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Abstract 

During the Late Miocene, Africa experienced a number of ecological transitions including the spread 

of C4 grasslands, the expansion of the Sahara Desert, the Messinian Salinity Crisis and a number of 

mammalian migrations and expansions, including the origin of the hominin clade.  A detailed 

understanding of the relationship between environmental change and hominin evolution is hampered 

by the paucity of data available from terrestrial localities, especially in southern Africa. Here, we 

present a stable isotope and trace element record from a speleothem from the South African cave site 

of Hoogland. Uranium-lead dating and magnetostratigraphy places the speleothem within the 

Messinian Age (7.25 Ma – 5.33 Ma) of the Late Miocene, making it the oldest known cave deposit from 

the region near the UNESCO Fossil Hominids of South Africa World Heritage Site (locally known as the 

'Cradle of Humankind'). Low carbon isotope values indicate a predominantly C3 vegetation in the 

vicinity of the cave  throughout the period of speleothem growth. It is not possible to determine if this 

represents a C3 grassland or a C3 woodland, but it is clear that an equivalent C3 –rich environment has 

yet to be found during the Messinian of east Africa.  We conclude that the C4 grass expansion occurred 

millions of years later in South Africa than it did in eastern Africa, and that this vegetation shift should 

be considered when comparing African vegetation change with the late Miocene hominin fossil 

record. 
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Introduction 

The Late Miocene represents an important period in African climate history because of its association 

with the expansion of C4 grasslands. Since the Oligocene, the trend towards a cooler, drier climate has 

intensified (Zachos et al. 2001), perhaps in response to the uplift of the Tibetan Plateau (Dupont-Nivet 

et al., 2008) and subsequence atmospheric CO2 drawdown (Garzione, 2008). Molecular evidence for 

the divergence times of C4 grass lineages in Africa, and globally (Christin et al., 2008), coincide with 

the reduction in atmospheric CO2 during the early Oligocene (Zhang et al., 2013), as predicted by the 

quantum yield predictions of Ehleringer et al. (1997). However, geological evidence for the expansion 

of C4 savannah grasslands does not occur until the Middle to Late Miocene (Cerling et al., 1997; 

Segalen et al., 2007) when further reductions in atmospheric CO2 were modest, or absent (Pagani et 

al., 1999; Kürschner et al., 2008). Possible explanations for this expansion of C4 grasses across Africa 

include increasing seasonal aridity and/or the increasing role of fire in savannah ecosystems (Osborne, 

2007; Scheiter et al., 2012). In addition to C4 grass expansion, the Latest Miocene was a time of North 

African (Colin et al., 2014), and possibly global (Ivanovic et al., 2014), climatic change due to the 

repeated closure and evaporation of the Mediterranean Sea between 5.9 Ma and 5.33 Ma, known as 

the Messinian Salinity Crisis (Flecker et al., 2015). In addition to these global changes were regional 

and local environmental modifications associated with tectonic events such as east African uplift 

(Sepulchre et al., 2006) and closure of the Tethys Ocean (Zhang et al., 2014).  

The late Miocene expansion of savannah (C4) grasslands across Africa (Cerling et al., 1997; Segalen et 

al., 2007) has been tentatively tied to events within mammalian and hominin evolution (Hopley et al., 

2007b; Cerling et al., 2011; Dominguez-Rodrigo, 2014). This is because the earliest putative fossil 

hominin remains are found in the Late Miocene of Africa; the 6 Ma to 7 Ma Sahelanthropus tchadensis 

from Chad (Brunet et al., 2002; Brunet et al., 2005; Lebatard et al., 2008), the 6.2 Ma to 5.8 Ma Orrorin 

tugenensis from Kenya (Pickford and Senut, 2001; Senut et al., 2001), and the 5.8 Ma to 5.2 Ma 

Ardipithecus kadabba from Ethiopia (Renne et al., 1999; Haile-Selassie, 2001; Haile-Selassie et al., 

2004), see Figure 1. Carbon isotope evidence from fossil herbivores and palaeosols associated with 

these hominins indicates that C4 grasses were a significant part of the local flora during this earliest 

phase of human evolution (Boisserie et al., 2005; Levin, 2013; Roche et al., 2013; Simpson et al., 2015). 

The current estimate for the age of the last common ancestor (LCA) of chimpanzees and humans is at 

least 7-8 Ma (Langergraber et al., 2012), which post-dates the first occurrence of C4 grasses in eastern 

Africa during the Mid-Miocene (Morgan et al., 1994; Cerling et al., 1997) by millions of years. This 
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apparent lack of temporal overlap between savannah grassland expansion and the evolution of 

hominin bipedalism has made the intuitively plausible Savannah Hypothesis of human origins a less 

tenable, and highly debated, proposition (White et al., 2009; Cerling et al., 2010; Roche et al., 2013; 

Dominguez-Rodrigo, 2014). 

Debate about the role of savannah expansion in hominin evolution has tended to focus, with good 

reason, on eastern Africa (White et al., 2009; Cerling et al., 2010). This is because eastern Africa has a 

largely continuous record of hominin fossil finds from 6.2 Ma onwards (Pickford and Senut, 2001; 

Senut et al., 2001), and a co-occurring proxy record of woody cover, derived from east African 

palaeosol 13C values (Cerling et al., 2011). A large sample of hominin fossils has also been collected 

from South African caves, but due to the vagaries of karstic processes, they have a rather restricted 

temporal range – currently about 3.5 Ma to Late Pleistocene (Berger et al., 2010, 2015; Granger et al., 

2015; Dirks et al., 2017; Hopley et al., in press). There are no known vertebrate fossil assemblages 

older than 4 Ma from the summer rainfall region of southern Africa, and therefore no hominin fossils 

from the 7 Ma to 4 Ma time range. This lack of fossil-bearing deposits cannot be used to infer an 

absence of southern African hominins at this time; it is therefore possible that the biogeographic range 

of the earliest hominins extended into southern Africa, as it did during later periods. Although the 

palaeoclimate record of southern Africa is also sparse, with discontinuous or low-resolution data 

coming from speleothems (Hopley et al., 2007a,b), fossil herbivores (Lee-Thorp et al., 2007) or ratite 

eggshell (Segalen et al., 2006), there is mounting evidence for a distinct pattern of origin and 

expansion of the C4 grasses in this region (Hopley et al., 2007a; Segalen et al., 2007, Lüdecke et al., 

2016).  

Evidence from sediment cores off the west coast of Namibia and South Africa (Dupont et al., 2013; 

Hoetzel et al., 2013; 2015) show that C4 vegetation was not a significant part of the ecosystem until 

about 6 Ma (see Figure 1). Ocean cores provide long records of climate and vegetation change, but 

they represent a mean vegetation signal sampled across vast river catchments and have a low 

temporal resolution (currently about 100,000 years between data-points). Given the ample evidence 

for topographic vegetation gradients (Reynolds et al., 2011) and shifting vegetation regimes across 

orbital cycles (e.g. Kingston, 2007; Hopley and Maslin, 2010), it is currently difficult to assess the extent 

to which different plant functional types were present during the broad timespan of the Late Miocene 

of southern Africa. Speleothems offer an additional approach to palaeoclimate reconstruction, as they 

are both high-resolution (between annual and decadal resolution) and carbon isotope measurements 

can represent the local palaeovegetation structure within the vicinity of the cave (e.g. Hopley et al., 

2007a; Holzkamper et al., 2009).  Here we undertake a stable isotope study of a Late Miocene 

speleothem from Hoogland (see Figure 2), a South African palaeocave within the established 
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protected buffer zone to the east of the UNESCO Fossil Hominids of South Africa World Heritage Site 

(also referred to as the ‘Cradle of Humankind’).  

The Hoogland Palaeocave 

This study centers upon the Hoogland karstic system (25°48’48.30” S, 28° 0’20.40” E), in the 

Schurveberg Mountain area (the eastern part of the Magaliesberg range), Gauteng Province, South 

Africa (Figure 2). The Hoogland locality is located ~20 km west of Pretoria within the eastern part of 

the protected buffer zone of the ‘Cradle of Humankind’ and is located within the dolomitic terrain of 

the Malmani Subgroup, which formed as part of the Transvaal Supergroup during the Late Archaean 

– Early Proterozoic (Eriksson and Altermann, 1998). The modern topography of the area immediately 

surrounding Hoogland exhibits moderate relief defined by a series of hills and valleys (reaching ~1500 

m a.s.l.). Hoogland lies within the catchment of one of the northern meanders of the Hennops River, 

such that the river is 0.75 km to the east, 1.4 km to the west, and 1.75 km to the north of the karstic 

system. The Hoogland palaeocave rests at 1494 m a.s.l. on the southern face of a 1540 m a.s.l. hill that 

courses northwest-southeast within the meander. To the south and east of the locality there is a 

relatively flat ~600 m2 floodplain at an altitude of 1425 m a.s.l. As a consequence, Hoogland – like the 

high-relief localities of Haasgat and Gondolin - show distinct fossil assemblages and taphonomic 

processes in comparison with the nearby low relief sites of the Blauubank Stream Valley, such as 

Sterkfontein, Swartkrans and Kromdraai (Adams et al., 2007, Herries et al., 2006a; Adams, 2010, 2012; 

Herries and Adams, 2013; Leece et al., 2016; Adams and Rovinsky, 2018; Adams, 2018).  

Hoogland, similar to the many other karstic sites in the region, was extensively mined in the early 20th 

century, leaving behind a large volume of ex situ breccia dumps, as well as in situ deposits along the 

margins of the original deposit. This opencast speleothem mining obliterated most of the sediment-

filled vertical shafts that would have intersected the hillside above the Hoogland site and connected 

with the original entrance to the karstic system at a higher elevation than the modern remnants. Given 

the different erosion rates of dolomite between hilltops and valley floors (potentially as disparate as 

4m/Myr for hilltops and 52m/Myr for valley floors; Dirks et al., 2010), the morphology and hydrology 

of the original Hoogland cave system cannot be firmly established (as is the case at other Cradle of 

Humankind palaeocave systems).  

The faunal assemblage currently described from Hoogland is derived from the sampling of nine 

densely fossiliferous (Number of Identified Specimens, NISP: 4,327) ex situ sediment blocks that 

correspond to the FBU (Flowstone Bounded Unit) 5 in situ deposits (Adams et al., 2010). Unlike other 

regional assemblages, the Hoogland ex situ sample is primarily comprised of small skeletal elements 

and isolated teeth, and as a result these few blocks have yielded a large number of individuals 
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(Minimum Number of Individuals, MNI: 76) from a wide taxonomic range of vertebrates (e.g., three 

Classes and six mammalian Orders represented) (Adams et al., 2010).  This suggests that the sampled 

blocks, and at least part of the correlated FBU 5 in situ deposits, represent a size-filtered aggregation 

that formed after primary comminution of skeletal materials and subsequent winnowing within the 

karstic environment.  

 

Site Chronology 

The Hoogland palaeocave entrance was once a near vertical circular shaft, under which a talus cone 

of external material accumulated. This material was subsequently washed down into a lateral cavern 

that extended back into the current hillside. At the base of the Hoogland sequence is a ~2m thick 

sequence of speleothems and siltstones (the ‘Basal Speleothem’; Adams et al., 2010), the focus of this 

study, which is overlain by laminations of siltstone and gravel, representing periodic flooding events 

that washed material down from the talus cone. This overlying siltstone and gravel deposit is divided 

into separate accumulation units by flowstone layers (‘Flowstone Bounded Units’ (FBUs), as at 

Gladysvale (Pickering et al., 2007) and Buffalo Cave (Herries et al., 2006b)). Of these FBUs, it is 4, 5, 

and 6 that display dense fossil accumulation. Preliminary palaeomagnetic analysis (Adams et al., 

2010), combined with interpretation of the faunal record, suggests the upper deposits of FBU 4-6 fall 

within the Gauss normal polarity period (3.03 - 2.58 Ma). 

 

Methods 

A continuous 1.2 m long sequence of the Hoogland Southern Basal Speleothem, consisting of 

individual overlapping sections, was collected in May 2009 (Figure 3). Each speleothem section was 

cut perpendicular to the growth axis, and polished for visual assessment. Powder samples, taken at 

30mm intervals using a 2mm-diameter diamond-tipped drill bit, were analysed for calcite/aragonite 

content by x-ray diffraction (XRD), using a Philips PW 1710 powder diffractometer with PC-APD, at 

Birkbeck College, University of London. Analysis was conducted using Copper K alpha radiation at 40 

kV and 30 mA, with a scan range of 25° to 31° at 2θ. Samples were prepared using distilled water and 

allowed to air-dry on glass slides. While this method produces some sample orientation it only requires 

a small volume of material for analysis (Cheetham, 2002). Six thin sections were produced from 

representative samples; speleothem fabrics were identified using previously published speleothem 

studies (Frisia et al., 2000, Frisia et al., 2002, Hopley et al., 2009, Frisia, 2015). Block samples for 

palaeomagnetic analysis were oriented in the field using a Suunto Compass and Clinometer. 

Palaeomagnetic analyses of the speleothem were completed using a 2G-EnterprisesTM 

superconducting rock magnetometer with an automatic sample changer (Kirschvink et al., 2008) 
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housed at the University of Johannesburg. Each sample was demagnetized in approximately thirteen 

demagnetization steps.  Steps included a measurement of natural remanent magnetization (NRM), 

alternating-field (AF) cleaning in four 2.5 mT steps up to 10 mT, and thermal demagnetizion steps from 

100°C to 525°C. Thermal demagnetization was completed within about 8 decreasing increments, or 

until specimen intensity dropped below instrument noise level (below ~8 x 10-8 Am2). Magnetic 

components were identified and quantified via least squares analysis (Kirschvink, 1980) utilizing 

Paleomag 3.1 (Jones, 2002). 

Sampling for stable isotope and trace element analysis was conducted at 5mm intervals, using a 2mm 

diameter diamond-tipped drill bit, down to a depth of 640 mm from the top of the speleothem. Below 

640 mm sampling resolution was reduced to 30 mm intervals; in total 182 powdered samples were 

drilled. Isotopic analysis took place at the Bloomsbury Environmental Isotope Facility (BEIF), University 

College London, on a gas-source mass spectrometer. Analysis was conducted on samples of ~0.4 mg. 

Errors ranged from 0.03 ‰ - 0.05 ‰ and 0.18 ‰ - 0.34 ‰ at 1 standard deviation for δ13C and δ18O 

respectively. Trace element analysis required ~10 mg of powder to be dissolved in 4 ml of 10% HCl. 

Samples were analysed in the Wolfson Laboratory for Environmental Geochemistry, University College 

London, on a Horiba JY Ultima 2C ICP-AES. 

Initial in situ measurements of 207Pb/206Pb and 238U/206Pb ratios were made using Laser Ablation (LA) 

ICP-MS at the NERC Isotope Geoscience Laboratory (NIGL). The accuracy of these ratios was assured 

through the use of a calibrated solid calcite reference material of known and measured age and 

isotope composition (Roberts et al., 2017). A New Wave 193 nm solid state laser ablated the polished 

sample surface, previously loaded into the ablation cell. The LA pit produced is usually 30μm in 

diameter, and approximately 10 μm deep, taking about 1 minute per analysis. The mass spectrometer 

used was the NuPlasma HR ICP-MC-MS equipped with multiple detectors. Other isotopes were also 

measured (204 mass of Pb and Hg, 201Hg, 235U-205Tl solution) to assist with data reduction and 

correction for signal stability. Corrections for detector gains and other parameters, mass 

discrimination of Pb, and inter-element normalisation was done through the measurement of the WC-

1 calcite standard of known age (254 Ma; Roberts et al. 2017; Table S5 and Figure S1), a mixed solution 

of 235U and 205Tl, and a NIST glass containing Pb of known isotope composition. The uncertainty on the 

measured age of the calcite standard is ±2-3% at the 95% confidence level for 238U/206Pb ratios. Any 

further uncertainty associated with standard reproducibility was quadratically added to this value, 

taking into account the performance on the day of measurement.  

Following promising initial measurements by LA-ICP-MS, the age was verified by sub-sampling relevant 

parts of the sample, dissolving these materials in the addition of an isotope tracer, chemically 
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separating the U from Pb and purifying these elements on ion exchange resins, followed by high 

precision measurement of U and Pb isotope composition by TIMS methods (thermal ionisation mass 

spectrometry) at NIGL. This method does not rely on a mineral standard and has inherently higher 

measurement accuracy and precision than the laser ablation method, revealing modest heterogeneity 

in the sample not apparent with LA-ICP-MS. This approach has the added advantage that the 204Pb can 

be accurately measured and the data can be plotted on both Tera-Wasserburg and normal isochron 

diagrams, allowing a determination of the initial 206Pb/204Pb and 207Pb/204Pb and 207Pb/206Pb values. In 

addition, it is possible to plot a 235U-207Pb-204Pb isochron as well, though this is less precise.  

Finally, the uranium activity ratio must be measured at the highest precision possible. It has been 

demonstrated that the initial activity ratio of uranium 234U/238U ratio within a speleothem can differ 

significantly from the secular equilibrium value of 1.0. The activity ratio is designated as [U]i where i 

refers to the initial value, as opposed to the present day measured value. A value of [U]i > 1.0 means 

there was excess 234U in the water which when incorporated into calcite will decay into 206Pb, raising 

the measured 206Pb/238U ratio and age by an amount related to the activity excess above 1.0. It is only 

possible to determine the initial [U], and therefore make a correction for the excess age, if the 

precisely measured value of [U] is different than 1.0. This requires for older samples a very high 

precision measurement of the U isotope composition in a sample. This was done by sampling the 

material in duplicate, dissolving it, separating and purifying the U from the calcite using ion-exchange 

columns, and determining its precise U isotope composition using a Thermo Neptune ICP-MC-MS at 

NIGL. The correction for initial excess [U] was calculated using an in-house Excel programme, based 

on the iterative methods described by Wendt and Carl (1985). This calculation assumes that the initial 

230Th activity is zero, i.e. the water that deposited the speleothem was devoid of Th, while being 

enriched in U. The 235U-207Pb decay system does not suffer from such an acute issue with initial excess 

234U activity, because no intermediate daughter isotope in the decay chain is composed of uranium; 

instead it is 231Pa which is thought to have very low solubility in water, and would therefore not lead 

to any substantial excess age. Therefore, the 235U-207Pb age cited should be free from the significant 

age uncertainty arising from the initial disequilibrium of daughter isotopes in the drip waters.  

 

Results 

Petrography Results 

The Hoogland Southern Basal Speleothem displays a broad range of speleothem fabrics, indicative of 

changing depositional environments through time (Figure 4). In the top 620 mm the fabric varied 

between opaque microcrystalline calcite, light-brown horizontally laminated flowstone composed of 
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columnar calcite crystals, and curved calcite crystallites belonging to the lattice deformation fabric 

(Figure 5a,b), as described by Broughton (1983). The lattice deformation fabric occurs due to calcite 

growth on curved surfaces such as stalactites (Broughton, 1983) and mammillary speleothems (Hopley 

et al., 2009); mammillary speleothems are common in palaeokarst sequences from the Cradle of 

Humankind, including Hoogland (Adams et al., 2010), and typically form in subaqueous (e.g. cave pool) 

environments (Hill and Forti, 1997; Polyak et al., 2008). Below a depth of 620 mm, thick layers of 

needle aragonite (Figures 4, 5e,f) and highly porous ‘vuggy’ textures dominate. XRD analysis reveals 

that the Hoogland basal speleothem is composed primarily of calcite, but with a notable proportion 

of aragonite. Pure calcite is present at depths of 60 – 120 mm, 390 – 450 mm and below 960 mm. 

Minor aragonite occurs in samples at the very top of the sequence and at depths of 150 – 300 mm, 

and 870 – 930 mm. The proportion of aragonite significantly increases below 480mm depth, which 

corresponds with the observations made from visual assessment. The presence of minor amounts of 

aragonite indicates that the majority of calcite identified is most likely of secondary formation. The 

layers identified as pure calcite by XRD analysis show lattice-deformed mammillary and columnar 

(radiaxial fibrous) calcite (Figure 5c) fabrics (Broughton, 1983; Frisia, 2015). This lattice deformed 

mammillary calcite can clearly be seen in the low magnification thin sections, for example at the top 

of thin section 1 in Figure 4. The mosaic calcite crystals of Figure 5d and 5f are typical of diagenetic 

(secondary) calcite (Folk and Assereto, 1976; Frisia, 2015) and correspond to XRD samples identified 

as calcite with a minor aragonite component. Large primary aragonite needle crystals (Figure 5e) are 

present at depths corresponding to XRD samples identified as containing significant proportions of 

both calcite and aragonite. Figure 5f displays both large primary aragonite crystals and secondary 

mosaic calcite, providing evidence for the diagenetic transformation of aragonite to calcite. The 

primary columnar calcite fabric (Figure 5c) is similar to that described as radiaxial fibrous by Frisia 

(2015), and is indicative of sub-aerial deposition; as shown in Figure 4, this fabric is rare within the 

Hoogland speleothem. 

 

 

Stable isotope results 

Stable isotope values were produced for 174 sub-samples from the Hoogland Southern Basal 

Speleothem (see Supplementary Table S1). δ18O values ranging from -6.35 ‰ to -3.63 ‰ (mean = -

5.11 ± 0.37 ‰), with δ13C values ranging from -10.18 ‰ to -4.26 ‰ (mean = -8.09 ± 1.36 ‰). No 

significant trend in the δ18O data is present (Figure 6). δ13C results display a significantly higher 

variability and fall within the range of expected values for both a C3 vegetation and a mixed C3 and C4 

vegetation (McDermott, 2004). Low δ13C (mean = -9.26 ± 0.59 ‰) values dominate the sequence 
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between a depth of 400mm and 610mm. δ13C values > -7.0‰ occur only at depths above 280 mm 

(mean = -6.62 ± 0.99 ‰). The lack of co-variation (Figure 6) between δ18O and δ13C indicates that there 

is no strong climatic or depositional (e.g. kinetic fractionation) evidence for covariance preserved 

within the data. 

 

Trace Element Results 

Magnesium content (expressed as 1000Mg/Ca) varied from 0.13 to 47.0, while the 1000Sr/Ca ratio 

varied from 0.01 to 2.29 (Supplementary Table S1, Figure 6). 1000Mg/Ca and 1000Sr/Ca values show 

a weak negative correlation (r = -0.31, p < 0.001). The high variability in Mg and Sr content is associated 

with the different mineral phases (aragonite and calcite) present in the Hoogland Basal Speleothem, 

as predicted by the different partition coefficients of Mg and Sr into the different minerals (Huang and 

Fairchild, 2001). The Mg/Ca ratio in the cave water is the primary control on aragonite precipitation, 

so as predicted, results show a strong relationship between mineral type and Mg/Ca ratio (Figure 6). 

Less clear, but still apparent, is an inverse relationship between Sr/Ca ratios and speleothem fabric 

(Figure 6). The values for secondary calcite display intermediate ratios, between the aragonite and 

primary calcite values. Hopley et al. (2009) interpret similar secondary calcite values as representing 

the degree of openness of the diagenetic environment, and/or a mixing of the calcite-aragonite end 

members.  

 

U-Pb dating results 

The Hoog X4 laser ablation dataset (see Supplementary Table S2) consists of a linear data array 

containing a wide spread of data (n = 89), including a number of measurements with low (highly 

radiogenic) values of 207Pb/206Pb and high values of 238U/206Pb, with the excess scatter in the 

measurements being small or minimal, i.e. the Mean Square Weighted Deviation (MSWD) of the array 

is 1.7. This laser ablation dataset produces a U-Pb age of 5.66 ± 0.17 Ma (see Figure 7a). The isotope 

dilution data set (ID-TIMS) for Hoog X4 (Supplementary Table S4) produces an isochron (n = 5) with an 

age of 5.390 ± 0.074 Ma on the 238U-206Pb T-W plot (see figure 7b). This is very close to within-error 

agreement with the laser ablation age, indicating a late Messinian (~5.45 Ma) age determination 

assuming no initial disequilibrium for this sample. The isotope dilution dataset for the 235U/207Pb 

system produces an isochron age of 4.9 ± 1.9 Ma (see Figure 7d). This age has a high associated error 

due to scatter and unfortunately cannot be used to refine the age estimates derived from the 

238U/206Pb system. 
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The two [U] measurements for Hoog X4 were 0.9987 ± 0.0015 and 0.9967 ± 0.0015; the mean value 

of 0.9977 ± 0.0014 is marginally different from secular equilibrium (see Supplementary Table S3a). If 

the [U] measurements are considered to be free from post-depositional alteration, then correction of 

the 238U/206Pb age may be appropriate.  If a correction is applied to the mean 238U/206Pb age, then the 

final corrected age would increase by about 0.4 Ma to ~5.8 Ma; in this instance, the initial [U] would 

be <0.1 (see Supplementary Table S3b), which we consider to be an unrealistically low value.  One way 

to reconcile these measurements is to accept the possibility of a very minor relatively recent 

modification to the speleothem via addition of a small amount of calcite with [U]<1, or via a minor 

loss of 234U through leaching. Given the presence of primary and secondary speleothem fabrics within 

the Hoogland Southern Basal Speleothem (Figures 4 and 5), this is a reasonable assertion.   

 

Reliable correction of Mio-Pliocene U-Pb ages is dependent on accurate and precise [U] 

measurements in samples that are very close to secular equilibrium, and/or a knowledge of initial 

234U/238U ratios in speleothems from the studied region.  To investigate the likely initial 234U/238U ratio 

of Hoogland X4 we follow the approach taken for other Mio-Pliocene age speleothems (e.g. Polyak et 

al., 2008; Woodhead et al., 2019) by compiling a list of initial 234U/238U ratios for U-Th dated 

speleothems from the Cradle of Humankind (see Supplementary Table S6). The values range from 1.26 

to 2.99 with a mean of 1.9 (s.d. = 0.8, n = 27). These are significantly lower than the values (mean 4.56, 

s.d. = 3.5, n = 27) for the spring, well and cave waters of northern South Africa reported by Kronfeld 

et al. (1994).  High initial 234U/238U values of 5.56 to 6.19 (mean = 5.9, n = 16) do occur in U-Th dated 

South African speleothems from the Makapansgat Valley and from Wolkberg Cave (Hopley et al., 

2018; Holzkamper et al., 2009), but these sites are located approximately 300 km north east of the 

Cradle of Humankind where the bedrock and hydrological conditions are different. Using the Cradle 

of Humankind values (Supplementary Table S6), we calculate an initial 234U/238U ratio of 1.9 ± 0.8 for 

a 5.39 Ma speleothem would result in a present day 234U/238U value of ~1.0001; a low initial value of 

1.3 ± 0.3 would result in a measured value of ~1.00007 (see Supplementary Table S3b). Such values 

cannot be distinguished from equilibrium, given current analytical precision. Based on our ID-TIMS U-

Pb age of 5.390 ± 0.074 Ma (Figure 7b), which is younger and more precise than the LA U-Pb age of 

5.66 ± 0.17 Ma (Figure 7a), corrected ages using both of the assumed Cradle of Humankind initial 

234U/238U ratios (see Supplementary Table S3b) are consistent with a late Messinian age.  Our preferred 

corrected age is 5.28 ± 0.12 Ma, although we acknowledge the possibility of an expanded age range 

spanning from 5.8 Ma to 4.8 Ma (see Figure 9).  
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Magnetostratigraphy 

Palaeomagnetic analyses of a thin reddish siltsone immediately overlying Hoogland X4 (see Figures 3 

and 4) indicates that the top of the Southern Basal Speleothem (SBS) sequence was formed during a 

reversed polarity. The three repeat analyses of this silty layer dispayed NRMs that were south westerly 

and upward directed, but during demagnetization a more stable south westerly downward 

magnetization was revealed (Figure 5a). Weaker magnetized samples of the much cleaner (i.e., silt 

free) speleothems from lower in the SBS sequence were also dominantly formed during a reversed 

polarity. Demagnetization proceeded in most cases along trajectories from a south westerly upward 

direction towards a south westerly downward position (Figure 8b), but in some instances the 

magnetization of samples dropped below the noise level of the instrument before this position was 

reached (Figure 8c). Two samples (i.e., PM4 and PM7) were dominated by north easterly upward 

magnetizations (Figure 8d), which were roughly antipodal to the rest of the samples. 

As discussed above, the corrected U-Pb age for Hoogland X4 places the uppermost layers of the 

Southern Basal Speleothem between 5.8 Ma and 4.8 Ma – most of this time window is within the 

reversed polarity C3r Gilbert Chron (6.033 – 5.235 Ma; Ogg, 2012); the very youngest part of this age 

range is within the C3n.3r Gilbert Chron (4.896 – 4.997 Ma; Ogg, 2012). Our paleomagnetic results 

confirm that the SBS formed during a period of predominantly reversed polarity, which we assign to  

the C3r Gilbert Chron (Figure 9). Only the lowermost parts of the Southern Basal Speleothem possibly 

formed during the C3An.1n normal polarity (6.033 – 6.252 Ma; Ogg, 2012), but this is based on the 

results of a single sample and is thus treated with appropriate caution. With the current dating 

evidence it is not possible to determine the duration of speleothem growth or to determine whether 

the observed changes in speleothem fabric (Figure 4) are associated with brief hiatuses. 

 

Discussion 

 

Mineralogical influences on stable isotope values  

The predominantly sub-aqueous nature of mineral precipitation combined with the high proportions 

of metastable aragonite and secondary calcite suggests that the geochemical signals contained within 

the speleothem are unlikely to reflect a pristine palaeoenvironmental signal.  However, the extent to 

which the measured stable isotope values reflect the carbon and oxygen composition of the cave 

water can be evaluated.  If the isotopic signal had been influenced by the type of mineral precipitating, 

a correlation between mineral type and δ18O or δ13C values can be expected. Results from Hoogland 

show no clear relationship between mineral type and isotopic values (Figure 6), indicating that 
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mineralogical differences in isotopic equilibrium/disequilibrium conditions and/or the extent of 

diagenesis were small. Rapid degassing or evaporation (processes associated with disequilibrium) 

result in enriched, and positively correlated δ18O and δ13C values (Mickler et al., 2006). However, the 

findings of this study show low, or average δ18O and δ13C values (when compared to similar studies 

e.g. Hopley et al., 2007a, Holmgren et al., 2003), with no positive correlation (Figure 6). In particular, 

the enriched δ13C values characteristic of aragonite formation (Romanek et al., 1992) are absent. The 

widespread evidence for diagenetic processes indicates that even if primary precipitation occurred in 

isotopic equilibrium, secondary mineral precipitation was extensive enough to disrupt such signals (by 

enriching values, particularly δ13C and Mg/Ca and Sr/Ca). However, once again no link between 

secondary calcite and isotopic enrichment is apparent. This again supports the interpretation that the 

stable isotopic signals have the potential to represent external influences. 

 

Mg/Ca concentrations predominantly vary according to bedrock dissolution rates and water residence 

time (Fairchild and Treble, 2009). Comparison with δ18O values can therefore demonstrate a link with 

palaeohydrological changes (particularly water influx rates). The changes to water influx rates can 

either dilute or concentrate Mg/Ca concentrations in the host water, which in turn can influence the 

precipitation of aragonite over calcite. Mg/Ca (and Sr/Ca) concentrations from Hoogland do not co-

vary with δ18O values (Figure 6). However, it is unclear whether this is owing to the lack of relationship 

between the two variables, or the possible post-depositional alteration of the of δ18O signal. Sr/Ca 

increases below 500mm depth, and Sr is known to be incorporated in larger quantities at higher 

growth rates (Fairchild and Treble, 2009). Studies have also shown Sr can be used as a proxy for aeolian 

dust input (e.g. Goede et al., 1998), however this scenario is unlikely for the deep-cave locality of the 

Hoogland basal speleothem. It is most plausible that the elevated Sr/Ca ratios at the base of the 

sequence reflect periods of higher growth rates as they correspond with sections of large aragonite 

ray crystals. 

 

While δ18O values vary by a similar range to that reported by Hopley et al (2007a) for other Miocene 

to Pleistocene speleothems from South Africa, the lack of a clear trend or cycle in the depth-series 

suggests the signal may have been dampened by disequilibrium and/or post-depositional processes. 

It is also possible that diagenesis  could have altered the δ18O to a greater extent than the δ13C signal. 

Therefore, we do not attempt to infer the δ18O values of Messinian rainfall or to correlate the 

Hoogland oxygen isotope record with the global benthic δ18O stack of Zachos et al. (2001, see Figure 

1).    
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Duration of Speleothem Growth 

Speleothems typically grow at a rate of between 0.01 mm and 1 mm per year (Baker and Smart, 1995; 

Genty et al. 2001). The time periods represented by the  Hoogland Southern Basal Speleothem, 

excluding hiatuses, could therefore represent between 1200 years and 120,000 years. A time span at 

the lower end of this estimate (i.e. faster accumulation rate) is suggested by the predominance of 

subaqueous speleothem fabrics, combined with the presence of fast growing fans of aragonite rays in 

some parts of the sequence. Given the variety of crystal structures found within the Southern Basal 

Speleothem we suggest that growth rate could have varied significantly over time. A lack of knowledge 

of the relationships between different crystal types and growth rates prevents further interpretation. 

No clear hiatus events were present in sections sampled. The presence of fine layers of detrital and 

organic material at various depths could indicate hiatuses in speleothem formation, but could also 

equally represent higher growth rates, where sediment influx was accelerated, some of which being 

incorporated in the deposit during mineral precipitation. As speleothem δ18O and 13C can vary with 

precessionally-forced variations in rainfall in sub-tropical regions such as South Africa, it is often a 

useful chronological tool (Cruz et al., 2005; Hopley et al., 2007b; Lachniet, 2009). However, the lack of 

a significant cyclicity in the Hoogland δ18O and 13C depth series prevents further refinement of the 

chronology using cyclostratigraphy.  

 

Age of the Hoogland speleothem 

The palaeocave deposits of the Cradle of Humankind that have been identified and studied are 

typically considered to be Late Pliocene to Early Pleistocene in age on the basis of biostratigraphic, 

magnetostratigraphic, and increasingly, radiometric ages (McKee et al., 1995; Walker et al., 2006; 

Herries et al., 2009; Pickering et al., 2011). The concentration of cave sediments and faunal 

assemblages within this relatively brief time window has been explained by river incision into the post-

Cretaceous African erosion surface due to post-Pliocene uplift associated with the African superswell 

(Sepulchre et al., 2006; Partridge 2010; Dirks and Berger, 2013). According to this model, the caves 

would have formed in the phreatic zone when the Paleoproterozoic dolomites were largely covered 

by the impermeable duricrusts of the African erosion surface (Dirks and Berger, 2013). At 

approximately 4 Ma, lowering of the water-table and surface erosion drained the caves, and enabled 

speleothems to form in subaerial and shallow cave pool environments. As exhumation of the caves 

continued and entrances expanded, surface sediments and faunal remains made their way into the 

caves (Brain, 1981; Dirks and Berger, 2013). This model of surface erosion and cave development in 

the Cradle of Humankind is based on existing evidence for cave sediments and speleothems 

accumulating from the Pliocene onwards. 
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Previous speleothem U-Pb ages from the Cradle of Humankind have ranged from 2.8 Ma to 1.5 Ma 

(Walker et al., 2006; Pickering et al., 2011). A cosmogenic isotope age for Sterkfontein Member 2 dates 

back to the mid-Pliocene at 3.67 Ma ± 0.16 (Granger et al., 2015), although this may be younger than 

2.8 Ma given the discordance with published faunal data from the deposit and locality (Reynolds and 

Kibii, 2011) and if a two-stage burial scenario is considered (Kramers and Dirks, 2017). The oldest 

purported faunal assemblage in the Cradle of Humankind is from Waypoint 160 on Bolt’s Farm which 

has been assigned an early Pliocene age of approximately 4.5 Ma - 4.0 Ma (Gommery et al., 2014) on 

the basis of a novel muroid rodent, Euryotomys bolti, that is morphologically intermediate between 

Euryotomys pelomyoides (Pocock, 1976) from Langebaanweg E Quarry (5.0 Ma) and the earliest 

known representatives of the Otomyinae from the Makapansgat Limeworks, dated tentatively to ~3.0 

Ma (Denys, 1999; Hopley et al., 2006). As a result, there is effectively no first or last appearance date 

for E. bolti that independently informs on the age of the Waypoint 160 deposits or supports this 

specific age range. Our reading of the literature indicates that there is currently no secure radiometric 

or biochronological evidence for cave sediments older than ~3.0 Ma in the Cradle of Humankind. The 

addition of new U-Pb and magnetostratigraphic evidence from the Hoogland Southern Basal 

Speleothem (Figures 7 & 8) indicates speleothem growth during the Messinian Salinity Crisis between 

approximately 6.0 Ma and 5.3 Ma (see Figure 9). This makes the Southern Basal flowstone the oldest 

dated cave deposit in South Africa, and the first Late Miocene sediments to be identified from the 

Cradle of Humankind. These Late Miocene cave deposits push back the age for uplift and river incision 

in this region, and increase the likelihood of discovering Late Miocene cave sediments and faunal 

assemblages in the Cradle of Humankind. An expanded Late Neogene sedimentary sequence in South 

Africa provides sediments overlapping in time with hominin-bearing sediments in eastern (Cerling et 

al., 2011) and northern (Brunet et al., 2002) Africa (as shown in Figure 1). 

 

Carbon Isotope Palaeovegetation Proxy 

If the carbon isotope composition of speleothems has been altered by diagenetic processes, or by 

rapid degassing during initial mineral precipitation, δ13C values are likely to increase, along with an 

associated rise in Mg/Ca and Sr/Ca ratios (Mickler et al., 2006; Fairchild and McMillan, 2007). 

However, unlike other studies on secondary calcite speleothems (e.g. Hopley et al., 2009; Holzkämper 

et al., 2009), the δ13C values in the Hoogland Southern Basal Speleothem are low (Figures 6 & 10), 

significantly below that of the Malmani dolomite host rock. There is also no correlation between δ13C 

and Mg/Ca or Sr/Ca ratios. As such, the δ13C composition of the speleothem does not appear to reflect 

a large proportion of water-rock interaction, or kinetic fractionation effects, either during primary 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

15 
 

aragonite deposition, or during secondary calcite precipitation. This suggests that the δ13C values can 

be used as a proxy for palaeovegetation in a similar manner as at other South African cave sites (e.g. 

Hopley et al., 2007a; Holmgren et al., 2003). Using the method set out in Genty et al., 1999a and 

1999b, and assuming soil CO2 δ13C values of -25‰ and -11‰ for pure C3 and C4 vegetation respectively 

(Holzkämper et al., 2009) and a bedrock component of 15% (with a δ13C value of -0.9 ± 0.7‰ (Veizer 

et al., 1992)), C3 vegetation would be represented by δ13C values of around -9‰, while pure C4 

vegetation would have values of around +1‰. The majority of δ13C values from Hoogland are 

therefore indicative of a purely C3 vegetation, particularly at a depth below ~350mm. Above a depth 

of 350 mm, the δ13C values show a trend towards higher values, possibly indicating an increased 

presence of C4 vegetation (up to 42%, based on the above end-member values). However, with 

multiple possible causes for increased δ13C values in these speleothems (e.g. Baker et al., 1997; Hopley 

et al., 2009), an increased C4 plant proportion cannot be proposed with a high degree of confidence. 

 

Comparison of the Hoogland δ13C data with other published records of Miocene to Pleistocene South 

African speleothems shows that low δ13C values, indicative of C3 vegetation, is typical of the older 

speleothems (see Figure 10). The Hoogland speleothem has a similar mean δ13C value to that of the 

Collapsed Cone flowstone from the Makapansgat Valley (Hopley et al., 2007a), but shows far greater 

isotopic variability; this is most likely due to the mixed mineralogy and range of cave environments 

represented by the Hoogland speleothem. While the C3 environment of the Collapsed Cone flowstone 

is clear, the speleothem is not amenable to U-Pb dating due to very low U content and unfavourable 

U-Pb ratios; magnetostratigraphic age constraints place the growth of the speleothem to between 

approximately 4.0 Ma and 5.0 Ma (Hopley et al., 2007a). The late Messinian age of the Hoogland 

speleothem provides valuable absolute age constraints on the timing of the transition from a C3 to a 

C4 vegetation in South Africa.  All younger speleothems from South Africa (2.0 Ma to recent) show a 

mixed C3 and C4 vegetation, typical of the savannah woodland prevalent in the modern day (see Figure 

10). 

 

Messinian Vegetation and Climate 

Growth of the Hoogland Southern Basal Speleothem sequence occurred during the Messinian Salinity 

Crisis (MSC), a North African and Mediterranean climatic event dating between 5.97 Ma and 5.33 Ma 

(Manzi et al., 2013; see Figure 1). The Messinian Salinity Crisis was characterised by the restriction and 

closure of marine gateways between the Mediterranean Sea and Atlantic Ocean which resulted in 

extreme salinity fluctuations in the Mediterranean leading to the precipitation of thick evaporate 

deposits during the late Messinian. It is clear that this event had major impacts on the biogeography 
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and climate of the Mediterranean / North African region (Flecker et al., 2015), but the extent to which 

the climate impacts of the MSC extended beyond this region is currently unknown. A modelling 

sensitivity study by Schneck et al. (2010) indicated that at approximately 1500 m below sea level, the 

desiccated floor of the Mediterranean basin during the MSC would have been up to 7 °C warmer, and 

that the temperature of the surrounding region would have changed by up to 2 °C.  It is likely that 

these increased temperatures were accompanied by increased aridity in northern Africa (Otero et al., 

2011), and perhaps an increase in C4 vegetation and an expansion of the Sahara Desert at this time 

(Zhang et al., 2014). Elsewhere in sub-Saharan Africa, simulated temperature anomalies during the 

MSC are small and insignificant (Schneck et al., 2010; Bradshaw et al., 2012). Opportunities to validate 

these Messinian climate simulations with palaeotemperature or palaeovegetation data are limited by 

the lack of proxy data from the Messinian of Africa, particularly southern Africa (Bradshaw et al., 

2012). In this study we are able to provide an initial glimpse of the vegetation of South Africa during 

the Messinian. 

 

The present study demonstrates that an exclusively C3 vegetation was at times present during the 

Messinian Salinity Crisis in South Africa. It is possible that some C4 vegetation was present during the 

arid phase of a precessional cycle, however due to compounding factors, this cannot be established 

with confidence. What this study does show is that a purely C3 vegetation was present (either 

continuously, or intermittently across precessional cycles) in the summer rainfall zone of South Africa, 

millions of years after C3 dominated vegetation disappeared from the present-day savannahs of 

eastern and northern Africa (e.g. Cerling et al., 2011). As is the case in other regions of Africa, there is 

little macrofossil or geochemical evidence for the flora that preceded the spread of C4 grasslands in 

South Africa. Given the evidence for closed canopy forest during discreet intervals within the Plio-

Pleistocene of South Africa, including extremely low δ13C values in some fossil herbivore teeth from 

Haasgat (Adams et al. 2013) and fossil wood from Sterkfontein (Bamford et al., 1999), it seems likely 

that woodland or forest would have been prevalent during the late Messinian at Hoogland. Forest-

dwelling species, including the arboreal hominoid Otavipithecus namibiensis, are typical of the Middle 

to Late Miocene of Namibia (Conroy et al., 1992; Senut et al., 1992; Senut and Gommery, 1997); we 

envisage a similar woodland/forest environment during the late Messinian of Hoogland.  

 

Previous studies have suggested that the spread of C4 grasses occurred later in southern Africa than it 

did in eastern and Northern Africa (Pickford, 2004; Segalen et al., 2007; Dupont et al., 2013; Lüdecke 

et al., 2016), but poor age-constraints and restricted geological successions have prevented precise 

chronologies for the origin of C4 grasses in the southern Africa interior (e.g. Hopley et al., 2007a), 
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where early hominin discoveries are common (Berger et al., 2010; Berger et al., 2015). Here we 

demonstrate a post-Messinian spread of C4 grasses in South Africa, millions of years later than the 

mid-Miocene (15 Ma) expansion of C4 plants across equatorial Africa (e.g. Cerling et al., 1997). This 

delayed expansion of C4 grasses in to South Africa fits with the quantum yield model of Ehleringer et 

al. (1997), which predicts a temperature/latitudinal control over C3/C4 plant distribution; it is also likely 

that reduced rainfall (Dupont et al., 2013) and increased occurrence of fire (Hoetzel et al., 2013) played 

a role in the eventual arrival of C4 plants in South Africa during the Pliocene. Whether this event had 

any impact on the evolution of early hominins in South Africa and elsewhere in Africa (e.g. Pickford, 

2004) remains an open question.     

 

 

Conclusion 

This study has found that the basal speleothem at Hoogland formed during the late Messinian, at 

approximately 5.5 Ma, making it the oldest cave deposit from the Cradle of Humankind, and the first 

evidence of Miocene cave infill in this region. The speleothem is composed of thin layers of calcite 

interspersed with metastable aragonite, most of which has been diagenetically altered to secondary 

calcite. The mixed mineralogy of the speleothem impacts the interpretation of the 18O values as an 

indicator of palaeoprecipitation, but the low δ13C values are a valuable palaeovegetation indicator.  

The low δ13C values of the primary calcite indicate an exclusively C3 vegetation overlying the cave 

during the late Messinian, and in conjunction with other South African speleothems (Hopley et al., 

2007a), indicates a post-Messinian age for the expansion of C4 vegetation in South Africa. The 

equivalent expansion of C4 vegetation in equatorial Africa occurred millions of years earlier (15 Ma – 

12 Ma) in the Mid-Miocene (Morgan et al., 1994; Cerling et al., 1997; 2011) indicating distinct 

vegetation histories in these two hominin-yielding regions. Previous assertions that the African 

palaeovegetation record fails to support the savannah hypothesis of human origins (White et al., 2009; 

Dominguez-Rodriguez, 2014) should be reconsidered in the light of a post-Messinian shift in South 

African vegetation.  
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Figure 1. Compilation of data relevant to Late Miocene (Messinian) climate change and early hominin 

evolution in Africa. The Global Polarity Timescale (GPTS) for the Messinian is based on Krijgsmann et 

al. (2001). (a) The benthic foraminifera data from a global compilation by Zachos et al. (2001) 

represents polar ice volume and global temperatures; an increase in 18O values occurs during the 

Messinian Salinity Crisis, MSC (5.97 Ma to 5.33 Ma; light-brown shading). (b) The Arabian Sea dust 

record (ODP Sites 721 and 722) represents dust supply from the Sahara, northeast Africa and Arabia 

(deMenocal, 1995) shows an increase during the early MSC. (c) East African palaeosol 13C data (Levin, 

2013; Levin, 2015) is a proxy for the percentage of woody cover; green shading represents >40% 

woody cover (closed woodland); yellow shading represents <10% woody cover (C4 grassland; Cerling 

et al., 2011). East African Leaf wax 13C and grass pollen percentage (d) from the Gulf of Aden, DSDP 

Site 231 (Feakins et al., 2013) shows invariant Messinian carbon isotope values (i.e. no change in the 

proportion of C4 plants) but an increase in the proportion of grass pollen around the onset of the MSC. 

In southern Africa, at ODP Site 1081, off the west coast of Namibia (d), the percentage of grass pollen 

is static, whereas an increase in carbon isotope values (i.e. increase proportion of C4 plants) is observed 

at this time (Hoetzel et al., 2013). (e) Stratigraphic ranges for the three Miocene hominin species. Black 

circles represent the individual stratigraphic horizons from which each species has been recovered 

(Hopley, in press) and are used to calculate the 95% confidence intervals on the stratigraphic ranges, 

following Marshall (1990). Sahelanthropus tchadensis is identified from just one stratigraphic horizon, 

so the error bars represent the age uncertainty for this locality (Lebatard et al., 2008).   
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Figure 2. Location of the Hoogland cave system, showing from left to right, top to bottom: the 

location of Hoogland in South Africa, its location in relation to the other cave systems of the 

area, the topography of the local area, and an aerial photograph of the site. 
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Figure 3. Sample locations of the four sections taken to cover the complete  

sequence of the Hoogland Southern Basal Speleothem (from top to bottom A-D).  
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Figure 4. Stratigraphy of the Hoogland Southern Basal Speleothem. From left to right: scale bar in 10 

cm intervals; cut and polished rock sections; speleothem stratigraphic diagram based on visual 

assessment with corresponding low magnification thin sections; simplified stratigraphic diagram, 

distinguishing layers of primary aragonite, primary calcite, and secondary calcite. Location of polished 

sections A-D can be seen in Figure 3; high-magnification images of thin sections 1-5 are shown in Figure 

5. PM indicates palaeomagnetism samples; X4 indicates sample used for uranium-lead dating.   
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Figure 5. Photomicrographs of the Hoogland Southern Basal Speleothem in thin section. 

Representative fabrics include: (a, b) lattice deformed mammillary calcite (thin sections 1 and 6 

respectively); (c) columnar (radiaxial fibrous) calcite (thin section 3); (d) mosaic calcite (thin section 2); 

(e) primary aragonite (thin sections 5) crystals; (f) aragonite with mosaic calcite, indicative of minor 

recrystallization (thin section 1). The location of each thin section within the speleothem sequence is 

shown in Figure 4. Speleothem fabric terminology from Frisia (2015) and Broughton (1983). All images 

taken under crossed polars; width of each field of view is 4.4 mm. 
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Figure 6. 1000Mg/Ca, 1000Sr/Ca, 18O and 13C ratios plotted against depth. Shaded sections 

indicate (from dark to light) primary calcite, aragonite, and secondary calcite. Every sample was 

assigned to one of these 3 categories based upon a combined interpretation of XRD results and thin 

section and visual assessment. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

39 
 

Figure 7. Four uncorrected U-Pb isochron ages for speleothem sample Hoogland X4. (a) uncorrected 

LA-MC-ICP-MS 238U/206Pb age, (b) uncorrected TIMS isotope dilution 238U/206Pb isochron, (c) 

uncorrected TIMS isotope dilution 238U/204Pb isochron, (d) TIMS isotope dilution 235U/207Pb isochron 

age. All uncorrected ages show close agreement. See text and Supplementary Tables S3 and S6 for 

discussion of measured [U] and assumptions of initial [U] used in the calculation of the corrected 

age. 
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Figure 8. Representative demagnetization behavior of the Southern Basal Speleothem plotted on 

equal area projection. (a) Sample PM1 displays southwesterly downward directed (reversed) 

magnetization after removal of a lower stability magnetic component. (b) Weaker magnetized 

sample PM3, (c) PM5, and PM6 (not shown) also show southwesterly downward directed (reversed) 

magnetizations at high temperature demagnetization steps. (d) Sample PM4, and PM7 (not shown), 

are magnetized in a northeasterly and upward direction (normal). 
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Figure 9. Magnetostratigraphy and age of the Hoogland Southern Basal Speleothem (SBS). The top of 

the Southern Basal Speleothem (SBS) and has a reversed polarity and a corrected uranium-lead age 

(Hoogland X4) of 5.28 ± 0.12 Ma; other U-Pb evidence, including alternative corrections place this 

sample within a broader time range of 5.8 Ma to 4.8 Ma, as indicated by the dashed line. The lower 

layers of the speleothem have reversed and normal polarities and are late Messinian (Late Miocene) 

in age (C3r Chron; Ogg et al., 2012) under all plausible dating scenarios. Stratigraphic terminology 

from Adams et al. (2010). 
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Figure 10. A compilation of carbon isotope data from Miocene to Recent speleothems from South 

Africa. Data is presented as normalised probability density distributions; the number of carbon isotope 

measurements (n) for each speleothem is indicated, along with the median value (thick black line). 

The dark green bars indicate the time span of each speleothem, based on U-Th dating (Cold Air Cave 

and Wolkberg Cave), orbital tuning and magnetostratigraphy (Buffalo Cave) and U-Pb dating (this 

study); the dark green bars for the Collapsed Cone flowstone and Hoogland Southern Basal 

Speleothem represents dating uncertainty, rather than the duration of speleothem growth. Blue 

shading indicates primary speleothem fabrics; red shading indicates secondary speleothem fabrics. 

Light green shading indicates a purely C3 vegetation. Data from Holmgren et al. (2003); Hopley et al. 

(2007a,b) and Holzkamper et al. (2009).  
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 Highlights  
- Speleothem from South Africa dated to late Messinian age, using U-Pb methods  

- Carbon isotopes indicate a predominantly C3 vegetation at this time  

- First savannah grasslands in southern Africa occur later than in eastern Africa  

- Implications for early hominin environments  
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