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ABSTRACT (150 words maximum; current: 174)  

Purpose: This clinical trial evaluated the safety, pharmacokinetic and 

pharmacodynamic effects and potential anti-tumor activity of the PI3Kβ inhibitor 

GSK2636771 to define the recommended phase II dose (RP2D).  

Patients and Methods: Patients with phosphatase and tensin homolog (PTEN)-

deficient advanced solid tumors received escalating doses of GSK2636771 (25–500 

mg QD), followed by expansion cohorts at the RP2D. Retrospective sequencing of 

tumor samples was performed to define the optimal target population. 

Results: 65 patients were enrolled; dose-limiting toxicities were hypophosphatemia 

and hypocalcemia. Common adverse events included diarrhea (48%), nausea (40%) 

and vomiting (31%). 400 mg QD was identified as the RP2D. Phospho/total AKT ratio 

decreased in tumor biopsies and platelet rich plasma upon treatment with 

GSK2636771. A radiological partial response (as per RECIST 1.1) was observed in a 

patient with CRPC and PIK3CB amplification, and prolonged stable disease or disease 

control was noted in several others. 

Conclusion: GSK2636771 administered orally at 400 mg QD resulted in sufficient 

exposure and target inhibition with a manageable safety profile. Genomic aberrations 

of PIK3CB may predict response to monotherapy.  

Statement of significance (50 words maximum; currently 47) 

First-time-in-human pharmacokinetic and safety data indicate that the PI3Kβ-

selective inhibitor, GSK2636771, may provide a viable therapeutic option for patients 

with phosphatase and tensin homolog-deficient advanced solid tumors and/or 

PIK3CB genomic aberrations. Further clinical studies of GSK2636771 in combination 

with other agents in different cancers are currently underway.  
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INTRODUCTION  

Activation of phosphoinositide 3 kinase (PI3K)/Akt/mTOR signaling 1, most commonly 

by activating mutations of PI3K/AKT family members or loss of the phosphatase and 

tensin homolog (PTEN) phosphatase function, contributes to the progression of 

many cancers 2-5. Inhibition of PI3K signaling has been challenging therapeutically, 

and inhibitors of PI3K have had limited clinical success 6,7. Reasons for this include 

biological feedback loops permitting the tumor to reactivate the pathway 8,9, activation 

of alternative pathways 10, and the non-specificity of pan-PI3K tyrosine kinase 

inhibitors, resulting in a plethora of off-target toxicities, which limit administration of 

active doses in a continuous manner 11. PI3K is composed of a heterodimer between 

a p110 catalytic subunit and a p85 regulatory subunit. The four described isoforms of 

the catalytic subunit are p110α, p110β, p110γ and p110δ, encoded by genes 

PIK3CA, PIK3CB, PIK3CG and PIK3CD respectively 12. PI3K-isoform-selective 

inhibitors have been developed in attempts to reduce off-target toxicity 13. 

Loss of PTEN function has been observed in a number of cancers, including 

glioblastoma, prostate, endometrial, melanoma and breast cancers. Preclinical 

studies have indicated that the PI3Kβ isoform (containing the p110β catalytic 

subunit) is the critical lipid kinase that drives PI3K pathway activation, cell growth and 

survival in PTEN-deficient tumor cells 14-17. Highly selective PI3Kβ inhibition is 

therefore hypothesized to have utility against PTEN-deficient cancers, whilst avoiding 

toxicities associated with inhibition of other PI3K isoforms 18 or other off-target 

effects. This is likely to minimize toxicities and maximize therapeutic efficacy by 

enabling administration of appropriate doses and rational drug combinations with 

other agents, such as androgen receptor (AR) antagonists in PTEN deficient prostate 

cancer 19-21, or erbB2 inhibitors and hormonal treatments in breast cancer 22-25.  

GSK2636771 (Figure 1A), is a potent, orally bioavailable, adenosine triphosphate 

(ATP) competitive, selective inhibitor of PI3Kβ with an apparent Ki value of 0.89 nM, 
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>900-fold selectivity over p110α and p110γ, and >10-fold selectivity over p110δ 

isoforms, while sparing other PI3K superfamily kinases (Figure 1B).  

Here we present preclinical data characterizing the selectivity of GSK2636771 in cell 

cultures and murine xenograft models, together with the results of a dose-finding, 

first-in-human study of GSK2636771 in patients with PTEN-deficient or PIK3CB 

genomically altered advanced solid tumors. The aim of the first-in-human study was 

to further characterize the tolerability, safety and pharmacokinetic-pharmacodynamic 

(PK-PD) profile of GSK2636771, while also assessing its antitumor activity. We also 

pursued genomics analyses to assess any alterations as putative predictive 

biomarkers of antitumor response.  

RESULTS 

Preclinical Studies 

GSK2636771 selectively inhibited the growth of PTEN-deficient cancer cells in a cell 

line panel spanning multiple histologies (Figure 1C), and inhibition of protein kinase B 

(AKT) and ribosomal S6 kinase phosphorylation was observed in a concentration- 

and time-dependent manner in PTEN-deficient cells (Figures 1D and 1E). 

GSK2636771 had no effect on mitogen-activated protein kinase (MAPK) signaling, 

as evidenced by measurement of extracellular signal-regulated kinase (ERK) 

phosphorylation. When administered orally in mice bearing PC-3 prostate tumor 

xenografts, GSK2636771 resulted in stable disease and/or tumor growth inhibition, 

and a dose- and time-dependent PK-PD response was observed (Figures 1F and 

1G). Importantly, GSK2636771 did not elevate glucose or insulin levels in mice 

compared with the pan PI3K/mammalian target of rapamycin (mTOR) inhibitor, 

GSK2126458 (Supplementary Figure 1).  
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First-time-in-human study 

Patients and administered treatments 

Overall, 65 patients were enrolled and received at least one dose of study medication: 

three patients in Part 1 (dose selection), 50 in Part 2 (dose-escalation and additional 

PD exploratory cohorts) and 12 as part of the expansion cohorts in Part 3. Baseline 

patient demographics and characteristics are summarized in Table 1. Briefly, the 

median age of the study population was 62 years (range 30–79), 26/65 (40%) patients 

were female, and the most common tumor types were colorectal (n=23, 35%) and 

prostate cancers (n=12, 18%). All (100%) patients had received at least one previous 

anti-cancer treatment, 36 (57%) had received >4 anti-cancer treatments, and all 

(100%) patients had undergone a surgical procedure. In total, seven dose levels (25–

500 mg once daily [QD]) were investigated. Median time on treatment was 55 days 

(range 5 to 478). 

Selection of the starting dose for dose-escalation stage 

Three patients were enrolled in Part 1 of the study and received a single dose of 25 mg 

of GSK2636771. The geometric mean area under the concentration-time curve from 

zero (pre-dose) to 24 hours (AUC[0–24]) was 15.7 μg*hr/mL, which was within the pre-

specified target range of 10–50 μg*hr/mL. Consequently, 25 mg QD was selected as 

the initial dose for the dose-escalation stage.  

Safety, Tolerability and Dose Limiting Toxicities  

No Dose Limiting Toxicities (DLTs) were observed in any patient receiving 25–350 mg 

QD of GSK2636771. Dose-escalation then continued to 500 mg QD, where 3 of 4 

treated patients experienced a DLT (hypocalcemia [Grades 2 and 3], and 

hypophosphatemia [Grade 3]), during the second to third week of continuous 

treatment. One patient also experienced a Grade 1 creatinine elevation. These 

toxicities, indicative of renal tubular damage, resolved after GSK2636771 
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discontinuation (except for one with normalized phosphate levels but persisting Grade 

1 hypocalcemia) and two of the three patients were able to continue GSK2636771 

treatment at a lower dose. An intermediate lower dose of 400 mg QD was explored 

(n=6), and no DLTs were observed. As such, 400 mg QD was selected as the RP2D. 

All 65 patients experienced at least one AE during the study; the most common AEs 

across all dose levels were gastrointestinal (diarrhea [n=31, 48%], nausea [n=26, 

40%], vomiting [n=20, 31%], and fatigue (n=16 [25%]). Overall, ten (15%) patients had 

treatment permanently discontinued due to an adverse event, most commonly fatigue 

(n=3, 5%; all other n=1 [2%]). Forty-two serious AEs (SAEs) occurred in 24 (37%) 

patients. Nine SAEs were considered related to the study drug (nausea, vomiting, 

fatigue, increased creatinine, decreased appetite, hypocalcemia, hypophosphatemia, 

urinary retention and pruritic rash; all n=1; all Grade 2 or 3 except for increased 

creatinine [Grade 1]), and there was one (2%) fatal SAE (dyspnea) that was not 

considered related to the study drug. Eight (12%) additional deaths occurred during 

the study, all of which were considered related to the underlying disease.  

Hyperglycemia, which has been reported when targeting other nodes in the 

PI3K/AKT/mTOR pathway,29 was reported in 36 (55%) patients receiving 

GSK2636771 treatment and was predominantly mild in severity; only two (3%) 

hyperglycemia events were recorded as AEs. Cutaneous toxicity was uncommon: 10 

cases (15%) of skin rash were documented across all dose levels (four of which were 

in the GSK2636771 400 mg QD group). Rashes were primarily maculopapular and 

caused pruritus. Other than the aforementioned cases of hypophosphatemia and 

hypocalcemia, evidence for renal tubular toxicity also included proteinuria, which was 

reported in four (4/65, 6%) patients: one in each of the GSK2636771 50 mg, 200 mg, 

350 mg, and 500 mg QD dose groups. 
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Pharmacokinetics and pharmacodynamics (PK-PD) 

Following a single run-in dose of GSK2636771, drug exposure (Cmax, AUC) increased 

dose proportionally up to 350 mg, with below-proportional increments above this dose. 

The median Tmax was 4 hours (range 1–10 hours). Blood concentrations declined in a 

monophasic manner with a geometric mean t½ between 13–23 hours. Similar dose-

proportional findings (for both AUC(0–τ) and Cmax) were observed after repeated daily 

oral  dosing at Day 22, with PK parameters suggesting steady-state had been achieved 

(Table 3). PK parameters for the PD cohorts were similar to those observed in the 

dose-escalation cohorts. 

GSK2636771 doses above 200 mg consistently resulted in blood concentrations 

greater than 0.6 μg/mL, the level predicted to robustly inhibit PI3Kβ. At the RP2D of 

400 mg QD, pre-dose concentrations remained above 3.04 μg/mL from Week 2 

onward, Tmax ranged between 1.02 and 5.8 hours post-dose, and AUC(0–τ) had a 

geometric mean of 205 μg/mL. 

Inhibition of PI3K signaling was observed in platelet rich plasma (PRP) with 

GSK2636771 doses of 100–500 mg QD; the median percentage decrease from 

baseline at all post-dose time points was ≥61% for pSer473/Total AKT (Figure 2A) 

and ≥60% for pSer9/Total GSK3β (Figure 2B). At Day 1, the inhibitory effects were 

shown to be greatest 1–2 hours post-dose with inhibition duration increasing from 10 

hours to 24 hours at GSK2636771 doses ≥100 mg (Supplementary Table 1).  

Decreases in pSer473 AKT and its downstream target (pThr246 PRAS40) were 

observed in paired tumor biopsies from 4/5 (80%) patients who received the RP2D of 

400 mg QD (Figures 2C and 2D). Decreases in pSer235/236 S6RP and pThr308 AKT 

were also observed in 2 of these 5 (40%) patients (Figures 2C and 2D).  
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Antitumor activity 

The investigator-assessed best responses (based on Response Evaluation Criteria in 

Solid Tumors [RECIST] 1.1 criteria) showed progressive disease in 35 (54%) patients 

and stable disease in 21 (32%) patients. No complete responses were reported. One 

patient with metastatic-castration resistant prostate cancer treated with GSK2636771 

200 mg QD during the dose-escalation phase experienced a partial response, as well 

as a 78% fall in his prostate-specific antigen levels. The response was durable with 

progression after 16 months of treatment (Figure 3A–C). In addition, 9 (14%) patients 

treated with GSK2636771 remained on therapy and free of progression for at least 6 

months, including 2 prostate cancer patients who received  treatment for >1 year.  

Association between antitumor activity and genomic biomarkers 

Archival, diagnostic, tumor biopsy samples from 55 patients participating in the study 

were retrieved. Of those, 48 (87%) passed quality control for next-generation 

sequencing. Overall, five (10%) patients had a PIK3CB copy number gain or a 

mutation predicted to activate PIK3CB (Figure 3D).  

Overall, 5/7 (57%) patients with PIK3CB genomic aberrations were on trial for ≥6 

months. Three of these patients had CRPC, and remained on GSK2636771 treatment 

for 34, 57 and 68 weeks (the latter being the single patient recording a radiological 

partial response). One patient with cervical cancer received 24 weeks of GSK2636771 

treatment, and showed a differential radiological response in the lymph nodes (best 

overall response: stable disease).  

The p.L1049R mutation identified in a patient with castration-resistant prostate cancer 

(CRPC) is homologous to the PIK3CA activating mutation p.H1047R (Figure 3E and 

3F) and has been previously observed in a glioblastoma patient from the Cancer 

Genome Atlas.30 In order to assess the functional relevance of the p.L1049R PIK3CB 

mutation, we transduced PC3 cells with pHTBBV1.1 (using baculovirus gene transfer 
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into mammalian cells) expressing wildtype PI3Kβ or the p.L1049R mutant at a range 

of multiplicity of infections. After 12 hours, higher levels of pAKT were observed in cells 

with the p.L1049R mutation compared with wild-type cells (Figure 3G), suggesting an 

activating and potentially driving function for this mutation. Similar findings have now 

been reported for other mutations in the same region of PIK3CB 31. 

Lastly, we analyzed the frequency of genomic events in other tumor suppressor and 

cancer promoting genes in the trial population. PIK3KCA activating mutations were 

identified in 11/48 (23%) patients, with one additional patient showing a PI3KCA 

amplification; nine of these tumors harbored mutations in the RAS/RAF pathway and 

three in ataxia telangiectasia mutated (ATM), a key element of DNA damage response 

(Figure 3D). Interestingly, all these were mutually exclusive with PIK3CB aberrations 

in this population and did not correlate with anti-tumor responses. 

DISCUSSION  

In this first-time-in-human trial of GSK2636771, we identified DLTs and established the 

RP2D for this orally available, selective, PI3Kβ inhibitor. Renal tubular damage, 

presenting in the form of hypophosphatemia, hypocalcemia and proteinuria, was dose 

dependent, reversible and manageable. This is in contrast with toxicities typically 

reported for PI3K inhibitors. Furthermore, no hemorrhagic events or coagulation 

alterations were observed, despite preclinical data indicating that PI3Kβ plays an 

important role in adenosine diphosphate-induced platelet aggregation.32 

Sufficient systemic exposure to, and target inhibition by, GSK2636771 were 

demonstrated at tolerated doses. Repeat-dose exposure appeared to increase in a 

dose-proportional manner. GSK2636771 doses >200 mg QD consistently resulted in 

blood concentrations above those expected to robustly inhibit PI3Kβ. The observed 

inhibitory effect of GSK2636771 on pAKT (Ser473) and other biochemical markers 

(e.g. pGSK3β [Ser9], pPRAS40) in PRP confirmed an effective modulation of the PI3K 
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pathway across doses. The RP2D of 400 mg QD was selected based on safety data. 

Significant target inhibition observed in tumor biopsies at this dose supported the 

selection.  

Several genomic landscape studies of different tumor types have identified that 

PIK3CB is mutated or amplified in squamous cell lung 33, endometrial  and head and 

neck cancers 34 and advanced prostate 27 and ovarian 35 cancers. Contrarily, in tumor 

types where activation of PI3Kα is more common, such as breast or colorectal cancer, 

genomic aberrations in PIK3CB are rare (<2%) 3,36. We pursued retrospective tumor-

targeted next-generation sequencing to explore putative predictive biomarkers of 

antitumor activity.  

Of 48 samples analyzed, five (10%) had PIK3CB aberrations, including a somatic 

p.L1049R mutation. Additionally, two patients with increased PIK3CB copy number 

were also enrolled in the expansion phase. Among these seven patients, we observed 

one durable radiological partial response (on treatment for 14 months) and prolonged 

stabilizations of disease (on treatment for 24, 33, 34, and 57 weeks respectively). This 

association, albeit preliminary, is of particular interest in advanced prostate cancer, 

where molecular stratification for therapy selection remains an unmet medical need.  

In conclusion, 400 mg QD continuous dosing was established as the RP2D for 

GSK2636771 based on dose-limiting toxicities. The safety profile of GSK2636771 400 

mg QD, together with proof of target modulation and the preliminary association of 

clinical benefit with PIK3CB genomic aberrations, support the continued evaluation of 

this compound in Phase II clinical trials. The antitumor activity of GSK2636771 is being 

further studied as a single agent in molecularly-defined populations within the NCI-

MATCH clinical trial, in combination with the androgen receptor antagonist 

enzalutamide (Xtandi®) in patients with CRPC, in combination with paclitaxel in gastric 

cancer and in combination with immunotherapy in melanoma.   
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METHODS  

Preclinical studies 

Cell lines and reagents 

Breast (HCC1954 and MDA-MB-468) and prostate cancer (PC3, LNCAP, and DU-

145) cell lines were obtained from ATCC. Cells were cultured in the appropriate 

medium supplemented with 10% fetal bovine serum (Sigma-Aldrich) at 37C in 

humidified incubators under 5% CO2. GSK2636771 was dissolved in dimethyl 

sulfoxide (DMSO) at a stock concentration of 20 mM. 

Selectivity of GSK2636771 for PI3Kβ 

Biochemical selectivity of GSK2636771 was tested using the PI3-Kinase HTRF™ 

Assay (EMD Millipore), as well as the entire panel of in-house kinase selectivity 

assays. In addition, GSK2636771 was tested at a single concentration (10 mM) 

against the 294 kinases in the Reaction Biology Corporation kinome panel. Affinity-

enrichment based chemoproteomics using kinobeads was performed as described 

previously.38 Briefly, 14 lipid and atypical kinases were enriched from a standard 

mixture of extracts derived from HeLa, K562, and Jurkat cells using a compound-

derivatized bead matrix. The enriched proteins were identified by quantitative mass 

spectrometry analysis (MS/MS), enabling the simultaneous assessment of binding 

specificity and potency for all detected affinity-captured proteins. 

Soft agar cell-viability assay 

Cells were cultured in 96-well plates (5 × 103 cells/well) and treated with 

GSK2636771 (dose range: 30.7 mM–1.6 nM) for 6 days in soft agar media (bottom 

layer: 0.6% final concentration; top layer: 0.3% final concentration). Cell proliferation 

was measured using the alamarBlue® Cell Viability Assay (Thermo Fisher) according 

to the manufacturer’s instructions. One cell plate was developed with alamarBlue® 
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reagent at the time of compound addition (T0 plate). Results were then expressed as 

a percentage of the T0 value (normalized to 100%) and plotted against the 

compound concentration after 6 days of treatment. The cellular response was 

determined by fitting the concentration response data using a 4-parameter curve fit 

equation and determining the concentration that inhibited 50% of the Ymax-Ymin 

window (EC50). 

Western blot analysis 

Freshly harvested cancer cells were lysed with 1X cell lysis buffer (Cell Signaling 

Technology) containing protease and phosphatase inhibitors (Roche). Subsequently, 

30–40 µg of protein was run on 4–12% Bis-Tris gels (Thermo Fisher), and protein 

was transferred onto nitrocellulose membranes (Thermo Fisher). Membranes were 

blocked for 1 hour using Odyssey® Blocking Buffer (LI-COR Biosciences), before 

immunoblotting using the following antibodies (all from Cell Signaling Technology): 

pAKT S473 (#4060), pAKT T308 (#13038), total AKT (#9272), pERK (#9101), total 

ERK (#4695), pS6 (#2211), total S6 (#2317), and PTEN (#9188). Western blots were 

processed using Odyssey® CLx Imaging System (LI-COR Biosciences). 

In vivo studies 

Female nude mice (Charles River Laboratories) were injected with 2.0 x 106 PC3 

cells to establish subcutaneous PC3 tumor xenografts. Once tumors reached ~200–

250 mm3, mice were randomized (n=8/group) and treated with vehicle or 

GSK2636771 at 1, 3, 10, or 30 mg/kg by oral gavage for 21 days. Tumor volume 

measurements and body weights were collected twice weekly. For PK/PD studies, 

mice bearing PC3 tumor xenografts (n=3/group) were dosed once orally with either 

vehicle or GSK2636771 at 3 and 10 mg/kg for 1, 2, 4, 6, 8, 10, and 24 hours. Blood 

was collected and mixed 1:1 with water, and tumors were excised into two halves 

with one half flash frozen in liquid nitrogen for compound concentration determination 
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by the GSK Drug Metabolism and PK (DMPK) group. The other half of excised 

tumors was immediately processed using a sterile Medicon (BD Biosciences) in 1 mL 

Meso-Scale Discovery (MSD) lysis buffer containing protease and phosphatase 

inhibitors. Phospho and total AKT protein levels were measured using the MSD 

Phospho (Ser473)/Total AKT Whole Cell Lysate enzyme-linked immunosorbent 

assay (ELISA) kit according to the manufacturer’s instructions. To measure glucose 

and insulin response, female nude mice (n=3/group) were dosed orally for three days 

with vehicle, 100 mg/kg GSK2636771, or 3 mg/kg GSK2126458 (a pan PI3K/mTOR 

inhibitor), then starved for 20 hours before receiving a final dose of compound 

followed by blood collection after 0, 0.5, 1, 2, and 4 hours. Compound concentrations 

were determined by the GSK DMPK group, glucose was measured using an ACCU-

CHEK® Compact Plus glucose meter (Roche), and insulin was measured from 

plasma using an ALPCO Mouse Insulin ELISA Kit. All animal studies were conducted 

in accordance with the GSK Policy on the Care, Welfare and Treatment of 

Laboratory Animals and were reviewed by the Institutional Animal Care and Use 

Committee at GSK. 

First-time-in-human study 

Study design 

The study followed a multi-stage design to minimize patient exposure to theoretically 

ineffective doses and prioritize acquisition of tumor tissue biopsies for PD analysis 

(Supplementary Figure 2). Part 1 was a dose selection stage, to assess the PK of 

GSK2636771 following single-dose administration and determine the optimal starting 

dose for the Part 2. The primary objective of Part 1 was to establish a GSK2636771 

dose that provided a median AUC[0–24] at steady-state of 10–50 µg*hr/mL). Part 2 was 

a dose-escalation stage utilizing a modified 3+3 design and allowing enrollment of 

additional patients for PD analysis of tumor biopsies. The primary objectives of Part 2 

were to determine a recommended Phase II dose [RP2D], further characterize the PK 
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and PD of GSK2636771 after repeated daily dosing, and confirm the inhibition of PI3Kβ 

activity by GSK2636771 in tumor biopsies. Part 3 was an expansion cohort stage 

including patients with PTEN-deficient tumors and/or genomic PIK3CB genomic 

aberrations, to determine tumor responses to the RP2D of GSK2636771.  

Clinical Trial Oversight 

The study was designed by GSK representatives and study investigators. The 

research ethics committee at each participating site approved the study protocol. Data 

were collated and analyzed by GSK.  

Trial population 

Patients with advanced solid tumors progressing on standard therapy were enrolled 

after providing written consent and based on eligibility criteria. These included: age 

≥18 years; Eastern Cooperative Oncology Group performance status 0–1; adequate 

organ function including renal function (based on blood creatinine and urine 

protein/creatinine ratio); and normal left-ventricular ejection fraction (LVEF). Patients 

receiving medication impacting platelet aggregation or with a baseline platelet-function 

defect were excluded. Full eligibility criteria can be found in the Supplementary 

Appendix. 

For Parts 1 and 2, the target population were patients with PTEN-deficient tumors 

(determined by immunohistochemistry [IHC]) and one of the following primary tumor 

types: endometrial, ovarian, triple-negative breast cancer, CRPC, non-small cell lung 

cancer, glioblastoma, gastric adenocarcinoma, colorectal, head and neck squamous 

carcinoma and melanoma. In Part 3, the expansion cohorts included for patients with 

PTEN-deficient CRPC, colorectal cancer and/or genomic abnormalities (copy number 

gain or mutations) in PIK3CB. 
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Treatment, starting dose and dose-escalation 

Treatment was administered orally as white gelatin capsules containing 10, 25 or 100 

mg of GSK2636771. The starting dose in Part 1 was 25 mg QD, based on non-clinical 

toxicology studies predicting an AUC(0–24) in human subjects of 13 μg*hr/mL and a Cmax 

of 0.85 μg/mL at steady-state. Part 2 followed a modified 3+3 design (Supplementary 

Table 3), starting at the selected dose from Part 1. DLTs were defined as any Grade 

3/4 non-hematological drug-related toxicity (apart from Grade 3 rash, diarrhea, 

nausea, vomiting or mucositis that responds to treatment within 48 hours) occurring 

during the first 4-weeks of drug administration. Additionally, Grade 4 neutropenia 

lasting >5 days, Grade 4 anemia, Grade 4 thrombocytopenia (or Grade 3 with 

bleeding), an 8-fold increase in transaminases (over the upper limit of normal), a >20% 

decrease in LVEF, or any toxicity leading to >25% of the planned dose being missed, 

were also considered DLTs. Dose escalation was pursued until the maximum tolerated 

dose (MTD) was established, defined as the maximum dose level before DLTs were 

observed in ≥33% of patients.  

Study Evaluations 

Adverse events were recorded throughout the study, and graded based on Common 

Terminology Criteria for Adverse Events (CTCAE) v4.0, including monitoring of 

changes in renal function via blood and urine tests and other vital signs 

assessments. Cardiac evaluations (echocardiograms/multigated acquisition scans) 

were performed at baseline and bi-monthly during treatment. Response to therapy 

was assessed every 8 weeks by computed tomography/magnetic resonance imagery 

(and whole-body bone scintigraphy for patients with CRPC)39. Tumor markers were 

analyzed every 8 weeks if appropriate, according to tumor type. 
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Blood samples for PK analysis were collected at pre-specified time points after single 

dose administration (Parts 1 and 2) and then at Days 8, 15 and 22 during the first cycle 

of continuous treatment (Part 2).  

Analyses of markers of target modulation (pSer473 AKT, pSer9 GSK3 and 

pThr421/Ser424 P70S6K) were undertaken on PRP from patients during the dose-

escalation stage using MSD® electrochemiluminescent immunoassays validated to 

Good Clinical Practice standards. Changes in pSer473, pThr246 PRAS40, 

pSer235/236 and pThr308 were measured in tumor biopsies using 

immunohistochemistry (H-scores) at pre-treatment and Days 8–15 (2–4h post-dose). 

Next generation sequencing and copy number analyses 

Retrospective targeted next-generation sequencing (NGS) of archival or fresh tumor 

samples was performed if tissue was available. DNA was extracted using the 

GeneRead™ FFPE DNA Isolation kit (Qiagen, Hilden, Germany; cat#180134) and 

libraries prepared utilizing a customized sequencing panel (Qiagen GeneRead v2; 

Supplementary Table 2) including PI3K/AKT pathway genes, and sequencing was 

carried out on an Illumina Sequencer. Copy number variation was determined using 

Nanostring or quantitative polymerase chain reaction platforms. Background 

corrected, normalized values relative to a normal (diploid) control for 1–3 probes were 

used for each gene.  

Functional characterization of the PIK3CB p.L1049R mutation in vitro 

[to be completed] 

Statistical considerations 

Descriptive statistics were used to summarise safety data in all patients who received 

at least one dose of GSK2636771. All patients who underwent sampling were included 

in the PK analyses, which used descriptive statistics to summarize AUC(0-t), AUC(0-24), 

Cmax, Tmax, calculated using standard non-compartmental methods. Additionally, 
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AUC(0-∞) and half-life were assessed after the single run-in dose. Tumor response rate 

was evaluated according to RECIST 1.1 criteria (37). The data were analyzed with 

Statistical Analysis Software (SAS®) version 9.2 
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TABLES  

Table 1. Baseline patient demographics and clinical characteristics 

 Total (N=65) 

Age, years  

   Mean (SD) 

   Median (range) 

 

59.7 (11.13) 

62.0 (30–79) 

Female, n (%) 26 (40) 

Race, n (%) 

   African American/African 

   Asian (Central/Southern) 

   Asian (Eastern) 

   Caucasian 

 

2 (3) 

1 (2) 

13 (20) 

48 (74) 

Primary tumor type, n (%)  

   Colon/rectum 23 (35) 

   Prostate 12 (18) 

   Gastric/GE junction 7 (11) 

   Breast (triple negative) 6 (9) 

   Ovary/fallopian tube 5 (8) 

   Endometrium/uterus 3 (5) 

   NSCLC 3 (5) 

   CNS 2 (3) 

   Head and neck 2 (3) 

   Melanoma 1 (2) 

   Cervix 1 (2) 

CNS, central nervous system; GE, gastroesophageal; NSCLC, non-small cell lung 

cancer; SD, standard deviation 
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Table 2. Summary of AEs occurring in >20% of all patients, treatment-related AEs and SAEs 

Preferred term, n (%) Dose selection 

cohort 

Dose escalation cohort PD cohort Expansion 

cohort 

Total 

 25 mg 

n=3 

25–350 mg 

n=23 

400 mg 

n=6 

500 mg 

n=4 

50–350 mg 

n=17 

400 mg 

n=12 

 

(N=65) 

Any AE (any Grade) 3 (100) 23 (100) 6 (100) 4 (100) 17 (100) 12 (100) 65 (100) 

   Diarrhea 1 (33) 11 (48) 1 (17) 1 (25) 9 (53) 8 (67) 31 (48) 

   Nausea 2 (67) 9 (39) 2 (33) 1 (25) 7 (41) 5 (42) 26 (40) 

   Vomiting 1 (33) 9 (39) 1 (17) 1 (25) 6 (35) 2 (17) 20 (31) 

   Fatigue 1 (33) 8 (35) 1 (17) 2 (50) 2 (12) 2 (17) 16 (25) 

   Anemia 0 7 (30) 0 0 5 (29) 3 (25) 15 (23) 

   Abdominal pain 2 (67) 7 (30) 1 (17) 1 (25) 2 (12) 1 (8) 14 (22) 

   Decreased appetite 0 4 (17) 1 (17) 1 (25) 6 (35) 2 (17) 14 (22) 

   Headache 1 (33) 6 (26) 0 0 2 (12) 4 (33) 13 (20) 

Treatment-related AEs 3 (100) 22 (96) 5 (83) 4 (100) 15 (88) 11  (92) 60 (92) 

Any SAE 1 (33) 7 (30) 0 1 (25) 9 (53) 6 (50) 24 (37) 
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Fatal SAEs 0 0 0 0 0 1 (8) 1 (2) 

AE, adverse event; PD, pharmacodynamics; SAE, serious AE 
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Table 3. PK parameters following repeated daily oral dosing of GSK2636771 (PK population) 

Preferred term, n (%) Dose 

selection 

cohort 

Dose escalation cohort 

 25 mg 

n=3 

25 mg 

n=6 

50 mg 

n=4 

100 mg 

n=3 

200 mg 

n=3 

350 mg 

n=7 

400 mg 

n=6 

500 mg 

n=4 

Cmax, ng/mL* n=2 

1459 (13) 

n=5 

1770 (65) 

n=4 

2336 (43) 

n=3 

2882 (85) 

n=3 

13175 (6) 

n=4 

16452 (9) 

n=6 

15078 (55) 

n=2 

29530 (71) 

Tmax, h, median (range) n=2 

8.96  

(8.03, 9.88) 

n=5 

4.05 

(3.00, 6.07) 

n=4 

4.05 

(4.03, 6.00) 

n=3 

3.25 

(3.10, 8.02) 

n=3 

23.9 

(3.22, 23.92) 

n=4 

3.60 

(2.03, 8.85) 

n=6 

2.01 

(1.02, 5.80) 

n=2 

6.33 

(2.58, 10.08) 

AUC(0–τ), h·ng/mL* n=2 

26181 (23) 

n=4 

28951 (77) 

n=4 

33052 (31) 

n=2 

30866 (136) 

n=1 

189479 

n=4 

282665 (25) 

n=5 

205014 (41) 

n=2 

485325 (70) 

*Data presented as geometric mean (CVb%) 

AUC(0–τ), area under the time concentration-time curve over the dosing interval; Cmax, maximum observed plasma concentration; Tmax, time to 

reach Cmax
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FIGURE LEGENDS 

Figure 1. GSK2636771 is a potent, selective inhibitor of PI3Kβ that 

exhibits antitumor activity in PTEN-deficient cancers.  

 

A, chemical structure of GSK2636771. B, The selectivity of GSK2636771 for PI3Kβ 

against other PI3K isoforms and PI3K family members was tested in a biochemical 
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activity assay (left column) and used a cancer cell lysate-based chemoproteomics 

approach to measure binding affinity (right column). C, Anchorage independent 

tumor cell growth was measured after 6 days of GSK2636771 treatment (dose range: 

0.16–3.07 µM) comparing PTEN wild-type to PTEN-deficient cells. Error bars 

correspond to standard deviation. D, HCC1954 and MDA-MB-468 breast cancer cells 

were treated with increasing concentrations of GSK2636771 for 24 hours, and 

lysates were probed by Western blot using the indicated antibodies. E, PC3, LNCAP, 

and DU-145 prostate cancer cells were treated with 1 or 10 µM GSK2636771 for up 

to 48 hours and probed with the indicated antibodies. F, Mice bearing subcutaneous 

PC3 tumor xenografts (n=8/group) were treated with vehicle or GSK2636771 (1, 3 or 

10 mg/kg) once daily by oral gavage for 21 days, and tumor volumes were assessed. 

Error bars correspond to standard error of the mean. G, PK/PD relationship of 

GSK2636771 was tested in mice bearing PC3 tumor xenografts (n=3/group) dosed 

once orally with either vehicle, 3 mg/kg or 10 mg/kg of GSK2636771. Tumors and 

blood samples were harvested at the indicated time points to measure plasma 

compound concentration and the ratio of phospho AKT to total AKT in tumors using 

enzyme-linked immunosorbent assays. The numbers above the bars indicate percent 

inhibition of pAKT relative to vehicle-treated tumors. Error bars correspond to 

standard deviation. 
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Figure 2. GSK2636771 inhibits PI3K signaling at doses of 100–500 mg 

QD 

 

Median values of pAKT/total AKT ratio (A) and pGSK3β/total GSK3β (B) were 

measured in platelet rich plasma on Day 1, Cycle 1, using Meso Scale Discovery 

electrochemiluminescent assay; C, changes in pSer473, pThr246 PRAS40, 

pSer235/236 and pThr308 were measured in tumor biopsies using 

immunohistochemistry (H-scores) at pre-treatment and Days 8–15 (2–4h post-dose); 

D, representative photomicrographs (20x magnification) of immunohistochemistry 

staining showing tumor PD effects of p-AKT (S473, T308), p-PRAS40 (T246) and 

pS6RP (S235/236) for two patients treated with GSK2636771 400 mg QD 

(melanoma and TNBC). Biopsies were collected 2–4 hours post-dose between Day 8 

and 15 

 

AKT, protein kinase B; PD, pharmacodynamic; PI3K, phosphoinositide 3 kinase; QD, 

once daily; TNBC, triple negative brain cancer
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Figure 3. Treatment duration (all treated population), partial response in 

one patient with CRPC, retrospective archival tumor biopsy analysis for 

key mutation and copy number events (all treated population), and 

functional analysis of the PIK3CB p.L1049R mutation 
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A, Treatment duration showed that one patient with CRPC had a PR, 17 patients had 

SD, eight of whom received GSK2636771 treatment for ≥6 months; B, The partial 

response was observed at Week 24 in the patient with CRPC, and was accompanied 

by a 78% reduction in PSA levels (C), which was durable with progression after 16 

months of treatment; D, Data for 55 patients whose tumor tissue was analyzed 

retrospectively for somatic mutations and copy number alterations: one copy loss 

(light green); two copy loss (dark green); gain (light red); amplification (dark red); 

coding mutations (M); non-coding mutations (M*); no data (grey). CNV was 

determined based on Nanostring or qPCR platforms; E, The PI3Kβ L1049R mutation 

is homologous to H1047R in PI3KCA, as reported in a patient with glioblastoma 

(www.cbioportal.org); F, Confirmation of the presence of the PI3Kβ p.L1049R 

mutation was achieved using Sanger sequencing; G, PC3 cells were transduced with 

pHTBBV1.1 (using baculovirus gene transfer into mammalian cells) expressing wt 

PI3Kβ or the p.L1049R mutant at a range of multiplicity of infections, and analyzed 

using Western blot. 
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AKT, protein kinase B; APC, Adenomatous polyposis coli; AR, androgen receptor; 

ATM, ataxia telangiectasia mutated; BRAF, v-raf murine sarcoma viral oncogene 

homolog B; CHD1, chromodomain helicase DNA binding protein 1; CNS, central 

nervous system; CNV, copy number variation; CRPC, castration-resistant prostate 

cancer; DNA, deoxyribonucleic acid; GE, gastrointestinal; GMB, glioblastoma; H&N, 

head and neck; KRAS, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; 

NE/Non, not evaluable; NRAS, neuroblastoma rat sarcoma viral oncogene homolog; 

NSCLC, non-small cell lung cancer; PI3K, phosphoinositide-3-kinase; qPCR, 

quantitative polymerase chain reaction; PD, progressive disease; PI3K, 

phosphoinositide-3-kinase; PR, partial response; PSA, prostate-specific antigen; 

PTEN, phosphatase and tensin homolog; SD, stable disease; wt, wild type
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