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Abstract— This communication describes the optical pro-
cessing chain to use Sentinel-3 OLCI and MODIS data as
part of the ESA funded Synergy project of the Scientific
Exploitation of Sentinel Missions (SEOM) component of the
EO Envelope programme. One of the goals of the project is
to use Data Assimilation techniques to produce land surface
products combining the data from Sentinels-2 and 3. Some of
the derived products are the OLCI atmospherically corrected
data that can be used to generate a spectral BRDF product from
OLCI and MODIS, broadband albedo and different vegetation
parameters. The project also implements a series of efficiency
improvements to the algorithms to speed up the processing.
The demonstrator product uses one year of OLCI and MODIS
data (2017).

I. INTRODUCTION
The advent of initiatives like ESA’s Climate Change

Change Initiative (CCI), similar moves by other space agen-
cies, as well as the increased number of applications that
require frequent, gap-free and continuous monitoring of the
land surface have resulted in an interest in consistently
combining observations from heterogeneous sensors in a way
that makes them compatible for quantitative applications.
This usually means that the observations are interpreted in
terms of land surface parameters, such as albedo, leaf area
index (LAI), or soil and leaf optical properties. It is of
critical importance that the inferences of these parameters
are internally consistent, and are quantified by an estimation
of uncertainty [1], [2].

As part of this process, the effect of the atmosphere on
each acquisition needs to be compensated. Clouds need to
be flagged, and the surface directional reflectance over the
sensor’s spectral bands needs to be inferred. This process
in essence converts the top of atmosphere (TOA) Level
1/1C product to a bottom of atmosphere (BOA) Level 2/2A
product.

Recent approaches to atmospheric correction have started
exploiting the relatively slow variation in land surface re-
flectance compared to the fast variation in atmospheric
parameters. Methods such as those proposed by [3], [4],
[5] succesfully make use of this observation. In the current
work, we build on these foundations to provide a novel,
uncertainty quantified, multi-sensor land surface monitoring
framework. The main ingredients of this system include (i)
a simple but flexible model of evolution of the land surface
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properties; (ii) use of widely available predictions of atmo-
spheric composition provided by meteorological centers such
as Copernicus Atmospheric Monitoring Service (CAMS);
(iii) spectral transformations between different sensors to
allow data blending; and (iv) the use of advanced physical
models of the atmosphere to infer both atmospheric compo-
sition and land surface BRDF in a set of common spectral
narrow bands. These so-called spectral BRDF predictors can
then be used further to calculate broad band bi-hemispheric
reflectance (BHR), and then further used in an inversion
scheme to retrieve land surface parameters such as effective
LAI and leaf and soil optical properties.

In this communication, the system outlined above is pre-
sented, and demonstrated with a combination of S3/OLCI
and MODIS data. The atmospheric correction of the indi-
vidual sensors is introduced in § III. The spectral transfor-
mations are shown in § IV. The non-linear inversion of land
surface parameter is shown in § V

II. DATA PREPROCESSING

OLCI radiances were acquired from
the Sentinel-3 Pre-Operations Data Hub
(https://scihub.copernicus.eu/s3). The full
resolution top of atmosphere product is composed of 22
measurement data files: 21 files containing radiances for
each band at approximately 300m (one band per file),
accompanied by the associated error estimates, plus an
additional file providing all data related to pixels that have
been removed during the re-sampling process. Additionally,
it contains the geometry data (solar and azimuth angles).
L1 OLCI data for late 2016 and the whole 2017 covering
two different MODIS tiles, h18v04 covering the Alps and
tile h17v05 that covers Southern Spain and Northwest
Africa were downloaded. TOA radiances were transformed
into TOA reflectances using the S3 Toolbox, then all
granules were mosaicked to get a single image per day and
reprojected to 500m and resampled to match the MODIS
Sinusoidal Grid.

III. ATMOSPHERIC CORRECTION

A number of atmospheric correction schemes are based
on the assumption of a Lambertian land surface BRDF.
This assumption leads to significant errors in the corrected
surface directional reflectance in situations with very oblique
geometries, or when aerosol loading is high [6]. In this case,
we use linear BRDF kernel models [7], [8] to describe the
land surface anisotropy and we couple the atmosphere and
land surface explicitly. As such, the TOA radiance at a given



Fig. 1: OLCI TOA (left) and BOA (right) reflectance for tile h17v05

wavelength and view/illumination geometries is given by the
3 linear kernel parameters or spectral BRDF descriptors,
the atmospheric composition (e.g. aerosol optical thickness,
total columnar water vapour, O3 concentration). The 6SV1
atmospheric radiative transfer model [9] is used to produce
this mapping. The system assumes that the mapping between
TOA and BOA reflectances is only hampered by additive
Gaussian noise with a known variance (and no bias), which
results in a normal likelihood function, p(~y|~x),

log(p(~y|~x)) ∝ 1

2
[H(~x)− ~y]

>
C−1obs [H(~x)− ~y] . (1)

In this equation, H is the radiative transfer model, Cobs is the
observational error covariance matrix, ~y are the observations
(TOA reflectance or radiance), and ~x is the state, a com-
bination of the three linear BRDF kernel weights for each
spectral band, and the atmospheric composition parameters.
Maximising the log-likelihood in Eq. 1 as a function of ~x
results in an ill-posed problem [10], [11], which in this case
is also constrained with information on atmospheric compo-
sition from the Copernicus Atmospheric Monitoring Service
(CAMS, http://atmosphere.copernicus.eu). An
additional source of prior information is the use of the
estimate of the kernel parameters from the previous time-step
(currently, we use a daily timestep), with a small inflation
on the uncertainty, in effect assuming that the land surface
paramters only change slowly in time [12].

Minimising the compound cost function results in an non-
linear least squares method, which in this case is solved
via local linearisations of H(~x) (which in this case is the
6S RT model) using the gradient of the RT model. For
the sake of efficiency, this is done using Gaussian process
(GP) emulators [13]. The solution of this step results in an

inference on the per-band BRDF kernel weights, as well as
the atmospheric composition parameters. Fig 1 depicts a True
Colour (bands 9,6,3 RGB) example of the OLCI atmospheric
correction for September 4, 2017.

IV. SPECTRAL TRANSFORMATIONS

Fig. 2: Examples of spectral transformations: MODIS re-
flectance predicted from OLCI bands.

Fig. 3: Examples of spectral transformations: OLCI re-
flectance predicted from MODIS bands.

The approach outlined in the previous Section is not
particularly new and shares a lot with the approach proposed
by [14], only here we take a more formal Bayesian view
of prior distributions. To extend this approach to combi-
nations of different sensors, we suggest that defining a set
of linear kernel weights in an spectrally informative set of
narrow bands, and then provding a set of transformations
from these bands to individual bands of actual sensors
(and viceversa) allows for a simple blending framework. In
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Fig. 4: Schematic of atmospheric processing chain. Spectral
BRDF descriptors in the MODIS bands are used to provide
a prior distribution for kernel weights in the target (in
this case, OLCI) sensor bands using linear transformations.
Prior atmospheric parameter distributions are obtained from
CAMS, and emulators of the 6S model are used to invert
both atmospheric parameters and BRDF kernel weights in
OLCI spectral space. These are then transformed back to
MODIS space, and used for subsequent processing.

Fig. 5: Comparison of OLCI TOA reflectance with predic-
tions from MODIS using the spectral transforms

practice, BRDF descriptors are stored in the 7 MODIS 500m
bands. These provide a compact yet informative description
of most spectral features. When observations from a given
sensor need to be ingested, a prior land surface distribution
of the sensor parmaters is used using a transformation of
the MODIS BRDF descriptors to the spectral bands of
the new sensor. The prior distribution derived from e.g.
CAMS is also produced, and both atmospheric parameters
and linear kernel weights in the native sensor spectral bands
are inferred (together with relevant uncertainties). The native
linear kernel weights (and associated uncertainties) are then
converted to the target spectral set, and used for further
processing. The scheme is showed schematically in Fig. 4.

Using a spectral database and using the spectral response
functions for the different sensors, we produce a set of linear
mappings that allow one to convert observations acquired by

the MODIS (... OLCI) sensor to those acquired by OLCI (...
MODIS) sensor. The linear mappings are stored in a matrix
T, and in order to predict OLCI reflectances in one band λO
and geometry, we can use the linear kernel weights in the
different MODIS bands and transform them into the target
MODIS reflectance as:

ρO(ΩO,Ω
′
O, λO) = TM→S3 ·


∑

i fi(λM,1) ·Ki(ΩO,Ω
′
O)

...∑
i fi(λM,7) ·Ki(ΩO,Ω

′
O)


(2)

Some examples of these transformations can be seen in
Figs. 2-3, showing that with the linear transformations appear
to provide a reasonable, uncertainty quantified predictions of
surface reflectance. Note how the e.g. the prediction of the
940 nm band in OLCI from MODIS has a large uncertainty
(due to strong atmospheric absorption effects), and that the
prediction of the MODIS SWIR bands is also characterised
by a large uncertainty, due to OLCI not sampling that spectral
area.

In Fig 5, we show comparisons of the OLCI TOA re-
flectance againt a prediction of the BOA reflectance coming
from the MODIS processing chain. This shows a mostly lin-
ear behaviour, except in the strong water vapour absorption
band.

V. APPLICATIONS

Fig. 6: Examples of retrieved effective leaf area index (left)
using the proposed approach on MODIS data and the official
MODIS LAI product (right)

The generated spectral BRDF descriptors can be used
for several applications. They can be integrated spectrally
and angularly to estimate e.g. broadband bi-hemispherical
reflectance (BB BHR, or white sky albedo). BB BHR can
be interpreted using a suitable RT model, such as 2Stream.
Under the assumption of Gaussian uncertainty in BB BHR
(remember that uncertainty is propagated from the Level 1C
product to the kernel weights and thus to BB BHR), we
end up with a similar cost function to that shown in Eq. 1,
where H(~x) stands for the 2Stream RT model, and the vector



of parameters includes effective LAI, leaf reflectance and
transmittance in the visible and near infrared broadbands,
as well as soil albedo in the visible and near infrared
broadbands. We assume the same priors as Pinty [15] for
the parameters. Again, the cost function is minimised though
a linearisation of the RT model using emulators [13]. This
is numerically much more efficient than solving the non-
linear problem, even though the linearisation requires a few
iterations (usually no more than five or six) to converge to
the solution. Another potential application that will be tested
is the use of the high temporal resolution of the coarse
resolution synergy products (S3/OLCI and MODIS), that
using the same approach described in III, can constrain the
atmospheric correction of S2 data.

VI. CONCLUSIONS

In this contribution, we present a method to combine
observations from different sensors in a consistent way,
to produce a continuous set of land surface parameters
(with associated uncertainties). The method also produces
state of the art atmospherically corrected surface directional
reflectance and cloud clearing. The system makes use of
additional global products (e.g. CAMS atmospheric composi-
tion) to simplify the rather complicated inverse problem that
results from the fully-coupled land-atmosphere atmospheric
correction scheme. The Bayesian nature of this approach
leads to uncertainty quantified estimates of spectral BRDF
descriptors, which can then be used to calculate important
magnitudes such as white sky albedo and, by inversion of an
RT model, biophysical land parameters.

It is important that many of the steps in this approach
are linear and are solved using standard linear tools. This
is important as uncertainty propagation is very simple. Non-
linear parts are solved using linearisations that exploit the
fast emulators [13] for the costly RT models and their
ability to quickly and accurately predict the Jacobian of the
model. These techniques allow the approach to scale to large
numbers of pixels, as well as exploiting parallel architectures,
withot resorting to re-writing RT codes (and hence adding
flexibility to the choice of RT model used).
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