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To date, the most precise tests of general relativity have been achieved through pulsar timing, albeit in
the weak-field regime. Since pulsars are some of the most precise and stable “clocks” in the Universe,
present observational efforts are focused on detecting pulsars in the vicinity of supermassive black holes
(most notably in the Galactic Centre), enabling pulsar timing to be used as an extremely precise probe of
strong-field gravity. In this paper, a mathematical framework to describe test-particle dynamics in general
black-hole spacetimes is presented and subsequently used to study a binary system comprising a pulsar
orbiting a black hole. In particular, taking into account the parameterization of a general spherically
symmetric black-hole metric, general analytic expressions for both the advance of the periastron and for the
orbital period of a massive test particle are derived. Furthermore, these expressions are applied to four
representative cases of solutions arising in both general relativity and in alternative theories of gravity.
Finally, this framework is applied to the Galactic center S-stars and four distinct pulsar toy models. It is
shown that by adopting a fully general-relativistic description of test-particle motion which is independent
of any particular theory of gravity, observations of pulsars can help impose better constraints on alternative
theories of gravity than is presently possible.
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I. INTRODUCTION

It is now widely believed that supermassive black holes
(SMBHs) reside at the centers of all galaxies and that their
estimated masses are in the range of a few million to up to
tens of billions of solar masses. Earth’s closest SMBH
candidate is found at the Galactic center, Sagittarius A*
(Sgr A*), which astronomers have been observing for
several decades [1,2].
It is expected that the mathematical description of

astrophysical black holes (BHs) is based on solutions to
the Einstein field equations and therefore founded on
general relativity (GR). However, there also exist many
BH solutions in extended and alternative theories of
gravity, and to date, observational constraints, most notably
in the strong-field regime, are lacking. Moreover, mod-
ifications or extensions of classical GR, let alone entirely
new theories of gravity, are not without astrophysical

motivation (e.g., accounting for inflation, dark matter,
and dark energy) (see [3] for a review).
One promising probe of strong-field gravity is the direct

imaging of the shadow cast by a SMBH. High-resolution
imaging of the event horizon and BH shadow can improve
understanding of gravity in the strong-field regime and,
hopefully, provide direct evidence as to whether BHs exist
and which theory (or classes of theory) of gravity describe
them best [4–8]. Direct observation of the event horizon of
the SMBH Sgr A* will soon be obtained by the Event
Horizon Telescope Collaboration (EHTC).1 [9–12]. This
imaging is performed by combining several radio tele-
scopes into a synchronised, global, and near Earth-sized
network using very-long-baseline interferometry (VLBI).
However, another important goal of the EHTC is the search
for new radio pulsars in the vicinity of Sgr A*. Pulsars
provide an additional independent observational tool to
help improve the understanding of the properties of Sgr A*
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(e.g., its mass, spin, and even geometry), providing con-
siderably stronger constraints than is possible with event
horizon-scale imaging alone.
It is well known that pulsars, i.e., rapidly rotating neutron

stars, are among the most precise and stable “clocks” in the
Universe, providing regular radio signals that can be used to
test GR and, in principle, any alternative theory of gravity
(see [13] for a comprehensive discussion). In particular,
when present in a binary system containing another neutron
star or a white dwarf, these objects arguably represent the
most promising avenue through which to investigate and
constrain large classes of gravity theories [14–16].
The case of a pulsar orbiting around a SMBH is

particularly interesting since one can in principle combine
precision timing measurements with measurements of
geodesic motion around the BH, i.e., in the strong-field
regime. This system configuration has proven thus far to be
elusive, and consequently intensive searches by observa-
tional surveys like BlackHoleCam2 and EHTC will prove
extremely important in view of these detections. Such
timing measurements can contribute to fixing strict ranges
on the parameters of a given class of gravity theories and
therefore facilitate the selection of viable theories without
imposing any a priori assumptions.
Several different gravity theories can explain the same

experimental data with almost the same accuracy [17,18].
The case of dark matter is paradigmatic: astrophysical
effects related to the older concept of “missing matter” by
Zwicky [19] can be addressed quite well by modifying the
matter sector as well as the gravity sector inside the field
equations (see [20] for a comprehensive review). This
degeneracy could be removed in favour of one of the two
approaches by either discovering new particles or by
selecting some “new” gravitational effect that clearly
identifies a modified theory. At the same time, it is most
desirable that the new gravitational effect is measured in a
way that does not rely, a priori, on the selection of a given
theory (or class of theories) of gravity.
In order to address this specific problem, several authors

have presented novel and general approaches which enable
the BH spacetime to be parametrized based on specific
perturbations of, or deviations from, the general-relativistic
Kerr metric [21–24]. However, in this study theories of
gravity entirely distinct from GR are investigated, and
consequently, the parametrization of Rezzolla and
Zhidenko (RZ) [25] is employed.
The RZ parametrization is a general representation of

BH spacetimes in arbitrary metric theories of gravity. In the
case of spherically symmetric spacetimes, the parametriza-
tion makes use of a coordinate compactification in terms of
a rapidly convergent continued-fraction expansion defined
in the radial direction between the event horizon and spatial
infinity. A similar approach has also been employed to

describe axisymmetric solutions, where the radial expan-
sion is accompanied by an expansion in the polar direction
and away from the equatorial plane [26]. In this way, it is
possible to represent a given BH solution to very high
accuracy with a small number of free parameters (see [8,27]
for some examples of the application of this parametriza-
tion to describe BH shadows).
The focus of the present study is restricted to the

spherically symmetric case, and general expressions for
the dynamics of a test-particle in general BH spacetimes,
such as the motion of a pulsar orbiting around the SMBH
candidate Sgr A*, are derived. In particular, explicit general
expressions for the advance of the periastron and the orbital
period at different orders of the parametrization are
provided. Furthermore, periastron-advance formulae are
also given for four representative theories, namely, the
Reissner-Nordström solution in GR, and alternative theory
of gravity solutions from Einstein-Maxwell-Dilaton-Axion,
Brans-Dicke, and fðRÞ theories.
The paper is organized as follows. In Sec. II, the RZ

parametrization [25] is briefly reviewed, while Sec. III
describes and compares the parametrization of other repre-
sentative spherically symmetric BH solutions. Section IV
discusses the basic properties of test-particlemotion around a
spherically symmetric BH, outlining the derivation of the
expressions for the advance of the periastron, which are then
presented in Sec. V. These expressions are then employed in
Sec.VI to numerically investigate thevalues of the expansion
parameters in the case of four S-stars and four particular
representative pulsar toy models around Sgr. A*. Sec. VII is
devoted to the discussion and conclusions.

II. PARAMETRIZATION FRAMEWORK

In what follows, the RZ parametrization [25] for a
general spherically symmetric BH spacetime is briefly
reviewed and subsequently used to determine the dynamics
of a test particle,3 such as a pulsar orbiting around Sgr A*.
Unless otherwise stated, geometrized units withG ¼ c ¼ 1
are used, where G and c are Newton’s constant and the
speed of light, respectively.
Consider a spherically-symmetric spacetime with the

line element given by [25], i.e.,

ds2 ¼ gαβdxαdxβ

¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2dΩ2; ð1Þ

where the signature ð−;þ;þ;þÞ is adopted. In the follow-
ing, the metric coefficients will be written differently.

2See blackholecam.org.

3Note that the RZ parametrization [25] does not provide any
information on the field equations and hence can only be used to
describe the motion of a test particle, be it massive (e.g., a pulsar
around a SMBH) or massless (e.g., photons constituting the
shadow of a BH [8]).
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Hereafter, the metric functions N2ðrÞ and B2ðrÞ are recast
as N ðrÞ and BðrÞ for ease of computation.
The geodesic equations of motion are derived from the

Lagrangian, which may be written as

2L ¼ gαβ
dxα

dτ
dxβ

dτ

¼ −N ðrÞ_t2 þ BðrÞ
N ðrÞ _r

2 þ r2 _θ2 þ r2sin2θ _φ2; ð2Þ

where _xμ ≔ dxμ=dτ is the particle’s four-velocity, τ is the
affine parameter along the geodesic (in this work, the
proper time), t is the coordinate time, and an overdot
denotes differentiation with respect to τ. In the RZ para-
metrization, the function N ðrÞ is then expressed as

N ðxÞ ¼ xAðxÞ; ð3Þ

where

AðxÞ > 0 for 0 ≤ x ≤ 1; ð4Þ

with

x ≔ 1 −
r0
r
; ð5Þ

so that x ¼ 0 is the position of the event horizon and x ¼ 1
corresponds to spatial infinity. Furthermore, A and B may
be expressed in terms of the parameters ϵ, ai, and bi
(i ∈ ½0; n�, where n is the expansion order), such that

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3;
ð6aÞ

BðxÞ ¼ 1þ b0ð1 − xÞ þ B̃ðxÞð1 − xÞ2; ð6bÞ

where the functions Ã and B̃ describe the metric near the
horizon (i.e., x ≃ 0) and at spatial infinity (i.e., x ≃ 1). It is
evident that the metric is finite in both limits [25].
The functions (6a)–(6b) can then be expanded via a Padé

approximation of continued fractions as

ÃðxÞ ¼ a1
1þ a2x

1þ a3x
1þ���

; ð7aÞ

B̃ðxÞ ¼ b1
1þ b2x

1þ b3x
1þ���

; ð7bÞ

where a1; a2;…; an and b1; b2;…; bn are dimensionless
constants that can be fixed once the generalised metric (1) is
matched to a specific metric. Hereafter, to keep expressions
compact, all calculations will be performed up to third
order in the above expansion; already at this order the

differences between the matched metric and the exact metric
are below 1% [8,25,28]. Finally, the parameter ϵ in equa-
tions (6a)–(6b) measures the deviations of the position of the
event horizon in the general metric from the corresponding
location in a Schwarzschild spacetime, i.e.,

ϵ ¼ 2M − r0
r0

¼ −
�
1 −

2M
r0

�
: ð8Þ

III. APPLICATIONS OF THE RZ
PARAMETRIZATION

There are several BH solutions which differ from GR,
and in order to perform a fair and unbiased analysis of the
framework presented in this study, in what follows no one
model is favoured above others, even though in practice
there are physical motivations to do so depending on the
astrophysical applications in mind. Failure to do so would
require repeating the analysis for any and all models, which
would be time consuming and impractical. In the following,
the advantage of this parameterized approach which ena-
bles one to mimic different BHs is demonstrated. In
particular, four different representative BH solutions are
chosen to illustrate this.
First, a well-known spherically symmetric solution of

GR is considered, namely, the Reissner-Nordström BH,
which is in itself interesting because it contains an electric
charge. The presence of this electric charge implies that the
Reissner-Nordström BH can be more compact than a
Schwarzschild BH of the same mass. Second, scalar-tensor
theories, such as Brans-Dicke theory and fðRÞ theories,
which are a major focus of a large proportion of the
gravitational physics community since they represent
simple deviations from (or extensions of) GR are next
considered, providing interesting examples of modified
gravity theories. Finally, a solution containing a dilaton
scalar field, i.e., an Einstein-Maxwell-Axion-Dilaton BH,
is also investigated.

A. Einsteinian gravity: Reissner-Nordström

The Reissner-Nordström metric describes the geometry
of a spherically symmetric and charged BH [29]. The line
element can then be written in the form (1) with

N ðrÞ ¼ 1 −
2M
r

þ r2Q
r2

; BðrÞ ¼ 1; ð9Þ

and rQ is a characteristic length scale given by

r2Q ¼ GQ2

4πε0
c4; ð10Þ

where ð4πε0Þ−1 is the Coulomb force constant. In the limit
Q → 0, one recovers the Schwarzschild solution.
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The Reissner-Nordström solution possesses two event
horizons, which are located at

r0;RN ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − r2Q

q
: ð11Þ

Combining the above relation with (8), one may write ϵ for
the Reissner-Nordström solution as

ϵRN ¼ 2M

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − r2Q

q − 1: ð12Þ

Upon expanding the metric coefficients (9) at spatial
infinity, comparison with the RZ parametrization yields
at zeroth order

a0;RN ¼ r2Qh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − r2Q

q
þM

i
2
; b0;RN ¼ 0: ð13Þ

Similarly, comparing the behaviour of the coefficients (9)
near the horizon, for all expansion orders i ≥ 1, the
following may be deduced

ai;RN ¼ 0; bi;RN ¼ 0: ð14Þ

In other words, the Reissner-Nordström metric is fully
represented by the RZ parametrization at the zeroth order of
the expansion.

B. Alternative theories of gravity

Alternative theories of gravity consider, in general,
further (minimally or nonminimally coupled) scalar fields
or higher-order curvature or torsion invariants in the
Hilbert-Einstein Lagrangian. For example, if correction
terms such as ϕ2R, R2, RαβRαβ, RαβγδRαβγδ, and R□R are
incorporated in the Lagrangian, they give rise to modified
gravitational dynamics [3,30–33].
In particular, these modifications have been introduced

in order to alleviate problems at ultraviolet scales (e.g.,
divergences in quantum field theory, the lack of a self-
consistent quantum gravity theory, etc.) and at infrared
scales (e.g., the cosmological accelerated expansion
dubbed the “dark energy problem” and the clustering
properties of large-scale structure, dubbed the “dark-matter
problem” [20].
In particular, it is desirable to be able to calculate

astrophysically observable quantities in a way that does
not rely on making any assumption as to a particular theory
of gravity. In this context, the RZ parametrization provides
a general approach that is independent of the assumptions
pertaining to a given theory of gravity and describes the
properties of test-particle motion, e.g., the advance of the
periastron, simply in terms of the coefficients ai and bi. To
this end and principally in order to provide working

examples, in the following subsections three different
classes of BH solution in alternative theories of gravity
are considered, namely, Brans-Dicke theory, fðRÞ gravity,
and Einstein-Maxwell-Axion-Dilaton gravity.

1. Brans-Dicke theory

Brans-Dicke (BD) theory is the most well-known of the
scalar-tensor theories. In BD theory, the gravitational
interaction is mediated by a scalar field. The gravitational
coupling is no longer constant, and instead, 1=G is replaced
by a scalar field ϕ which is nonminimally coupled to the
Ricci scalar R [34]. The BD field equations contain a
kinetic parameter, ω, termed the BD coupling constant.
This is a dimensionless constant related to the strength and
variability of the scalar field, and whose value can be
chosen to fit observations. Using Solar-System tests, it is
possible to impose lower and upper bounds on the possible
values for ω. Stringent limits on ω can also be achieved
through a consideration of the dynamics of binary pulsars,
and some BH solutions can be derived in the framework of
this theory [35–39]. Hereafter, the following BD solution is
considered4:

ds2 ¼ −AðrÞmþ1dt2 þ AðrÞn−1dr2 þ r2AðrÞndΩ2; ð15Þ

with AðrÞ ¼ 1 − 2r̃=r, where r̃, m and n are arbitrary
constants. The scalar field is given by

ϕðrÞ ¼ ϕ0AðrÞ−ðmþnÞ=2; ð16Þ

with ϕ0 a constant. It is important to emphasise that the
parameter n has the role of scalar hair and that as soon as
n ¼ 0 the no-hair condition is restored. It is immediately
clear that for m ¼ n ¼ 0 the Schwarzschild solution is
recovered, with asymptotic flatness being recovered for any
value of m and n. The BD parameter is found from the
following relation:

ω ¼ −2
�
1þm − n −mn

ðmþ nÞ2
�
: ð17Þ

In this manner, for each assigned value of m and n, a class
of BH solutions is obtained. The event horizon is given by

r0;BD ¼ 2r̃ ∀ m − nþ 1 > 0: ð18Þ

The parameter r̃may be identified with kM, whereM is the
BH mass, and k is an arbitrary constant, yielding different

4Note that these solutions are usually reported to be that of
black holes; however, according to the values of the parameter n
they can be shown to describe wormholes (i.e., n > −1) or naked
singularities [40]. Since we consider here the case of n ¼ 0 (for
which the throat of the wormhole acts as an apparent horizon) and
are interested only in the exterior spacetime, this represents a
perfectly useful solution.
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event horizons. For example, if k ¼ 1, (18) corresponds to
the Schwarzschild event horizon and therefore ϵ ¼ 0, as in
the case of GR. Fixing n ¼ 0, equation (15) reduces to

ds2 ¼ −AðrÞmþ1dt2 þ AðrÞ−1dr2 þ r2dΩ2; ð19Þ

and it is this particular case that is hereafter considered. As
a result, ϵ in this particular BD metric can be expressed as

ϵBD ¼ −
�
1 −

M
r̃

�
: ð20Þ

In general, expanding AðrÞ in (15) at infinity yields
the following expressions for a0 and b0 in terms of BD
theory as

a0;BD ¼ ωþ 3ðωþ 2Þ2ϵBD
2ðωþ 2Þ2 ; b0;BD ¼ 0: ð21Þ

Furthermore, expanding near the horizon yields the follow-
ing relations for the parameters in terms of the theory are
obtained

a1;BD ¼ ðω − 2Þωþ 3ðωþ 2Þ3ϵBD
6ðωþ 2Þ3 ; ð22Þ

with

a2;BD ¼ 0; and b1;BD ¼ b2;BD ¼ 0: ð23Þ

Therefore, BD theory is represented by the RZ
parametrization at the first order of the expansion.

2. f ðRÞ gravity
The general class of fðRÞ theories relax the hypothesis

that the Hilbert-Einstein action must be linear in the Ricci
scalar and instead assume general functions of R that may
be constrained by observations and through theoretical
considerations [41]. Such theories can always be reduced to
scalar-tensor theories by conformal transformations [3].
Due to this property, the above scheme can also be adopted
here, and in particular, the parametrized post-Newtonian
(PPN)5 parametrization arising from fðRÞ gravity can be
straightforwardly related to the RZ parametrization.
Assuming a static and spherically symmetric metric, a
general post-Newtonian (PN) approximation can be written
as [43]

ds2 ¼ −N ðrÞdt2 þ
�
1þ γ

2M
r

�
dr2 þ r2dΩ2; ð24Þ

where

N ðrÞ ¼ 1 −
2M
r

þ β − γ

2

�
2M
r

�
2

: ð25Þ

The parameters γ and β provide a measure of the degree of
curvature of spacetime as generated by a body of massM at
radius r. Equation (24) is general and is valid for any metric
theory within which it is possible to derive the PN limit.
This means that metric coefficients and subsequently PN
parameters strictly depend on the choice of theory. The RZ
parametrization can serve as a useful approach in selecting
viable fðRÞ models within the PN-approximation.
Generalized PN-parameters can then be expressed in terms
of fðRÞ theory as [44–46]

γfðRÞ ¼ 1 −
½f00ðRÞ�2

f0ðRÞ þ 2½f00ðRÞ�2 ; ð26Þ

βfðRÞ ¼ 1 −
1

4

�
f0ðRÞf00ðRÞ

2f0ðRÞ þ 3½f00ðRÞ�2
�
dγfðRÞ
dR

: ð27Þ

It is evident that γfðRÞ and βfðRÞ are strictly dependent on the
function fðRÞ and its derivatives. Here, f0ðRÞ≔ dfðRÞ=dR.
It is straightforward to demonstrate that for R → ϕ, using a
conformal transformation, one recovers immediately the
results for scalar tensor (ST) theories obtained in [47]:

γST ¼ 1 −
½F0ðϕÞ�2

FðϕÞ þ 2½F0ðϕÞ�2 ; ð28Þ

βST ¼ 1 −
1

4

�
FðϕÞF0ðϕÞ

2FðϕÞ þ 3½F0ðϕÞ�2
�
dγST
dϕ

: ð29Þ

Here, γST and βST depend on the non-minimal coupling
function FðϕÞ and its derivatives, and the parameter α
determines the deviation with respect to GR. As a general
consideration, it is possible to say that both Eqs. (26)
and (27) or Eqs. (28) and (29) parameterize modified
theories of gravity according to a higher-order approach
(e.g., fðRÞ) or a ST approach. The key point is that both
pictures can be recast in terms of the RZ parametrization
and thus expressed in a general approach which is effec-
tively independent of the theory.
Comparing the expansions of the metrics (1) and (24) at

the same order, it may be deduced that the event horizon for
a general fðRÞ model is given by

r0;fðRÞ ¼ M þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γfðRÞ − 2βfðRÞ þ 1

q
; ð30Þ

where it is straightforward to see that when fðRÞ ¼ R,
the Schwarzschild event horizon is readily recovered.
Similarly, the expression for ϵ in a fðRÞ theory is found as

5The post-Newtonian (PN) approach is an analytical approxi-
mation to GR based on a power series expansion in terms of the
ratio v=c, where v is the typical velocity of the system. In the limit
where v becomes infinite, the PN expansion reduces to Newton’s
law of gravity. The PPN parametrization uses the PN expansion to
explicitly detail the parameters in which a general theory of
gravity can differ from Newtonian gravity [42].
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ϵfðRÞ ¼ −
�
1 −

2M
r0;fðRÞ

�
: ð31Þ

Finally, asymptotically expanding the metrics (1) and (24)
and collecting the terms at equivalent expansion orders
yields the lowest-order expansion coefficients ai;fðRÞ and
bi;fðRÞ as

a0;fðRÞ ¼
ðβfðRÞ − γfðRÞÞð1þ ϵfðRÞÞ2

2
; ð32Þ

b0;fðRÞ ¼
ðγfðRÞ − 1Þð1þ ϵfðRÞÞ

2
; ð33Þ

a1;fðRÞ ¼ 3ða0;fðRÞ − ϵfðRÞÞ; ð34Þ

b1;fðRÞ ¼ −1 − b0;fðRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵfðRÞ þ 2b0;fðRÞ

q
; ð35Þ

a2;fðRÞ ¼
1

a1;fðRÞ
½3ðϵfðRÞ − 1Þ − a0;fðRÞ�; ð36Þ

b2;fðRÞ ¼−2þ 1

b1;fðRÞ

�
1þ ϵfðRÞ þ 2b0;fðRÞ

2þb0;fðRÞ
−b0;fðRÞ

�
: ð37Þ

As an example, a straightforward extension of any analytic
fðRÞ theory is the inclusion of a quadratic correction in the
Ricci scalar, the simplest correction to the standard Einstein-
Hilbert action (see [20] for details on other and more
complex expressions for fðRÞ). In this case, fðRÞ is simply
expressed as a Taylor series truncated at second order, i.e.,

fðRÞ ¼ Rþ αR2 þ � � � : ð38Þ

Such a class of fðRÞ theories has several applications,
ranging from Solar-System scales [48–50] up to early-
Universe cosmology [51]. However, it is important to
consider that the range of values of α strictly depends on
the scales under consideration. For instance, it can be related
to the scalaron or inflaton mass, and it must be compatible
with the observed amplitude of scalar perturbations, i.e., in
agreement with Planck data [17,18]. In this work, however,
the length scales considered are much smaller than cosmo-
logical scales, and so the resulting values for α are not those
normally adopted in the literature, e.g., assuming dimen-
sional units, a standard value for α can be 1=6, as obtained
from conformal transformations [see [52], for further
details]. Nevertheless, theories of this type have been
used recently to describe gravitational corrections around
SMBHs [53–55].

3. Einstein-Maxwell-Dilaton-Axion

The third alternative gravity theory considered in this
work is the spherically symmetric form of the Einstein-
Maxwell-Dilaton-Axion (EMDA) gravity [56,57]. In

particular, the EMDA metric considered in this study is
spherically symmetric and is constructed from a simplifi-
cation of the axisymmetric EMDA solution [58] in the case
of a vanishing axion field. Solutions of this type arise from
string theory [59–63]. When the axion field vanishes and
the BH is spherically symmetric, the EMDA BH is some-
times referred to as a “dilaton” BH, and the line element
takes the following form

ds2 ¼ −
�
r − 2μ

rþ 2b̂

�
dt2 þ

�
rþ 2b̂
r − 2μ

�
dρ2 þ ðr2 þ 2b̂rÞdΩ2;

ð39Þ

where

μ ≔ M − b̂: ð40Þ

Here, b̂ is the dilaton parameter and M the BH mass (see
[63]). Upon recasting the radial coordinate as

ρ2 ¼ r2 þ 2b̂r; ð41Þ

the EMDA line element may be re-expressed in terms of the
RZ metric as

N ðρÞ ¼ 1 −
2Mρ

r2
; BðρÞ ¼ r2

b̂2 þ r2
; ð42Þ

where r≡ rðρÞ. Recalling that the location of the event
horizon for this BH is given by

ρ0;DIL ¼ 2ðM − b̂Þ; ð43Þ

and using Eq. (8), the expression for ϵ in terms of the axion-
dilaton parameters may be written as

ϵDIL ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ b̂

μ

s
− 1; ð44Þ

where the subscript “DIL” refers to the dilaton BH. In a
similar manner, expanding the metric coefficients at spatial
infinity gives the values for a0 and b0 as

a0;DIL ¼
b̂
2μ

; and b0;DIL ¼ 0: ð45Þ

In order to obtain the remaining coefficients, one must
instead compare the near-horizon expansions, obtaining

a1;DIL ¼ −3 − a0;DIL þ 2ðϵDIL þ 1Þ þ ð1þ a0;DILÞ−1; ð46Þ

b1;DIL ¼
ϵDIL þ 1

1þ a0;DIL
− 1; ð47Þ
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a2;DIL ¼
2ða0;DILϵDIL − a20;DIL þ ϵDILÞ þ 1

2ða0;DIL þ 1Þ2 ; ð48Þ

b2;DIL ¼ b1;DIL −
b̂2

ð1þ a0;DILÞ2
: ð49Þ

Note that the Schwarzschild BH solution is recovered from
the dilaton BH solution in the limit of vanishing dilaton
parameter.

IV. MOTION AROUND A SPHERICALLY
SYMMETRIC BLACK HOLE

With the formalism derived so far, the calculation of
particle trajectories in the neighbourhood of a general
spherically symmetric BH may now be calculated. The
canonical momenta may be expressed in terms of the RZ
parametrization as

pt ≔
∂L
∂_t ¼ −N ðrÞ_t; ð50Þ

pr ≔
∂L
∂ _r ¼ BðrÞ

N ðrÞ _r; ð51Þ

pθ ≔
∂L
∂ _θ ¼ r2 _θ; ð52Þ

pφ ≔
∂L
∂ _φ ¼ r2sin2θ _φ: ð53Þ

Because of spherical symmetry, any orbital plane may be
taken to be the equatorial plane and therefore θ ¼ π=2, and
_θ ¼ θ̈ ¼ 0 is assumed without loss of generality. The
integrals (constants) of motion may be written as

pt ¼ N ðrÞ dt
dτ

¼ −E; ð54Þ

pφ ¼ r2
dφ
dτ

¼ L; ð55Þ

where L denotes the component of the angular momentum
of the particle projected along the axis perpendicular to the
orbital plane.
Furthermore, for motion in the equatorial plane, the total

angular momentum coincides with the azimuthal angular
momentum. Using Eqs. (54) and (55), the Lagrangian can
be rewritten as

2L ¼ −
E2

N ðrÞ þ
BðrÞ
N ðrÞ _r

2 þ L2

r2
¼ m2: ð56Þ

where m2 ¼ ð−1; 0;þ1Þ depending on whether the motion
is timelike, null or spacelike, respectively. Since the motion

of a massive particle around a SMBH is considered,m2 ¼ 1
is assumed hereafter. In this case, the constants of motion
take the form

E2 ¼ N ðrÞ
�
L2

r2
þ 1

�
þ BðrÞ_r2; ð57Þ

L ¼ r2 _φ: ð58Þ

V. CONNECTING TO PULSAR OBSERVATIONS

A. Periastron advance and orbital period

As a direct application of the framework developed in the
previous sections, the transition between two close inner
orbital turning points (or, equivalently, between two close
outer turning points) is calculated. The orbits in this case
remain closed if the magnitude Δφ of the angle swept out
by the orbit is 2π. If this is not the case, then the inner
turning points are precessing, and the amount of this
precession per orbit is

δφprec ¼ Δφ − 2π: ð59Þ

In order derive the precession, r must be expressed as a
function of φ or vice versa. Combining Eqs. (57)–(58) one
obtains

�
dr
dφ

�
2

¼ Cr2
��

E2

L2

�
r2 −

�
1þ r2

L2

�
N ðrÞ

�
; ð60Þ

where

C ≔
1

BðrÞ : ð61Þ

The angle Δφ can be computed as the angle swept out as
the particle passes between the turning points r1 and r2
during its orbit, i.e.,

Δφ ¼
Z

r2

r1

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dφ
dr

�
2

s
; ð62Þ

with the turning points r1 and r2 being determined from
where _r ¼ 0 along the orbit.
To illustrate how to derive a theory-independent expres-

sion for the periastron advance within the RZ parametriza-
tion, first consider the expansion of the metric when the
only nonzero expansion terms are a0 and b0. Analyzing
Eq. (60) and remembering that the bound (or unbound)
nature of the orbits is determined by the energy E, it is
assumed that E2 < 1, i.e., the class of orbits considered
herein are characterised by a negative energy (i.e., bound
orbits). Due to the algebraic complexity of the parametri-
zation and the resulting equations of motion, only the
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general expression is reported, and thus Eq. (60) may be
written as

�
dr
dφ

�
2

¼ ð0ÞCr2
��ð0ÞE2

L2

�
r2 −

�
1þ r2

L2

�
ð0ÞN ðrÞ

�
; ð63Þ

where ð0ÞC ¼ ð1þ b0r0uÞ−2 and ðnÞ indicates working with
all expansion coefficients up to an and bn, i.e., up to n-th
order in the RZ parametrization, ð0ÞE is the energy related to
the Lagrangian expanded to zeroth order, and L is inde-
pendent of the expansion order. Upon changing the variable
as u ≔ 1=r and performing the necessary algebraic
simplifications, one obtains

ð0Þ�du
dφ

�
2

¼ ð0ÞC
�ð0ÞE2 − 1

L2
þ r0
L2

u − u2 þ 2r0u3

−
a0r20
L2

u2 þ ða0 − ϵÞr30
L2

u3 − a0r20u
4

− ða0 − ϵÞr30u5
�
: ð64Þ

which further modifies the expansion for spacetimes with
nonzero B. It is important to emphasize that in general all
the bn terms disappear and that only the an terms remain in
the computation of the orbits. Assuming r0 ¼ 2M and
a0 ¼ b0 ¼ ϵ ¼ 0, the well-known expression for the
Schwarzschild geodesic equations in terms of the variable
u are readily obtained [64,65]. Such expressions may be
simplified further by considering the following ansatz

u ¼ 1þ e cos χ
2l

; ð65Þ

where e is the eccentricity and l the semilatus rectum of the
orbital ellipse. Here, χ is the so-called eccentric anomaly or
relativistic true anomaly [29,66–69]. It is straightforward to
express all the elements of orbits as integrals using χ as the
independent variable. According to Eq. (65), at apoastron
χ ¼ π, and at periastron χ ¼ 0. It may be verified that
through several substitutions, Eq. (63) reduces to the form

ð0Þ�dχ
dφ

�
2

¼
��

dχ
dφ

�
2

GR
þ ð1þ e cos χÞð2eμðϵ − a0Þ cos χ

−2a0μþ 2μϵþ ϵÞð2 − 2e2μ2 þ 8μ2 − μe2

−8μÞe2μð4eμsin2χ cos χ þ ð1 − 6μÞ cos 2χÞ
�

× ½2b0μð1þ e cos χÞ þ 1�−2; ð66Þ

where σ ≔ rg=l, and rg is the gravitational radius of the
BH. Here, the general-relativistic contribution to the
periastron advance is given by [29]

�
dχ
dφ

�
2

GR
¼ 1 − σð3þ e cos χÞ; ð67Þ

which is immediately recovered from (66) when a0 ¼
b0 ¼ ϵ ¼ 0. Upon integrating Eq. (66), considering the
semimajor axis a of the orbital ellipse, and using the
relation l ¼ að1 − e2Þ, the expression for the periastron
advance, Δφ, at zeroth order in the RZ parametrization is
obtained as

½0�Δφ̃ ≔ ð0ÞΔφ̃ − Δφ̃GR;

with

½0�Δφ̃ ¼ 2σð2a0 þ 4b0ϵþ b0 þ 2ϵÞ; ð68Þ

and where Δφ̃GR ¼ 3σ, Δφ̃ ≔ Δφ=2π.
In order to highlight the contributions at the different

orders hereafter, we introduce the following notation:
½nþ1�Δφ̃ ≔ ðnþ1ÞΔφ̃ − ðnÞΔφ̃, where ðnÞΔφ̃ ¼Pn

i¼0
½i�Δφ̃.

The first term in the above equation is the purely GR
contribution, while the remaining two terms represent the
deviations from GR in a general BH spacetime at zeroth
order in the RZ parametrization. Following the same
procedure, after some simplification the periastron advance
may also be obtained for any order of the approximation. For
zeroth order, using Eq. (60) and expanding to first order, one
obtains upon integration the following expression

½1�Δφ̃ ≔ ð1ÞΔφ̃ − ð0ÞΔφ̃;

with

½1�Δφ̃ ¼ 4σ2½2ða1 − 3b0 þ b1 þ ϵÞ − 4a0ðb0 − 1Þ
−3b20ð1þ 2ϵÞ − 4b0ϵþ 4b1ϵ�: ð69Þ

Finally, the periastron advance may be determined up to
second order in the expansion.After the necessarywork, this
is obtained as

½2�Δφ̃ ≔ ð2ÞΔφ̃ − ð1ÞΔφ̃;

with

½2�Δφ̃ ¼ 4a2σð2a0 þ 4ϵσ þ ϵþ 5Þ − 4σ½6a0a2b2σ
−6a0a2σ þ a0a2 − 4a0b2σ þ 2a1b2σ

þ2a2ϵσ − 8a2σ − 3b20b2σ − 3b20σ

−6b0b2σ − 6b0σ þ 2b2ϵσ�ð1þ b2Þ−1: ð70Þ

The next step is to calculate the orbital period through direct
integration of Eqs. (54) and (55) at the various orders of the
metric expansion [29,65]. In particular, it is possible to
distinguish the anomalistic period, which is the time for the
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particle to travel from one periastron to the next, and the
sidereal period,which refers to the lapse in time between two
successive passages across a line through the origin, fixed in
space and lying in the orbital plane. For the sake of brevity,
only the expression for the zeroth order case is given. The
corresponding higher order expressions are straightforward
but algebraically cumbersome to write explicitly. Upon
using Eqs. (65) and (66), the proper time of the test particle
is obtained as

ð0Þτ ¼ p
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ðe2 þ 3Þσ

p
ffiffiffiffiffi
r0

p
Z

2π

χ
dχ0

ð0Þ�dφ
dχ0

�

×
1

ðe cos χ0 þ 1Þ2½1 − σðe cos χ0 þ 1Þ� ; ð71Þ

and the observer time may then be expressed in terms of the
proper time as

ð0Þt ¼
ffiffiffi
2

p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ − 1Þ2 − σ2e2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ðe2 þ 3Þσ

p
!

ð0Þτ: ð72Þ

These expressions result in an elliptic integral whichmust be
solved numerically. Expressing t and τ in units of the
Newtonian period

PN ¼
�
8π2a3

Gr0

�1
2

; ð73Þ

of a Keplerian orbit, and the term multiplying the integral in
Eq. (71) is given by

PN

2π
ð1 − e2Þ32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ðe2 þ 3Þσ

p
ffiffiffi
2

p : ð74Þ

The integrals of Eqs. (71) and (72) give t and τ in units of
seconds upon restoring the proper physical unit values for c
and G. To calculate the above integrals, numerical quad-
rature must be used since for a very eccentric orbit, the
integrand in (71) can be complex-valued. This can be
avoided by reexpressing the integrals in terms of the
eccentric anomaly ψ, which is here related to χ as

ð1þ e cos χÞð1 − e cosψÞ ¼ 1 − e2: ð75Þ

This definition is chosen in analogy with the classical case
[70,71]. It is clear from the above calculations that one may
obtain expressions for the orbital period in terms of the RZ
parametrization at any and all orders by determining only the
correct expression for dφ=dχ.

VI. APPLICATION TO ASTROPHYSICAL
TEST CASES

In the following sections, both the RZ parametrization
and the expressions derived so far for the periastron
advance are tested. To do this, two sets of four test objects
are considered. The first set is represented by four well-
known S-stars which have now been observed orbiting Sgr
A* for more than a decade [1,2,72–75]. These first objects
are Keplerian but serve the purpose of providing repre-
sentative examples of how the parametrization can be
employed. The second set of test objects is represented
by four pulsar toy models. Their properties have been
chosen to have a range of semimajor axes, reasonably high
eccentricities, and moderate-to-short orbital periods. In this
respect, these toy models are idealized but not altogether
unrealistic: future advances in instrumental sensitivity
could, in principle, enable the detection of Galactic center
pulsars with such properties [13].
In modelling the toy pulsar-SMBH system, it is hereafter

assumed that the mass of the central SMBH is known to
some degree of precision. Whilst this is not the way pulsar
timing normally works, since in such observations the mass
of the BH is actually determined from the observations of
the binary system, complementary observational data (e.g.,
multidecadal observations of S-stars [76]) can provide an
independent measurement of the BH mass.

A. Determining the periastron advance
and orbital period

In the case of S-stars, the accuracy at which the advance
of the periastron can be measured places a lower limit
on the eccentricity of orbits that are in the range
0.35 < e < 0.93. For the purposes of this study, four
specific S-stars are considered, namely, S1, S2, S9, and
S13, which represent a broad range in both eccentricity and
semimajor axis length [1,2,72–75].
The properties of these stars are collected in Table I,

which also reports, besides the eccentricities e and semi-
major axes a, the values of the periastron advances ΔφGR

and ðnÞΔφ at the various orders, n, in the RZ expansion.
Note that in evaluating the periastron advance, specific
values for the coefficients ϵ, an, and bn must be specified
since these coefficients cannot yet be constrained by
astrophysical observations and hereafter chosen to be
a0 ¼ 2a1 ¼ 4a2 ¼ ϵ ¼ 10−3. The dependence of the peri-
astron advance on bn is found to be extremely small. In
particular, even in the case of the most optimistic model,
Toy IV, the maximum relative difference in the periastron
advance at second order is found to be less than one part in
105. The coefficients bn therefore have a negligible effect
on the pulsar dynamics, and they are hereafter taken to
be zero.
Also reported in Table I are the values relative to the toy

pulsar models, where models I, II, and III are in principle
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already measurable with present radio-astronomical obser-
vations (see [77]), while Toy IV is, at the present time, an
optimistic model. Since the RZ parametrization is con-
structed to be most accurate at the event horizon and at
spatial infinity, the results presented in Table I are, albeit
weakly, dependent on the specific form of the parametri-
zation. However, given its inherent rapid convergence
properties, by second order the RZ parametrization every-
where represents the chosen metric theory of gravity to an
accuracy of better than 1% [25]. In particular, looking at
Table I one can establish how well the RZ parametrization
works in the vicinity of the event horizon (this is especially
true for Toy IV). In the case of the S-stars, on the other
hand, the reported deviations from GR are all rather minute,
and this is to be expected since their motions are essentially
Keplerian.

Figure 1 presents the results in Table I, highlighting how
it is possible to use the results of the parametrization to
distinguish between different theories of gravity. In par-
ticular, the color code in Fig. 1 indicates the values of the
periastron advance at zeroth order, ð0ÞΔφ, as a function of
the only two free parameters in the lowest-order expansion
of the parametrization, i.e., a0 and ϵ. The left and right
panels in Fig. 1 refer to toy models II and IV, respectively.
In principle, from the observation of the periastron

advance of a given star or pulsar, the value of Δφ can
be determined. If the observation is performed over much
longer time scales, e.g., several decades as in the case of S-
stars, the accuracy of this measurement is significantly
improved. The eccentricity and semimajor axis of the orbit
are then determined, and a contour plot akin to Fig. 1 is
made for the given object. The observationally determined

TABLE I. Values of the periastron advance Δφ for different objects. Here, the numerical values for GR displacement, ΔφGR, and for
the RZ parametrization (68)–(70) are shown. The table reports the measured values of the eccentricity e, semimajor axis a, and
σ ¼ rg=l, assuming that the gravitational radius is rg ∼ 6.64657 × 109 m ¼ 0.044 AU for Sgr A* and that the values of coefficients are
a0 ¼ 2a1 ¼ 4a2 ¼ ϵ ¼ 10−3. Numbers in square brackets denote multiplicative powers of ten.

Object e a½AU� σ ΔφGR
ð0ÞΔφ ð1ÞΔφ ð2ÞΔφ

S1 0.358 3.29951½þ3� 1.55089½−5� 2.91131½−4� 2.92004½−4� 2.92005½−4� 2.92199½−4�
S2 0.876 9.79960½þ2� 2.01195½−4� 3.77681½−3� 3.78813½−3� 3.78814½−3� 3.79065½−3�
S9 0.825 2.33559½þ3� 6.01199½−5� 1.12273½−3� 1.12610½−3� 1.12620½−3� 1.12909½−3�
S13 0.395 9.53220½þ2� 5.54552½−5� 1.04410½−3� 1.04412½−3� 1.04413½−3� 1.04481½−3�
Toy I 0.800 1.75400½þ2� 7.03608½−4� 1.32627½−2� 1.33025½−2� 1.33026½−2� 1.33114½−2�
Toy II 0.800 4.38500½þ1� 2.81443½−3� 5.30508½−2� 5.32097½−2� 5.32102½−2� 5.32456½−2�
Toy III 0.786 5.00000½þ0� 2.32488½−2� 4.38229½−1� 4.39524½−1� 4.39556½−1� 4.39850½−1�
Toy IV 0.888 1.00000½þ0� 2.10110½−1� 3.96047½þ0� 3.97069½þ0� 3.97417½þ0� 3.97695½þ0�

0.05295 0.05295

0.05305 0.05305

0.05315 0.05315

ε × 10−3

a 0 ×
 1

0−3

Toy II
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FIG. 1. Contour plot of periastron advance for the toy models II and IV with contour lines indicating the value of the periastron
advance for a given value of a0 and ϵ. Overlapping curves indicate the four different theories, which are rewritten in terms of the RZ
parametrization, i.e., (45) (blue line), (13) (green line), (32) (red line), and (21) (cyan line). Left panel: contour plot for toy model II. The
separation between adjacent contours is 10−4. Right panel: contour plot for toy model IV. The separation between adjacent contours
is ∼2.6 × 10−3.
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value ofΔφ is then represented as a contour line in this plot,
and deviations from GR (located at the point ða0; ϵÞ ¼
ð0; 0Þ in all plots) are manifest. Different colored lines
indicate the constraints placed on a0 and ϵ by the different
theories of gravity considered here, namely, Eq. (45) (blue),
Eq. (13) (green), Eq. (32) (red), and Eq. (21) (cyan). Such
lines may be constructed for any desired theory of gravity.
In principle, the intersection of the object’s contour line
with any and all constructed (herein coloured) theory lines
can provide an estimate of both the deviation from GR and
which potential theories are more strongly (or weakly)
constrained.
Considerations similar to the ones made so far for the

periastron advance can also be made for the observed
orbital period. In particular, Table II and Fig. 2 provide
information analogous to that presented in Table I and in
Fig. 1 but now for the orbital period. More specifically,
Table II reports the orbital periods at different orders in the

expansion (see Sec. VI A). As expected, in the case of
S-stars the deviations from GR are very small since their
motion is effectively Keplerian, while larger deviations are
seen for the pulsar toy models and, in particular, for model
IV. Table II also demonstrates that the orbital period
appears to be a more sensitive parameter than the periastron
advance (i.e., deviations from GR are much more
pronounced).
Figure 2 presents a contour plot of the values of the

orbital period at the zeroth order in the parametrization, ð0Þt,
as a function of the coefficients a0 and ϵ. Analogous to
Fig. 1, different colored lines represent the corresponding
values for a0 and ϵ predicted at this order by the afore-
mentioned different theories.
As seen in Figs. 1 and 2, the allowed range of a0 and ϵ is

not yet bounded, and thus (although increasingly unlikely
for larger values of a0 and ϵ), it is not possible to strongly
constrain a particular theory. However, simultaneous

TABLE II. Values of the orbital period and its relative difference for different objects. The Newtonian period PNewton, the GR orbital
period tGR and the parameterised orbital period ð0Þt, ð1Þt and ð2Þt are given, assuming that a0 ¼ 2a1 ¼ 4a2 ¼ ϵ ¼ 10−3. Numbers in
square brackets denote multiplicative powers of ten.

Object PNewton½s� tGR½s� ð0Þt½s� ð1Þt½s� ð2Þt½s�
S1 2.81918½þ9� 2.81924½þ9� 2.82170½þ9� 2.82171½þ9� 2.82202½þ9�
S2 4.37764½þ8� 4.37794½þ8� 4.37896½þ8� 4.37896½þ8� 4.38220½þ8�
S9 1.67898½þ9� 1.67903½þ9� 1.67956½þ9� 1.67958½þ9� 1.68065½þ9�
S13 4.37764½þ8� 4.37794½þ8� 4.38164½þ8� 4.38166½þ8� 4.38225½þ8�
Toy I 3.45546½þ7� 3.45678½þ7� 3.45802½þ7� 3.45805½þ7� 3.46012½þ7�
Toy II 4.31933½þ6� 4.32593½þ6� 4.32749½þ6� 4.32750½þ6� 4.33012½þ6�
Toy III 1.66308½þ5� 1.68621½þ5� 1.68687½þ5� 1.68688½þ5� 1.68789½þ5�
Toy IV 1.48750½þ4� 1.65483½þ4� 1.65521½þ4� 1.65539½þ4� 1.65751½þ4�
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FIG. 2. Contour plot of the orbital period and curves as defined in Fig. 1. Left panel: contour for the toy model II. The separation
between adjacent contours is 4032 s. Right panel: contour for the toy model IV. The separation between adjacent contours is 15 s.
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observation of both the periastron advance and orbital
period of the object can (for a given accuracy) place
constraints on the allowed range of a0 and ϵ. This in turn
enables, upon reexamining Figs. 1 and 2, not only much
more stringent constraints to be imposed on given theories
but also in principle the possibility to rule out certain
theories entirely. This is illustrated in Fig. 3 for the EMDA
BH (assuming b̂ ¼ 5 × 10−8) using models Toy II and Toy
IV, where the periastron advance (light-blue shaded areas
around the solid blue line) and of the orbital period (light-
red shaded areas around the red line) assuming an accuracy
of 10−4. The specific case of an EMDA BH was chosen in
this example since it is not merely an extension of GR.
In summary, the results reported in Figs. 1–3 demon-

strate that by using a general description of test-particle
motion in arbitrary BH spacetimes, such as the RZ
parameterization, future observations of pulsars near a
SMBH can help impose tighter constraints on different
theories of gravity, and even potentially facilitate ruling out
certain theories (and, by extension, related classes and
extensions thereof) entirely.

B. Constraining EMDA and f ðRÞ theories
In this subsection, an illustrative example demonstrating

the facility of the parametric framework to constrain the
parameters of two different theories of gravity, namely,
EMDA and fðRÞ, is presented. These two theories have
been chosen since they are not only distinctly different both
mathematically and physically but also provide a strong
contrast in the ability of the RZ parametrization to constrain
theory-dependent parameters.

Figures 4 and 5 present the deviations from GR of the
periastron advance as a function of the semimajor axis
length, for models Toy I and Toy II (Fig. 4) and model
Toy IV (Fig. 5). The left panels in both figures correspond
to fðRÞ and the right panels to EMDA. Multiple colored
curves, colored from violet through to red, denote, for a
fixed value of the theory parameter, how the relative
difference in the periastron advance varies as a function
of the semimajor axis length. These 51 colored lines are
uniformly logarithmically spaced between the stated
parameter value in the upper right of each panel (uppermost
red line) and 0.01 times that value (bottom-most violet
line), i.e., 25 lines per decade in the theory parameter.
In Fig. 4, the relative differences in the periastron

advance for models Toy I and Toy II are shown for
fðRÞ (left panel) and EMDA (right panel). The two vertical
lines in both panels denote the semimajor axis position of
models Toy I (blue) and Toy II (magenta). The horizontal
black dashed line at 10−7 represents a potential astrophysi-
cal measurement precision [77]. It is immediately clear that
for models Toy I and Toy II the relative differences in the
periastron advance are insensitive to the semimajor axis
length and practically indistinguishable, as is evident from
the horizontal, parallel theory parameter lines. This can be
interpreted as near-Keplerian pulsar motion, i.e., the weak-
field limit of the RZ parametrization. The intersection
of the uppermost plotted theory parameter line with the
vertical blue and magenta lines provides an upper limit
for the theory parameters. For the fðRÞ case, this yields
α < 1.288 × 10−4, whereas for the EMDA case this yields
the much smaller value of b̂ < 6.68 × 10−8, nearly four
orders of magnitude smaller than that in the fðRÞ case.

FIG. 3. Constraints set by the pulsar orbits for toy models II and IV in the EMDAmetric (39) at zeroth order, with the dilaton parameter
fixed at b̂ ¼ 5 × 10−8. The values of the coefficients a0 and ϵ are constrained by the observations of the periastron advance (light-blue
shaded areas around the solid blue line) and of the orbital period (light-red shaded areas around the solid red line) assuming an accuracy
of 10−4.
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FIG. 4. Relative difference of the zeroth order periastron advance with respect to the GR value plotted as a function of semimajor axis
distance for toy models I and II in the case of fðRÞ (left panel) and EMDA (right panel). Different colored lines indicate, for a fixed value
of the theory parameter (α or b̂), the variation in this relative difference as a function of the semimajor axis. The 51 lines are equally
spaced (logarithmically) between the stated inset upper limits of α ≤ 1.288 × 10−4 and b̂ ≤ 6.68 × 10−8, and 0.01 times those values,
i.e., 25 equally spaced values per decade. The vertical solid lines at 175.4 AU (blue) and 43.85 AU (magenta) indicate the semimajor axis
positions of toy models I and II, respectively.

FIG. 5. Relative difference of the zeroth order periastron advance with respect to the GR value plotted as a function of semi-major axis
distance for toy models IV in the case of fðRÞ (left panel) and EMDA (right panel). Different colored lines are as discussed in Fig. 4,
with upper limits of α ≤ 1.396 × 10−4 and b̂ ≤ 7.762 × 10−8. The vertical solid line (blue) at 1 AU denotes the semimajor axis position
of toy model IV.
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In Fig. 5, the same analysis in Fig. 4 is repeated for
model Toy IV. In this case, the vertical blue line denotes the
semimajor axis position of model Toy IV. Since this model
places the pulsar much closer to the event horizon of the
BH (1 AU), and as is clear from the theory parameter lines
steeper gradients, the pulsar motion can be considered as
occurring in the transition region between the weak-field
and strong-field regimes. For the fðRÞ case, this yields
α < 1.396 × 10−4, whereas for the EMDA case this
yields b̂ < 7.762 × 10−8.
In particular, one can see from Figs. 4 and 5 that it is

possible to provide constraints on the two theories. More
specifically, one can place an upper limit on the value of the
parameters α and b̂. It is assumed that the error on the
measurements is of the order of 10−7 [77]. Figures 4 and 5
present the relative differences from ð0ÞΔφ at first order of
the expansion in GR with respect to the semimajor axes for
the four toy models for both theories. What emerges from
the figures is that the deviations from GR are much more
pronounced if one considers, as seen before, small semi-
major axes and high eccentricities. In addition, one may
also estimate the various values of the parameters that
characterize the specific theory through the location of the
different level curves.
It can be seen from Figs. 4 and 5 that for a given

measurement precision, as the pulsar semimajor axis
location is shifted towards the BH event horizon, the range
over which the theory parameter can be probed (and
effectively constrained) is increased. Therefore, a pulsar
orbiting in the immediate vicinity of a BH event horizon
(i.e., in the truly strong-field regime) can provide much
tighter constraints on the theory parameters.
From Figs. 4 and 5, it follows that fðRÞ gravity can be

more stringently constrained using pulsars than EMDA
theory. This result is reassuring given that fðRÞ is an
extension of GR, rather than a truly distinct theory of
gravity like EMDA theory. If a pulsar near Sgr A*’s event
horizon is detected, such observations will aid in fixing
ranges of validity and values of the parameters of any
theory under consideration. It is clear that in order to be
proven useful, such a pulsar must be close to the SMBH,
with an orbital period of only a few hours or less.
Observational detection of such pulsars is in principle
achievable with present day radio telescopes.

VII. CONCLUSIONS

Although GR has proven to be a very reliable theory of
gravity in several different fields of application and across
several different scales, it is not the only one. Indeed, there
exist other theories of gravity that reproduce the prediction
of GR. There is therefore a need, both theoretically and
observationally, to impose constraints on such new theories
of gravity and possibly to exclude some of them.

Owing to their very narrow mass range, extreme com-
pactness, and rapid, stable rotation periods, pulsars are one
of the best candidates to probe strong-field gravity in the
truly nonlinear regime. Pulsar-timing measurements, with
their inherent high precision, have already proven to be
highly sensitive and accurate in the weak-field regime [78].
The detection of a pulsar in the strong-field regime, i.e.,
near a BH event horizon, would enable not just a highly
accurate determination of the BH properties but also
provide an accurate probe of the spacetime structure and
geometry.
Given the rapid increase in recent efforts to perform

astronomical observations of the Galactic center, the
prospect of detecting a pulsar orbiting in close proximity
to Sgr A* is promising. Such a detection would provide the
most accurate measurements of the physical parameters
(e.g., mass, spin, and even quadrupole moment) of Sgr A*
[79]. Theoretical studies of pulsar motion and timing in
both GR and alternative theories of gravity are therefore of
great importance. However, given the breadth of available
theories of gravity in the present literature, it is most
expedient to perform any such studies in a manner which
assumes neither a specific theory of gravity nor any
particular solution to any particular theory. It is also most
desirable to have a representation in which the classical GR
limit is recovered.
Consequently, this study has presented an analysis of

test-particle (i.e., pulsar) dynamics in several different BH
spacetimes, using a theory-independent approach. This
approach makes use of a general mathematical representa-
tion of BH spacetimes. In the case of spherically symmetric
spacetimes, as those considered in the present study, a
rapidly convergent continued fraction expansion in terms of
a compactified radial coordinate has been employed.
Using this parametrization, general expressions for the

dynamics of a test particle in general BH spacetimes were
derived. In particular, general algebraic expressions for the
advance of the periastron and the orbital period at different
orders of the parametrization have been presented. This
formalism was applied to two sets of astrophysical test
cases: (i) four particular S-stars, which have been observed
orbiting Sgr A* in the infrared, and (ii) four hypothetical
toy models for pulsars.
It was shown that in the case of S-stars, deviations from

GR are negligible, and therefore, it is not possible to use such
objects to test the underlying theory of gravity. The classical
GR results of S-star periastron advance and orbital period
observations arewell-reproducedwithin the paramterization,
and it was shown that deviations from GR are negligible in
this case. Therefore S-stars, while useful in providing
constraints on the mass and distance of the central
SMBH, are of limited use in probing strong-field gravity.
Next, the periastron advance and orbital period proper-

ties of four pulsar toy models were investigated. It was
shown that, in contrast to S-stars, pulsars with smaller
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semimajor axis lengths (i.e., orbiting closer to Sgr A*)
indeed exhibit quantifiable deviations from GR. It was
demonstrated that separate measurements of the periastron
advance and of the orbital period of the pulsar enable two
independent means through which to determine the param-
eters a0 and ϵ that describe, at lowest order, a generic BH
spacetime in the RZ parametrization. Hence, such mea-
surements offer the possibility to constrain any particular
theory of gravity.
In order to attempt to rule out certain theories, an

example of the simultaneous calculation of the periastron
advance and orbital period (complete with accuracy errors)
was presented. This defines an inequality through which a
region of overlap in the shared parameter space of both
observational quantities can be determined, imposing
tighter constraints on a0 and ϵ. Such constraints can then
be overlaid demonstrating that, in principle, given sufficient
observational sensitivity, certain theories of gravity (and
even extensions or classes thereof) can be immediately
ruled out.
In particular, the cases of fðRÞ and EMDA theories were

employed to show that measurements of the relative
difference (from GR) of the periastron advance can provide
another avenue through which to constrain the parameters
of different theories of gravity. Moreover, it was found that

fðRÞ theories are much more stringently constrained than
EMDA theory. Given that the fðRÞ theory considered in
this study is, at its core, an extension of GR, this result,
while not necessarily obvious, stands to reason given that
this particular extension of GR includes higher-order
curvature invariants. Therefore, using pulsar observations
presents the possibility to strongly constrain the parameters
of all theories which are purely geometrical (i.e., not
containing exotic particles and scalar fields).
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