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ABSTRACT
Personal interactions and information access are happening more
and more through the mediation of computing devices of various
types all around us. In our daily life we use many computing de-
vices running di�erent versions of the same application such as
email clients or social media platforms, which alert users about
a new piece of information or event on all devices. In this paper
we �rst present a study investigating the factors in�uencing users’
decisions in handling noti�cations in a multi-device environment.
We collected 57,242 in-the-wild noti�cations from 24 users over
a period of 21 days. We found that users’ decisions in handling
noti�cations are impacted by their physical activity, location, net-
work connectivity, application category and the device used for
handling the previous noti�cation. Finally, we show that an individ-
ualized model can predict the device on which the user will handle
a noti�cation in the given context with 82% speci�city and 91%
sensitivity.
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1 INTRODUCTION
Cross-platform applications leverage noti�cations to trigger real-
time alerts for steering users’ attention towards newly available
information through auditive, visual and haptic signals. Indeed,
these noti�cations are bene�cial to users for proactive personalized
information delivery about a variety of events such as travel update
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information or a new comment on a social network post [8, 43].
However, noti�cations sometimes arrive at inappropriate moments
and, for this reason, they can have an adverse impact on the ex-
ecution of the ongoing tasks [7, 10, 11] and even on the a�ective
state of users [5, 6]. The problem is exacerbated by the fact that
cross-platform applications prompt users on multiple devices at the
same time, which makes these noti�cations even more disruptive
and annoying [39]. In light of this, a recent study shows that users
prefer to receive noti�cations on speci�c devices based on their
situation [42].

Until now, previous interruptibility management studies have
used noti�cation and contextual information to infer opportune
moments for delivering mobile noti�cations (e.g., [19, 21, 25, 35, 36,
40]) and to learn the types of noti�cations users prefer to receive
in di�erent situations (e.g., [22, 30]). In this work, to the best of
our knowledge, for the �rst time we try to address the problem of
delivering noti�cations on the right device in di�erent contexts. It
is very di�cult to de�ne the concept of right device, but as a �rst
approximation, it can be seen as the device on which users prefer
to handle a speci�c noti�cation given their context.

In order to design a solution for intelligent cross-platform noti�-
cation delivery, we �rst conduct an in-situ study to investigate the
contextual factors impacting users’ decisions for handling noti�ca-
tions on speci�c devices. In particular, in this paper we investigate
how users behave in di�erent contexts when they receive a noti-
�cation on their mobile phone as well as on a generic alternative
device (i.e., any alternative computing device that runs a version of
applications that are also available for mobile phones) at the same
time. Through a passive logging smartphone application we col-
lected 57,242 in-the-wild noti�cations from 24 users over a period
of 21 days. Out of these noti�cations, around 44.8% of them (i.e.,
25,677) were triggered by cross-platform applications. We found
that 28.59% of noti�cations that are triggered by cross-platform
applications are handled on an alternative device (i.e., not handled
on the mobile phone). Our results show that users’ decisions for
handling noti�cations on a mobile or an alternative device are as-
sociated with their physical activity, location, application category
and network connectivity.

Starting from this analysis, in this paper we present the design,
implementation and evaluation of NotifyMeHere, a solution for
intelligent noti�cation delivery in multi-device environments. The
design is based on a prediction component based on a model of user
interaction with noti�cations on a mobile or an alternative device
in di�erent sensed contexts. NotifyMeHere can be implemented as
a cross-platform application’s server component that is aware of
all devices of each user that have subscription to the application.
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In order to assess NotifyMeHere, we implemented and evalu-
ated predictors by using a series of machine learning algorithms
including AdaBoost [34], Random Forest [9] and Recursive Parti-
tioning [17]. Our results show that predictors are more accurate
when they are trained using data of each user (with 75% speci�city
and 90% sensitivity) compared to generic predictors trained on
data related to a set of users. In fact, the latter achieves only 37%
speci�city and 90% sensitivity.

2 RELATEDWORK
The e�ects of interruptions caused by noti�cations occurring at
inopportune moments have been investigated thoroughly in the
past (see, for example, [10, 11]). Studies have demonstrated that
interrupting users engaged in tasks has considerable negative im-
pact on task completion time [10, 11], error rate [7], and a�ective
state [5, 6].

In order to address these issues, many previous mobile inter-
ruptibility studies have investigated how users perceive noti�ca-
tions [31, 38] and the factors involved in users’ receptivity [14, 16,
23, 26, 27]. At the same time, the advances in the area of machine
learning have enabled us to model users’ interruptibility by ex-
ploiting their historical noti�cation interaction data [24]. Previous
studies have proposed various mechanisms for modeling interrupt-
ibility that can be used by applications to deliver noti�cations at
the inferred opportune moments by means of users’ contextual
information [15, 18–20, 29, 35, 37], the noti�cation content [22, 25]
or the prospective information [21]. In a seminal paper [19] Ho
and Intille suggested that the transition between two physical ac-
tivities (such as sitting and walking) can be used as an opportune
moment for delivering noti�cations. Similarly, Fischer et al. [15]
showed that users react faster to noti�cations that are delivered
immediately at the end of a task, such as after �nishing a phone
call or reading a text message. In [37] Rosenthal et al. proposed
a mechanism that relies on experience sampling to learn users’
preferences for ringer mode settings and to predict when to mute
a phone to prevent interruptions caused by noti�cations. Pielot
et al. [32] proposed a model that can predict whether a user will
view a noti�cation within a few minutes with a precision of ap-
proximately 81%. Pejovic and Musolesi [29] proposed a mechanism
that relies on contextual information (including activity, location
and time of the day) to predict opportune moments for delivering
noti�cations. Mehrotra et al. [25] designed a mechanism that relies
on both contextual information and the noti�cation content for
modeling interruptibility. In a further study, Mehrotra et al. [22]
proposed an interruptibility management mechanism that learns
users’ preferences for receiving noti�cations based on the auto-
matic extraction of rules by mining their interaction with mobile
noti�cations. The goal of their system is to be intelligible to users:
for this reason, it makes the discovered rules transparent so that
users can decide whether to accept or discard them at run-time.

3 DATA COLLECTION
To investigate the factors that determine users’ decisions about
handling noti�cations on speci�c devices in di�erent situations,
we conducted a �eld study to collect data through the real-world

Group Features
Noti�cation Arrival time, removal time and sender application name.
Context Physical activity, location and network connectivity.

Phone Usage
Foreground application (including home screen) usage,
lock/unlock, screen change and click events with times-
tamp.

Table 1: Description of features from the dataset.

deployment of an Android app. As shown in Table 1, the app pas-
sively collects information about in-the-wild noti�cation handling
and context information (including physical activity, location and
network connectivity).

Our application relies on Android’s Noti�cation Listener Ser-
vice [2] to log users’ interactionwith noti�cations and uses Google’s
Activity Recognition API [3] to obtain the information about user’s
physical activities classi�ed as walking, bicycling, commuting in-
vehicle or still. The application samples GPS data in an adaptive
sensing fashion as described in [25]. Furthermore, the application
relies on the NetworkInfo API [1] to get noti�ed in real-time about
network connectivity changes.

The Android application also collected additional data about
other phone’s and contextual attributes, such as ringer mode, call
and SMS logs. However, we do not discuss those aspects of the data
because they are not used for the analysis presented in this paper.

3.1 Recruitment of the Participants
We published the application on the Google Play Store and made
it available to the general public for free. We advertised the appli-
cation through di�erent channels: academic mailing lists, Twitter,
Facebook and Reddit.

In order to ensure privacy compliance, our application goes
through a two-stage user agreement to access user’s critical data.
Firstly, a user has to give explicit permission as required by the
Android operating system for capturing application usage, noti-
�cations and user’s interaction with the mobile phone (such as
clicks and screen changes). Secondly, the application shows a list of
information that is collected and asks for user consent. It is worth
noting that the study was done in accordance with our institution’s
ethical research procedure and the consent form itself for the data
collection was reviewed by its Ethics Review Board.

4 DATASET
From 4th January to 1st June 2016, our application was installed by
87 participants from the Google Play Store. However, many users
did not keep the application running actively and/or uninstalled it
after a few days. Therefore, we selected a subset of the data for the
analysis by considering only the users who kept the application
running for at least 21 days. There are 26 users who satis�ed this
constraint. We also found that these users contribute minimum 80
noti�cations for each day. Note that we do not have information
about the demographics of these participants because it was not
asked during the study for privacy reasons following our institu-
tion’s Ethics Board review. Our �nal dataset (i.e., the subset of active
users) comprises 57,242 noti�cation instances, 8.19 million phone
usage events and 1.9 million context samples.



4.1 Identifying Devices on Which Noti�cations
are Handled

First of all, we would like to underline the fact that in this work we
predict the device onwhich a noti�cationwill be handled by the user
but for only two classes of devices: personal phones and alternative
devices (i.e., any device other than their phone). However, the
proposed model is highly generalizable to the case of multiple
classes of devices.

In order to infer whether a noti�cation is handled or not (i.e.,
handled on some other device), we assume that a noti�cation is
automatically removed from the noti�cation bar (or from the lock
screen) of the phone if it was delivered on some other device and the
user has already interacted with it on other device. More speci�cally,
our assumption is that a noti�cation is handled on a mobile phone
only if the user has interacted with the phone between its arrival
time (ta ) and its removal time (tr ). If there was no phone interaction
logged in the interval between the time ta and tr , we assume that
the user handled the noti�cation on an alternative device. In fact,
for instance, if a user receives a travel update noti�cation on her
phone as well as laptop, but she views and clicks the noti�cation
on her laptop then the corresponding application running on the
phone automatically removes the noti�cation from the noti�cation
bar. Therefore, to check the user’s interaction during the interval
between ta and tr , we use the phone usage data collected by our
application (see Table 1). As discussed earlier, this data contains the
logs for clicks, changes in the foreground and lock/unlock events.

4.1.1 Issues with Long Response Time. A recent study on mobile
noti�cations [25] pointed out that some applications automatically
kill the noti�cations that they generated and are not handled by
the user within 30 minutes from their arrival time. This shows that
some noti�cations can be automatically removed from the phone
without being handled on an alternative device and, therefore, the
noti�cation response labels might not be correct in these cases. For
this reason, we check noti�cations of which apps never have the
value of tr � ta more than 30min and �lter out all noti�cations of
these apps that have tr � ta = 30mins .

4.1.2 Removing Notifications of Active Apps. Some apps such as
instant messengers could generate continuous noti�cations even
when the corresponding app is already in foreground (i.e., actively
in use). However, such noti�cations are not of interest for us as
it is very likely that users will handle these noti�cations on the
same device on which they are interacting with the corresponding
app. Therefore, on arrival of a noti�cation the data collection app
checked whether the corresponding app is in use or not, and in
case the app is in foreground the response time of the noti�cation
is set to 0. In the analysis for this study we discarded all these
noti�cations.

4.1.3 Removing Stacked Notifications. Another issue with the data
is the duplicate entries introduced by “stacked” noti�cations (i.e.,
multiple noti�cations from the same applications getting displayed
in the noti�cation bar). In the Android operating system, these
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Figure 1: Percentage of noti�cations handled on mobile and
other devices by the users.

stacked noti�cations are aggregated into a single noti�cation pre-
senting the summary of all stacked noti�cations. However, fortu-
nately, the Android Noti�cation Listener API triggers a new noti�-
cation event for stack noti�cation update and, thus, our application
collected them as separate noti�cations.

To �nd the stacked noti�cations we iterate through each noti�ca-
tion and check if any other noti�cation from the same application
arrived between ta and tr of another noti�cation. Since all noti�-
cations stacked together receive the same response (i.e., click or
dismiss) at the same time, in a sense they represent duplicate entries
and are not useful for quantifying users’ reactions in that speci�c
context. Therefore, from each group of stacked noti�cations we
keep the noti�cation that arrived �rst and drop out the remaining
ones.

4.1.4 Notification Distribution. In Figure 1 we show the percentage
of noti�cations that are handled on mobile phones and alternative
devices by each user. The results show that a few users handle
50% or above of the overall noti�cations on alternative devices,
whereas a few users interact with nearly all noti�cations through
their mobile phones. Overall, there are 71.41% noti�cations that
are handled on mobile phones and the remaining on alternative
devices.

For the evaluation of NotifyMeHere, we consider only users that
handle noti�cations on multiple devices. Indeed, the limit (and,
in a sense, trivial) case of a user interacting with a single device
can be addressed simply by delivering all the noti�cations only
on it without any prediction. Therefore, for fairness, we discard
two users (users 25 and 26 in Figure 1) as they handle almost all
the noti�cations (close to 100%) on the phone. As a result, we only
consider the 24 users who satisfy this constraint. Finally, the dataset
contains 69.18% noti�cations that are handled on mobile phones.

5 IMPACT ON NOTIFICATION HANDLING
BEHAVIOR IN A MULTI-DEVICE
ENVIRONMENT

In this section we investigate the e�ect of di�erent factors on users’
behavior with respect to noti�cation handling in a multi-device
environment.



Feature � 2 p-value
Activity 163.05 <0.005
Location 694.55 <0.005
Time Interval 6.14 0.1047
Network Connectivity 158.64 <0.005
App Category 792.93 <0.005
Previous Click 6465.40 <0.005

Table 2: Analysis of factors in�uencing users’ decision for
handling cross-platform noti�cations.

In order to perform this analysis, we link noti�cations to contex-
tual and noti�cation-based features that include:
Activity: physical activity as inferred through phone sensors. As
discussed earlier, the application relies on the Google Activity
Recognition API to log the information about users’ physical ac-
tivities classi�ed as walking, cycling, commuting in-vehicle or still.
However, we merge walking and cycling together as the moving
activity, because we assume that while moving (i.e., either walking
or cycling) users interact only with their phone rather than other
devices such as their laptop. We are aware that it is unlikely that
users interact with the mobile phone while biking. However, in
case they want to interact with noti�cations in such a context, it
is very likely that they will use a mobile phone rather than other
devices (such as a laptop).
Location: semantic location (e.g., home, work, other). In order to
cluster the GPS data we apply the clustering algorithm presented
in [41]. For each clustered location we assign one of the following
labels: home, work or other. We assign the home label to the place
where a user spends the majority of the night hours (from 20:00 to
08:00). We generically refer to work as the second most signi�cant
place (i.e., the place where users spend most of their time apart from
home). We are aware that this generic label might not be correct in
some cases. The labeling might be improved by using geo-spatial
data, but this is outside the scope of this paper. All other places are
labeled as other.
Time Interval: time at which the noti�cation arrived. We split a
day into six time intervals: early morning (05:00-08:00), morning
(08:00-12:00), afternoon (12:00-16:00), evening (16:00-20:00), night
(20:00-23:00) and late night (23:00-05:00).
Network Connectivity: type of network (i.e., mobile data, WiFi
or none) the phone is connected to.
Previous Click: the device on which the previous noti�cation was
handled (i.e., mobile or other).
App Category: the category of app that triggered the noti�cation.
Since the categories de�ned by theGoogle Play Store are too generic,
we manually categorize the apps. Here we consider only the cross-
platform applications and our categories include: chat, email and
social.

We compute the e�ect of each of the above contextual and
noti�cation-based metrics (i.e., independent variables or IVs) on the
user’s behavior in terms of handling noti�cations in a multi-device
environment (i.e., dependent variable or DV). Since they contain
categorical values, we use Pearson’s Chi-squared test [28] to inves-
tigate if there is a statistically signi�cant relationship between the
DV and IVs. In Table 2 we present the results of our analysis. We

observe that there is a signi�cant relationship between the user’s
behavior in terms of handling noti�cations and several factors,
including activity, location, network connectivity, application cate-
gory and the device used for attending to the previous noti�cation.
However, there is no signi�cant impact of the time interval on the
user’s noti�cation handling behavior.

The association with users’ activity can be due to the fact that
when users are moving they usually do not carry and interact with
multiple devices. Indeed, there is the possibility that interactions
with multiple devices happen while users travel for example on
public transit (e.g., a train). Similarly, the association with location
indicates that people do not carry multiple devices everywhere. For
instance, we might carry multiple devices while at home, workplace
or in a co�ee shop, but not for example inside a gym. At the same
time, the association with the app category indicates that people
tend to handle some types of noti�cations on speci�c devices. For
instance, we tend to chat more on phones but read emails more
frequently on laptops due to usability factors.

6 PREDICTING THE RIGHT DEVICE ON
WHICH TO DELIVER NOTIFICATIONS

In this section we discuss the implementation and evaluation of our
proposed approach for predicting the device on which a noti�cation
will be handled by a user. We build two types of prediction models:
(i) individualized models that are trained with the portion of data of
a single user, i.e., the owner of the device, and (ii) generic models
that are trained with the entire dataset containing data about all
users.

As discussed above, users’ noti�cation handling behavior is not
in�uenced by all features. Therefore, we build a prediction model
that exploits only a subset of features. In particular, we only use
activity, location, network connectivity, application category and
the device on which the previous noti�cation was acted upon for
constructing the prediction model.

Both of these models are built by using three machine learning
algorithms: AdaBoost [34], Random Forest [9] and Recursive Parti-
tioning [17]. We evaluate these models for predicting the device on
which the user will handle a noti�cation in di�erent contexts by
using the k-fold cross validation approach with the value of k as 10.
Moreover, we use the default parameters for all models available in
the scikit-learn package [4].

In order to assess the performance of these models, we chose to
compare the predicted response with the actual response (i.e., the
ground truth) and compute the accuracy in terms of:

• Sensitivity: ratio between the number of noti�cations that
are correctly predicted as handled on the mobile device and
the total number of noti�cations that are actually handled
on it.
• Speci�city: ratio between the number of noti�cations that are
correctly predicted as handled on an alternative device and
the total number of noti�cations that are actually handled
on an alternative device.

It is worth noting that we use the 10-fold cross validation ap-
proach for computing the mean and the standard-error with a 95%
con�dence interval of sensitivity and speci�city for both models.
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Figure 2: Prediction results for individualized and generic models using three di�erent machine learning algorithms.

In Figure 2 we present the prediction results for individualized
and generic models. The results show that for all machine learning
algorithms the performance of both individual-based and generic
models is similar. Both of these models achieve 85-89% sensitivity
and 65-71% speci�city.

6.1 Why are the Performance Results of the
Individualized and Generic Models Similar?

In order to investigate why there are small di�erences in the per-
formance of individualized and generic models, we explore the
importance (based on the Gini index [9]) for each of the indepen-
dent variables. It is worth noting that studies have demonstrated
that the Gini index and Information Gain are the best metrics for
the selection of features and there are no signi�cant di�erences in
their performances [33]. We opted for the Gini index as it is used
internally in many classi�ers, including those used in our analysis.

As shown in Table 3, the Gini index of the variable previous
click dominates over the others (i.e., more than 20 times bigger
compared to the other variables). In other words, this indicates that
the previous click is the most important feature for the prediction
of the device on which the next noti�cation will be handled. This is
due to the fact that most of the noti�cations are handled on the same
device as their preceding noti�cation and, thus, both models can
achieve high accuracy by using solely the “previous click” feature.

6.2 Analyzing Noti�cation Handling Sequence
In order to understand users’ behavior for handling noti�cations
over time and to con�rm that most of the noti�cations are handled
on the same device as their preceding noti�cation, we plot the
sequence of noti�cations along with the device on which they
are handled. As shown in Figure 3, most users handle a sequence
of noti�cations on the same device. This demonstrates that once
individuals start handling noti�cations on a device they keep on
handling the subsequent noti�cations on the same device for a
certain amount of time. Indeed, users do not switch devices very
frequently; rather, they have a fairly prolonged interaction with
a single device, especially in the case of mobile phones [13]. For
instance, if a user starts chatting with a friend on her laptop then

Feature Gini index
Activity 51.31
Location 79.57
Network Connectivity 21.31
App Category 89.49
Previous Click 1610.11

Table 3: Gini index of the features used for training predic-
tion models.
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Figure 3: Sequence of noti�cations handled by users on mo-
bile and other devices.

with a high probability they will continue to chat on that device
instead of switching to their phone.

6.3 Impact of Time Elapsed between
Subsequent Noti�cations

The �ndings presented above demonstrate that the previous click
feature is an important variable that can solely predict the device
on which the noti�cation will be handled. This is probably due to
the fact that it is very likely that a user will act upon the current
noti�cation on the same device on which the previous one was
handled. However, the temporal dimension (i.e., the time elapsed
between the last and current noti�cation) might also play a key
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vice.

role here since a user’s context may change after some time. In-
deed, after a certain time, when users move to a new environment,
they might want to receive noti�cations on a di�erent device that
is now available to them. A recent study has shown that users’
preferences for receiving noti�cations on a speci�c device changes
when they switch their context [42]. Therefore, it is very important
to investigate a critical question: is the previous click feature still
su�ciently informative if there is a long time between two consecutive
noti�cations?

For this reason, we investigate the optimal value of the time
elapse (telapse ) until which the previous click feature can be solely
used for predicting the device on which a noti�cation will be han-
dled. Here, telapse refers to the time di�erence between the arrival
of the last and current noti�cations.

In order to investigate the optimal value of telapse , we �lter out
the noti�cations with the value of telapse greater than a certain
threshold (tthreshold ) and compute the importance of all variables
based on the Gini index. To better understand this �ltering, let us
consider an example with �ve noti�cations (n1, n2, n3, n4 and n5)
arriving at times t , t + 20s , t + 70s , t + 100s , and t + 200s . Now, if we
want to �lter noti�cations with tthreshold equal to 1 minute, we
would be left only with noti�cations n1, n3 and n5. The noti�cation
n2 is �ltered out as the time gap between n1 and n2 is 20s (which is
less than tthreshold ). However, n3 is not �ltered because the time
gap between n1 and n3 is 70s (here n1 is considered as a preceding
noti�cation because n2 is discarded). Similarly, n4 is dropped as the
time gap between n3 and n4 is below tthreshold . It is worth noting
that we use the k-fold cross validation approach (with k equal to
10) while computing the variable importance to ensure that the
variable importance is computed only with the training data.

Finally, we compute the variable importance by setting the value
of tthreshold 2 [1,10,20,10,30,60] minutes. As shown in Figure 4,
the previous click feature dominates over all other features only
for the tthreshold of up to 10 minutes. Therefore, we can conclude
that the previous click feature can be used solely for predicting the
device for delivering noti�cations but only when the preceding noti-
�cation has arrived approximately within 10 minutes. We observe
that this result is essentially valid for this set of users (i.e., we are
not making any claim about its universality), but we believe that
the methodology described above can be applied to any population
in order to estimate the optimal threshold.

6.4 Modeling Context Change
We now discuss how the performance of our model can be im-
proved by introducing additional temporal-based features. Since
the previous click feature is not reliable for predicting the device
on which a user will receive a noti�cation after 10 minutes, we
introduce a new feature, namely time elapsed - noti�cation (since
the last noti�cation).

At the same time, we believe that users’ preferences might not
change immediately after the context switch. Instead they would
take some time to adjust to the new context and thus, their prefer-
ences would change after a certain adjustment period. Consider for
example a scenario where Alice switches context between “com-
mute" and “workplace”. She uses a mobile phone during the com-
mute and on reaching the workplace she might start using her
laptop/desktop and want to get noti�cations on that device. How-
ever, she would not immediately start using those devices, rather
she might still be receptive to noti�cations on her mobile phone for
some time even after the context switch. Therefore, it is of funda-
mental importance for the prediction model to have the knowledge
about when a context change happened (and, most critically, how
long ago).

To provide such information to the prediction model, we intro-
duce three more features that inform the model about the time
elapsed since the switch in each context modality (i.e., activity,
location and network connectivity). We name these features time
elapsed - activity, time elapsed - location and time elapsed - network
for the time passed since the previous switch in activity, location and
network connectivity, respectively. These features can be exploited
to learn how long it takes for users to change their noti�cation
handling behavior once they switch to a new context. For instance,
in the example above, Alice reaches her o�ce (which corresponds
to a change in activity, location and network connectivity) but she
might not start using her laptop until after a certain amount of
time.

6.5 Exploiting Context Change Features to
Improve the Prediction Models

We build both individualized and generic models by using the same
three machine learning algorithms: AdaBoost, Random Forest and
Recursive Partitioning. All models are built using the following
features: activity, location, network connectivity, app category, previ-
ous click, time elapse - activity, time elapse - location, time elapse -
network and time elapse - noti�cation.

In Figure 5 we present the prediction results for both individu-
alized and generic models. The results show that for all machine
learning algorithms the individual-based models outperform the
generic models in terms of speci�city, but there is no signi�cant dif-
ference in terms of sensitivity. The individual-based models achieve
around 91% sensitivity and 82% speci�city. However, the generic
models could obtain only 90% sensitivity and 68% speci�city. Over-
all, all models built by using time-dependent features could suc-
cessfully outperform the frequency-based model that we use as the
benchmark.

These results demonstrate that by introducing new features both
the sensitivity and speci�city of the individualized models improve
by 2% and 11% respectively. On the other hand, the sensitivity and
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Figure 5: Prediction results for individualized and generic models built on three di�erent machine learning algorithms by
using time-dependent features and the frequency-based model (used as a baseline).
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Figure 6: Prediction results for the online learning approach.

speci�city of the generic models with new features increase by only
5% and 3% respectively.

7 ONLINE LEARNING APPROACH
In the previous section we have discussed and evaluated the pre-
diction models by using a batch learning method based on “static”
data, which is collected, stored and only then processed. However,
this approach has two key drawbacks when used on mobile phones
in-the-wild. Firstly, in a real world scenario the training data is not
initially available; it rather becomes available gradually as new
noti�cations arrive. Therefore, an individualized model cannot be
constructed until a su�cient amount of data is available. This is
known as the bootstrapping problem [12]. Another limitation is
that the model cannot adapt when users change their behavioral
patterns and, thus, the prediction accuracy might be dramatically
reduced.

To overcome these issues it is possible to adopt an online learning
approach in which a model is periodically trained with the available
data that is collected gradually. Although this approach does not
solve the issue of initial bootstrapping completely, it still enables
relatively fast learning, adaptation to the potential changes in the
user’s behavior and improvement of the performance over time

(i.e., the average prediction accuracy can be enhanced gradually
as more and more training data becomes available). We construct
individualized models with the same three algorithms: AdaBoost,
Random Forest and Recursive Partitioning. We iteratively train
the models with all the noti�cations collected by the end of each
day and evaluate these models by using the noti�cations of the
following day. More formally, on day D a model is built by using
noti�cations from day 1 to day D � 1 and it is evaluated by using
the noti�cations from day D.

Figure 6 presents the prediction accuracy of the models with
increasing number of days. The best achievable performance of the
individualized prediction model trained with the batch learning
approach is 82% speci�city and 91% sensitivity (as discussed in the
previous section). The results demonstrate that in just seven days
all models become stable achieving a speci�city of more than 70%
and sensitivity of more than 95%.

8 DISCUSSION AND LIMITATIONS
According to the results, in our dataset around 44.8% of noti�cations
are triggered by cross-platform applications and 28.59% of these
noti�cations are handled on an alternative device (i.e., not handled
on the mobile phone). However, this is not consistent for all users.



Instead, some users interact with noti�cations solely on their mobile
phones, whereas others tend to use multiple devices for handling
noti�cations.

The results also demonstrate that users’ decisions in terms of
handling noti�cations on a mobile or an alternative device are as-
sociated with their physical activity, location, application category,
network connectivity and the device on which they handled the
preceding noti�cation. These features can be used to model users’
behavior in terms of their interaction with noti�cations in multi-
device environments. However, we have shown that it is more
e�ective to train such models on individual data rather than on the
entire set of users’ data.

The main limitation of this work resides in the fact that we do
not have data for each device accessed by a user but only for two
classes of devices: personal phones and alternative devices (i.e.,
any device other than the phone). At the same time, the proposed
model is highly generalizable to the case of multiple classes of
devices. We would also like to point out that, from a practical point
of view, it might be very di�cult to deploy a real-world system that
is able to capture all the interactions of a user with all the devices
they access. Indeed, it might not be feasible to install noti�cation
loggers for privacy, legal or technical reasons (e.g., on workstations
in companies, etc.). Moreover, we believe that this would be possible
only for a subset of devices (or, more precisely, operating systems)
for which a speci�c version of the application is available.

We would also like to underline the fact that some applications
might be a�ected by a delay with respect to syncing cross-platform
noti�cations (i.e., a delay between the user’s handling of a noti�-
cation in one of the devices and its automatic removal in all the
other ones). The overall impact is probably negligible, but when
this happens, we might fail to account for multiple interactions
with duplicate noti�cations. Indeed, in the current study, it was not
possible to identify such duplicate interactions as we do not have a
noti�cation interaction logger on all devices accessed by users.

9 CONCLUSIONS
In this paper we have presented a novel solution for intelligent
noti�cation delivery in multi-device environments by analyzing
previous noti�cation response behavior and a series of features that
describe the user’s context. In particular, we have shown that there
is a signi�cant relationship between user’s behavior in terms of
handling noti�cations and several contextual dimensions, including
activity, location, network connectivity, application category and
the device used for attending to the previous noti�cation.

We have constructed and evaluated a set of prediction models,
considering both generalized and personalized training approaches.
We have shown that an individualized model is characterized by
better prediction performance (i.e., 82% speci�city and 91% sensi-
tivity). We have also discussed the implementation of an online
predictor that achieves a speci�city of 70% and a sensitivity of 95%
in just seven days.

The proposed mechanism could be considered as a building block
for intelligent noti�cation delivery in multi-device environments.
The mechanism can be implemented as a server component that
should be aware of all devices of each user that have subscripted to
a given cross-platform application.
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