulated cells to exert their
beneficial effect, the biomaterial used must not deleteriously
affect the secretion of soluble factors that may promote tissue
regeneration in a paracrine fashion. TIE2 receptor phosphorylation
can be induced by both Ang-1 and Ang-2, although there is
debate as to which ligand induces the most potent angiogenic
response in TEMs.20 The secretion of Vegfa by Tie2-iBMMs
stimulated with Ang-1 and Ang-2 was not different between
naked and encapsulated cells (Fig. 3g). As well as assessing the
effect of encapsulation on the paracrine function of Tie2-iBMMs,
we sought to investigate whether production of chemokines
involved in monocyte recruitment to the ischaemic limb was
affected. Monocyte chemoattractant protein-1 (MCP-1) promotes
the recruitment of monocytes to the ischaemic limb, which
subsequently differentiate into M2 macrophages and enhance
arteriogenesis.21–23 MCP-1 production was greater in eTie2-iBMMs
compared with nTie2-iBMMs following stimulation by both Ang-1
and Ang-2 (Fig. 3h, P < 0.01 for both), indicating that eTie2-iBMMs
may act not only through enhanced paracrine function, but also
through recruitment of cells implicated in driving a pro-
arteriogenic response.

Given that in vitro culture demonstrated Tie2-iBMM viability and
phenotype could be maintained after prolonged encapsulation
within alginate capsules, we assessed whether eTie2-iBMMs were
better retained following delivery into the murine ischaemic
hindlimb compared with naked cells. We found that although
there was a reduction in biofluorescence in both treatment groups
over 28 days (Fig. 4a), eTie2-iBMMs were significantly better
retained at days 7, 14 and 21 than nTie2-iBMMs (Fig. 4b, P <
0.0001).
Encapsulated Tie2-iBMMs induced greater reperfusion of

ischaemic hind limbs than treatment with nTie2-iBMMs (P <
0.01). Mice injected with eTie2-iBMMs or nTie2-iBMMs demon-
strated greater revascularisation of the ischaemic limb over
21 days compared with animals treated with empty alginate
capsules (Fig. 5a, b, P < 0.0001 and P < 0.05, respectively).
Histological analysis revealed an increase in the number of
arterioles, (Fig. 5c, f, P= 0.03), and a trend to increased arteriole
diameter (Fig. 5d, f, P= 0.057) of α-smooth muscle actin (α-SMA+)
arterioles; as well as increased angiogenesis (capillary:fibre ratio,
Fig. 5e, f, P= 0.023) in ischaemic muscle specimens of mice
treated with eTie2-iBMMs compared with nTie2-iBMMs. Mice
treated with empty alginate capsules had significantly less
angiogenesis and arteriogenesis compared with those treated
with eTie2-iBMMs (Fig. 5c–e, P= 0.01). Alginate capsules persisted
in the hindlimb after 21 days (Fig. 5g), and still contained cells at
this time (Fig. 5h).
There was no significant difference in the number of CD45+

cells in hindlimbs injected with eTie2-iBMMs compared with
nTie2-iBMMs (Fig. 6a). Deep phenotyping of the CD45+ population
showed no significant difference in the proportion of neutrophils
(CD11b+Ly6G+), or monocytes and macrophages (CD11b+Ly6G−

and CD11b+F4/80+ cells, Fig. 6b–d, Supplementary Data, Table
S3). Treatment with eTie2-iBMMs was associated with a signifi-
cantly reduced proportion of the endogenous CD11b+Ly6G−

monocytes expressing Ly6C (Ly6Chigh, Fig. 6e, Supplementary
Data, Table S3) compared with nTie2-iBMM and empty capsule-
treated mice (P < 0.05). Histological analysis of muscle specimens
revealed no significant difference in the number of cells
expressing the apoptosis marker activated caspase-3 between
treatment groups (Fig. 6f, g), or any difference in muscle damage
between treatment groups (Fig. 6f, h).

DISCUSSION
To date, cell-based therapies for the treatment of CLI have
demonstrated limited efficacy in clinical trials.4–6 A possible
contributing factor to these modest results is poor cell retention
following direct injection of cells into the ischaemic limb. This
suggests a need for an alternative delivery system, such as
encapsulation of therapeutic cells within a biocompatible material
prior to implantation that promotes cell retention to ensure a
better outcome.
This study investigates the effect of alginate encapsulation on

the phenotype and function of a pro-angio/arteriogenic murine
macrophage line (Tie2-iBMMs), in revascularising the ischaemic
limb. We describe a GMP-compliant methodology for the
consistent generation of uniform alginate capsules containing
these cells that does not adversely affect their viability, phenotype
and function in vitro. Encapsulation enhanced Tie2-iBMM

Table 1. Assessment of encapsulated Tie2-iBMM viability in culture

Day 1 Day 2 Day 3 Day 7 P value

Live 89.00 ± 0.1 84.03 ± 2.9 84.03 ± 1.8 90.85 ± 1.1 n/s

Dead 2.43 ± 0.5 4.28 ± 8.4 2.78 ± 0.5 1.90 ± 0.1 n/s

Apoptosing 2.52 ± 1.1 1.90 ± 0.3 3.57 ± 0.3 3.57 ± 0.4 n/s
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retention following implantation into the ischaemic hindlimb and
this was associated with significantly greater angio/arteriogenesis
and overall limb revascularisation compared with non-
encapsulated Tie2-iBMMs.
Tie2-expressing macrophages are thought to facilitate revascu-

larisation either through a paracrine action24,25 or via direct
contact with ECs26 and, therefore, their utility as therapeutic cells
necessitates their delivery in close proximity to an ischaemic
region to maximise their revascularisation potential.27 Mainte-
nance of their retention at the site of delivery is thought to be
another important factor in achieving optimal therapeutic benefit,
with significant cell loss from the site of implantation noted when
directly injected into both the ischaemic heart and limb.12,28 Cell
encapsulation maintains retention and has proved efficacious in
different clinical settings, including pancreatic islet cell and
hepatocyte transplantation for the treatment of diabetes and
liver failure.29,30 The data presented demonstrates that Tie2-
expressing macrophage secretion of pro-angio/arteriogenic cyto-
kines is preserved or even enhanced following encapsulation.
PlGF-2, VEGF and MMP9 have proven potential for promoting
ischaemic tissue repair through induction of angiogenesis,
progenitor cell recruitment and improved integration of injected
cellular biomaterials and, therefore, the greater degree of limb
reperfusion in eTie2-iBMM-treated animals could be attributed to
the improved retention of these cells in the ischaemic region,
facilitating the action of these growth factors.31–33 In addition to
providing a physical barrier for preventing cell loss through wash
out by the vascular and lymphatic systems, alginate encapsulation
of cells has also been shown to inhibit migration of cells out of the
capsule into the surrounding host tissues.15

An advantage of encapsulating cells, in addition to improving
retention, is their immuneprivileged status within the capsule.34

Although immunogenicity is not a consideration when using
autologous cells for therapeutic purposes, murine studies suggest
that co-morbidities associated with CLI can adversely affect the
angio/arteriogenic potential of monocyte/macrophages.35 Allo-
geneic macrophages from healthy individuals, that may have
more potent angio/arteriogenic properties for promoting limb
salvage, could be used in combination with encapsulation
technologies, to enhance the efficacy of cell-based strategies.
The protection from host immunity conferred by encapsulation of
cells from allogeneic sources, warrants further investigation in the
context of ischaemia. CLI patients frequently suffer with multiple
co-morbidities, and the functional potency of their cells should be
compared with those isolated from healthy subjects in order to
determine the most suitable source of cells for successful therapy.
The present study highlights the promise offered, through the

use of a GMP-compliant biomaterial encapsulation process, to
enhance the efficacy of cell therapies for treating limb ischaemia.
We employed the murine macrophage iBMM cell line in our
experiments to ensure replicability and fair comparison in our
proof of concept study. Further studies, using human macro-
phages in place of the mouse cell line tested here, would be
required to allow the translation of this work into clinical trials.
Here, we show not only an improvement in the method for
delivering cells, but also the potential for a whole new cell product
for therapeutic use when human macrophages are encapsulated
under GMP conditions. Sodium alginate is a well-established
material for the purposes of cell encapsulation, although there
now exists an expansive range of biomaterials that have been
engineered to specifically promote the reparative function of cells

Day 3 Day 7 Day 14 Day 21 Day 28
0.001

0.01

0.1

1

A
ve

ra
ge

 R
ad

ia
nc

e 
Ef

fic
ie

nc
y

N
or

m
al

is
ed

 to
 D

ay
0

[p
/s

/c
m

2 /s
r]

/[µ
W

/c
m

2 ]

nTie2-iBMMs eTie2-iBMMs

** * **

P<0.0001

eTie2-iBMMsnTie2-iBMMs

D
ay

 7
D

ay
 3

D
ay

 1
4

D
ay

 2
1

D
ay

 2
8

a

b

Fig. 4 The effect of alginate encapsulation on cell retention within the ischaemic murine hindlimb. a Tie2-iBMMs stained with VivoTrack680
biofluorescent dye were either directly injected (nTie2-iBMMs) into the ischaemic limb of mice or encapsulated within alginate (eTie2-iBMMs),
and their retention tracked using an IVIS Spectrum In Vivo Imaging System over 28 days. b The average radiance efficiency at each time point
was normalised to day 0 and compared between treatment groups (n= 4/group, P < 0.0001 by two-way ANOVA *P= 0.05 **P= 0.01 by
Bonferroni post-test, error bars= s.e.m.)

F.E. Ludwinski et al.

6

npj Regenerative Medicine (2019)     6 Published in partnership with the Australian Regenerative Medicine Institute



contained therein.36–38 Biomaterial-based cell therapies may be
further enhanced through engineering to allow for the temporal
release of pro-angio/arteriogenic factors that may increase the
potency of encapsulated cells. Growth factor-containing hydrogel
cores within alginate microcapsules are postulated to improve cell
survival,39 with MSC-VEGF co-encapsulation demonstrating pro-
mise in the treatment of myocardial infarction.40 Co-encapsulation

of different cells may also enhance therapeutic cell function and
survival.41,42 It is possible therefore, that although the present
study highlights the benefit of cellular encapsulation in promoting
retention of therapeutic cells and their activity in revascularising
the ischaemic limb, there could be scope for further improve-
ments to enhance their efficacy through the development of co-
encapsulation modalities.
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In summary, these studies provide an optimised methodology
for the generation of alginate capsules containing pro-angio/
arteriogenic macrophages, and show that encapsulation in this
biopolymer is not detrimental to cell viability, phenotype or
function. These data show that encapsulation both enhances

macrophage retention and their pro-angiogenic/arteriogenic
potential in the ischaemic murine hindlimb, which leads to
greater limb perfusion, compared with naked cells. This work may
have important implications for cell-based therapies currently
being trialled for treatment of CLI.
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METHODS
Cell culture
Murine bone marrow-derived macrophages were immortalised using a
lentiviral vector containing the SV40 large T Antigen coding sequence to
form iBMMs.43 Vesicular stomatitis virus-pseudotyped, third generation
lentiviruses were produced by plasmid transfection of 293T cells. The SV40
large T antigen coding sequence was cloned into the SFFV promoter-
containing lentivirus using BamHI and SaII restriction enzymes, and the
resultant lentivirus used for transduction. Tie2 expression was subse-
quently induced via a second lentiviral transduction.43,44 Tie2-iBMMs were
cultured in complete medium (IMDM (Gibco, UK), 20% foetal calf serum
containing 2 mM glutamine, 1% (v/v) antibiotic/antimycotic and 50 ng/ml
macrophage colony stimulating factor (M-CSF, Peprotech, UK)) under
standard conditions (37 °C, 21% O2, 5% CO2).

Encapsulation of Tie2-iBMMs
SLG20 alginate (1.5% (w/v), Pronova Biomedical) was prepared in 0.9% (w/
v) NaCl, and cells resuspended in alginate at a concentration of 1.0 × 107

cells/ml. Capsules were generated using a GMP-compliant BUCHI B-395 Pro
encapsulator, set at a flow rate of 12.0 ml/min, with the cell solution
passing through a 120 µm nozzle vibrating at 1800 Hz, and a 6.8 kV electric
field, into a polymerisation solution (1.2% (w/v) CaCl2, 0.9% (w/v) NaCl,
Tween-20). Capsules were subsequently washed in 0.9% (w/v) NaCl.
Capsule diameter and cell number/capsule was determined by counting
the number of cells within ten capsules from three separate experiments
under a brightfield microscope. The GMP-grade encapsulation system
generated sterile capsules that contained the murine macrophage cell line
in order to minimise the possibility of infection and hence any
inflammation that might confound our revascularisation results in our
animal hindlimb ischaemia (HLI) model.

Digestion of alginate capsules
Capsules were centrifuged to remove media (300g, 5 min) and resus-
pended in chelation solution (30mM EDTA in 55mM sodium citrate), prior
to 5min incubation at 37 °C with regular vortexing. The digestion solution
was passed through a 70 µm cell strainer to remove undigested alginate.
Cells from the digested capsules were washed and centrifuged at 300g for
5 min to pellet.

Preparation of single-cell suspensions from ischaemic muscle for
flow cytometry
Adductor muscle samples were harvested from treated animals 7 days
after the procedure. Briefly, cells were isolated from dissected tissue
following 30min incubation in a tissue digestion buffer (0.5% bovine
serum albumin, 1 mg/ml collagenase, 1 mM EDTA, 500 units/ml hyalur-
onidase and 100 units/ml DNase I in dPBS (Sigma)). Filtered tissue digests
were subject to red blood cell lysis (BD Bioscience) and washed prior to
staining and analysis using flow cytometry.

Flow cytometry
Cell viability and phenotype were assessed using either a MACSQuant
(Miltenyi Biotec, UK) or AttuneNxT (Thermo Scientific, UK) flow cytometer.
Cells were harvested from (i) monolayer culture (naked—nTie2-iBMMs) and
alginate capsules (encapsulated—eTie2-iBMMs) at days 1, 3, 5, 7, 14 and 21
post-encapsulation and (ii) digested adductor muscle specimens. Cells
were washed and FcR receptors blocked using FcR blocking reagent
(Miltenyi Biotec, UK). Cell viability was determined using a Live-Dead
Staining Kit (Thermo Fisher Scientific, UK) for annexin V and PI according to
manufacturer’s instructions. Antibodies for assessment of cell phenotype
or muscle cell content are listed in Supplementary Data, Table S4. All
experiments utilised fluorescence minus one controls to determine
positive cell surface expression, and analysis of acquired data was carried
out using FlowJo V10 software. Gating panels are detailed in Supplemen-
tary Data, Figures S5 and S6.

In vitro angiogenesis assay
The angiogenic potential of eTie2-iBMMs was assessed using a previously
described HUVEC/fibroblast co-culture assay,45 and compared with HUVEC
tubule formation induced by empty alginate capsules. Media containing

100 ng/ml VEGF was used as a positive control. HUVEC tubule formation
was quantified after 14 days using ImageProPlus software.

Luminex quantification of secreted cytokines
A custom Luminex assay (R&D Systems, UK) for murine PlGF-2, VEGF,
MMP9, IL-1β and IL-10 was used to quantify secreted protein levels in
conditioned media collected from nTie2-iBMM and eTie2-iBMM cell
cultures at days 3, 7, 14 and 21. The assay was carried out according to
manufacturer’s instructions, and data captured using a Bio-Plex MAGPIX
system (BioRad, UK).

Vegfa and MCP-1 ELISA
The secretion of Vegfa and MCP-1 by Ang-1/Ang-2-stimulated Tie2-iBMMs
was assessed using ELISA (R&D Systems, UK) according to manufacturer’s
instructions. Briefly, either nTie2-iBMMs or eTie2-iBMMs were stimulated
with 200ng/ml Ang-1 or Ang-2 for 24 h. Media was then replaced with
serum-free iBMM media for a further 24 h and conditioned media
subsequently collected for analysis.

Animal source and husbandry
This study complied with ethical regulations stipulated by U.K. Animals
(Scientific Procedures) Act, 1986 and associated guidelines, and the study
protocol approved by the Home Office. Male C57BL/6 mice aged
8–10 weeks were procured from Charles River Laboratories. All animals
were randomised prior to experimentation and during acquisition of data,
observers were blinded to these allocations. Animals were maintained in
individually ventilated cages, and their health status monitored through-
out the course of the experiment.

In vivo biofluorescence
Tie2-iBMMs were stained with VivoTrack680 biofluorescent dye (Perkin
Elmer, UK) according to manufacturer’s instructions. Cells were then either
directly injected into the adductor muscle of mice undergoing hindlimb
ischaemia surgery, or encapsulated in alginate prior to implantation in
operated mice. Each mouse received 1 × 106 Tie2-iBMMs. Radiance
efficiency was quantified using an IVIS Spectrum In Vivo imaging system
(Perkin Elmer) at days 0, 3, 7, 14, 21 and 28 using a 60 s exposure time to
assess changes in fluorescence intensity using Living Imaging
v4.5 software.

Murine model of HLI
Unilateral hindlimb ischaemia was surgically induced in 8-week-old C57BL/
6 male mice (n= 15/group) by ligation of the femoral artery proximal and
distal to the profunda femoris and excision of the intervening segment.
nTie2-iBMMs were either directly injected into the adductor muscle or
encapsulated and layered onto the muscle. Empty alginate capsules were
layered onto the muscle as a control. Paw perfusion was quantified by laser
Doppler perfusion imaging (LDPI, Moor Instruments, UK) at 3, 7, 14 and
21 days. Adductor and gastrocnemius muscles were harvested at day 21
for histological analysis.

Histological analysis
Muscle specimens were fixed in 4% paraformaldehyde and dehydrated in
increasing concentrations of sucrose (15, 30 and 40%) prior to snap-
freezing in isopentane. Five consecutive 10 μm sections were stained from
three areas of each muscle specimen (500 μm separation), and analysed for
measures of either arterio- or angiogenesis. Arteriogenesis was measured
in adductor muscle specimens by staining for α-SMA and laminin; whilst
angiogenesis, in gastrocnemius muscle, was measured by quantification of
capillary:fibre ratio using antibodies against CD31-PECAM and laminin. The
number of CD45+ cells per field of view was quantified in adductor muscle
specimens and cell apoptosis quantified by staining for activated Caspase-
3. Antibody information is listed in Supplementary Table S4. Cell retention
within implanted capsules, harvested from the operated limb at day 21,
was analysed using H&E stain. Muscle fibre damage in the ischaemic limb
was assessed by H&E staining of ischaemic adductor muscle sections, with
fibres characterised as normal, damaged or regenerating using a standard
protocol.46 Fluorescent and histological staining was assessed with a Nikon
Ti Eclipse microscope using NIS-Elements BR microscopy software.
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Statistical analysis
All statistical analysis was performed using GraphPad Prism 7 software.
Technical and experimental repeats were conducted to ensure that
experiments were powered to at least 80%. Statistical significance was
analysed by one- or two-way ANOVA and appropriate post-hoc tests, or by
Mann Whitney/Kruskal Wallis test, as specified in the figure legends. A
threshold of P < 0.05 was defined as statistically significant. Data are
presented as mean ± SD.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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