
UNIVERSITY COLLEGE LONDON

Efficient Zero-Knowledge Proofs and their

Applications

Author:

Andrea Cerulli

Supervisor:

Prof. Jens Groth

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

University College London

Department of Computer Science

University College London

April 25, 2019

3

Declaration of Authorship
I, Andrea Cerulli, declare that this thesis titled, “Efficient Zero-Knowledge Proofs and

their Applications” and the work presented in it are my own. Where information has

been derived from other sources, I confirm that this has been indicated in the work.

5

Abstract

A zero-knowledge proof is a fundamental cryptographic primitive that enables the

verification of statements without revealing unnecessary information. Zero-knowledge

proofs are a key component of many cryptographic protocols and, often, one of their

main efficiency bottlenecks. In recent years there have been great advances in improv-

ing the efficiency of zero-knowledge proofs, bring them closer to wide deployability.

In this thesis we make another step towards the construction of computationally-

efficient zero-knowledge proofs. Specifically, we construct efficient zero-knowledge

proofs for the satisfiability of arithmetic circuits for which the computational cost of

the prover is only a constant factor more expensive than direct evaluation of the cir-

cuit. We also construct efficient zero-knowledge proofs to check the correct execution

of (Tiny)RAM programs. In this case the computational cost for the prover is a super-

constant factor larger than executing the program directly. Our proofs also support

efficient verification and small proof sizes. For security, they rely on symmetric prim-

itives and could potentially withstand attacks from quantum computers.

On a different research direction, we look at group signatures, a fundamental prim-

itive which relies on zero-knowledge proofs. A group signature enables users to sign

anonymously on behalf of a group of users. In case of dispute a Manager can iden-

tify the author of a signature and potentially banish the user from the group. In this

thesis we address the fundamental question of defining the security of fully dynamic

group signatures, for which the users can join and leave at any time. Differently from

other restricted settings, this case has been largely overlooked in the past. Our security

model is general, does not implicitly assume existing design paradigms and captures

the security of existing models for more restricted settings.

7

Impact Statement

Zero-knowledge proofs are cryptographic protocols that enable the verification of

some information without compromising the privacy of the data. The potential appli-

cations of this primitive are numerous both inside and outside academia. In cryptog-

raphy, zero-knowledge proofs are used in the construction of other important primi-

tives, such as digital signature schemes and secure public key encryption schemes, and

they are used within protocols to enforce honest behaviour of the participants. Zero-

knowledge proofs are a fundamental tool for the preservation of privacy, enabling

medical applications that use healthcare data, the verification of cloud computation,

and various distributed ledger technologies.

The main obstacle to the widespread adoption of zero-knowledge proofs is related

to their efficiency. The performance is usually measured in terms of the computational

costs to generate and verify the proofs, as well as the amount of space required to store

them. Nowadays, the main bottleneck is in the cost of computing the proofs.

The results presented in this work make important steps towards the development

of computationally-optimal zero-knowledge proofs. The relevance of our results is

mainly theoretical, and more effort is required to improve the practical costs of our

solutions. On the other hand, this work opens interesting possibilities that are likely

to lead to further improvements in the future.

In this work we also investigate the security of group signatures, which is an im-

portant cryptographic application of zero-knowledge proofs. Group signatures en-

able a member in a group to sign on behalf of the group without revealing its identity.

Group signatures can be used in several applications, including anonymous credential

schemes, e-cash and for remote attestation in Intel SGX. Our work contributes to the

study of group signatures by introducing a strong security model which helps captur-

ing security in a more realistic setting than previous existing models. For example, our

model captures security in the presence of highly adversarial authorities and allows

for maximal flexibility for the group members.

9

Acknowledgements

What I learned here at UCL goes well beyond this thesis and what can be summarised

in this brief note. I feel very lucky I had the chance to embark on this journey and I

will always carry the memories and the experiences of these years with me.

The first person that made all of this possible is Jens Groth, who I thank immensely

for guiding me and for all the lessons he thought me. He always had the time to

answer my (polynomially) many queries. Having now reached the limit of permitted

queries, it is now time to hand in my Thesis← AJ .

Over the years, I had the pleasure to work closely with Pyrros, Christophe, Jonathan,

Essam, Mary, Sune, Mohammad, Vasilis, Emiliano, Claudio, Raphael and Sebastian,

from which I learned much more that I would have ever imagined. There are many

more persons with whom I had the pleasure to share parts of this journey. A special

thanks to Enrico who bared with me over countless many coffee breaks and who has

taught me how to play table football.

I owe my family a huge debt of gratitude for the support of all these years, for

always believing in me and to always make me feel close to home. Most of all I wish

to thank Arianna, for always being there when I need her. None of this would have

happened without you. I love you.

Thank you all,

Andrea

11

Contents

Declaration of Authorship 3

Abstract 5

Impact Statement 7

Acknowledgements 9

List of Figures 15

List of Tables 19

1 Introduction 25

1.1 Efficient Zero-Knowledge Proofs . 26

1.2 Group Signatures . 28

1.3 Structure and Content . 29

2 Literature Review 31

2.1 Zero-Knowledge Proofs and Arguments 31

2.1.1 Interaction . 33

2.1.2 Communication . 35

2.1.3 Verifier Computation . 36

2.1.4 Prover Computation . 37

2.2 Group Signatures . 44

3 Preliminaries and Definitions 49

3.1 Notation . 49

3.2 Models of Computations . 50

3.2.1 Arithmetic Circuits . 51

12

3.2.2 TinyRAM . 51

3.3 Proof of Knowledge and the ILC Channel 54

3.3.1 Relations and Languages . 55

3.3.2 Communication Channels . 55

3.3.3 Proof of Knowledge . 57

3.3.4 Efficiency Measures . 61

3.4 Linear-Time Linear Error-Correcting Codes 62

3.5 Commitment Schemes . 64

4 Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model 67

4.1 Relation for the Satisfiability of an Arithmetic Circuit 68

4.2 ILC Proofs for Simple Relations . 72

4.2.1 ILC Proof for the Correct Opening of Committed Vectors 72

4.2.2 ILC Proof for the Sum of Committed Matrices 75

4.2.3 ILC proof for the Hadamard Product of Committed Matrices . . 77

4.2.4 ILC Proof for a Known Permutation Relation 87

4.3 ILC Proofs for the Satisfiability of an Arithmetic Circuit 92

5 Proofs for the Execution of TinyRAM Programs in the ILC Model 97

5.1 Overview . 98

5.2 Arithmetization of TinyRAM . 101

5.2.1 Formatting the Witness . 102

5.2.2 Arithmetized TinyRAM Relation 104

5.2.3 Building-Block Relations . 105

5.2.4 Efficient Bit Decomposition for Range and Logical Relations . . . 106

5.3 Decomposition of TinyRAM Relation . 109

5.3.1 Checking the Correctness of Values 109

5.3.2 Checking Memory Consistency . 111

5.3.3 Checking Correct Execution of Instructions 115

5.3.4 Instruction Checker Relation . 118

5.4 ILC proofs for Building Blocks . 130

5.4.1 ILC proofs for Equality Relations 131

5.4.2 ILC Proof for Unknown Permutation Relations 131

13

5.4.3 ILC Proofs for Lookup Relations 135

5.4.4 ILC Proof for Range Relations . 140

5.4.5 ILC Proof for Arithmetic Constraints 141

5.5 ILC Proof for the Correct Execution of TinyRAM 148

5.5.1 Commitments to the Tables . 149

5.5.2 Proof for the Correct TinyRAM Execution in the ILC Model 152

6 Compiling ILC Proofs into Standard Proofs and Arguments 157

6.1 Exposure-Resilient Encodings . 158

6.2 From the ILC Channel to the Standard Channel 160

6.2.1 The Compiler . 162

6.2.2 Security Analysis . 164

6.3 Efficiency and Instantiations . 175

6.3.1 Efficiency of the Compilation . 176

6.3.2 Proofs and Arguments for the Satisfiability of Arithmetic Circuits 176

6.3.3 Proofs and Arguments for the Correct Program Execution 178

7 Foundations of Fully Dynamic Group Signatures 181

7.1 Definitions for Fully Dynamic Group Signatures 184

7.1.1 Syntax . 185

7.1.2 Security Definitions . 191

Correctness . 191

Anonymity . 195

Traceability . 199

Non-Frameability . 202

7.1.3 Additional Security Definitions . 204

Opening Binding . 204

Opening Soundness . 205

7.2 Partially Dynamic Group Signatures . 206

7.2.1 Restriction to Partially Dynamic Signatures 207

7.2.2 Comparison to Bellare, Shi and Zhang [BSZ05] 210

7.2.3 Comparison to Kiayias and Yung [KY06] 213

7.3 Static Group Signatures . 216

14

7.3.1 Restriction to Static Group Signatures 216

7.3.2 Comparison to Bellare, Micciancio and Warinschi [BMW03] . . . 217

7.4 Fully Dynamic Group Signatures from Accountable Ring Signatures . . 220

7.4.1 Accountable Ring Signatures . 221

7.4.2 Generic Construction from Accountable Ring Signatures 224

7.4.3 Security in our Separate Authorities Model 225

7.5 On the Security of Constructions Based on Revocation Lists 228

8 Conclusions 231

Bibliography 233

15

List of Figures

3.1 Example of an arithmetic circuit. 52

3.2 Description of the ILC channel. 56

4.1 Representation of an arithmetic circuit and arrangements of the wires

into 6 matrices. 70

4.2 Representation of the wiring of a circuit: cycles ((1, 2), (5, 1), (9, 1)) and

((8, 2), (12, 1)). 71

4.3 Proof of Knowledge for the Req relation. Steps marked with ILC → ◦

and ILC ← • denote incoming and outgoing messages to the ILC, re-

spectively. 73

4.4 Proof of Knowledge for theRsum relation. 75

4.5 Prover Pprod for the proof of knowledge forRprod. 82

4.6 Verifier Vprod of the proof of knowledge forRprod. 83

4.7 Decomposition of the Known Permutation Proof Over the ILC into proofs

for simpler relations. 89

4.8 Proof of knowledge for the relationRkperm. 91

4.9 Efficiency of the proof of knowledge for the Rkperm relation. F× stands

for the cost of a single field multiplication, F+ stands for the cost of a

single field addition, and log |F| for the size of a field element. 92

4.10 Proof of knowledge for the relationRAC over the ILC model. 94

5.1 The execution table Exe, the program table Prog, the memory table Mem,

the table EvenBits and the table Pow. 103

5.2 Diagram of the decompositon of TinyRAM into equality, lookup, per-

mutation, range relations and arithmetic constraints. 109

5.3 Decomposition of the unknown permutation proof over the ILC. 132

16

5.4 Proof of knowledge for the relationRperm. 133

5.5 Decomposition of the bounded lookup proof over the ILC. 137

5.6 Proof of knowledge for the relation Rblookup. Matrix E is the exponent

matrix used inside the proof forRlookup 139

5.7 Decomposition of the range proof over the ILC. 141

5.8 Proof of knowledge for the batchedRQAP relation. 145

5.9 Proof of knowledge for the relationRfield
TinyRAM in the ILC model 154

6.1 Vectors vi organised in matrix V are encoded row-wise as matrix E =

ẼC(V ;R). The vertical line in the right matrix and vector denotes con-

catenation of matrices. The prover commits to each column of E. On

query q he answers with v′ = qV and r′ = qR. The verifier asks for

openings to a set of columns J = {j1, . . . , j2λ} in E and checks their

consistency with ẼC(v′; r′). 162

6.2 Construction of (G,P,V) from (GILC,PILC,VILC), commitment scheme

(CSetup,CCommit) and error correcting code C. 165

7.1 Correctness game. 193

7.2 Oracles used in the correctness game. 193

7.3 Correctness game for separate GM and OA. 194

7.4 Anonymity game. 197

7.5 Oracles used in the anonymity game. 197

7.6 Anonymity game for separate GM and OA. 198

7.7 Oracles used in the anonymity game for separate GM and OA. 198

7.8 Traceability game. 200

7.9 Oracles used in the traceability game. 200

7.10 Traceability game for separate group manager and opening authority. . 201

7.11 Oracles used in the traceability game for separate GM and OA. 201

7.12 Non-Frameability game. 203

7.13 Oracles used in the non-frameability game. 203

7.14 Non-Frameability game for separate GM and OA. 204

7.15 Opening binding game. 205

7.16 Opening soundness game. 206

17

7.17 Oracles used in the opening soundness game. 206

7.18 Security experiments for partially dynamic group signatures. 209

7.19 Security experiments for partially dynamic group signatures akin to

Bellare, Shi and Zhang [BSZ05] . 212

7.20 Security experiments for partially dynamic group signatures akin to Ki-

ayias and Yung [KY06]. 215

7.21 Security experiments for static group signatures. 218

7.22 Security experiments for static group signatures akin to Bellare, Mic-

ciancio and Warinschi [BMW03]. 219

7.23 Construction of a fully dynamic group signature from an accountable

ring signature [BCC+15] . 226

19

List of Tables

2.1 Efficiency comparison of the most efficient proofs and arguments for the

satisfiability of arithmetic circuits with respect to prover computation.

F× and F+ stand for the cost of field multiplications and additions, re-

spectively. Communication is measured in field elements of size log |F|

bits. 41

2.2 Efficiency comparisons between our proofs and arguments with the

most efficient zero-knowledge arguments for the correct execution of

TinyRAM programs, at security level 2−ω(log λ). Computation is mea-

sured in TinyRAM steps and communication in words of length W =

Θ(log λ) with λ the security parameter and α = ω(1) an arbitrarily small

superconstant function. L is the length of the TinyRAM program, |v| the

size of the public inputs to the program, and T its running time. 43

3.1 TinyRAM instruction set, excluding the read command. The flag is set

equal to 1 if the condition is met and 0 otherwise. If the pc exceeds the

program length, i.e., pc ≥ L, or we address a non-existing part of mem-

ory, i.e., in a store or load instruction A ≥ M , the TinyRAM machine

halts with answer 1. 53

4.1 Efficiency of the proof of knowledge forReq. F+ stands for the cost of a

single field addition. 74

4.2 Efficiency of the proof of knowledge forRsum. F× stands for the cost of

a single field multiplication. 76

4.3 Efficiency of the proof system for the Hadamard product relationRprod.

F× stands for the cost of a single multiplication and log |F| for the size

of a field element. 87

20

4.4 Efficiency of the proof system for the same-product relation Rsame-prod.

F× stands for the cost of a single field multiplication and log |F| for the

size of a field element. 90

4.5 Efficiency of our proof of knowledge for the relation RAC in the ILC

model. F× stands for the cost of a single field multiplication, F+ stands

for the cost of a single field addition, and log |F| for the size of a field

element. 95

5.1 Choices of selection vectors to ensure that Rinst is satisfied. The en-

tries specified in the table correspond to the entries of sa, sb, sc, sd, sout

which are set equal to 1, while the rest are set equal to 0. The entries

specified in the table correspond to the entries of sch which are set equal

to 0. Where the selection vector is the zero vector we write /. We as-

sume that constant entries 0, 1, 2W − 1 are stored in the execution table

and that they can be selected by sa, sb, sc, sd. 120

5.2 Table Pow. 126

5.3 Efficiency of the proof of knowledge forReq. F+ stands for the cost of a

single field addition. 131

5.4 Efficiency of the proof of knowledge for the Rperm relation. F× stands

for the cost of a single field multiplication, F+ stands for the cost of a

single field addition, and log |F| for the size of a field element. 135

5.5 Efficiency of the proof of knowledge for the Rlookup relation. F× stands

for the cost of a single field multiplication, F+ stands for the cost of a

single field addition, and log |F| for the size of a field element. 137

5.6 Efficiency of the proof of knowledge for theRblookup relation. F× stands

for the cost of a single field multiplication, F+ stands for the cost of a

single field addition, and log |F| for the size of a field element. 141

5.7 Efficiency of the proof of knowledge for the RQAP relation, in the case

of batches of size mnk. F× stands for the cost of a single field multipli-

cation, F+ stands for the cost of a single field addition, and log |F| for

the size of a field element. 147

21

5.8 Efficiency of the proof of knowledge for the Rformat relation. F× stands

for the cost of a single field multiplication, and log |F| for the size of a

field element. 152

5.9 Efficiency of the proof of knowledge forRfield
TinyRAM in the ILC model. F×

is the cost of a single field multiplication and log |F| the size of a field

element. The efficiency is reported in table is for ` =
√
T and assuming

that program length and memory are L,M = O(
√
T). 156

6.1 Efficiency of a compiled proof of knowledge (G,P,V) for (pp, u, w) ∈ R. 176

6.2 Efficiency of our proof of knowledge for the relationRAC over the stan-

dard channel. F×,F+ are the costs of field multiplications and addi-

tions, respectively. log |F| is the size of a field element. 176

6.3 Efficiency of two instantiations of our SHVZK proofs and arguments

for arithmetic circuit satisfiability both in terms of TinyRAM operations

and field operations. F×,F+ are the costs of field multiplications and

additions, respectively. log |F|, |W | are the size of field elements and

words, respectively. TinyRAM operations are denoted as TR and e =

log |F|
W . 178

6.4 Efficiency of two instantiations of our SHVZK proofs and arguments

for the execution of TinyRAM programs. L is the length of the program

and |v| is the size of the public inputs of the program. TR stands for

TinyRAM operations, |W | is the word size of the TinyRAM machine

and e = log |F|
W = ω(1) is the overhead of field operations in TinyRAM. . 179

23

To Arianna

25

Chapter 1

Introduction

The “Knowledge of London”, or simply “the Knowledge”, is an examination sys-

tem for taxi drivers in London, United Kingdom. Every aspiring taxi driver must go

through an extensive period of training to memorise all the landmarks and streets of

the British capital. As a part of the examination process, a candidate must undergo an

interview in which they are requested to situate the position of two arbitrary points of

interest of the city and to find the best route between them, without the aid of a map

or any technology. This interactive interviewing process is repeated few times over

the years to ensure the aspirant taxi driver has the necessary Knowledge to fulfil the

position.

Alice thinks she can beat the Knowledge and that she can find better routes than

Bob, the Knowledge examiner. Alice aims to prove Bob she knows better than him,

but at the same time she is concerned about revealing him the fruits of her hard work.

For his part, Bob does not believe her until she can prove it to him.

Cryptography offers solutions to overcome the above impasse. A zero-knowledge

proof is a cryptographic protocol that allows Alice to convince Bob she has the nec-

essary Knowledge, without disclosing any additional information about it. This is a

powerful primitive that can be used in many security applications, whenever it is nec-

essary to strike a balance between verifiability of information and privacy. Examples

of these include medical applications using healthcare data, cloud computation, and

distributed ledger technology.

Zero-knowledge proofs are ubiquitous in cryptography. For instance, they are

used in constructions of public-key encryption schemes, digital signatures, voting

26 Chapter 1. Introduction

systems, auction systems, e-cash, secure multiparty computation, and verifiable out-

sourced computation. Unfortunately, zero-knowledge proofs are an expensive compo-

nent of all of these, and it is therefore important for them to be as efficient as possible.

In this thesis we investigate the efficiency of zero-knowledge proofs and we make

important steps towards the achievement of optimal performances. Among the nu-

merous applications of zero-knowledge proofs we consider group signatures and dis-

cuss their security formalisation. In this work we propose a new model which offers

stringent properties and it captures the security of more realistic scenarios than done

by existing models.

1.1 Efficient Zero-Knowledge Proofs

A zero-knowledge proof is a protocol between two parties, called prover and verifier,

which consents the prover to convince the verifier about the validity of a statement.

There are three main properties a zero-knowledge proof needs to satisfy. Completeness

states that if prover and verifier follow the protocol, the verifier accepts the validity

of a true statement. Soundness guarantees the prover cannot deceive the verifier into

accepting the validity of a false statement, even if the prover deviates from the spec-

ifications of the protocol. Zero knowledge prevents the verifier to learn anything from

the protocol apart from the validity of the statement.

The performance of zero-knowledge proofs can be measured by a number of pa-

rameters. These include the prover’s running time, the verifier’s running time, the

size of the exchanged messages and the number of rounds the prover and verifier in-

teract. Current state of the art zero-knowledge proofs achieve very good performance

on verification time, communication and round complexity, which makes the prover’s

running time the crucial bottleneck. The main research challenge we focus in this work

is to construct prover-efficient zero-knowledge proofs.

The statements we are interested in proving are about checking the correctness

of some computation performed on some, possibly private, input. The instances

of computation we use in this work are either arithmetic circuits or TinyRAM pro-

grams [BCG+13b], a RAM machine specifically designed to construct efficient proofs

of program execution. The main question that we pose in this thesis is whether it is

1.1. Efficient Zero-Knowledge Proofs 27

possible to construct zero-knowledge proofs, for which the computational cost of the

prover is only a constant factor more expensive than directly executing the computa-

tion in the instance.

We give a positive answer to the above question and construct zero-knowledge

proofs that are highly efficient asymptotically. In the case of arithmetic circuits con-

sisting of N additions and multiplications gates over a finite field we construct proofs

with the following computational efficiency.

• Prover time is O(N) field additions and multiplications.

• Verifier time is O(N) field additions.

In the case of TinyRAM programs terminating in T steps we construct proofs with the

following computational efficiency.

• Prover time is O(αT) TinyRAM operations.

• Verifier time is poly(λ)
√
T TinyRAM operations.

Where λ is the security parameter and α = ω(1) is an arbitrarily small supercon-

stant function. Our proofs for TinyRAM program execution fell short of our goal of

achieving constant computational overhead for the prover. Nonetheless, they reduce

considerably the overhead incurred with respect to the state of the art, bringing us one

step closer to the hoped result.

Our zero-knowledge proofs have perfect completeness, i.e., when the prover knows

a satisfactory witness she is always able to convince the verifier. Our constructions

are proofs of knowledge, that is, not only does the prover demonstrate the statement

is true but also that she knows a witness. The proofs have special honest-verifier

zero knowledge, which means that honest verifier strategies are simulateable without

knowing a witness. The flavour of knowledge soundness and special honest-verifier

zero-knowledge depends on the underlying commitment scheme we use. When in-

stantiated with statistically binding commitment schemes, we obtain proofs (statisti-

cally knowledge sound) with computational zero-knowledge. When we use statisti-

cally hiding commitments we obtain arguments (computationally knowledge sound)

with statistical special honest verifier zero-knowledge. The communication complex-

ity of our proofs with unconditional soundness is onlyO(N) andO(T) field elements,

28 Chapter 1. Introduction

respectively. Our arguments with computational soundness have sub-linear commu-

nication of poly(λ)
√
N and poly(λ)

√
T field elements, respectively, when the commit-

ments are compact. Round complexity is also low, when we optimize for compu-

tational efficiency for prover and verifier we only use O(log logN) and O(log log T)

rounds.

Our constructions are modular and consist of three steps. First, we construct proofs

in a communication model we call the Ideal Linear Commitment (ILC) channel. In the

ILC model, the prover can commit vectors of secret field elements to the channel. The

verifier may later query openings to linear combinations of the committed vectors,

which the channel will answer directly. We show that idealising the techniques by

Groth et al. [Gro09] gives us efficient proofs in the ideal linear commitment model.

Next, we compile proofs in the ILC model into proof and argument systems using

non-interactive commitment schemes. However, unlike previous works we do not

commit directly to the vectors. Instead, we encode the vectors as randomized code-

words using a linear error-correcting code. We now consider the codewords as rows

of a matrix and commit to the columns of that matrix.

Finally, we instantiate the scheme with concrete error-correcting codes and non-

interactive commitment schemes. To achieve the best asymptotic efficiency we use

linear-time computable error correcting codes [DI14] and linear-time computable com-

mitment schemes [IKO+09; AHI+17b].

1.2 Group Signatures

A group signature scheme [CvH91] allows a member of a group to anonymously sign

messages on behalf of the group. Group membership is administered by a designated

group manager. In the case of a dispute, the group manager or a designated opening

authority have the ability to identify the signer and attribute the signature to her.

In static group signatures, the group members are fixed once and for all during the

setup phase. Partially dynamic group signatures allow the enrolment of members in

the group at any time but members cannot leave or be removed from the group once

they have joined. In many real-life applications, on the other hand, it is desirable to let

1.3. Structure and Content 29

the users join and leave at any time. Group signatures offering this level of flexibility

are referred to as fully dynamic.

Static and partially dynamic group signatures have been rigorously studied and

their security properties are nowadays well-established [BMW03; BSZ05; KY06]. Un-

fortunately, the same cannot be said about the fully dynamic variant, despite being the

more relevant one for applications. Existing constructions of fully dynamic signatures

follow different design paradigms and the existing security models tend to implicitly

assume the different approaches. The resulting security definitions do not necessar-

ily capture the security of different approaches and in most cases are not properly

formalised.

In this work we address the question of defining a rigorous security model for fully

dynamic group signatures. We consider both the case of a single group manager, and

the case where the role of the group manager who oversees the group is separated by

the role of the opening authority who can identify a signer. Our security definitions

are general and applicable across different design paradigms. Most importantly, our

model offers stringent security requirements and considers, when possible, security

against compromised authorities with adversarially generated keys.

Alongside our general definitions for the fully dynamic case, we present relax-

ations of our model to the case of partially dynamic and static group signatures. We

show that the obtained notions cover the existing formal security models for these

two settings. Lastly, we show a generic construction which is secure with respect to

the strongest variant of our definitions.

1.3 Structure and Content

In Chapter 2 we cover the related work, identify current gaps in the literature and

position our contributions. Next, in Chapter 3 we introduce the notation, we present

the definitions of zero-knowledge proofs of knowledge together with the ILC model

and recall the definitions of linear error-correcting codes and commitment schemes.

In Chapter 4 and 5 we present our proofs in the ILC model for the satisfiability of

arithmetic circuits and for the correct execution of TinyRAM programs, respectively.

In Chapter 6 we discuss how to compile proofs in the ILC model into standard proofs

30 Chapter 1. Introduction

and arguments. In the same chapter we discuss the compiled version of the proofs

presented in Chapters 4 and 5 and their instantiations using error correcting codes

and commitment schemes. In Chapter 7 we diverge from the topic of the previous

ones and we present our security model for fully dynamic group signatures. Chapter

8 concludes this thesis with some future research directions left open by this work.

The research presented in Chapters 4 and 6 was joint work with Jonathan Boo-

tle, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi and Sune Jakobsen, and it was

published in [BCG+17]. The author contributed to design of some of the ILC building-

block sub-proofs used in the construction and to the instantiation using error correct-

ing codes and commitments. The author did not actively contributed to the design of

the known permutation proof system and its full specifications have not been included

in this thesis. In Chapter 6 we introduce a novel primitive called Exposure-Resilient

Encoding, which has not appeared before.

The research presented in Chapter 5 was joint work with Jonathan Bootle, Jens

Groth, Sune Jakobsen and Mary Maller, and it was published in [BCG+18]. The au-

thor contributed to the arithmetization of the TinyRAM relation, its deconstruction

into small relations, the novel bit-decomposition as well as the design of some of the

proofs over the ILC. The author did not actively contributed to the design of the un-

known permutation and lookup proof systems and their full specifications have not

been included in this thesis.

The research presented in Chapter 7 significantly updates the work published in

[BCC+16a] jointly with Jonathan Bootle, Pyrros Chaidos, Essam Ghadafi and Jens

Groth. The security model introduced in Chapter 7 refines, generalises and addresses

few shortcomings of the previously published model. The author contributed sub-

stantially to the redesign of the model and its generalisation, with the collaboration of

Essam Ghadafi and Jens Groth.

All the research leading to the results included in this thesis has received funding

from the European Research Council under the European Union’s Seventh Framework

Programme (FP/2007-2013) / ERC Grant Agreement n. 307937.

31

Chapter 2

Literature Review

Since their introduction zero-knowledge proofs have played a central role in cryptog-

raphy and have been used in a vast number of applications such as digital signatures,

secure public key encryption schemes, multiparty computation, electronic cash, and

internet voting, just to name a few. The impact of zero-knowledge proofs, however,

is well beyond their applicability as their conception represented a shift of paradigm

in the way we think and define security in general. In this literature review we ex-

amine the research done around zero-knowledge proofs, with particular focus on the

efficiency of zero-knowledge proofs for general statements.

Among the numerous applications of zero-knowledge proofs we take a look at

group signatures, another important primitive that has received considerable atten-

tion. Rather than on efficiency, the focus here is on different security models and

different design paradigms of group signatures.

2.1 Zero-Knowledge Proofs and Arguments

Zero-knowledge proofs were invented by Goldwasser, Micali and Rackoff [GMR89]

and since then a large amount of research has been devoted to their study. A zero-

knowledge proof is a protocol between two parties, called the prover and the verifier,

which allow the prover to convince the verifier about the validity of a statement. The

type of statements we are interested in proving are of the form u ∈ L, where L is a lan-

guage in NP. There are three main properties a zero-knowledge proof needs to satisfy:

completeness, which states that if prover and verifier follow the protocol, the veri-

fier accepts the validity of a true statement; soundness, which guarantees the prover

cannot deceive the verifier into accepting the validity of a false statement, even if the

32 Chapter 2. Literature Review

prover deviates from the specifications of the protocol; zero knowledge, which pre-

vents the verifier to learn anything from the protocol apart from the validity of the

statement.

Much of the early work in the area was devoted to explore the classes of languages

admitting zero-knowledge proofs and to the different flavours of their properties. Gol-

dreich, Micali and Wigderson [GMW91] showed that all languages in NP admit com-

putational zero-knowledge proofs under the assumption that uniform one-way func-

tions exist. This was then generalised by Impagliazzo and Yung [IY87] and Ben-Or et

al. [BGG+88] to all languages admitting an interactive proof system. Shamir [Sha92]

then showed that this complexity class coincides with PSPACE in the acclaimed result

IP=PSPACE.

The first zero-knowledge proofs only achieved zero-knowledge in the presence

of a computationally bounded verifier but Brassard, Chaum and Crepeau [BCC88]

showed proofs can also have statistical zero-knowledge, for which zero-knowledge

holds against an unbounded verifier. However unless the polynomial time hierar-

chy collapses, NP-complete languages cannot have proof systems that are both sound

against unbounded provers and zero-knowledge against unbounded verifiers [For89;

AH91]. Therefore, if one aims to construct proofs for all languages in NP, one must

choose between proof systems with statistical soundness and proof systems with com-

putational soundness. The latter are usually called argument systems as opposed to

proof systems, which indicate the former. For more restricted classes of languages, on

the other hand, it is possible to construct proofs with both statistical zero-knowledge

and statistical soundness [SV00]. Naor et al. [NOV+92], showed that assuming the ex-

istence of one-way permutations, all languages in NP admit perfect zero-knowledge

arguments, i.e. for which unbounded verifiers have zero probability of learning any

additional information. Later, Nguyen, Ong and Vadhan [NOV06] showed that one-

way functions suffice to construct statistical zero-knowledge arguments for all lan-

guages in NP.

Another key notion introduced by [GMR89] is the one of proof of knowledge,

which strengthen the soundness property of a proof system and requires that if the

prover convinces the verifier, then she must know a witness w certifying the validity

of the statement, i.e. for u ∈ L. The first formalisations of this property were done by

2.1. Zero-Knowledge Proofs and Arguments 33

Feige, Fiat and Shamir [FFS88], Tompa and Woll [TW87], and Feige and Shamir [FS89].

The last cited work also showed that all languages in NP admitted both perfect zero-

knowledge arguments of knowledge based on the hardness of discrete logarithm as-

sumption, as well as computational arguments of knowledge based on the existence of

one-way functions. The definition of proof of knowledge was then refined by Bellare

and Goldreich [BG92] who addressed few shortcomings in the earlier formalizations.

Later, Lindell [Lin03] introduced a related notion called witness-extended emulation,

which Groth [Gro04] then showed to imply the usual definition of argument of knowl-

edge in the public parameter model.

Aside from the flavours of their different properties, zero-knowledge proofs can

be compared with respect to their efficiency. The main metrics used to measure their

performance are interaction, communication and computational complexity, which

are discussed next.

2.1.1 Interaction

The interaction of a proof system is measured by the number of messages prover and

verifier send to each other. A move consists of a single message from one party to the

other, while a pair of consecutive moves makes a round.

The first constant-round perfect zero-knowledge argument for all languages in NP

was constructed by Brassard, Crépeau and Yung [BCY91], which was based on the

hardness of the discrete logarithm problem and counted a total of 6 moves. Feige

and Shamir [FS89] then reduced the number of rounds, giving both a 4-moves perfect

zero-knowledge argument of knowledge based on the hardness of discrete logarithm

and a 4-moves computational zero-knowledge argument of knowledge based on one-

way permutations. Later, another 4-moves computational zero-knowledge argument

for all NP languages was given by Bellare, Jakobsson and Yung [BJY97] which only

relied on the existence of one-way functions. These arguments are optimal with re-

spect to the round complexity, as Goldreich and Krawczyk [GK96b] showed that 3

moves proofs and arguments cannot be constructed for non-trivial languages. In the

same work the authors showed the impossibility of constant round public-coin proof

systems, i.e. proof systems for which the verifier is restricted to send the outcome of

his random coin tosses to the prover. Public-coin proof systems were introduced by

34 Chapter 2. Literature Review

Babai [Bab85] under the name of Arthur-Merlin games and they were later shown to

be equivalent to the usual notion of (private-coin) interactive proof systems [GS89].

With respect to computational zero-knowledge proofs with statistical soundness,

the first constant-round construction for all languages in NP was given by Goldreich

and Kahan [GK96a], based on the existence of claw-free functions and which achieved

5 moves of interaction. Much later, Lindell showed how to construct 5-moves compu-

tational zero-knowledge proofs of knowledge for all NP. These protocols are optimal

with respect to their round complexity as Katz [Kat12] showed that proofs with un-

bounded soundness require at least 5 moves.

The above lower bounds on the minimal amount of interaction can be circum-

vented by assuming the existence of an honestly generated common reference string,

which is shared between prover and verifier. Blum, Feldman and Micali [BFM88]

showed that, in this setting, it is possible to construct non-interactive computational

zero-knowledge proofs for all languages in NP, where the prover only sends a single

message to the verifier. The question on whether non-interactive statistical (and per-

fect) zero-knowledge arguments existed for all NP languages remained unanswered

for a long time. This was finally settled affirmatively by Groth, Ostrovsky and Sahai

[GOS12] using groups equipped with a bilinear map.

An alternative approach to minimise interaction between prover and verifier is

to apply a general transform to an interactive proof system and turn it into a non-

interactive one. This methodology was first illustrated by Fiat and Shamir [FS86] who

used hash functions to construct signature schemes from interactive identification pro-

tocols. A similar transform was introduced by Fischlin [Fis05] to achieve straight-

line extractability, i.e., the security proof of (knowledge) soundness does not rely on

rewinding techniques. The security of these transforms is proven in the random oracle

model [BR93], in which the hash function is modelled as a truly random function. The

use of this model is controversial due to the existence of signatures and encryption

schemes that are provably secure in the random oracle model, but for which every in-

stantiation of the random oracle leads to an insecure scheme [GK03; CGH04; ABG+13].

More recently, similar transforms were suggested in [Lin15; CPS+16]. These are less

efficient than the Fiat-Shamir transform, but they can be proven secure in the non-

programmable random oracle model, and thus they weaken the assumptions made

2.1. Zero-Knowledge Proofs and Arguments 35

on the hash function.

2.1.2 Communication

The communication complexity of a proof system consists in the overall size of the

messages exchanged between prover and verifier. This is usually measured with re-

spect to either the size of the instance, e.g. the circuit size, or the size of the witness.

Using probabilistic checkable proofs (PCPs [AS92]), Kalai and Raz [KR08] con-

structed interactive zero-knowledge proofs for boolean circuits of constant depth, with

a communication complexity that is polynomial in the size of the witness. In the same

settings and for the same languages, Ishai et al. [IKO+09] used an innovative approach

based on multiparty computation (MPC) to construct interactive zero-knowledge proofs

of quasi-linear size in the length of the witness. Goldwasser, Kalai and Rothblum

[GKR15] also showed zero-knowledge proofs with quasi-linear communication in the

witness size, but extended these to boolean circuits with polylogarithmic depth. For

arbitrary boolean circuits, [IKO+09] showed a different construction with linear com-

munication complexity in the size of the circuit. In the non-interactive settings, Gen-

try et al. [GGI+15] used fully homomorphic encryption [Gen09] to construct zero-

knowledge proofs with proof size that is linear in the witness size plus an additive

polynomial factor in the security parameter.

It is unlikely [GH98; GVW02] that sublinear communication can be achieved in

proof systems with statistical soundness. For arguments, on the other hand, the situ-

ation is different as Kilian [Kil92] constructed a constant round zero-knowledge argu-

ment system with polylogarithmic communication complexity. In Kilian’s argument

the prover constructs a PCP and then hashes it using a Merkle tree to produce a short

proof for the verifier. Until recently, these techniques did not produce practical ar-

guments due to the cost involved in the computation of the PCP. The introduction

of interactive oracle proofs (IOPs) [BCS16] made this type of proof system a realis-

tic option, improving the efficiency of the prover. Most notably, the recent work by

Ben-Sasson et al. [BBH+18] presented a new IOP-based argument system, known as

STARKs, which also has polylogarithmic communication, and it is optimised for bet-

ter practicality. Another PCP-based approach was introduced by Ishai et al. [IKO07]

36 Chapter 2. Literature Review

to give arguments with a laconic prover, such that the communication from the prover

to the verifier is minimal and it consists of a constant number of ciphertexts only.

In the non-interactive settings, the first sublinear size argument was given by Mi-

cali [Mic94] using the Fiat-Shamir transform. Working in the common reference string

model and using non-falsifiable assumptions ([Nao03]), Groth [Gro10] gave a pairing-

based non-interactive zero-knowledge argument consisting of a constant number of

group elements. Follow-up works on succinct non-interactive arguments of knowl-

edge (SNARKs) have shown that it is possible to have both a modest size common

reference string and proofs as small as 3 group elements [BCC+12; GGP+13; PHG+16;

BCC+13; Gro16; GM17; GKM+18]. In [Gro16] it was shown that SNARKs need at least

2 group elements, although it is currently not known whether arguments of this size

exist.

2.1.3 Verifier Computation

In general, the verifier has to read the entire instance u since even a single deviating

bit may render the statement false. However, in many cases an instance can be repre-

sented more compactly than the witness and the instance may be small compared to

the computational effort it takes to verify a witness. In these cases it is possible to get

sublinear verification time compared to the time it takes to check the relation defin-

ing the language L. This is for instance the case for the SNARKs mentioned above,

where the verification time only depends on the size of the instance but not on the

complexity of the relation. Having low verifier complexity can be important even if

we are not interested in zero-knowledge and even for languages in P, as for instance

in the case of verifiable computation. Verifiable computation has taken two distinct

flavours in the literature: in the first a prover wishes to prove that they have correctly

computed a public function on a private input, e.g. private database searches; in the

second a verifier wishes to offload a large computation on a public input to a more

powerful prover. In the latter case, the influential work by Goldwasser, Kalai, and

Rothblum [GKR15] used efficient short probabilistically checkable proofs to get sub-

linear verifier computation. This was later made non-interactive in [GGP10]. Further

improvements were made by Cormode, Mitzenmacher and Thaler [CMT12; Tha13]

2.1. Zero-Knowledge Proofs and Arguments 37

yielding sub-linear verifcation time and quasi-linear prover time. These proof sys-

tems are very efficient for the verifier and have been implemented [VSB+13] but they

only work for languages in P.

2.1.4 Prover Computation

In the previous sections we discussed the incredible advances in improving the effi-

ciency of zero-knowledge proof systems with respect to interaction, communication

and verification time. Nowadays, the main challenge is to reduce the computational

cost of the prover. In this section we focus on the efficiency of proof systems for circuit

satisfiability and to check the correctness of the execution of RAM programs.

Boolean and Arithmetic Circuits. Many classic zero-knowedge proofs rely on cyclic

groups starting from the work by Schnorr [Sch91]. These techniques can be gener-

alised to NP-complete languages such as boolean and arithmetic circuit satisfiabil-

ity [CDS94; CD98; Gro09; BCC+16b]. In the last cited work, Bootle et al. gave discrete-

logarithm based arguments for arithmetic circuit satisfiability with logarithmic com-

munication and round complexity. The computational cost for the prover amounts to

O(N) group exponentiations, where N is the number of gates in the circuit. For the

discrete logarithm assumption to hold, the group must have superpolynomial size in

the security parameter λ, so exponentiations incur a significant overhead compared to

direct evaluation of the witness in the circuit: each group exponentiation costs ω(log λ)

field operations for a finite field of size |F| = λω(1). The SNARKs mentioned earlier

achieve very compact arguments and efficient verification time, while their main bot-

tleneck is in the prover computational cost. These arguments also rely on cyclic groups

and, similarly to the ones above, they require the prover to compute O(N) exponenti-

ations and incur a similar overhead.

Recently, Baum et al. [BBC+18] adapted techniques from [Gro09; BCC+16b] to the

lattice setting and constructed an interactive zero-knowledge argument for the satis-

fiability of arithmetic circuits with sublinear communication, i.e. O(
√
N log(N)) field

elements. In their argument the computational overhead for the prover is ω(log(N))

field operations, with respect to cost of evaluating the circuit.

38 Chapter 2. Literature Review

An alternative approach to these techniques is to use the “MPC in the head" para-

digm introduced in the aforementioned work by Ishai et al. [IKO+09]. The main idea

behind their general approach is for the prover to first execute in her head an MPC

protocol computing the verification circuit of some relation R, and then to commit to

the views of all the imaginary participants. Next, the verifier asks the prover to open

a subset of the committed views and checks the correctness of these as well as their

consistency with each other. Soundness and zero-knowledge follow from robustness

and privacy properties of the MPC protocol, respectively. Applying this framework to

efficient MPCs gives asymptotically efficient zero-knowledge proofs. For example, the

perfectly secure MPC of [DI06] is used in [IKO+09] to obtain zero-knowledge proofs

for the satisfiability of Boolean circuits with communication linear in the circuit size,

O(N), and a computational cost of Ω(λN), for circuits of size N and security param-

eter λ. Damgård, Ishai and Krøigaard [DIK10] used the MPC framework to construct

zero-knowledge proofs for the satisfiability of arithmetic circuits. Their construction,

which reduces the computational overhead of the prover at expense of increasing its

communication, achieves polylog(λ)N complexity for both computation and commu-

nication. Instead of focusing on theoretical performance, ZKBoo [GMO16] and its

subsequent optimisation ZKB++ [CDG+17] are practical implementations of a “3PC

in the head" style zero-knowledge proof for boolean circuit satisfiability. Communi-

cation grows linearly in the circuit size in both proofs, and a superlogarithmic num-

ber of repetitions is required to make the soundness error negligible, but the speed

of the symmetric key primitives makes practical performance good. Following the

same paradigm, Ligero [AHI+17a] used an optimised version of the MPC of [DI06] to

construct arguments with O(λ
√
N) communication for both boolean and arithmetic

circuits. Despite the good practical efficiency, the asymptotic computational cost for

the prover remains quasi-linear in the size of the circuit.

Jawurek, Kerschbaum and Orlandi [JKO13] used a very different approach to build-

ing zero-knowledge proofs based on garbled circuits. Their approach proved [FNO15;

CGM16] to be very efficient in practice for constructing proofs for languages repre-

sented as boolean circuits. These techniques are appealing for proving small state-

ments, as they require only a constant number of symmetric-key operations per gate

2.1. Zero-Knowledge Proofs and Arguments 39

in the circuit, while the main bottleneck is in their communication complexity. Asymp-

totically, this approach yields computational and communication complexity ofO(λN)

bit operations and bits, respectively, when λ is the cost of a single symmetric-key op-

eration.

Ben-Sasson et al. [BCG+16a] constructed a 3-round public-coin IOP (with sound-

ness error 1/2) for Boolean circuit satisfiability with linear proof length and quasi-

linear running time for both the prover and the verifier. Moreover, the constructed

IOP has constant query complexity (the number of opening queries requested by the

verifier), while prior PCP constructions require sub-linear query complexity. Another

follow-up work by Ben-Sasson et al. [BCG+16b] gave 2-round zero-knowledge IOPs

(duplex PCPs) for any language in NTIME(T (n)) with quasi-linear prover computa-

tion in n + T (n). Aurora [BCR+18] is another IOP-based zero knowledge argument

for rank-1 constraint satisfaction problems (R1CS), which are a generalisation of arith-

metic circuits. This system achieves proofs of size O(log2N) fields element; quasi-

linear computation for the prover, i.e. O(N logN) field operations; and linear verifica-

tion, i.e. O(N) field operations.

Verification of outsourced computation [GKR15; CMT12; Tha13; WHG+16] mostly

focuses on verifying deterministic computation and does not offer zero-knowledge.

However, recent works augmented these with cryptographic techniques to also achieve

zero-knowledge [ZGK+17; WJB+17; WTS+18]. Hyrax [WTS+18] offers an implemen-

tation with good concrete performance. This system has sublinear communication

and verification, while the prover computation is dominated by O(dN + S logS) field

operations for a depth d and width S circuit when the witness is small compared to

the circuit size. If, in addition, the circuit can be parallelised into many identical sub-

computations, the prover cost can be further reduced to O(dN) field operations.

To summarise, in all the above proof systems the prover incurs in a super-linear

cost in the size of the instance. The recent work of [BCG+17], which is also presented

in this thesis, shows that it is possible to construct efficient proofs and arguments

where the prover only pays a constant computational overhead with respect to the

time needed to directly check the instance given the witness, e.g. the cost of evaluat-

ing the circuit. We construct both proofs and arguments for the satisfiability of arith-

metic circuits over a large field. For a circuit of size N , the prover computational costs

40 Chapter 2. Literature Review

consists of O(N) multiplications, while the verification cost only requires O(N) field

additions. The communication complexity of our proofs with unconditional sound-

ness is onlyO(N) field elements, while our arguments with computational soundness

have sub-linear communication of poly(λ)
√
N field elements when the commitments

are compact. Round complexity is also low. When we optimize for computational

efficiency the argument needs O(log logN) rounds.

Our work extends techniques from [Gro09] without requiring homomorphic prop-

erties of the underlying commitment scheme. To achieve this, we first replace the ho-

momorphic commitments with a combination of error correcting codes and standard

commitments, and we then introduce a new efficient technique to prove knowledge of

the openings of committed values. Since the commitment scheme does not need to be

homomorphic, we can construct it from either one-way functions or collision-resistant

hash functions. To get optimal computational efficiency we consider linear-time com-

putable instantiations of these primitives, such as from [IKO+08] and [AHI+17b], and

we obtain linear-time computable commitments.

From a technical point of view, our work shares some similarities with the one of

Cramer et al. [CDP12], which introduces techniques for verifying multiplicative rela-

tions of committed values. When applied to zero-knowledge proofs for the satisfiabil-

ity of Boolean circuits, the asymptotic communication and computation complexities

of [CDP12] are close to [IKO+09], although with smaller constants. Unlike [CDP12],

we do not require any homomorphic property from the commitment scheme, and in-

stead of relying on linear secret sharing schemes with product reconstruction, we only

require linear error-correcting codes.

From an high-level perspective, Ligero [AHI+17a] shares some similarities with

our arguments, even though the two results stemmed, independently, from two dif-

ferent research directions. Their construction does not rely on homomorphic commit-

ments, similarly to ours, but it uses instead Reed-Solomon codes and Merkle trees.

Compared to Ligero, we achieve better asymptotic performance for the prover. This

is partly due to the choice of error correcting codes we use in our instantiation, which

are computable in linear time [DI14]. If we were to replace them with Reed-Solomon

codes, we would get efficiency comparable with Ligero with respect to all metrics. The

converse, on the other hand, does not hold since the error correcting code is only one

2.1. Zero-Knowledge Proofs and Arguments 41

of the ingredients used to obtain linear time computation for the prover.

Our techniques do not fare as well in the case of Boolean circuits, as the soundness

of our arguments requires the field to be large and representing bits as field elements

would introduce a superconstant multiplicative overhead for the prover. We there-

fore stress that the significant performance improvement of our proofs and arguments

over the state of the art only relates to arithmetic circuits. Table 2.1 summarises the

efficiency of the most prover-efficient proofs and arguments.

Work Prover Verifier Communication Rounds Soundness
[DIK10] polylog(λ)N F× O(N) F× O(N) O(1) Statistical

Ligero [AHI+17a] O(N logN) F× O(N) F× O(λ
√
N) O(1) Computational

Aurora[BCR+18] O(N logN) F× O(N) F× O(log2N) O(logN) Computational
This Thesis O(N) F× O(N) F+ O(N) O(loglogN) Statistical
This Thesis O(N) F× O(N) F+ O(λ

√
N) O(loglogN) Computational

TABLE 2.1: Efficiency comparison of the most efficient proofs and argu-
ments for the satisfiability of arithmetic circuits with respect to prover
computation. F× and F+ stand for the cost of field multiplications and
additions, respectively. Communication is measured in field elements

of size log |F| bits.

Correct Program Execution. In practice, most computation does not resemble circuit

evaluation but is instead done by computer programs processing one instruction at a

time. There has been a sustained effort to construct efficient zero-knowledge proofs

that support real-life computation, i.e., proving statements of the form “when exe-

cuting program P on public input x and private input y we get the output z." In the

context of SNARKs there are already several systems to prove the correct execution of

programs written in C [PHG+16; BFR+13; BCG+13a; WSR+15]. These systems gener-

ally involve a front-end which compiles the program into an arithmetic circuit which

is then fed into a cryptographic back-end. Much work has been dedicated to improve

both sides, resulting in systems achieving different trade-offs between efficiency and

expressiveness of the computation.

When we want to reason theoretically about zero-knowledge proofs for correct

program execution, it is useful to abstract program execution as a random-access ma-

chine that can address in each instruction an arbitrary location in memory and per-

form integer operations on it. For closer resemblance to real-life computation, we can

bound the integers to a specific word size and specify a more general set of opera-

tions the random-access machine can execute. TinyRAM [BCG+13b; BCG+13a] is a

42 Chapter 2. Literature Review

prominent example of a computational model bridging the gap between theory and

real-word computation. It comes with a compiler from C to TinyRAM code and un-

derpins several implementations of zero-knowledge proofs for correct program exe-

cution [BCG+13a; BCT+14; BCT+17; CTV15; BRS17; BBH+18], where the prover time

is Ω(T log2 λ) for a program execution that takes time T . Similar efficiency is also

achieved, asymptotically, by other proof systems that can compile (restricted) C pro-

grams and prove correct execution such as Pinocchio [PHG+16], Pantry [BFR+13] and

Buffet [WSR+15]. There are three main sources of this superlogarithmic overhead.

The first one is due to the cost of verifying Boolean operations over words of O(log λ)

length. Each of these is checked by using an arithmetic circuit of size O(log λ) that

takes the individual bits of each word as input. The second source of overhead is

due to the way memory consistency is checked. This is done by using a permutation

network, which can be implemented by an arithmetic circuit of quasi-linear size in T .

The last source of overhead is due to the cryptographic back-end used to prove that all

arithmetic circuits involved are satisfied. This usually relies on cyclic groups, such as

SNARKs, for which the prover incurs a computational superlogarithmic overhead, as

discussed in the previous section. A notable exception is STARK [BBH+18] that only

relies on the existence of collision-resistant hash functions. However, this scheme is

still susceptible to the first two sources of overhead.

Techniques from the aforementioned work of [JKO13] also found applications in

zero-knowledge proofs to check the execution of RAM programs [HMR15; MRS17].

These proofs achieve amortized sublinear communication complexity in the size of

the memory used by the program, however the computational overhead of the prover

is still large. For instances that can be represented as RAM programs terminating in

T steps and using memory of size M , a stand-alone execution of these proofs yields

communication and computation with polylog(M) overhead compared to the running

time T of the RAM program.

In all the above proof systems to check the correct execution of programs, the com-

putational overhead for the prover is superlogarithmic with respect to the execution

time of the program. The recent work of [BCG+18], which is presented in this the-

sis, constructed the first arguments for the correct execution of a TinyRAM program

achieving a sublogarithmic overhead. More precisely, our work reduces the prover’s

2.1. Zero-Knowledge Proofs and Arguments 43

overhead from Ω(log2 λ) to an arbitrarily small superconstant α = ω(1). In our proofs

and arguments, the verification time is sublinear in the execution time of the program.

In order to reduce the three sources of overhead discussed above, we diverge from

the previous approaches. Firstly, we introduce a different type of decomposition to

efficiently check boolean operations using field arithmetic. This is combined with an

efficient proof for lookup relations, which is used to check that committed values are

consistent with a committed lookup table. Secondly, instead of using permutation

network to check memory consistency, we use a technique based on the invariance

of roots in polynomials as first suggested by Neff [Nef01] in the context of verifiable

shuffles. This technique was recently used for a similar purpose in vSQL [ZGK+17],

a system for verifying database queries. Lastly, instead of relying on cyclic groups,

we adopt the same techniques we previously introduced to check the satisfiability

of arithmetic circuits. The efficiency of our proofs and arguments for the execution of

TinyRAM programs is given in Table 2.2, along with the efficiency of the most efficient

zero-knowledge arguments. The costs reported in the table are in the case prover and

verifier are implemented as TinyRAM programs.

Work Prover Verifier Communication Rounds Soundness
[BCT+14] O(αT log2 T) ω(L+ |v|) ω(1) 1 Comp.
[BBH+18] Ω(T log2 T) poly(λ)(log T + L+ |v|) ω(λ log T) O(log T) Comp.

This Thesis O(αT) poly(λ)(
√
T + L+ |v|) poly(λ)(

√
T + L+ |v|) O(log log T) Comp.

This Thesis O(αT) poly(λ)(
√
T + L+ |v|) ω(T) O(log log T) Statistical

TABLE 2.2: Efficiency comparisons between our proofs and arguments
with the most efficient zero-knowledge arguments for the correct exe-
cution of TinyRAM programs, at security level 2−ω(log λ). Computation
is measured in TinyRAM steps and communication in words of length
W = Θ(log λ) with λ the security parameter and α = ω(1) an arbitrarily
small superconstant function. L is the length of the TinyRAM program,
|v| the size of the public inputs to the program, and T its running time.

Concurrently to [BCG+18], Zhang et al. [ZGK+18] developed and implemented a

scheme for verifying RAM computations. Like us and [ZGK+17], they avoid the use of

permutation networks by using permutation proofs based on polynomial invariance

by Neff [Nef01]. The idea underlying their technique to prove the correct fetch of an

operation is also related to the idea underpinning our lookup proofs. However, there

are significant differences between the techniques used in our works. For example,

they rely on techniques from [CMT12] to instantiate their proofs while we use tech-

niques based on ideal linear commitments [BCG+18]. The proofs in [ZGK+18] are not

44 Chapter 2. Literature Review

zero knowledge, since they leak the number of times each type of instruction is exe-

cuted, while our proofs are zero knowledge. In terms of prover efficiency, [ZGK+18]

focuses on concrete efficiency and yields impressive concrete performance. Asymp-

totically speaking, however, we are a polylogarithmic factor more efficient. This may

require some explanations because they claim linear complexity for the prover. The

reason is that they treat the prover as a TinyRAM machine with logarithmic word size

in their performance measurement. Looking under the hood, we see that they use bit-

decomposition to handle logical operations, which gives a constant overhead when

you fix a particular word size, (e.g. 32 bits) but asymptotically the cost of this is loga-

rithmic since it is linear in the word size. Also, their commitments are based on cyclic

groups and the use of exponentiations introduces another superlogarithmic overhead

for the prover when implemented in TinyRAM. Lastly, our arguments are based on

assumptions that are currently believed to be post-quantum and thus they may offer

some security against quantum adversaries.

2.2 Group Signatures

Group signatures, put forward by Chaum and van Heyst [CvH91], are a fundamental

cryptographic primitive allowing a member of a group to anonymously sign messages

on behalf of it. Group membership is administered by a designated group manager.

In the case of a dispute, the group manager or a designated opening authority has the

ability to identify the signer and attribute the signature to her.

Group Signatures without Revocation. After their introduction, a very prolific line

of research has emerged on group signatures. The first efficient construction of group

signature was given by Ateniese et al. [ACJ+00] based on both the Strong-RSA as-

sumption and the DDH assumption in the random oracle model [BR93]. At that time,

however, the security of group signatures was not very well understood and early con-

structions were proven secure via informal arguments using various interpretations of

their requirements.

To rectify this situation, Bellare, Micciancio and Warinschi [BMW03] formalised

the security definitions for static groups, in which the group members are fixed once

2.2. Group Signatures 45

and for all during the setup phase. In their model, the group manager is also granted

the authority of opening signatures and she is assumed to be fully trusted, except

she may leak information to the adversary. Later on, Bellare, Shi and Zhang [BSZ05]

and Kiayias and Yung [KY06] independently provided formal security definitions for

partially dynamic groups, in which new group members can join the group at any time

but cannot leave. The former model, following the suggestion of [CM98], separates

the opening authority from the group manager, while the latter considers both roles

overseen by the group manager. Aside from this, the main difference between the

two models is that in [KY06] the group manager is trusted to give correct openings

without providing proofs of attributions. More recently, Sakai et al. [SSE+12] extended

the security model of partially dynamic groups by including the notion of opening

soundness, which ensures that a valid signature only traces to one user.

Numerous efficient constructions secure in the above models have been suggested

both in the random oracle model [ACJ+00; CL04; NS04; FI06; FY04; KY05; DP06;

BCN+10; LLN+16; LLM+16; DS18] and in the standard one [ACH+05; Gro06; BW06;

Gro07; BW07; AFG+16].

Group Signatures with Revocation. Since revocation is an essential feature of group

signatures, different approaches have been proposed to remove members from the

group. Bresson and Stern [BS01] realise revocation by requiring that the signer proves

at the time of signing that her group membership certificate is not among those con-

tained in a public revocation list. Along this line, Nakanishi et al. [NFH+10] gave an

efficient scheme in the random oracle model based on revocation lists, offering con-

stant size as well as signing and verification time. In the standard model, Libert, Peters

and Yung [LPY12b; LPY12a] gave a number of efficient constructions of group signa-

tures which use the subset cover framework [NNL01], originally used in the context

of broadcast encryption, to form revocation lists.

Camenisch and Lysyanskaya [CL02] introduced dynamic accumulators, extending

ideas of [BdM93] and [BP97], to handle efficient revocation of users. Accumulators al-

low the manager to give a compact representation of the set of current group members,

who can then efficiently prove their membership in the accumulated set. Since then,

46 Chapter 2. Literature Review

many other constructions adopted a similar approach to perform revocation [TX03;

CG04; DKN+04; Ngu05].

Boneh, Boyen and Shacham [BBS04] showed how to achieve revocation by includ-

ing information into a revocation list which allow unrevoked members to locally de-

rive a new group public key and a new signing key. A similar approach was used both

in [Son01] and [CG04] to extend [ACJ+00] scheme in order to support revocation and,

in the case of [Son01], to additionally provide forward security.

Brickell [Bri04] considered a different approach to revocation known as Verifier Lo-

cal Revocation (VLR). This was subsequently formalized by Boyen and Shacham [BS04]

and further used in several constructions such as [NF07; LV09; LNR+18]. In VLR, the

revocation information (i.e. revocation lists) is only sent to the verifiers (as opposed

to both verifiers and signers), who can check whether a particular signature was gen-

erated by a revoked member. A similar approach is also used in Direct Anonymous

Attestation (DAA) protocols [BCC04]. Traceable Signatures [KTY04] extend this idea,

with a group manager that can release a trapdoor for each member, enabling their

signatures to be traced back to the individual user.

Fully Dynamic Group Signatures from Ring Signatures. A generic approach to

construct fully dynamic group signatures from accountable ring signatures was sug-

gested in [BCC+15] and described in [BCC+16a]. Introduced by Rivest, Shamir and

Tauman [RST01], ring signatures differ from group signatures by not having appointed

authorities: signers decide upon which users to include into their anonymity set. Ac-

countable ring signatures [XY04] additionally provide a way to identify the author

of a signature, but differently from group signature the opening entity is chosen by

the users at signing time. Bootle et al. [BCC+15] also gave an efficient instantiation

of accountable ring signatures in the random oracle model based on the DDH as-

sumption. By following [BCC+16a], this and other schemes of accountable ring signa-

tures [LZC+16; KP17; DLO+18] can be used to obtain fully dynamic group signature

schemes with efficiency similar to their ring counterpart.

2.2. Group Signatures 47

Shortcomings in Existing Models. While static and partially dynamic group signa-

tures have been properly formalised [BMW03; BSZ05; KY06; SSE+12] and their secu-

rity definitions are now broadly accepted, the same cannot be said about their fully

dynamic groups counterpart. Different revocation paradigms assume different, often

informal, models which do not necessarily generalise to other approaches.

A first step to address this situation was done by Bootle et al. [BCC+16a], who

proposed a general model for fully dynamic group signatures. Their definitions cap-

ture strong security requirements and include, when possible, security against mali-

cious key generation for the authorities. This model was recently extended by Backes

et al. [BHS18] to include two additional security properties called join and leave pri-

vacy, guaranteeing the privacy of users over their group membership status. El Kaa-

farani et al. [EKS18] also extended this security model in order to formalise anony-

mous reputation systems, which allows a set of user review products anonymously.

Despite not assuming a specific design paradigm, the model of [BCC+16a] makes

several implicit assumptions regarding the functioning of group signatures, which

limit its generality and applicability. For example, their model considers a fairly strong

notion of traceability which implicitly restricts the way the manager can perform re-

vocation of users, precluding the natural use of revocation lists.

In Chapter 7 we make a step further in modelling fully dynamic group signatures

by considerably updating and generalising [BCC+16a]. Our model does not preclude

current design approaches, it offers stringent security properties, and it exhibits the

following refinements over existing models:

• We offer security definitions both in the case of a single group manager and in

the case where her role is separated from the opening authority and consider,

when possible, malicious key generation for the authorities.

• We abstract the requirements the model imposes on the register. Specifically,

we do not assume the existence of a PKI or restrict the way the register can be

instantiated.

• Our model captures a stronger correctness property, which is guaranteed even

in case the system is populated with malicious users and a malicious opening

authority.

48 Chapter 2. Literature Review

• We consider a more general notion of traceability, covering both the one defined

in [BCC+16a] and the one achieved by revocation list approaches.

• Our model allows concurrent joining sessions between the users and the group

manager. Existing models restrict the state of the manager to be compartmen-

talised, thus making each joining session independent. By relaxing this, our

model captures stronger notions of correctness and traceability.

• We formalise two additional security properties called opening binding and open-

ing soundness capturing that signatures cannot be attributed, respectively, to mul-

tiple users, nor to anybody other than the legitimate signer.

Group Signatures from Post-Quantum Assumptions. Driven by the advances on

quantum computing, post-quantum cryptography has received increasing attention in

the recent years. This trend includes research on group signatures. Starting from the

work of Gordon et al. [GKV10], progressively more efficient lattice based constructions

have been proposed [CNR12; LLL+13; LNR+18; NZZ15; LNW15; LMN16; LLM+16;

BCN18; LNW+18]. Among these, the only schemes supporting revocation of users are

the VLR scheme of [LNR+18] and the fully dynamic group signature of [LNW+18],

which is proven secure in [BCC+16a] model.

Aside from lattice assumptions, another typical approach to achieve post-quantum

security is to rely only on symmetric-key primitives. In [AW04] and [CG04] it was

shown, however, that fully-anonymous group signatures imply IND-CCA secure pub-

lic key encryption, thus separating group signatures from symmetric-key primitives.

Nonetheless, [CG04] showed that by relaxing the anonymity property it is possible to

construct group signatures from one-way functions and non-interactive zero-knowledge

proofs, which can be both instantiated using symmetric-key primitives. The weaker

notion of anonymity achieved by this generic construction does not protect against

key-exposure attacks. Following a similar approach to [CG04] and building on recent

developments of zero-knowledge proofs, Boneh et al. [BEF19] proposed an efficient

construction of group signatures based on symmetric-key primitives and weaker an-

onymity guarantees.

49

Chapter 3

Preliminaries and Definitions

3.1 Notation

Let S be a set, we write s ← S for sampling an element s from the set S, where the

sampling is assumed to be uniformly at random, unless otherwise specified. We write

y ← A(x) for an algorithm A that runs on input x and outputs y. We write AB(z,·)(x)

to indicate that A can execute B on a fixed input z, oblivious to A, and on an arbitrary

input a to receive the output of B(z, a). When an algorithm is invoked several times

and keeps state between invocations, we may explicitly refer to the state stA as an

additional input and write x← A(a; stA). A simple example is a single invocation of a

probabilistic algorithm that may run in two steps: it first samples randomness r, stored

in the state, and then runs the rest of the algorithm x ← A(a; r) deterministically. For

algorithms A and B, (x; y) ← 〈A(a);B(b)〉 denotes the the joint execution of A, with

input a, and B, with input b, where at the end A outputs x and B outputs y.

We use a security parameter λ ∈ N to indicate the desired level of security, with

the intention that the higher it is, the more secure the scheme would be. In general,

when we refer to polynomial time algorithms we mean that they run in polynomial

time in the security parameter, and therefore we give, often implicitly, the security

parameter written in unary 1λ as input to the algorithms. We abbreviate deterministic

polynomial time as DPT and probabilistic polynomial time as PPT.

Definition 3.1. We say that a function f : N→ [0, 1] is negligible if for any constant c > 0

there exists λ0 such that for all λ > λ0

f(λ) < λ−c,

50 Chapter 3. Preliminaries and Definitions

or equivalently if f(λ) = λ−ω(1). We say that a function g : N → [0, 1] is overwhelming

if 1 − g is negligible. Given two functions f, g we write f(λ) ≈ g(λ) if |f(λ) − g(λ)| is

negligible.

For a positive integer n, [n] denotes the set {1, . . . , n} and [0, n] denotes {0, 1, . . . , n}.

We write Σ[n] for the symmetric group on the set [n]. We use bold letters such as v for

row vectors and let F be a finite field. For v ∈ Fn and a set J = {j1, . . . , jk} ⊂ [n]

with j1 < · · · < jk we define the vector v|J to be (vj1 , . . . ,vjk). Similarly, for a matrix

V ∈ Fm×n we let V |J ∈ Fm×k be the submatrix of V restricted to the columns indicated

in J .

In the next chapters we will make extensive use of the well-known Schwartz-

Zippel Lemma [Sch80; Zip79] which we recall next.

Lemma 3.1 (Schwartz-Zippel). Let q ∈ F[X1, . . . , Xn] be a non-zero multivariate polyno-

mial of total degree d, then

Pr

[
(x1, . . . , xn)← Sn: q(x1, x2, . . . , xn) = 0

]
≤ d

|S|

The typical application of this lemma is to test the identity of two polynomials.

Given q1(X1, . . . , Xn), q2(X1, . . . , Xn) it is sufficient to pick (x1, . . . , xn) ← Fn and

check if q1(x1, . . . , xn)− q2(x1, . . . , xn) = 0. As we are interested in arguing that pairs

of polynomials are identical with overwhelming probability, we set S = F for a finite

field of superpolynomial size, i.e. |F| = λω(1), and restrict our attention to polynomials

with total degree polynomial in the security parameter, i.e. d = poly(λ).

3.2 Models of Computations

In the next chapters we will give proofs of knowledge for statements of the form “I

know some x such that y is equal to f(x)”, where the instance f represents some com-

putation on a private input x. A natural way to express any computation is by using

circuits. However, in practice one may be interested in statements that are not imme-

diately expressed in this form, e.g. the execution of a computer program. Alongside

circuits we thus consider RAM programs, which model computation and memory ac-

cess more closely to how computers works. Concretely, in Chapters 4 and 5 we will

3.2. Models of Computations 51

give proofs of knowledge for the satisfiability of arithmetic circuits and the correct ex-

ecution of TinyRAM programs. When stating the efficiency of prover and verifier, we

will consider them to be implemented as either arithmetic circuits or TinyRAM pro-

grams, with the aim of measuring the overhead incurred by prover and verifier with

respect to directly evaluate the circuit or execute the program.

3.2.1 Arithmetic Circuits

An arithmetic circuit over a field F is a directed acyclic graph whose vertices are called

gates. Gates of in-degree 0 are called input gates, which are associated with variables

xi over F or with constant field elements. All other gates in the circuit are either multi-

plication gates or addition gates, which are labelled as⊗ and ⊕, respectively. Here we

only consider circuits consisting of fan-in 2 gates, i.e. all multiplication and addition

gates have in-degree equal to 2, but we allow for arbitrary fan-out.

Arithmetic circuits naturally compute polynomials over a field F. In the example

circuit in Figure 3.1, the output y1 corresponds to the polynomial 7x1(x2 + 3).

The size of a circuit refers to the total number of addition and multiplication gates,

while the depth is the longest path between inputs and outputs. The width of a circuit

usually refers to the maximum number of gates in the same layer of the circuit. The

example circuit in Figure 3.1 has size equal to 7, depth equal to 5 and width equal to

3. The size of the circuit corresponds to the total number of operations required to

evaluate it, while the depth is the minimal number of sequential operations required

to evaluate the circuit by using as many parallel processes as the width of the circuit.

3.2.2 TinyRAM

TinyRAM is a random-access machine architecture operating on W -bit words and us-

ingK registers. Here we describe the key features of TinyRAM and we refer the reader

to [BCG+13b] for the full specifications. A state of the TinyRAM machine consists of

the following:

• A program P consisting of a list of L instructions.

• A program counter pc storing, in a W -bit word, the line number of the program

instruction to be executed.

52 Chapter 3. Preliminaries and Definitions

FIGURE 3.1: Example of an arithmetic circuit.

• The content of the K registers reg0, . . . , regK−1, storing a W -bit word each.

• A condition flag flag of size one bit.

• M words of memory each of size W -bit, and with addresses 0, . . . ,M − 1.

The TinyRAM specification includes two read-only tapes to retrieve its inputs but

with little loss of efficiency we may assume the program starts by reading the tapes

into memory. The specification [BCG+13b] calls a program proper if it starts with a

preamble that reads all inputs into memory. As shown in [BCG+13b] this can be done

by an 8-line TinyRAM program in ∼ 5v steps, for an input tape of length v. We will

therefore skip the reading phase and assume the memory is initialised with the inputs

(and 0 for the remaining words). Also, we will assume on initialisation that pc, and

the registers are set equal to 0W and flag equal to 0.

The TinyRAM instruction set consists of 27 instructions that include bit-wise log-

ical operations, arithmetic operations, shifts, comparisons, jumps, and storing and

loading data in memory. We recall the list of allowed instructions in Table 3.1, from

which we removed the read instruction. Note that with respect to the original instruc-

tion set of [BCG+13b] the flag of the multiplication operations mull,umulh, smulh is

3.2. Models of Computations 53

flipped: the flag is set equal to 0 to denote overflow or underflow1.

Instruction Operands Effect Flag
and regi regj A compute ri as bitwise AND of rj and A result is 0W

or regi regj A compute ri as bitwise OR of rj and A result is 0W

xor regi regj A compute ri as bitwise XOR of rj and A result is 0W

not regi A compute ri as bitwise NOT of A result is 0W

add regi regj A compute ri = rj + A mod 2W overflow: rj + A ≥ 2W

sub regi regj A compute ri = rj − A mod 2W borrow: rj < A
mull regi regj A compute ri = rj × A mod 2W ¬ overflow: rj × A < 2W

umulh regi regj A compute ri as upper W bits of rj × A ¬ overflow: ri = 0

smulh regi regj A compute ri as upper W bits of the signed ¬ over/underflow: ri = 0

2W -bit rj ×s A (mull gives lower word)
udiv regi regj A compute ri as quotient of rj/A division by zero: A = 0

umod regi regj A compute ri as remainder of rj/A division by zero: A = 0

shl regi regj A compute ri as rj shifted left by A bits MSB of rj
shr regi regj A compute ri as rj shifted right by A bits LSB of rj
cmpe regi A compare if equal equal: ri = A
cmpa regi A compare if above above: ri > A
cmpae regi A compare if above or equal above/equal: ri ≥ A
cmpg regi A signed compare if greater greater: ri >s A
cmpge regi A signed compare if greater or equal greater/equal: ri ≥s A

mov regi A set ri = A flag unchanged
cmov regi A if flag = 1 set ri = A flag unchanged
jmp A set pc = A flag unchanged
cjmp A if flag = 1 set pc = A flag unchanged
cnjmp A if flag = 0 set pc = A flag unchanged
store A regi store in memory address A the word ri flag unchanged
load regi A set ri to the word stored at address A flag unchanged
answer A stall or halt returning the word A flag unchanged

TABLE 3.1: TinyRAM instruction set, excluding the read command.
The flag is set equal to 1 if the condition is met and 0 otherwise. If
the pc exceeds the program length, i.e., pc ≥ L, or we address a non-
existing part of memory, i.e., in a store or load instruction A ≥ M , the

TinyRAM machine halts with answer 1.

A program consists of a sequence ofL instructions, each taking up to three operands,

e.g.

add regi regj A

The first operand, regi, usually points to the register storing the result of the opera-

tion, add, computed on the words specified by the next two operands, regj , A. The

last operand A indicates an immediate value that could be either used directly in the

operation or to point to the content of another register. The program terminates by

using a special command answer that returns a word. We consider the program to

have succeeded if it answers 0, otherwise we consider the answer to be a failure code.
1This simplifies the consistency check of the flag in Chapter 5. This modification can be avoided by

introducing few additional constraints to check the consistency of the flag with the result of the instruc-
tion.

54 Chapter 3. Preliminaries and Definitions

We write regi and ri when referring to register i and to its content, respectively.

We write A to refer to either a register or an immediate value specified in a program

instruction and write A for the value stored therein. Depending on the instruction a

word amay be interpreted as an unsigned value in {0, . . . , 2W−1} or as a signed value

in {−2W−1, . . . , 2W−1 − 1}, which is represented in two’s complement. Given a word

(aW−1, . . . , a0) ∈ {0, 1}W , the unsigned value is

a =

W−1∑
i=0

ai2
i

while the signed value corresponding to the same word is

aσ = −aW−12W−1 +

W−2∑
i=0

ai2
i = −aW−12W + a

and aW−1 is used to encode the sign of the value. We distinguish operations over

signed values by using subscript s, e.g. a×s b and a ≥s b are used to denote product

and comparison over the signed values, respectively.

Implementing Field Arithmetic in TinyRAM. In our proof systems prover and ver-

ifier perform computation in a large finite field F and it will be convenient express

their efficiency in terms of TinyRAM operations. Typically, we have that | log(F)| > W

and thus field elements require e =
⌈

log(|F|)
W

⌉
words to be stored. Field addition can

then be computed with O(e) TinyRAM operations. The cost of field multiplication

depends on the implemented algorithm: schoolbook multiplication costsO(e2), while

using FFT it can be reduced up to O(e log(e) log log(e)) TinyRAM operations.

3.3 Proof of Knowledge and the ILC Channel

A proof system is defined by a triple of stateful PPT algorithms (G,P,V), which we call

the setup generator, the prover and verifier, respectively. The setup generator G creates

public parameters pp that will be used by the prover and the verifier. We think of pp as

being honestly generated, however, in the proofs we construct in the next chapters pp

consists of parts that are either publicly verifiable or could be generated by the verifier.

3.3. Proof of Knowledge and the ILC Channel 55

The reason we place our definitions in the public parameter model is to simplify the

exposition and to improve the efficiency of our proofs, not for security.

3.3.1 Relations and Languages

Let R be a polynomial time decidable ternary relation consisting of tuples (pp, u, w).

Please note the special case where R ignores pp, in which case we have the standard

definition of an NP-relation. We define the language corresponding to the relation R

to be

LR =
{

(pp, u): ∃ w, (pp, u, w) ∈ R
}

We refer to u as the instance and w as the witness for the membership of the instance in

the language, i.e. (pp, u) ∈ LR. The public parameter pp will specify the security param-

eter λ, perhaps implicitly through its length, and may also contain other parameters

used for specifying the relation, e.g. a description of a field. Typically, pp will also

contain parameters that do not influence membership of R but may aid the prover

and verifier, such as the description of an encoding function that they will use.

3.3.2 Communication Channels

In a proof system, (P,V) is a pair of interactive algorithms communicating with each

other through a communication channel chan←→. We write 〈P(pp, u, w)
chan←→ V(pp)〉 to de-

note their interaction mediated by the channel. We let viewV ← 〈P(pp, u, w)
chan←→

V(pp)〉 be the view of the verifier in the execution, i.e., all his inputs and outputs, in-

cluding his random coins and messages exchanged with the channel. Similarly, we

let tranP ← 〈P(pp, u, w)
chan←→ V(pp)〉 indicate the transcript of the communication be-

tween prover and channel. At the end of the interaction the verifier returns a bit b to

denote he accepts (b = 1) or rejects (b = 0). Without loss in generality, we let the prover

return tranP , and write (tranP ; b) ← 〈P(pp, u, w)
chan←→ V(pp)〉 for the entire execution

of the protocol.

In the standard channel←→, all messages are forwarded between prover and veri-

fier. In this case we may drop←→ from the above notation. We also consider an ideal

linear commitment channel, ILC←→, or simply ILC, described in Figure 3.2. The ILC chan-

nel is defined by a field F and an integer k ∈ N, both specified in ppILC ← GILC(1λ).

56 Chapter 3. Preliminaries and Definitions

When using the ILC channel, the prover can submit a commit command to the chan-

nel to commit to vectors v ∈ Fk. The vectors remain secretly stored in the channel,

and will not be forwarded to the verifier. Instead, the verifier only learns how many

vectors the prover has committed to. The verifier can submit a send command to the

ILC to send field elements x ∈ F to the prover. In addition, the verifier can also submit

open queries to the ILC to obtain the opening of any linear combinations of the vectors

sent by the prover. We stress that the verifier can request several linear combinations

within a single open query, as depicted in Figure 3.2.

PILC VILC

FIGURE 3.2: Description of the ILC channel.

LPCP and LIP. Proof systems over the ILC share similarities with other information-

theoretic models, such as linear probabilistic checkable proofs (LPCP), introduced by

[IKO07], and linear interactive proofs (LIP), introduced by [BCI+13]. In an LPCP the

verifier sends queries to a PCP oracle consisting of vectors of field elements. The oracle

responds to each query with a single field element obtained by applying the same

linear function to the queried vector. A LIP is an interactive proof system where both

the prover and verifier send vectors of field elements, but the prover can only send

linear (or affine) transformations of the verifier’s previously sent vectors. However,

for our constructions it is important that the prover can compute on field elements

sent by the verifier and, for instance, evaluate polynomials.

3.3. Proof of Knowledge and the ILC Channel 57

3.3.3 Proof of Knowledge

We say a proof system is public coin if the verifier’s messages to the communication

channel are chosen uniformly at random and independently of the actions of the

prover, i.e., the verifier’s messages to the prover correspond to the verifier’s random-

ness ρ. All our proof systems will be public coin. In a proof system over the ILC chan-

nel, sequences of commit, send and open queries can alternate arbitrarily. However,

since our proof systems are public coin we can without loss of generality assume the

verifier does one large open query at the end of the protocol and then decides whether

to accept or reject. We sometimes refer to a proof system over the ILC for which the

verifier only makes a single query at the end of the proof as non-adaptive.

Definition 3.2 (Proof of Knowledge). A proof system (G,P,V) for a relation R is called a

proof (argument) of knowledge over a communication channel chan←→ if it has perfect com-

pleteness and statistical (computational) knowledge soundness as defined below.

Completeness. Given an instance in the language, completeness guarantees that if

both prover and verifier follow the specifications of the proof system, then the verifier

should accept the proof.

Definition 3.3 (Perfect Completeness). A proof system (G,P,V) for a relation R is per-

fectly complete if for all PPT adversaries A

Pr

 pp← G(1λ); (u,w)← A(pp); (tranP ; b)← 〈P(pp, u, w)
chan←→ V(pp, u)〉:

(pp, u, w) /∈ R ∨ b = 1

 = 1

Knowledge Soundness. Soundness guarantees that a cheating prover should not

be able to convince the verifier about the validity of a false statement. Knowledge

soundness in addition guarantees that if a prover can convince the verifier about the

validity of a statement, then she should know a valid witness for it.

Definition 3.4 ((Strong) Knowledge Soundness). A proof system (G,P,V) for a relation

R has computational (strong) knowledge soundness if for all DPT P∗ there exists an

58 Chapter 3. Preliminaries and Definitions

expected PPT extractor E such that for all PPT adversaries A

Pr

 pp← G(1λ); (u, s)← A(pp);w ← E〈P∗(pp,u;s)
chan←→V(pp,u)〉(pp, u):

(pp, u, w) /∈ R ∧ b = 1

 ≈ 0

Here the oracle 〈P∗(pp, u; s)
chan←→ V(pp, u)〉 runs a full protocol execution and if the proof

is successful it returns the transcript tranP∗ of the prover’s communication with the channel.

The extractor E can ask the oracle to rewind the proof to any point in a previous transcript and

execute the proof again from this point on with fresh public-coin challenges from the verifier.

We let b ∈ {0, 1} be the verifier’s output in the first oracle execution, i.e., whether it accepts or

not, and we think of s as the state of the prover, including its randomness.

If the definition holds also for unbounded P∗ and A we say the proof has (strong) statisti-

cal knowledge soundness.

If the definition holds for a non-rewinding extractor, i.e., E only requires a single tran-

script of the prover’s communication with the channel, we say the proof system has knowledge

soundness with straight-line extraction.

The definition can be paraphrased as saying that if the prover in state s makes a

convincing proof, then E can extract a witness for the instance u. Therefore, knowledge

soundness implies soundness as if E extracts a witness for u, then the instance is clearly

in the language.

We note that in the definition of knowledge soundness in the ILC model, the out-

put of the transcript oracle includes the messages the prover sent to the ILC. Since the

commitment channel behaves as an ideal functionality, it is guaranteed that the prover

knows the content of the committed messages. In this setting, it is sufficient for the

extractor to show that if the prover does not know a witness, then the committed mes-

sages will lead to an invalid transcript with overwhelming probability. Looking ahead

to the following chapters, we will show how to compile a proof of knowledge over the

ILC into one over the standard channel by instantiating the ideal commitment with a

concrete commitment scheme. In this way we can separate the statistical properties of

the proof of knowledge constructed over the ILC from the computational properties

introduced by the different instantiations of the commitment scheme.

3.3. Proof of Knowledge and the ILC Channel 59

Our definition above is stronger than the usual definition of knowledge soundness

in the public parameter model [DF02]. The difference is that, in standard definition,

the knowledge extractor can interact freely with the cheating prover, while in our

definition we restrict E to observe accepting transcripts obtained from the interaction

of the cheating prover with the honest verifier. We recall the standard definition of

knowledge soundness following the C-style formulation of [Unr12]. It is straightfor-

ward to see that the definition above implies the following.

Definition 3.5 (Knowledge soundness). A proof system (G,P,V) for a relation R has

computational knowledge soundness with knowledge error κ(λ) if for all DPT P∗ there

exists an expected PPT extractor E and such that for all PPT adversaries A

Pr

 pp← G(1λ); (u, s)← A(pp);w ← EP∗(pp,u;s)(pp, u):
(pp, u, w) ∈ R

+ κ(λ) ≥

Pr

 pp← G(1λ); (u, s)← A(pp); (tranP∗ ; b)← 〈P∗(pp, u; s)
chan←→ V(pp, u)〉:

b = 1


If the definition holds also for unboundedP∗ andAwe say the proof has statistical knowledge

soundness.

Special Honest Verifier Zero-Knowledge. A proof of knowledge is zero-knowledge if

it does not reveal any information about the witness apart from what can be inferred

from the validity of the statement. In the next chapters we will show public-coin

proofs of knowledge that have special honest-verifier zero-knowledge. This means that if

the verifier’s challenges are known, or even adversarially chosen, then it is possible to

simulate the verifier’s view without the witness. In other words, the simulator works

for verifiers who may use non-uniform random coins in choosing their challenges but

that follow the specification of the protocol as an honest verifier would.

Definition 3.6 (Special Honest-Verifier Zero-Knowledge). A public-coin proof of knowl-

edge (G,P,V) for a relationR is computationally special honest-verifier zero-knowledge

60 Chapter 3. Preliminaries and Definitions

(SHVZK) if there exists a PPT simulator S such that for all stateful interactive PPT adver-

saries A that output randomness ρ for the verifier,

Pr

 pp← G(1λ); (u,w, ρ)← A(pp); viewV ← S(pp, u, ρ):
(pp, u, w) ∈ R ∧ A(viewV) = 1

 ≈
Pr

 pp← G(1λ); (u,w, ρ)← A(pp); viewV ← 〈P(pp, u, w)
chan←→ V(pp, u; ρ)〉:

(pp, u, w) ∈ R ∧ A(viewV) = 1


We say the proof is statistically SHVZK if the definition holds also against unboundedA, and

we say the proof is perfect SHVZK if the probabilities are exactly equal.

From Special Honest-Verifier to General Zero-Knowledge. Special honest-verifier

zero-knowledge only guarantees the simulator works for verifiers following the proof

system specifications. Generally, SHVZK may not give a sufficient level of privacy

and it may be preferable to consider general zero-knowledge, i.e. where the simulator

works for arbitrary malicious verifier strategies. Nonetheless, constructing efficient

SHVZK proofs is considered an important step towards the realisation of general zero-

knowledge proofs as there exists several transformations that allow to convert one to

the other with little impact on their efficiency. Here we recall few of these transforma-

tions intended for generic public coin proof systems.

In the Fiat-Shamir transform [FS86] the verifier’s challenges are computed us-

ing a cryptographic hash function applied to the transcript up to the challenge. The

Fiat-Shamir transform is more generally used to turn a public-coin proof into a non-

interactive one. Since interaction with the verifier is no longer needed, general zero-

knowledge is immediately achieved. If the hash function can be computed in linear

time in the input size, then the Fiat-Shamir transform only incurs an additive linear

overhead in computation for the prover and verifier. The drawback of the Fiat-Shamir

transform is that security is usually proved in the random oracle model [BR93] where

the hash function is modelled as an ideal random function.

In the common reference string model and using a trapdoor commitment scheme,

Damgård [Dam00] gives a transformation yielding concurrently secure protocols for

Σ-Protocols, i.e. preserving zero-knowledge even in the case of several concurrent

3.3. Proof of Knowledge and the ILC Channel 61

executions of the same proof system. The idea is for the prover to commit to its first

message using a trapdoor commitment scheme, which is then opened in the last move

of the protocol. The transformation was optimized by Groth [Gro04] using the idea

that for each public-coin challenge x, the prover first commits to a value x′, then the

verifier sends a value x′′, after which the prover opens the commitment and uses the

challenge x = x′ + x′′. The coin-flipping can be interleaved with the rest of the proof,

which means the transformation preserves the number of rounds and only incurs a

very small efficiency cost to do the coin-flipping for the challenges.

If one does not wish to rely on a common reference string for security, one can use a

private-coin transformation where the verifier does not reveal the random coins used

to generate the challenges sent to the prover (hence the final protocol is no longer pub-

lic coin). One example is the Micciancio and Petrank [MP03] transformation (yielding

concurrently secure protocols) while incurring a small overhead of ω(log λ) with re-

spect to the number of rounds as well as the computational and communication cost

in each round. The transformation preserves the soundness and completeness errors

of the original protocol; however, it does not preserve statistical zero-knowledge as

the obtained protocol only has computational zero-knowledge.

There are other public-coin transformations to general zero-knowledge e.g. Gol-

dreich et al. [GSV98]. The transformation relies on a random-selection protocol be-

tween the prover and verifier to specify a set of messages and it restricts the verifier

to choose challenges from this set. However, the transformed proof only achieves

inverse polynomial soundness error, and thus requires ω(1) sequential repetitions to

reduce the soundness error to a negligible function.

3.3.4 Efficiency Measures

There are several metrics to consider when assessing the efficiency of proofs of knowl-

edge. The main four parameters we will consider are round complexity, communica-

tion complexity, prover’s and verifier’s computation.

The round complexity µ measures the number of messages between prover and

verifier. A move is a single message going from one party to the other and a round

consists of a pair of moves, one from the prover to the verifier and one from the verifier

to the prover. The last round of the proof system may consist of a single move from

62 Chapter 3. Preliminaries and Definitions

the prover to the verifier. In the ILC channel a prover’s move consists of sending a

commit command to the ILC, which forwards the number of committed vectors to

the verifier, and a verifier’s move consists of sending a send command to the the ILC,

which forwards the message to the prover.

The communication complexity consists of the overall size of the messages sent

during the protocol and we measure it in either the number of field elements of size

log |F| or the number of W -bits words. In the ILC channel we separate it into prover’s

communication, counting the number of vectors sent by the prover to the ILC channel,

and verifier’s communication, counting the number of send messages the verifier for-

wards to the prover. In addition to these we consider the query complexity qc counting

the number of open queries made by the verifier, i.e. the number of linear combina-

tions the ILC is being asked to open.

The prover’s computation TP and verifier’s computation TV correspond to the

number of operations performed by the two parties, respectively. We measure these

in either the number of field operations or TinyRAM steps.

3.4 Linear-Time Linear Error-Correcting Codes

A code over an alphabet Σ is a subset C ⊆ Σn. A code C is associated with an encoding

function EC : Σk → Σn mapping messages of length k into codewords of length n. We

assume there is a setup algorithm GenEC which takes as input the description of an

alphabet Σ and the parameter k ∈ N, and it outputs an encoding function EC , which

is represented as either an arithmetic circuit or as a TinyRAM program.

In what follows, we restrict our attention to F-linear codes for which the alphabet

is a finite field F, the code C is a k-dimensional linear subspace of Fn, and EC is an F-

linear map. The rate of the code is defined to be k
n . The Hamming distance between two

vectors x,y ∈ Fn is denoted by hd(x,y) and corresponds to the number of coordinates

in which x,y differ. The (minimum) distance of a code is defined to be the minimum

Hamming distance hdmin between distinct codewords in C. We denote by [n, k, hdmin]F

a linear code over F with length n, dimension k and minimum distance hdmin. The

Hamming weight of a vector x is wt(x) = |{i ∈ [n] : xi 6= 0}|.

3.4. Linear-Time Linear Error-Correcting Codes 63

In the next sections, we will use families of linear codes achieving asymptotically

good parameters. More precisely, we require codes with linear length, n = Θ(k), and

linear distance, hdmin = Θ(k), in the dimension k of the code. We recall that random

linear codes achieve with high probability the best trade-off between distance and rate.

However, in this work we are particularly concerned with computational efficiency of

the encoding procedure and random codes are not known to be optimal in terms of

efficiency.

To obtain zero-knowledge proofs and arguments with linear cost for the prover,

we need to use codes that can be encoded in linear time. Starting from the seminal

work of Spielman [Spi96], there has been a rich stream of research [GI01; GI02; GI03;

GI05; DI14; CDD+16] regarding linear codes with linear-time encoding. In our proofs,

we can employ one of the families of codes presented by Druk and Ishai [DI14]. These

are defined over a generic finite field F and meet all the above linearity requirements.

Theorem 3.1 ([DI14]). There exist constants c1 > 1 and c2 > 0 such that for every finite field

F there exists a family of [dc1ke, k, bc2kc]F linear codes. These can be encoded by a uniform

family of linear-size arithmetic circuits, consisting of O(k) addition gates.

The above codes, as the all the other families of linear-time encodable codes, use

bipartite expander graphs which can be instantiated using the explicit construction of

[CRV+02]. By representing the encoding function as an arithmetic circuit, the size of

the circuit is of about 6Dk addition gates, where D = O(1) is the left-regularity of

the expander graph. If we represent the encoding function as a TinyRAM program,

encoding requires about 24Dke steps and 4(D + 1)ke words of memory, where e =

log(|F|)
W is the number of words required to store a field element.

In [DI14], Druk and Ishai suggested another family of codes which achieves better

parameters, meeting the Gilbert-Varshamov bound. This family can be still encoded

in linear time and would make our proofs and arguments more efficient, but without

having an impact on their asymptotic complexity. Differently from the one recalled

above, this construction is probabilistic. We opt for the explicit construction of Theo-

rem 3.1 which enables to verify the correct generation of the code.

64 Chapter 3. Preliminaries and Definitions

3.5 Commitment Schemes

A non-interactive commitment scheme allows a sender to commit to a secret mes-

sage and to later reveal the message in a verifiable way. Here we are interested in

commitment schemes that take an arbitrary length message as input, so the mes-

sage space is {0, 1}∗. A commitment scheme is defined by a pair of PPT algorithms

(CSetup,CCommit).

CSetup(1λ)→ ck: it receives the security parameter as input and returns a commit-

ment key ck.

CCommitck(m)→ c: given a messagem ∈ {0, 1}∗, it picks randomness r ← {0, 1}poly(λ)

and computes a commitment c = CCommitck(m; r).

A commitment scheme must satisfy binding, in the sense that it should be infeasible to

open a commitment to two distinct messages. A commitment scheme must be hiding,

meaning that the commitment does not reveal anything about the committed message.

Definition 3.7 (Binding). A commitment scheme is computationally binding if for all PPT

adversaries A

Pr

 ck ← CSetup(1λ); (m0, r0,m1, r1)← A(ck) :

m0 6= m1 ∧ CCommitck(m0; r0) = CCommitck(m1; r1)

 ≈ 0.

If this holds also for unbounded adversaries, we say the commitment scheme is statistically

binding.

Definition 3.8 (Hiding). A commitment scheme is computationally hiding if for all PPT

stateful adversaries A

Pr

 ck ← CSetup(1λ); (m0,m1)← A(ck); b← {0, 1}; c← CCommitck(mb) :

A(c) = b

 ≈ 1

2
,

where A outputs messages of equal length |m0| = |m1|. If the definition holds also for un-

bounded adversaries, we say the commitment scheme is statistically hiding.

We will be interested in using highly efficient commitment schemes. We say a com-

mitment scheme is linear-time if the time to compute CCommitck(m) is poly(λ)+O(|m|)

3.5. Commitment Schemes 65

bit operations, which we assume corresponds to poly(λ) + O(|m|W) TinyRAM opera-

tions. We will also be interested in having small size commitments. We say a com-

mitment scheme is compact if there is a polynomial p(λ) such that commitments have

size at most p(λ) regardless of how long the message is. We say a commitment scheme

is public coin if there is a polynomial `(λ) such that CSetup(1λ) picks the commitment

key uniformly at random as ck ← {0, 1}`(λ). We will now discuss some candidate

linear-time commitment schemes.

Statistically Hiding Commitments. Applebaum et al. [AHI+17b] constructed low-

complexity families of collision-resistant hash functions, where it is possible to eval-

uate the hash function in linear time in the message size. Their construction is based

on the binary shortest vector problem (bSVP) assumption, which is related to find-

ing non-trivial low-weight vectors in the null space of a matrix over F2. Collision

resistant hash functions can be coupled with universal hash functions [CW77] to ob-

tain compact statistically hiding and computationally binding commitment schemes,

as shown by Halevi and Micali [HM96]. Their transformation is very efficient and it

only requires one application of the universal hash function on a short input2 and two

evaluations of the collision resistance hash function. Thus, if we instantiate it with

the collision resistant hash function with [AHI+17b], we obtain a compact linear-time

public-coin statistically hiding commitment scheme.

Statistically Binding Commitments. Ishai et al. [IKO+08] proposed linear-time com-

putable pseudorandom generators (PRGs) with arbitrary polynomial stretch based on

the PRGs with linear stretch in NC0 of Applebaum et al. [AIK08], which rely on the

intractability assumptions of decoding sparsely generated linear codes [Ale11]. More-

over, [IKO+08] suggested how to use these PRG to obtain linear-time statistically bind-

ing commitment schemes. Given a (not linear-time) statistically binding commitment

scheme CCommit, to commit to a long message m one first picks a short seed s for the

pseudorandom generator, stretches it to t = PRG(s) such that |t| = |m| and computes

CCommit′(m) := (CCommitck(s), t⊕m)

2More precisely, the construction requires to pick a random universal hash function mapping a ran-
dom string to the digest of the message. The cost of this step is usually comparable to one evaluation of
the hash function, as in the constructions suggested in [CW77; HM96]

66 Chapter 3. Preliminaries and Definitions

Assuming that the base commitment scheme CCommit is statistically binding and PRG

computable in linear time, the resulting commitment CCommit′ is a linear-time statis-

tically binding commitment scheme for messages of arbitrary length. It can also easily

be seen that commitments have the same length as the message, plus an additive poly-

nomial overhead that depends only on the security parameter. The construction also

preserves the public-coin property of the internal commitment scheme.

67

Chapter 4

Proofs for the Satisfiability of

Arithmetic Circuits in the ILC

Model

In this chapter we give efficient zero-knowledge proofs of knowledge for the satisfi-

ability of arithmetic circuits in the ILC model. We recall that in this model, which we

introduced in Section 3.3, prover and verifier interact using an Ideal Linear Commit-

ment communication channel, or ILC. The ILC allows the prover to commit to vectors

of length k over a finite field F by sending them to the channel. The ILC channel stores

the received vectors and communicates the number of vectors it received to the veri-

fier. The verifier can send messages in F to the prover via the channel and can query

the ILC to open arbitrary linear combinations of the committed vectors sent by the

prover. The field F and the vector length k are determined by the public parameters

ppILC ← GILC(1λ).

The efficiency of our proof system is affected by the parameter k. For an arithmetic

circuit with N addition and multiplication gates the best efficiency is achieved when

k ≈
√
N . In our proofs both prover and verifier computational costs are linear in the

size of the circuit. More precisely, the prover has to compute O(N) field multiplica-

tions thus she achieves constant overhead with respect to the direct evaluation of the

circuit. On the other hand, the computational cost of the verifier is onlyO(N) additions

in the field. In Chapter 6 we will show how to compile proofs over the ILC into proofs

over the standard channel. Moreover, we will show efficient instantiations which pre-

serve the computational complexity prover and verifier have in the ILC model.

68 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

Our proofs over the ILC achieve perfect completeness, perfect special honest ver-

ifier zero knowledge, and statistical strong knowledge soundness. The soundness of

our proofs crucially relies on the use of the Schwartz-Zippel Lemma and, therefore,

it is affected by the size of the underlying field. In order to get negligible soundness

error without incurring in repetitions of the proofs, we consider the size of the field to

be superpolynomial size, i.e. |F| ≈ λω(1).

In [Gro09], Groth gave several efficient zero-knowledge arguments for a wide class

of statements related to linear algebra. The main tool used in the arguments is a ho-

momorphic commitment scheme to vectors, which is instantiated with Pedersen com-

mitments. The proofs in this chapter can be seen as an abstraction of the arguments

of [Gro09] in an idealised vector commitment setting. By constructing proofs in this

model, we can extract the information theoretic properties of these arguments, decou-

pling them from the computational cryptographic assumptions used. In Chapter 6

we will then introduce a generic transformation, which compiles proofs over the ILC

into proofs and arguments over the standard channel using different cryptographic

assumptions. At high level, this process enables to exploit techniques that are typ-

ically used in conjunction with homomorphic commitments into a setting were the

commitment scheme does not offer such a property.

Similarly to [Gro09], we follow a modular approach to construct our proofs. We

describe proofs to efficiently check that committed vectors contain publicly known

values, for the sum of committed vectors, and for the Hadamard (entry-wise) product

of committed vectors. We also outline the construction of a proof for a known permu-

tation relation, and refer to [BCG+17] for the full specifications. Lastly, we show how

to combine these building blocks to give a proof for the satisfiability of an arithmetic

circuit.

4.1 Relation for the Satisfiability of an Arithmetic Circuit

Consider an arithmetic circuit with a total of N fan-in 2 gates, which can be either

addition gates or multiplication gates over a finite field F. Each gate has two inputs,

which we refer to as left and right, and one output wire. We allow for arbitrary fan-out,

therefore the output wire of each gate can be attached to the input wires of several

4.1. Relation for the Satisfiability of an Arithmetic Circuit 69

other gates. In total, we have 3N input and output wires feeding in and out of the

gates.

An instance consists of the description of an arithmetic circuit and comprises a

set of gates, the connection of wires between gates, and known values assigned to

some of the inputs and outputs. A circuit is said to be satisfiable if there exists an

assignment complying with all the gates, the wiring, and the known values specified

in the instance. More precisely, a witness for a given instance consists of assignments

to the input and output wires of each gate such that

(1) The known values specified in the instance match the corresponding wire as-

signments in the witness.

(2) The output of every addition gate corresponds to the sum of the input wires of

the same gate.

(3) The output of every multiplication gate corresponds to the product of the input

wires of the same gate.

(4) The value of an output wire (or an input gate) matches the values of all input

wires connected to it.

In our proof for the satisfiability of arithmetic circuits, the prover commits to all the

wire assignments using the ILC channel and then shows that these satisfy the above

conditions. To facilitate these proofs, we format the instance and the witness, similarly

to [Gro09], so that it can be easily parsed by the prover and verifier when using the

ILC channel.

Formatting the Witness. The witness consists of the wire assignments to all input

and output wires, and we consider these to be arranged into row vectors vi ∈ Fk,

where k is the vector length of the ILC. Without loss of generality we assume both

the number of addition gates and the number of multiplication gates to be divisible

by k, which can always be satisfied by adding few dummy gates to the circuit, e.g.

0 ⊕ 0 = 0 or 0 ⊗ 0 = 0. We can then number addition gates from (1, 1) to (mA, k) and

multiplication gates (mA + 1, 1) to (mA + mM , k), where mA · k is the total number

of addition gates and mM · k is the total number of multiplication gates. We insert

70 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

FIGURE 4.1: Representation of an arithmetic circuit and arrangements
of the wires into 6 matrices.

assignments to left inputs, right inputs and outputs of addition gates into entries of

three matrices A,B,C ∈ FmA×k, respectively. We sort entries to the matrices so that

wires attached to the same gate correspond to the same entry of the three matrices, as

shown in Figure 4.1. A valid assignment to the wires then satisfies A + B = C. We

proceed in a similar way for the mM · k multiplication gates to obtain three matrices

D,E, F ∈ FmM×k such thatD◦E = F , where ◦ denotes the Hadamard (i.e. entry-wise)

product of matrices. All the committed wires then constitute a matrix

V =



A

B

C

D

E

F


∈ F(3mA+3mM)×k

Formatting the Instance. We consider instances of the form u = (mA,mM , π, {ui}i∈S).

As above, mA and mM determine the number of addition and multiplication gates in

the circuit. The vectors ui contain the publicly known assignments to wires. Without

loss of generality, we assume the gates to be sorted so that the wire values speci-

fied in the instance correspond to full rows in V and are indexed by S. Again, this

is without loss of generality because we can always add a few dummy gates to the

4.1. Relation for the Satisfiability of an Arithmetic Circuit 71

FIGURE 4.2: Representation of the wiring of a circuit: cycles
((1, 2), (5, 1), (9, 1)) and ((8, 2), (12, 1)).

circuit and to the instance to complete a row. Lastly, π is a permutation encoding the

wiring of the arithmetic circuit. For each wire, we can write a cycle ((i1, j1), . . . , (it, jt))

that lists the coordinates of entries in V corresponding to the same wire. Then we let

π ∈ Σ[3mA+3mM]×[k] be the product of all these cycles, which unambiguously defines

the wiring of the circuit. To give an example using the circuit in Figure 4.1, the output

wire of the first addition gate, V5,1 , also appears as input in the first multiplication

gate, V9,1, and the second addition gate, V1,2. Therefore, if they appear as entries

(1, 2), (5, 1), (9, 1) in the matrix V defined by the rows vi, then we would have the

cycle ((1, 2), (5, 1), (9, 1)) indicating entries that must be identical. The output of the

third multiplication gate, V12,1, feeds into the left input of the fourth multiplication

gate, V8,2, so this may give us a cycle ((8, 2), (12, 1)) of entries that should have the

same value. An illustration of these two cycles is given in Figure 4.2. The permutation

π is the product of all these cycles that define which entries have the same value.

While keeping the above formatting in mind, we now write the relation RAC for

the satisfiability of an arithmetic circuit as follows.

RAC =



(pp, u, w) :=
(

(F, k, ∗) , (mA,mM , π, {vi}i∈S) ,
(
{vi}i∈S̄

))
:

m = 3mA + 3mM ∧ π ∈ Σ[m]×[k]

∧ S ⊆ [m] ∧ S̄ = [m] \ S

∧ A = (vi)
mA
i=1 ∧ D = (vi)

3mA+mM
i=3mA+1

∧ B = (vi)
2mA
i=mA+1 ∧ E = (vi)

3mA+2mM
i=3mA+mM+1

∧ C = (vi)
3mA
i=2mA+1 ∧ F = (vi)

3mA+3mM
i=3mA+2mM+1

∧ A+B = C ∧ D ◦ E = F

∧ V = (vi)
m
i=1 ∧ Vi,j = Vπ(i,j) ∀ (i, j) ∈ [m]× [k]



72 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

4.2 ILC Proofs for Simple Relations

In our proof for the satisfiability of arithmetic circuits, the prover starts by committing

to all the wires values and then she shows that these satisfy the conditions specified in

RAC. To do this we follow a modular approach. We start by giving proofs over the ILC

for simple relations and, in the next section, we combine these to give a full proof for

RAC. In this section we present ILC proofs for equality, sum and product relations. We

also give a decomposition of the proof for a known permutation relation, referring to

[BCG+17] for its complete specifications. All these relations involve vectors that have

been previously committed to by the prover. To indicate that a vector v in the witness

has been committed, we sometimes include [v] in the instance. To keep the notation

as light as possible, we only use this when there may be some confusion about which

vectors the statements refer to; for example, when we give the statement as input to

the verifier.

4.2.1 ILC Proof for the Correct Opening of Committed Vectors

We start with a proof to check the equality of vectors included in the instance with vec-

tors committed by the prover in the ILC, which corresponds to the following equality

relation.

Req =

 (ppILC, u, w) = ((F, k, ∗), ({ui}i∈S), ({vi}i∈S)) :
∀ i ∈ S, ui = vi


In this proof the proverPeq has to simply commit to vectors by sending a command

(commit,v1, . . . ,vs) to the ILC. As soon as the prover commits, the ILC informs the

verifier he received s = |S| vectors. As we will use this proof as a building block for

more complex proofs, the vectors may have already been committed, and the verifier

notified. In this case no further action is required by the prover. The verifier picks

a random challenge x ← F and queries the channel to open the linear combination

X = (x, x2, . . . , xs). The channel replies with the opening v =
∑s

i=1 x
ivi. The verifier

then computes the same linear combination on his vectors and checks it against the

opening received by the channel. The description of the proof systems (GILC,Peq,Veq)

4.2. ILC Proofs for Simple Relations 73

is given in Figure 4.3, where we use the symbols / ∗ and ∗/ to delimit the lines that

may have already been executed in other proofs.

Peq((F, k), ({ui}i∈S), ({vi}i∈S))

/ ∗ Round 0:

ILC← • Send (commit,v1, . . . ,vs) to the ILC ∗/

Veq((F, k), ({ui}i∈S , {[vi]}i∈S))

/ ∗ Round 0:

ILC→ ◦ Get message s from the ILC ∗/

Query:

• x← F

• X := (x1, . . . , xs)

ILC← • Send (open, X) to the ILC

ILC→ ◦ Get response v from the ILC

• If v =
∑s

i=1 x
iui return 1, else return 0

FIGURE 4.3: Proof of Knowledge for the Req relation. Steps marked
with ILC → ◦ and ILC ← • denote incoming and outgoing messages to

the ILC, respectively.

Theorem 4.1. (GILC,Peq,Veq) is a proof of knowledge for the relation Req in the ILC model

with perfect completeness, statistical strong knowledge soundness with straight-line extraction

and perfect special honest verifier zero-knowledge.

Proof. The completeness of the proof is trivial. If the ui are equal to the vi, then the

verifier accepts the proof with probability 1.

The proof system has statistical strong knowledge soundness with straight-line

extraction. This is because the knowledge extractor has already access to the transcript

of the communication between the prover and the channel (see Definition 3.4), and

thus it sees the vectors vi. By the Schwartz-Zippel Lemma, if the committed vectors

are not equal to the uj , then they pass the consistency check with probability at most

s
|F| , which is negligible.

The proof is perfect SHVZK since the verifier knows the values in the instance.

Given these, it is trivial to simulate the verifier’s view.

Efficiency. As we only use this proof as a building block, we assess its efficiency by

ignoring the first step of prover and verifier (marked with / ∗ and ∗/). Since assume

that the vectors have been previously committed by the prover, and since the verifier

does not send challenges to the prover, there is no additional communication between

prover and verifier and thus the round complexity is µ = 0. Otherwise the round

74 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

complexity would be equal µ = 1. The verifier makes a single query to the ILC channel,

so the query complexity is qc = 1. The prover does not perform any computation. The

verifier’s computational cost is O(sk) multiplications in F.

Improved Verification. Although the above efficiency may look optimal, there is,

perhaps surprisingly, a more efficient way to perform the above verification that only

requires a linear number (O(sk)) of field additions. This can be done by first encod-

ing both the response v and the vectors uj using linear-time linear error correcting

codes with linear minimum distance, as the ones recalled in Theorem 3.1. Instead of

checking that the entire encoded response EC(v) is consistent with the encoded vec-

torsEC(ui), the verifier can spot check these. More precisely he can pickO(λ) columns

at random, compute the linear combination on these selected columns and check them

against the encoded response. If v is not equal to
∑s

i=1 x
iui, then they differ in at least

one entry. Since the error correcting code has linear minimum distance, then the veri-

fier has constant probability of catching an error. Therefore, by picking uniformly and

independently at random O(λ) columns, the probability of missing an error can be

made negligible. Encoding all the vectors only requires O(sk) of additions, while the

cost of evaluating the linear combinations in the selected columns amount to O(sλ)

multiplications. For large enough k � λ, the total number of multiplication is a sub-

linear number of multiplications, i.e. o(sk). Note that in our main proof we will set

k to be approximately equal to
√
N , where N is a (large) polynomial in λ. The above

strategy is similar to the one used by Damgård and Zakarias in [DZ13] to check the

zero product of matrices, while in our case it is used it to test the identity of vectors.

Table 4.1 reports the efficiency of the proof for the correct opening of committed

vectors with respect to the improved verification strategy.

Prover computation TPILC
= //

Verifier computation TVILC
= O(sk) F+

Prover communication t = //
Verifier communication CILC = 0

Query complexity qc = 1
Round complexity µ = 0

TABLE 4.1: Efficiency of the proof of knowledge for Req. F+ stands for
the cost of a single field addition.

4.2. ILC Proofs for Simple Relations 75

Psum((F, k), s, (A,B,C))

/ ∗ Round 0:

ILC← • Send (commit, A,B,C) to the ILC ∗/

Vsum((F, k), (s, [A], [B], [C]))

/ ∗ Round 0:

ILC→ ◦ Get message 3s from the ILC. ∗/

Query:

• x← F

• X := (x1, . . . , xs, x1, . . . , xs,−x1, . . . ,−xs)

ILC← • Send (open, X) to ILC

ILC→ ◦ Get response v from the ILC

• If v = 0 return 1, else return 0

FIGURE 4.4: Proof of Knowledge for theRsum relation.

4.2.2 ILC Proof for the Sum of Committed Matrices

Next, we show a proof of knowledge of committed matrices A,B,C ∈ Fs×k such that

A+B = C, as specified in the following relation

Rsum =

 (ppILC, u) = ((F, k, ∗), s, (A,B,C)) :
A,B,C ∈ Fs×k ∧ A+B = C


As for the previous proof, the prover starts by committing to all the row vectors of

the matrices A,B,C. We assume the prover commits to the rows of the matrices in

order, starting with all the rows of A, B and then C. If the matrices have already

been committed to by the prover, she may remain inactive. The verifier receives the

message 3s from the ILC, notifying the reception of the committed vectors. Next, the

verifier picks a challenge x← F, constructs the query

X := (x1, x2, . . . , xs, x1, x2, . . . , xs,−x1,−x2, . . . ,−xs)

and then sends (open, X) to the ILC. The idea is that the i-th rows in the matrices

A,B,C are associated with the same power of x in the query, but the ones in C have

opposite sign. Therefore, we expect them to sum up to zero if A + B − C = 0 holds.

The description of the proof of knowledge forRsum is given in Figure 4.4 where steps

marked with ILC → ◦ and ILC ← • denote incoming and outgoing messages to the

ILC, respectively.

Theorem 4.2. (GILC,Psum,Vsum) is a proof of knowledge for the relation Rsum in the ILC

model with perfect completeness, statistical strong knowledge soundness with straight-line

76 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

extraction, and perfect special honest verifier zero-knowledge.

Proof. The completeness of the proof is trivial as if A + B − C is equal to the zero

matrix, then the ILC answers with v = 0 with probability 1.

The proof has statistical strong knowledge soundness with straight-line extraction.

This is because the knowledge extractor has access to the communication between the

prover and the channel, and thus sees the row vectors of matrices A,B and C. If

A + B 6= C then at least one column in A + B − C is not the zero vector. By the

Schwartz-Zippel Lemma, the probability of the ILC returning 0 is at most s
|F| , which is

negligible.

The proof is perfect zero-knowledge as the verifier only sees the zero vector, which

can be trivially simulated.

Efficiency. As before, we assess the efficiency by ignoring the first step of prover and

verifier (marked with / ∗ and ∗/). In this case the round complexity is equal to 0 as

there is no additional communication between prover and verifier, as the verifier only

communicates with the ILC. The prover does not perform any computation. The veri-

fier makes one query to the ILC and its computational cost is dominated by computing

s − 1 multiplications in F to construct the query. Table 4.2 reports the costs of the the

proof of knowledge forRsum.

Prover computation TPILC
= //

Verifier computation TVILC
= (s− 1) F×

Prover communication t = //
Verifier communication CILC = 0

Query complexity qc = 1
Round complexity µ = 0

TABLE 4.2: Efficiency of the proof of knowledge for Rsum. F× stands
for the cost of a single field multiplication.

4.2. ILC Proofs for Simple Relations 77

4.2.3 ILC proof for the Hadamard Product of Committed Matrices

We now describe a proof of knowledge for the Hadamard (entry-wise) product of

matrices A,B,C ∈ Fmn×k such that A ◦B = C, as specified in the following relation

Rprod =

 (ppILC, u) = ((F, k), (mn), (A,B,C)) :
A,B ∈ Fmn×k ∧ A ◦B = C


Main Idea. Firstly, we take a look to the case m = 1 such that matricesA,B,C consist

of n rows each. If we parse each matrix as the set of its row vectors, we have that

A ◦ B = C can be written as aj ◦ bj = cj for 1 ≤ j ≤ n. Unless they have already

been committed, the prover starts by committing to the vectors aj , bj , cj using the ILC.

Then the verifier picks a challenge x← F and sends it to the prover by forwarding the

command (send, x) to the ILC. After receiving x the prover computes the following

polynomials in the indeterminate Z with coefficient in Fk

a′(Z) =

n∑
j=1

ajx
jZj b′(Z) =

n∑
j=1

bjZ
−j

and compute their product in Fk[Z]

a′(Z) ◦ b′(Z) =
n∑
j=1

aj ◦ bjxj +
n−1∑

r=1−n,r 6=0

erZ
r

where ◦ denotes the the standard convolution product of polynomials with the Ha-

damard product applied to the coefficients. Note that the the products aj ◦ bj are all

positioned in the constant term of the polynomial a′(Z) ◦ b′(Z), while the products

ai ◦ bj for i 6= j are inside the cancellation terms er. The prover sends the command

(commit, {er}n−1
r=1−n,r 6=0) to commit to vectors er. These correspond to the coefficient

of a′(Z) ◦ b′(Z) excluding its constant term. At this point the verifier picks a challenge

z ← F and queries the ILC to give the following linear combinations of the vectors

aj , bj , cj , er, which are all stored in the ILC.

a′(z) =

n∑
j=1

ajx
jzj b′(z) =

n∑
j=1

bjz
−j c′(z) =

n∑
j=1

cjx
j +

n−1∑
r=1−n,r 6=0

erz
r

78 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

If the statement is true, i.e. aj ◦bj = cj , then the constant term in a′(Z)◦b′(Z) is equal∑n
j=1 cjx

j . The verifier finally checks whether a′(z) ◦ b′(z) = c′(z), in which case she

returns 1.

Observation 1. The above approach is clearly not zero knowledge, since the open-

ings returned by the ILC only depend on the challenges and the values in the witness.

To make the above solution zero-knowledge, in her first move the prover commits to

some blinding factors a′0, b
′
0 ← Fk and c′0 := a′0 ◦ b′0. Then, it is sufficient to extend the

linear combinations queried to the ILC by the (honest) verifier to include the blinding

factors, i.e.

a′(z) + a′0 b′(z) + b′0 c′(z) + c′0

Note that the polynomials defined in the protocol need to be changed to take into

account the blinders. We defer this to the full specification of the proof, which can be

found below.

Observation 2. Our final goal is to construct efficient proofs of knowledge for which

the prover only incurs a constant overhead in computation. The approach described

above however does not suffice to achieve this level of efficiency. The bottleneck for

the prover is in the computation of the product a′(Z) ◦ b′(Z), which has degree n and

coefficients in Fk. Using FFT multiplication algorithms, this product requires about

O(kn log(n)) field multiplications. Therefore the prover incurs in a O(log(n)) compu-

tational overhead with respect to compute the Hadamard product of matrices, which

costs O(kn) field multiplications.

Reducing the Prover’s Overhead. To overcome this issue we follow a technique in-

troduced in [Gro09], which allows to reduce computation for the prover at the cost of

increasing the interaction with the verifier. The main idea behind this technique is to

first group the rows into sets of m ≈ log(n) rows, and then to use a compression step

which reduces the size of the groups by a half. After log log(n) iterations, the number

of row vectors can be reduced by a factor 1
log(n) , such that it is possible to follow the

approach described above without incurring in a superconstant overhead. Moreover,

4.2. ILC Proofs for Simple Relations 79

the compression steps only require a linear number of operations, keeping the overall

prover running time equal to O(mnk) field multiplications.

Consider matrices A,B,C with mn row vectors each: ai,j , bi,j , ci,j ∈ Fk for 0 ≤ i ≤

m−1 and 0 ≤ j ≤ n−1. Without loss of generality we assume that m = 2µ for some in-

teger µ ∈ N. We will compress 2mn vectors ai,j , bi,j of length k into 2n vectors a′j , b
′
j of

the same length. The compressed vectors are computed by first inserting vectors ai,j

and bi,j into distinct coefficients of 2n multivariate polynomials in Y0, . . . , Yµ−1, and

then by progressively evaluating these at µ challenges y0, . . . , yµ−1 sent by the veri-

fier. More precisely, vector ai,jxi is positioned in the j-th polynomial a′j(Y0, . . . , Yµ−1)

as coefficient of Y i0
0 · · ·Y

iµ−1

µ−1 , where x is the first challenge sent by the verifier, and

(iµ−1, iµ−2, . . . , i0) ∈ {0, 1}µ is the binary expansion of i. Computing these coefficients

only requires O(mnk) field multiplications. In a similar fashion the vector bi,j is em-

bedded into the coefficient of Y −i00 · · ·Y −iµ−1

µ−1 in the polynomial b′j(Y0, . . . , Yµ−1), as

shown below.

a′j(Y0, . . . , Yµ−1) =
m−1∑
i=0

ai,jx
iY i0

0 Y i1
1 . . . Y

iµ−1

µ−1 For 0 ≤ j ≤ n− 1

b′j(Y0, . . . , Yµ−1) =
m−1∑
i=0

bi,jY
−i0

0 Y −i11 . . . Y
−iµ−1

µ−1 For 0 ≤ j ≤ n− 1

By evaluating all the 2n polynomials in Y0 := y0 we reduce the number of coefficients

in each of the polynomials by a factor 2, as shown in the following.

a′j(y0, Y1, . . . , Yµ−1) =

m
2
−1∑
i=0

(
a2i,jx

2i + a2i+1,jx
2i+1y0

)︸ ︷︷ ︸
α1,i,j

Y i1
1 . . . Y

iµ−1

µ−1 For 0 ≤ j ≤ n− 1

b′j(y0, Y1, . . . , Yµ−1) =

m
2
−1∑
i=0

(
b2i,j + b2i+1,jy

−1
0

)︸ ︷︷ ︸
β1,i,j

Y −i11 . . . Y
−iµ−1

µ−1 For 0 ≤ j ≤ n− 1

The coefficientsα1,i,j ,β1,i,j of each of the above 2n polynomials can be computed with

mk
2 multiplications and mk

2 additions. By first evaluating these on Y1 := y1, and then

80 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

the other challenges y2, . . . , yµ−1, the number of coefficients is halved at each evalua-

tion, until we obtain the following 2n vectors.

a′j := a′j(y0, . . . , yµ−1) =
m−1∑
i=0

ai,jx
iyi00 y

i1
1 . . . y

iµ−1

µ−1

=

m
2
−1∑
i=0

α1,i,jy
i1
1 . . . y

iµ−1

µ−1

= · · ·

= αµ−1,0,j +αµ−1,1,jyµ−1 For 0 ≤ j ≤ n− 1

b′j := b′j(y0, . . . , yµ−1) =

m−1∑
i=0

bi,jy
−i0
0 y−i11 . . . y

−iµ−1

µ−1

=

m
2
−1∑
i=0

β1,i,jy
−i1
1 . . . y

−iµ−1

µ−1

= · · ·

= βµ−1,0,j + βµ−1,1,jy
−1
µ−1 For 0 ≤ j ≤ n− 1

As the cost of computing these evaluations is halved at each iteration, the above vec-

tors require in total O(mnk) field additions and multiplications to compute. At this

point we can proceed as in the case m = 1 and embed the above 2n vectors into the

coefficients of two polynomials in Z of degree n.

a′(Z) =
n−1∑
j=0

a′j(y0, . . . , yµ−1)xjm+1Zj

b′(Z) =

n−1∑
j=0

b′j(y0, . . . , yµ−1)Z−j

If we take the Hadamard product of the two polynomials above, the products a′j ◦

b′j end up in the constant coefficient, i.e., Z0. Similarly, all other cancellation products

a′j ◦ b′j′ , for j 6= j′, end up in the coefficients er of other powers of Z. If we expand the

products of a′j ◦ b′j we can also observe that the products of ai,j ◦ bi,j are placed in the

constant term of the Yt, while all other products ai,j ◦ bi′,j for i 6= i′ are contained in

4.2. ILC Proofs for Simple Relations 81

the cancellation terms d+
i ,d

−
i .

a′(Z) ◦ b′(Z) =
n−1∑
j=0

a′j ◦ b′jxjm+1 +
n−2∑

r=2−n,r 6=0

erZ
r

=

m−1,n−1∑
i=0,j=0

ai,j ◦ bi,jxi+jm+1 +

µ−1∑
t=0

(
d+
t yt + d−t y

−1
t

)
+

n−2∑
r=2−n,r 6=0

erZ
r

Computing this product requires O(kn log(n)) field multiplications, which is linear in

mnk if we set m ≈ log(n). The cancellation terms d+
t ,d

−
t have the following expres-

sions

d+
t =

n−1∑
j=0

m
2t+1−1∑
i=0

αt,2i+1,j ◦ βt,2i,j d−t =

n−1∑
j=0

m
2t+1−1∑
i=0

αt,2i,j ◦ βt,2i+1,j

where α0,i,j := ai,jx
i and β0,i,j := bi,j . Similarly to the computation of the αt,i,j ,βt,i,j ,

the computation of d+
t ,d

−
t requires mnk

2t+1 multiplications to compute. Summing over t

we obtain a total of O(mnk) multiplications. Therefore, the total computational cost

for both compressing the vectors and computing the above polynomial expression

is O(mnk) field multiplications, i.e. a linear number of operations in the size of the

matrices.

To summarise, we first outlined a way to check Hadamard products of vectors by

evaluating a polynomial expression at a random challenge point. Then, we showed a

compression technique which enables to keep the prover’s computational overhead

constant by increasing the interaction with the verifier. In each of the additional

rounds of interaction, the prover commits to a pair of cancellation vectors d+
t ,d

−
t and

the verifier replies with the next challenge yt. The full specifications of the prover

Pprod and verifier Vprod of the zero-knowledge proof of knowledge over the ILC for the

relationRprod are given in Figure 4.5 and 4.6. As for the previous proofs of knowledge,

we use the convention that steps marked with ILC→ ◦ and ILC← • denote incoming

and outgoing messages to the ILC, respectively.

Theorem 4.3. (GILC,Pprod,Vprod) is a proof of knowledge for the relation Rprod in the ILC

model with perfect completeness, statistical strong knowledge soundness with straight-line

extraction and perfect special honest verifier zero-knowledge.

82 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

Pprod((F, k, ∗), (mn), (A,B,C))

Round 1:

• Parse A = {ai,j}, B = {bi,j}, C = {ci,j} for (i, j) ∈ [0,m− 1]× [0, n− 1]

• Set µ := blog(m)c

• a′−1, b
′
−1 ← Fk

• c′−1 := a′−1 ◦ b′−1

/ ∗ ILC← • Send (commit, {ai,j}, {bi,j}, {ci,j}) to the ILC ∗/

ILC← • Send (commit,a′−1, b
′
−1, c

′
−1) to the ILC

Round 2:

ILC→ ◦ Get x from ILC

• For (i, j) ∈ [0,m− 1]× [0, n− 1]:

– α0,i,j := ai,jx
i

– β0,i,j := bi,j

• d+
0 :=

∑n−1
j=0

∑m
2
−1

i=0 α0,2i+1,j ◦ β0,2i,j , d−0 :=
∑n−1

j=0

∑m
2
−1

i=0 α0,2i,j ◦ β0,2i+1,j

ILC← • Send (commit,d+
0 ,d

−
0) to the ILC

(For t = 1 to µ− 1)
Round t+ 2:

ILC→ ◦ Get yt−1 from ILC

• m′ := m
2t

• For (i, j) ∈ [0,m′ − 1]× [0, n− 1]:

– αt,i,j := αt−1,2i,j +αt−1,2i+1,jyt−1

– βt,i,j := βt−1,2i,j + βt−1,2i+1,jy
−1
t−1

• d+
t :=

∑n−1
j=0

∑m′
2
−1

i=0 αt,2i+1,j ◦ βt,2i,j , d−t :=
∑n−1

j=0

∑m′
2
−1

i=0 αt,2i,j ◦ βt,2i+1,j

ILC← • Send (commit,d+
t ,d

−
t) to the ILC

Round µ+ 2:

ILC→ ◦ Get yµ−1 from ILC

• For j ∈ [0, n− 1]:

– a′j := αµ−1,0,j +αµ−1,1,jyµ−1

– b′j := βµ−1,0,j + βµ−1,1,jy
−1
µ−1

• a′(Z) := a′−1 +
∑n−1

j=0 a
′
jx
jm+1Zj

• b′(Z) := b′−1 +
∑n−1

j=0 b
′
jZ
−j

• c′ := c′−1 +
∑m−1

i=0

∑n−1
j=0 ci,jx

i+jm+1

• d′ :=
∑µ−1

t=0 (d+
t yt + d−t y

−1
t)

• e(Z) :=
∑n−1

r=1−n,r 6=0 erZ
r := a′(Z) ◦ b′(Z)−a′−1 ◦ b′−1−

∑n−1
j=0 a

′
j ◦ b′jxjm+1

ILC← • Send (commit, {er}n−1
r=1−n,r 6=0) to the ILC

FIGURE 4.5: Prover Pprod for the proof of knowledge forRprod.

4.2. ILC Proofs for Simple Relations 83

Vprod((F, k, ∗), (mn, [A], [B], [C]))

Round 1:

/ ∗ ILC→ ◦ Get message 3mn from the ILC ∗/

ILC→ ◦ Get message 3 from the ILC

• x← F

ILC← • Send (send, x) to the ILC

(For t = 0 to µ− 1)
Round t+ 2:

ILC→ ◦ Get message 2 from the ILC

• yt ← F

ILC← • Send (send, yt) to the ILC

Round µ+ 2:

ILC→ ◦ Get message 2n− 1 from the ILC

Query:

• z ← F

ILC← • Send (open,a′(z), b′(z), c′ + d′ + e(z)) to the ILC

ILC→ ◦ Get openings (v1,v2,v3) from the ILC

• If v1 ◦ v2 = v3 return 1, else return 0

FIGURE 4.6: Verifier Vprod of the proof of knowledge forRprod.

84 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

Proof. We start by showing completeness. If the statement is true then ai,j ◦ bi,j = ci,j

and

a′(z) ◦ b′(z) = a′−1 ◦ b′−1 +
n−1∑
j=0

a′j ◦ b′jxjm+1 +
n−1∑

r=1−n,r 6=0

erz
r

= a′−1 ◦ b′−1 +

m−1,n−1∑
i=0,j=0

ai,j ◦ bi,jxi+jm+1 +

µ−1∑
t=0

(
d+
t yt + d−t y

−1
t

)
+

n−1∑
r=1−n,r 6=0

erZ
r

= c′−1 +

m−1,n−1∑
i=0,j=0

cxi+jm+1 +

µ−1∑
t=0

(
d+
t yt + d−t y

−1
t

)
+

n−1∑
r=1−n,r 6=0

erz
r

= c′ + d′ + e(z)

where the first and the last terms correspond to the verification equation Vprod per-

forms on the queries a(z), b(z) and c′ + d′ + e(z). Therefore the verifier accepts with

probability 1.

For honest-verifier zero-knowledge, we describe how to simulate the verifier’s

view efficiently. Note that in a real transcript, the response to the first two opening

queries is uniformly distributed as a′−1, b
′
−1 are picked uniformly at random. The sim-

ulator picks v1,v2 ← Fk and sets v3 := v1 ◦ v2 and sets the response to the query to

be v1,v2,v3. The simulated response passes the verification check. Moreover, it is dis-

tributed uniformly at random conditioned on passing the verification, and thus it is

identically distributed to a real transcript. Hence, the proof system has perfect special

honest verifier zero knowledge.

Next, we show that the proof has statistical strong knowledge soundness with

straight-line extraction. The knowledge extractor is straight-line because it has access

to the communication transcript between the prover and the channel, and therefore it

sees the row vectors of matrices A,B,C composing the witness. It remains to show

that for any deterministic malicious prover P∗prod, if the committed vectors are not a

valid witness for Rprod, then the verifier has negligible probability of accepting the

statement. We prove this by induction on the values of µ. We begin with the base case

4.2. ILC Proofs for Simple Relations 85

µ = 0, for which m = 1. Consider the following polynomials in X,Z

a′(X,Z) = a′−1 +

n−1∑
j=0

a0,jX
j+1Zj

b′(X,Z) = b′−1 +
n−1∑
j=0

b0,jZ
−j

c′(X) = c′−1 +
n−1∑
j=0

c0,jX
j+1

e(X,Z) =
n−1∑

r=1−n,r 6=0

er(X)Zr

The verifier’s check is equivalent to test the following polynomial identity at random

challenges x, z.

a′(X,Z) ◦ b′(X,Z)− c′(X) = e(X,Z)

The polynomial on the right-hand side has the coefficient of Z0 equal to 0, while the

coefficient of Z0 on the left-hand side is equal to

a′−1 ◦ b′−1 − c′−1 +

n−1∑
j=0

(a0,j ◦ b0,j − c0,j)X
j+1 (4.1)

If the statement is false, there exists at least one index j for which a0,j ◦ b0,j − c0,j 6= 0

and thus the polynomial (4.1) is non-zero. By the Schwartz-Zippel Lemma, the prob-

ability of this polynomial evaluating to 0 at a random point x is at most n+1
|F| . By ap-

plying the Schwartz-Zippel Lemma again, if the polynomials a′(x, Z)◦b′(x, Z)−c′(x)

and e(x, Z) are not equal, then the probability that a′(x, z) ◦ b′(x, z) − c′(x) = e(z)

over the random choices of z is at most 2n−2
|F| . Overall, the probability of the verifier

returning 1 on a false statement is bounded by 3n−1
|F| , which is negligible. Assume now

that for µ′ challenges y0, . . . , yµ′−1, the verifier has negligible probability of accepting

a false statement, then we show the same holds in the case of using µ′ + 1 challenges.

86 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

Let m′ = 2µ
′

and consider the following bivariate polynomials in Yµ′ , Z

a′(Yµ′ , Z) = a′−1 +

2m′−1,n−1∑
i=0,j=0

ai,jx
i+2m′j+1yi00 · · · yµ′−1Y

iµ′

µ′ Z
j

b′(Yµ′ , Z) = b′−1 +

2m′−1,n−1∑
i=0,j=0

bi,jy
−i0
0 · · · yµ′−1Y

−iµ′
µ′ Z−j

c′ = c′−1 +

2m′−1,n−1∑
i=0,j=0

ci,jx
i+2m′j+1

d′(Yµ′) =

µ′−1∑
t=0

(
d+
t yt + d−t y

−1
t

)
+
(
d+
µ′Yµ′ + d

−
µ′Y

−1
µ′

)
e(Yµ′ , Z) =

n∑
r=−n,r 6=0

er(Yµ′)Z
r

The verifier’s check is equivalent to testing the following polynomial identity at ran-

dom challenges yµ′ , z.

a′(Yµ′ , Z) ◦ b′(Yµ′ , Z)− c′ − d′(Yµ′) = e(Z)

The coefficient of Z0 on the left-hand side is equal to

(a′−1◦b′−1−c′−1)+

m−1,n−1∑
i=0,j=0

ai,j ◦bi,jxi+jm+1 +

µ′−1∑
t=0

(
d+
t yt + d−t y

−1
t

)
+
(
d+
t Yµ′ + d

−
t Y
−1
µ′

)
(4.2)

By assumption, for a false statement the probability that

(a′−1 ◦ b′−1 − c′−1) +

m−1,n−1∑
i=0,j=0

ai,j ◦ bi,jxi+jm+1 +

µ′−1∑
t=0

(
d+
t yt + d−t y

−1
t

)
= 0

over the random choices of x, y0, . . . , yµ−1 is negligible, and therefore the polynomial

(4.2) is non-zero with overwhelming probability. By the Schwartz-Zippel Lemma, the

probability that the evaluation of (4.2) at a random challenge yµ′ gives 0 is negligible.

The rest of the proof follows as in the base case.

Efficiency. If we set µ ≈ log(m), the round complexity of the proof system is log(m)+

2. The verifier sends log(m) + 1 field elements to the prover through the ILC channel

and has a computational cost dominated by mn field multiplications to construct the

4.2. ILC Proofs for Simple Relations 87

opening queries and O(k) field multiplications to check it. The query complexity is

qc = 3 and the prover’s communication consists of commitments to 2(µ + n + 1)

vectors in Fk, excluding the commitments to the rows of the matrices A,B,C. The

prover has to compute coefficients αt,i,j ,βt,i,j and cancellation terms d+
t ,d

−
t , which

overall requireO(mnk) field multiplications. To compute the other cancellation factors

er, the prover first computes the product a′(Z) ◦ b′(Z) which requires O(km log(m))

and then subtracts the coefficients of c′ and d′. The efficiency of the proof system is

summarised in Table 4.3.

Prover computation TPILC
= O(kn log n + kmn) F×

Verifier computation TVILC
= O(mn + k) F×

Prover communication t = 2(log(m) + n + 1) log |Fk|
Verifier communication CILC = (log(m) + 2) log |F|
Query complexity qc = 3
Round complexity µ = log(m) + 2

TABLE 4.3: Efficiency of the proof system for the Hadamard product
relation Rprod. F× stands for the cost of a single multiplication and

log |F| for the size of a field element.

4.2.4 ILC Proof for a Known Permutation Relation

We will now outline a proof of knowledge for the known permutation of the entries

in two matrices A,B ∈ Fmn×k. The corresponding relation is

Rkperm =

 (ppILC, u) = ((F, k) , (mn, π), (A,B)) :
A,B ∈ Fmn×k ∧ π ∈ Σ[mn]×[k] ∧ Aπ(i,j) = Bi,j ∀(i, j) ∈ [mn]× [k]


In [Gro09], Groth gave a known permutation argument where the prover only has to

compute a linear number of field multiplications1. The idea behind the argument is

for the verifier to pick a random Vandermonde matrix V ∈ Fmn×k and challenge the

prover to show that
mn,k∑

i=1,j=1

Ai,jVπ(i,j) =

mn,k∑
i=1,j=1

Bi,jVi,j

1This is the computational cost for the prover if we ignore the cost of committing to vectors. The
argument relies on homomorphic commitments and is instantiated with Pedersen commitments [Ped91]
in groups of superpolynomial size. Therefore committing costs a linear number of exponentiations,
which dominates the computational cost of the prover.

88 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

If we were to follow this approach, we would similarly get a proof for which the com-

putational cost of the prover is a linear number of multiplications. The verifier would

also incur a linear number of multiplications to compute the Vandermonde matrix

challenge. Here we outline how this can be improved by reducing the computational

cost of the verifier to achieve a linear number of additions.

To reduce the computational cost for the verifier, the main idea is to let the prover

help construct the challenge matrix used in the permutation proof, and then let the

verifier check that the matrix was correctly formed. Since our proof to check Req

relations only costs a linear number of additions to verify, we can reduce the compu-

tational cost for the verifier to a linear number of additions and sublinear number of

multiplications.

We represents elements (i, j) ∈ [mn]×[k] as integers (i−1)k+j ∈ [mnk] and think of

the permutation π to be either in Σ[mn]×[k] or in Σ[mnk] depending on the representation

used. We assume that integers in [mnk] can be mapped injectively into elements of the

finite field F, and consider the auxiliary matrices V, V ′, J ∈ Fmn×k such that Vi,j =

(i− 1)k + j, V ′i,j = π((i− 1)k + j), and Ji,j = 1 i.e.,

V =



1 2 · · · k

k + 1 k + 2 · · · 2k

. . .

· · · mnk


V ′ =



π(1) π(2) · · · π(k)

π(k + 1) π(k + 2) · · · π(2k)

. . .

· · · π(mnk)



J =


1 1

. . .

1 1


Suppose the prover has committed to the rows of the two matrices A,B ∈ Fm×k.

The idea behind the construction is to let the the verifier pick random challenges x, y

and let the prover commit to matrices U = yV − xJ and U ′ = yV ′ − xJ . The verifier

can efficiently compute the entries of U and U ′ with 2mnk − 1 additions. Then, he can

efficiently check that the prover has committed to the correct matrices by using a proof

for an equality relationReq, which can be verified withO(mnk) additions. Notice that

Vπ(i,j) = V ′i,j and therefore if B contains the permuted entries of A, then also B + yV ′

4.2. ILC Proofs for Simple Relations 89

FIGURE 4.7: Decomposition of the Known Permutation Proof Over the
ILC into proofs for simpler relations.

contains a permutation of the entries in A + yV . On the other hand, if the statement

is false, then with overwhelming probability over the choices of y there will be entries

in B + yV ′ that do not appear in A + yV . To show that these two matrices contain

the permuted entries of each another, the prover uses a (same-)product proof to show

that the product of all the entries in the matrix A+ U is equal to the product of all the

entries in B + U ′, i.e.,

mn,k∏
i,j

(Ai,j + yVi,j − x) =

mn,k∏
i,j

(Bi,j + yπ(Vi,j)− x) (4.3)

By the Schwartz-Zippel Lemma this is unlikely to hold over the random choice of x

unless indeed B + yV ′ contains a permutation of the entries in A+ yV .

The above idea relies on the invariance of polynomials under permutation of their

roots. This was already used by Neff [Nef01] in the context of verifiable shuffles and

later by Groth [Gro09] in proof systems for the unknown permutation relation.

At high-level our proof system for Rkperm decomposes into five sub-proofs as il-

lustrated in Figure 4.7.

Same-Product Relation. Before moving to the description of the proof system for

Rkperm we spell out the same-product relation Rsame-prod which is used to check that

(4.3) holds. More precisely, the relationRsame-prod checks that the product of all entries

in a matrix A is the same as the product of all entries of a matrix B, i.e.,

Rsame-prod =

 (ppILC, u) = ((F, k) , (mn), (A,B)) :
A,B ∈ Fmn×k ∧

∏mn,k
i,j Ai,j =

∏mn,k
i,j Bi,j



90 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

We omit the description of the proof system (GILC,Psame-prod,Vsame-prod) over the ILC

for the above relation, which can be found in [BCG+17], and recall the following result

without proof.

Theorem 4.4 ([BCG+17]). (GILC,Psame-prod,Vsame-prod) is a proof system for the relation

Rsame-prod in the ILC model with perfect completeness, statistical strong knowledge soundness

with straight-line extraction, and perfect special honest verifier zero-knowledge.

This proof system uses as a building block the Hadamard product proof of Sec-

tion 4.2.3 and computationally achieves similar asymptotics. The costs of the proof

system are listed in Table 4.4.

Prover computation TPILC
= O(kn log n + kmn) F×

Verifier computation TVILC
= O(mn + k) F×

Prover communication t = O(mn) log |Fk|
Verifier communication CILC = (log(m) + 2) log |F|
Query complexity qc = 11
Round complexity µ = log(m) + 2

TABLE 4.4: Efficiency of the proof system for the same-product relation
Rsame-prod. F× stands for the cost of a single field multiplication and

log |F| for the size of a field element.

Proof System for the Known Permutation Relation. The description of the proof

system for the known permutation relation Rkperm is given in Figure 4.8. We assume

that the prover has already committed to the rows of matrices A,B and delimit this

step with / ∗ and ∗/. Notice that in case the matrices A and B are equal, the entries

in A lying on the same cycle in the decomposition of π are guaranteed to be the same.

This special case is the one we will use in the next section within the proof for the

satisfiability of an arithmetic circuit, and specifically to check the consistency of the

wiring of the circuit.

Theorem 4.5. (GILC,Pperm,Vperm) is a proof system for the relationRkperm in the ILC model

with perfect completeness, statistical strong knowledge soundness with straight-line extrac-

tion, and perfect special honest verifier zero-knowledge.

Proof. We start by showing completeness. If the statement is true, then the matrices A′

and B′ are such that A′π(i,j) = B′i,j . Therefore each entry of A′ appears somewhere in

matrixB′. Perfect completeness follows by the perfect completeness of the sub-proofs.

4.2. ILC Proofs for Simple Relations 91

Pkperm(ppILC, (mn, π), (A,B))

Round 1:

/ ∗ILC← • Send (commit, A,B) to the ILC ∗/

Round 2 to logm+ 2:

ILC→ ◦ Get message (x, y) from ILC

• For (i, j) ∈ [mn]× [k]

– Vi,j := (i− 1)k + j

– V ′i,j := π((i− 1)k + j)

• U := yV − xJ

• U ′ := yV ′ − xJ

• A′ := A+ U

• B′ := B + U ′

ILC← • Send (commit, U, U ′, A′, B′) to the ILC

• Run Peq(ppILC, U, U)

• Run Peq(ppILC, U
′, U ′)

• Run Psum(ppILC, (mn), (A,U,A′))

• Run Psum(ppILC, (mn), (B,U ′, B′))

• Run Psame-prod(ppILC, (mn), (A′, B′))

Vkperm(ppILC, (mn, π, [A], [B]))

Round 1

/ ∗ILC→ ◦ Get message 2mn from the ILC ∗/

• For (i, j) ∈ [mn]× [k]

– Vi,j := (i− 1)k + j

– V ′i,j := π((i− 1)k + j)

• x, y ← F

• U := yV − xJ

• U ′ := yV ′ − xJ

ILC← • Send (send, x, y) to the ILC

Round 2 to logm+ 2:

ILC→ ◦ Get message 4mn from the ILC

• Run Veq(ppILC, (U, [U]))

• Run Veq(ppILC, (U
′, [U ′])

• Run Vsum(ppILC, (mn, [A], [U], [A′]))

• Run Vsum(ppILC, (mn, [B], [U ′], [B′]))

• Run Vsame-prod(ppILC, (mn, [A′], [B′]))

• If all the sub-proofs accept return 1, else
return 0

FIGURE 4.8: Proof of knowledge for the relationRkperm.

Next we show statistical strong knowledge soundness. As usual, the knowledge

extractor sees the vectors sent from the prover to the ILC, and therefore it has straight-

line extraction. The knowledge soundness of the equality and of the sum sub-proofs

guarantees that, apart with negligible probability, matrices U,U ′ are correctly formed

and that committed matrices A′, B′ are the sums of A + U , and B + U ′, respectively.

Moreover, from the knowledge soundness of the same-product proof, we get
∏
i,j(Ai,j+

yVi,j − x) =
∏
i,j(Bi,j + yπ(Vi,j)− x). If the statement is false, then A,B have different

entries and the Schwartz-Zippel Lemma tells us that also A + yV and B + yV ′ have

different entries with overwhelming probability, over the choices of y. By applying

92 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

the Schwartz-Zippel Lemma again, the probability over the random choice of x ← F

of the above equality to hold is at most mnk
|F| , which is negligible.

Finally, the proof system has perfect SHVZK. Matrices U and U ′ can be computed

given the statement and the random challenges sent from the verifier. These are suf-

ficient to simulate the view of the equality sub-proofs. The sub-proofs for the sum

relation can be trivially simulated. The simulator then is only required to execute the

simulator of the same-product sub-proof.

Efficiency. The round complexity of the proof is of one round more than the same-

product proof, and thus log(m)+3. The number of queries done by the verifier is equal

to the sum of the queries of the sub-proofs, i.e. qc = 15. The verifier communication is

O(log(m)) challenges and his computational complexity is dominated byO(mnk) field

additions. The communication complexity for the prover is O(mn) vectors of length

k, which are sent within the same-product sub-proof. The computational complexity

of the prover is dominated by the cost of the same-product proof, which is in turn

dominated by the cost of the product proof of Section 4.2.3, and therefore is equal to

O(mnk + kn log(n)). The efficiency of the proof system is summarised in Table 4.9.

Prover computation TPILC
= O(kn log n + kmn) F×

Verifier computation TVILC
= O(kmn) F+

Prover communication t = O(mn) log |Fk|
Verifier communication CILC = (log m + 3) log |F|
Query complexity qc = 15
Round complexity µ = log m + 3

FIGURE 4.9: Efficiency of the proof of knowledge for the Rkperm rela-
tion. F× stands for the cost of a single field multiplication, F+ stands
for the cost of a single field addition, and log |F| for the size of a field

element.

4.3 ILC Proofs for the Satisfiability of an Arithmetic Circuit

In this section we give our proof of knowledge for the satisfiablity of an arithmetic

circuit over the ILC. Given the relation specified in the previous section, we can rewrite

4.3. ILC Proofs for the Satisfiability of an Arithmetic Circuit 93

the relationRAC for the satisfiability of an arithmetic circuit as follows.

RAC =



(pp, u, w) :=
(

(F, k, ∗) , (mA,mM , π, {ui}i∈S) ,
(
{vi}i∈[m]

))
:

m = 3mA + 3mM ∧ S ⊆ [m]

∧ A = (vi)
mA
i=1 ∧ D = (vi)

3mA+mM
i=3mA+1

∧ B = (vi)
2mA
i=mA+1 ∧ E = (vi)

3mA+2mM
i=3mA+mM+1

∧ C = (vi)
3mA
i=2mA+1 ∧ F = (vi)

3mA+3mM
i=3mA+2mM+1

∧ V = (vi)
m
i=1

∧ (pp, {ui}i∈S , {vi}i∈S) ∈ Req ∧ (pp,mA, (A,B,C)) ∈ Rsum

∧ (pp,mM , (D,E, F)) ∈ Rprod ∧ (pp, (m,π), (V, V)) ∈ Rperm


In the proof for arithmetic circuit satisfiability, the prover starts by committing to all

values {vi}mi=1 using the conventions we introduced in Section 4.1. She will then exe-

cute the following sub-proofs in parallel

• An equality proof for showing that consistency of the wire values ui∈S in the

instance with the committed vectors vi∈S .

• A proof for the sum of committed matrices A,B,C to show the consistency of

wire values with the addition gates in the circuit, i.e. A+B = C.

• A proof for the Hadamard product of committed matrices D,E, F to show the

consistency of wire values with the multiplication gates, i.e. D ◦ E = F .

• A known permutation proof to show the consistency of the wire assignments

with the wiring of the circuit: this is done by showing that the matrix V stor-

ing the assignments to the wire values remains unchanged when applying the

permutation π encoding the wiring of the circuit, i.e. Vi,j = Vπ(i,j).

The description of our proof of knowledge for the relationRAC is given in Figure 4.10.

Theorem 4.6. (GILC,PAC,VAC) is a proof system for RAC in the ILC model with perfect

completeness, statistical strong knowledge soundness with straight-line extraction, and perfect

special honest-verifier zero-knowledge.

Proof. Perfect completeness follows from the perfect completeness of the sub-proofs.

94 Chapter 4. Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model

PAC(ppILC, (mA,mM , π, {ui}i∈S), ({vi}i∈[m]))

• A := (vi)
mA
i=1

• B := (vi)
2mA
i=mA+1

• C := (vi)
3mA
i=2mA+1

• D := (vi)
3mA+mM
i=3mA+1

• E := (vi)
3mA+2mM
i=3mA+mM+1

• F := (vi)
3mA+3mM
i=3mA+2mM+1

• U := (vi)i∈S

• V := (vi)
3(mA+mM)
i=1

ILC← • Send (commit, V) to the ILC

• Run Peq(ppILC, U, U)

• Run Psum(ppILC, (mA), (A,B,C))

• Run Pprod(ppILC, (mM), (D,E, F))

• Run Pperm(ppILC, (3(mA+mM), π), (V, V))

VAC(ppILC, (mA,mM , π, {ui}i∈S , {[vi]}i∈[m]))

ILC→ ◦ Get message 3(mA +mM) from the ILC

• m := 3(mA +mM)

• U := (ui)i∈S

• Run Veq(ppILC, U, [U])

• Run Vsum(ppILC, (mA, [A], [B], [C]))

• Run Vprod(ppILC, (mM , [D], [E], [F]))

• Run Vperm(ppILC, (m,π, [V], [V]))

• If all the sub-proofs accept return 1,
Else return 0

FIGURE 4.10: Proof of knowledge for the relation RAC over the ILC
model.

Statistical strong knowledge soundness follows from the strong knowledge sound-

ness of the sub-proofs. The statistical strong knowledge soundness of the equality sub-

proof guarantees that commitments to values included in the instance indeed contain

the publicly known values. The correctness of the addition and the multiplication

gates follows from the statistical knowledge soundness of the respective sub-proofs.

Finally, as we have argued above, the permutation sub-proof guarantees that the com-

mitted values respect the wiring of the circuit. Since all sub-proofs have knowledge

soundness with straight line extraction, so does the main proof.

Perfect SHVZK follows from the perfect SHVZK of the sub-proofs. A simulated

transcript is obtained by combining the outputs of the simulators of all the sub-proofs.

Efficiency. The efficiency of our arithmetic circuit satisfiability proof in the ILC model

is given in Table 4.5. The computational cost is dominated by the permutation proof,

where the matrices have higher dimensions, so we choose m, n such that m = 3mA +

3mM = mn. The total number of gates is N = mnk
3 . The asymptotic results displayed

4.3. ILC Proofs for the Satisfiability of an Arithmetic Circuit 95

below are obtained when m = O(logN) and the vector length k specified by ppILC

is approximately
√
N . While k does not play a significant role in the efficiency over

the ILC, the compiled argument from Chapter 6 will achieve optimal communication

complexity over the standard channel for k ≈
√
N . The query complexity qc is the

number of linear combinations the verifier queries from the ILC channel in the open-

ing query. The verifier communication CILC is the number of messages sent from the

verifier to the prover via the ILC channel and in our proof system it is proportional to

the number of rounds. Let µ be the number of rounds in the ILC proof and t1, . . . , tµ

be the numbers of vectors that the prover sends to the ILC channel in each round, and

let t =
∑µ

i=1 ti.

Prover computation TPILC
= O(N) F×

Verifier computation TVILC
= O(N) F+

Prover Communication t = O
(√

N
)

log |Fk|
Verifier communication CILC = O(log log(N)) log |F|
Query complexity qc = 20
Round complexity µ = O(log log(N))

TABLE 4.5: Efficiency of our proof of knowledge for the relation RAC

in the ILC model. F× stands for the cost of a single field multiplication,
F+ stands for the cost of a single field addition, and log |F| for the size

of a field element.

97

Chapter 5

Proofs for the Execution of

TinyRAM Programs in the ILC

Model

In the previous chapter we constructed proofs for the evaluation of arithmetic cir-

cuits. In practice however, computation is usually not expressed in form of circuits,

but it is more conveniently expressed as computer programs. In this chapter we move

one step closer towards practicality and construct proofs for the correct execution of

RAM programs. More precisely we give proofs for the correct execution of TinyRAM

programs in the ILC model. TinyRAM is a particularly convenient RAM machine to

use when constructing zero-knowledge proofs for correct program execution: it has

an expressive architecture that allows to efficiently compile high-level languages into

machine code (see for example [BCG+13a]); the architecture contains a minimal in-

struction set which can be efficiently reduced to a set of algebraic operations. While

the proofs presented in this chapter are mostly of theoretical interest, we see them as

an important step towards reducing the concrete computational overhead of proofs

for correct execution in practice.

Our proofs achieve perfect completeness, statistical strong knowledge soundness

and perfect special honest verifier zero knowledge in the ILC model. As in the previous

chapter, the knowledge soundness of our proofs relies on applications of the Schwartz-

Zippel Lemma and thus we set the ILC to operate on a large field, i.e. |F| ≈ λω(1).

Our proof system is highly efficient for computationally intensive programs for

which the execution time dominates the other parameters, i.e. memory and program

98 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

length. For a TinyRAM program terminating in T steps, our prover computational

cost amounts to O(T) field multiplications, while the verifier runs in O(
√
T) field

multiplications. We also measure the performance of prover and verifier in TinyRAM

operations to get a more concrete figure of their computational overhead. We con-

sider TinyRAM to operate on words of length W = Θ(log(λ)) so that the program

can address and use a polynomial amount of memory M = poly(λ). Therefore, the

ratio e = log(|F|)
W = ω(1) is superconstant in the security parameter, and the cost of a

field multiplication implemented in TinyRAM is α = O(e2). This means that if we

had to implement our prover as a TinyRAM program using the same word size as the

program in the instance, her running time would be O(αT) steps, for an arbitrarily

small superconstant function α(λ) = ω(1). In Chapter 6 we will show how to compile

these ILC proofs into standard proofs and arguments over the standard channel. We

also suggest instantiations that preserve the computational efficiency achieved over

the ILC.

5.1 Overview

Typical applications of zero-knowledge proofs are concerned with assuring that a par-

ticipant in a protocol is behaving honestly. This can be formulated as checking that

a participant, supposedly running program P , on public input x and private input w

provides the correct output z. Without loss of generality, we can formulate the verifi-

cation as an extended program that takes public input v = (x, z) and answers 0 if and

only if z is the output of the computation. We therefore formulate correct program

execution as the program just answering 0.

In our proof system instances are of the form u = (P, v, T,M), where P is a

TinyRAM program, v is a list of words given as input to the program, T is a time

bound, and M is the size of the memory. A witness w is another list of words and can

be seen as the private inputs to the program. We assume without loss of generality

that the witness is appended by 0’s, such that |v| + |w| = M and that the program

starts with the memory initialised to these words.

The statement we want to prove is that the program P terminates with the instruc-

tion answer 0 within T steps, using M words of memory on the public input v, and

5.1. Overview 99

private input w. We let the public parameter define the word size, the number of reg-

isters, and upper bounds on the program size, time and memory. Correct program

execution is given by the relation

RTinyRAM =



(pp, u, w) := ((W,K, ∗), (P, v, T,M), w) :
P is a TinyRAM program with W -bit words, K registers,

and M words of addressable memory, which on inputs v and w

terminates in T steps with the instruction answer 0.


Our main interest is to prove the correct execution of programs that require “heavy

computation”, i.e. for which the number of executed steps outweigh the other param-

eters. We will assume throughout the chapter that T � L+M , where L is the number

of instructions in the program.

In practice, the typical approach ([BCG+13a; BCT+14]) to check the above relation

is to first reduce the statement to a set of arithmetic constraints or to an arithmetic

circuit, and then use an efficient proof system to verify the consistency of these. In all

existing systems to verify the correct program execution, the prover incurs in a poly-

logarithmic (ω(log λ)) overhead in computation. The source of this overhead in these

systems is both at the front-end level, i.e. in the arithmetization of the program, and at

the cryptographic back-end level, i.e. the choice of the proof system used for handling

the reduced statement. For the back-end, the choice of the proof system is usually

SNARK-based, in which the prover computes a linear number (in the circuit size) of

exponentiations in a cyclic group of superpolynomial size, each requiring a superlog-

arithmic number of field operations. The source of the overhead at the front-end has

to do with the circuit produced by the reduction which is of size Ω(T log2(T)). In this

chapter we focus on reducing the overheads at the back-end level and in Chapter 6 we

discuss instantiations of our ILC proofs which preserve their computational efficiency,

i.e. the compilation only introduces a constant computational overhead.

Improved Arithmetization. At an high level, [BCG+13a; BCT+14] check the execu-

tion of TinyRAM by committing to the execution trace of the program, which stores

the state of the computation at each step, embedded it into field elements. The cor-

rect transition from one step in the execution trace to the next one is checked by an

100 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

arithmetic circuit taking as inputs the two states of the computation. To check that

the memory is correctly accessed during the execution, the prover commits to another

copy of the execution trace, but this time sorted first by memory access and then by

execution time, rather than execution time only. The consistency of two consecutive

accesses to the same memory location can be checked by another arithmetic circuit

taking as inputs two consecutive steps in the memory-sorted trace. The only thing left

to check is the consistency of the two committed execution traces, i.e. that they are a

permutation of each other.

One way to check the consistency of the two sorted traces is by using another arith-

metic circuit which embeds a permutation network, such as a Beneš network [Ben65].

For T nodes in the network, these require O(log(T)) layers of switches of constant

size, and can be evaluated by an arithmetic circuit of size O(T (log T)2). To reduce

this overhead, instead of evaluating a permutation by using an arithmetic circuit, we

simply check the existence of a permutation that maps one memory access to the next

one at the same address. This can be done much more efficiently using techniques

similar to the ones we outlined in Section 4.2.4, which were first suggested by Neff

[Nef01] in the context of verifiable shuffles. In this way, we avoid committing to the

memory-sorted execution trace and we check the memory directly on the time-sorted

trace.

We recall that the instruction set of TinyRAM (Table 3.1) contains both arithmetic

operations such as addition and multiplication of words, and logical operations such

as bit-wise XOR, AND and OR. To verify the execution of a logical instruction using

arithmetic operations one can decompose words into single bits that are handled indi-

vidually. Bit-decomposition makes it easy to implement the logical operations using

arithmetic circuits, but introduces an overhead when embedding bits into full size

field elements. More specifically, if a program uses a polynomial amount of memory

M = poly(λ), then we need to allow the word size used by the TinyRAM machine to be

at leastW = Ω(log(λ)) to be able to address all the memory used. Hence, if we use bit-

decomposition, the size of the arithmetic circuit used to check the transition of states

is proportional to W . Checking all T transitions in the execution trace is equivalent to

checking a circuit of size O(T log(λ)). To remove the overhead of bit-decomposition

we introduce a less costly decomposition. While additions and multiplications are

5.2. Arithmetization of TinyRAM 101

manageable using a natural embedding of words into field elements, such a repre-

sentation is not well suited to logical operations. However, instead of decomposing

words into individual bits, we decompose them into interleaved odd-position bits

and even-position bits. A tuple (a3, a2, a1, a0) can for instance be decomposed into

(a3, 0, a1, 0) + (0, a2, 0, a0). The key point of this idea is that adding two interleaved

even bit nibbles yields (0, a2, 0, a0) + (0, b2, 0, b0) = (a2 ∧ b2, a2 ⊕ b2, a0 ∧ b0, a0 ⊕ b0).

Using another decomposition into odd-position and even-position bits we can now

extract the XORs and the ANDs. Using this core idea, it is possible to represent all

logical operations using field additions together with decomposition into odd and

even-position bits. This reduces the verification of logical operations to verify correct

decomposition into odd and even bits.

To enable decomposition proofs into odd and even-position bits, we develop a new

lookup proof that makes it possible to check that a field element belongs to a table of

permitted values. By creating a lookup table of all words with even-position bits, we

make it possible to verify such decompositions. Odd and even-bits decomposition

and lookup proofs also enable to verify that a field element represents represents a

valid word within the range [0, . . . , 2W − 1].

Chapter Outline. In the next section we describe how to embed the execution trace

of a TinyRAM program into field elements, the relation of correct program execution

induced by this encoding and describe the idea behind the even/odd-bit decomposi-

tion. In Section 5.3 we then look at the decomposition of the arithmetized TinyRAM

relation in terms of few building-block relations. In Section 5.4 we give an overview

of the proof systems for the building blocks. We refer to [BCG+18] for the full spec-

ifications of the unknown permutation and lookup proofs. Lastly, in Section 5.5 we

combine them to give a proof for the correct execution of a TinyRAM program.

5.2 Arithmetization of TinyRAM

As a first step towards the realisation of proofs for the correct execution of TinyRAM

programs we translate RTinyRAM into a more amenable relation involving elements

in a finite field. Given a TinyRAM machine with word-size W and a finite field F,

102 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

we can in a natural way embed words into field elements by encoding a word a ∈

{0, . . . , 2W − 1} as the field element a · 1F = 1F + · · ·+ 1F (a times). We will use finite

fields of characteristic p > 22W − 2W−1 because then sums and products of words are

less than p and we avoid overflow when applying field operations to the embedded

words. We encode the program P , memory and states of a TinyRAM program as

tuples of field elements. We then introduce a new relation Rfield
TinyRAM consisting of a

set of arithmetic constraints these encodings should satisfy to guarantee the correct

program execution. The relation will take instances u = (P, v, T,M), and witnesses w

consisting of the encodings of program, memory, the execution trace as well as a set

of auxiliary field elements. It will be the case that the encoding of the witness can be

done alongside an execution of the program in O(L+M + T) field operations.

5.2.1 Formatting the Witness

Given a correct program execution we encode program, memory and states of the

TinyRAM machine as field elements and arrange them in a number of tables as pic-

tured in Figure 5.1. The execution table Exe, contains the field elements encoding the

states of the TinyRAM machine. It consists of T rows, where row t describes the state

at the beginning of step t. A row includes field elements that encode the time t, the pro-

gram counter pct, the instruction instpct corresponding to the program line pct, an im-

mediate value At, the values r0,t, . . . , rK−1,t contained in the registers reg0, . . . , regK−1

at time t, and the flag flagt. The next row contains the resulting state of the TinyRAM

machine at time t+ 1. Each row also includes a memory address addrt, and the value

vaddrt stored at this address after the execution of the step, as well as a constant number

of auxiliary field elements to be specified later that will be used to check correctness

of program execution.

The next table is the program table Prog, which contains the field elements en-

coding of the TinyRAM program P . Each row contains the description of one line of

the program, consisting of one instruction, at most three operands, and possibly an

immediate value, i.e. a constant value specified by the instruction. Note that the in-

struction and the operands are encoded together using a single single field element.

Furthermore, we introduce a constant number of auxiliary field elements in each row.

These entries can be efficiently computed given the program line stored in the same

5.2. Arithmetization of TinyRAM 103

Time pc Instruction Immediate reg0 . . . regK−1 Flag Address Value auxExe

1 0 inst0 A0 0 . . . 0 0 0 0 . . .
...

t pct instpct At r0,t . . . rK−1,t flagt addrt vaddrt . . .
t+ 1 pct+1 instpct+1

At+1 r0,t+1 . . . rK−1,t+1 flagt+1 addrt+1 vaddrt+1 . . .
...

T pcT answer 0 r0,T . . . rK−1,T flagT addrT vaddrT . . .

(A) The execution table Exe.

pc Instruction Immediate auxProg

0 inst0 A0 . . .
...

L− 1 instL−1 AL−1 . . .

(B) The program table Prog.

Address Initial value usd

0 0 0
1 v1 0

...
M − 1 vM−1 0

0 0 1
1 v1 1

...
M − 1 vM−1 1

(C) The mem-
ory table Mem.

Values
0
1
4
5
...∑W

2
−1

i=0 22i

(D) The table
EvenBits.

Values Powers
0 1
1 2
2 4
3 8
...

...
W − 1 2W−1

W 0

(E) Table Pow.

FIGURE 5.1: The execution table Exe, the program table Prog, the mem-
ory table Mem, the table EvenBits and the table Pow.

row and will help verifying its execution, e.g. we encode the position of input and

output registers as auxiliary field elements.

The memory table Mem has rows that list the possible memory addresses, their

initial values, and an auxiliary field element usd ∈ {0, 1}. For every pair of address and

corresponding initial value, the memory table Mem contains a row in which usd = 0

and another row in which usd = 1. Recall that the memory is initialised with input

words listed in v, w, i.e., the input words contributing to the instance and witness of

the relationRTinyRAM.

In addition to these, we also consider two auxiliary lookup tables EvenBits,Pow.

104 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

The former contains the encoding of words of length W whose binary expansion has

0 in all odd positions. This table contains 2
W
2 field elements and will be used to check

that certain field elements encode a word of lengthW . The latter table stores in the first

column the encoding of integers in i ∈ [0,W], and in the second column the powers

2i mod 2W . This table contains 2(W + 1) field elements and will be used to efficiently

check shift instructions.

5.2.2 Arithmetized TinyRAM Relation

Let (Exe,Prog,Mem,EvenBits,Pow) be the tables of field elements encoding the pro-

gram execution and the auxiliary values. We can now reformulate the correct execu-

tion of a TinyRAM program defined byRTinyRAM as a relation that imposes a number

of constraints to the entries in the tables:

Rfield
TinyRAM =



(pp, u, w) := ((W,K,F, ∗), (P, v, T,M),w) :
w := (Exe,Prog,Mem,EvenBits,Pow, ∗)

(pp, (P, v, T,M),w) ∈ Rcheck

(pp, (T,M),w) ∈ Rmem

(pp,⊥,w) ∈ Rstep


The relations Rcheck, Rmem,Rstep jointly guarantee that the witness w consists of field

elements encoding a correct TinyRAM execution that answers 0 in T steps using M

words of memory, public input v, and additional private inputs. More precisely,

• Rcheck: it checks the initial values v of the memory are correctly included into

Mem, the program P is correctly encoded in Prog, the tables EvenBits and Pow

contain the correct encodings of the auxiliary lookup tables, the initial state of

the TinyRAM machine is correct and that it terminates with answer 0 in step T .

• Rmem: it checks that memory usage is consistent throughout the execution of the

program. That is, if a memory value is loaded at time t then it should match the

last stored value at the same address.

• Rstep: it checks that each step of the execution has been performed correctly.

5.2. Arithmetization of TinyRAM 105

In Section 5.3 we describe Rcheck, Rmem and Rstep, gradually decomposing them into

smaller and simpler relations. Ultimately, we specify each of these subrelations in

terms of some building blocks: equality, lookup, unknown permutation and range

relations.

5.2.3 Building-Block Relations

Next, we describe the building-block relations used in the decomposition ofRfield
TinyRAM.

As for the previous chapter the following relations refer to tables in the witness that

have been previously committed by the prover. In the instance, we sometimes de-

note commitments to tables as [Tab] to clarify which statement we refer to. However,

we avoid doing so in the description of the relations to reduce the complexity of the

notation.

Equality Relations. The equality relationReq checks that rows Tabi of a table Tab in

the witness encode tuples v1, . . . ,vm of given W -bit words

Req =

 (pp, u, w) := ((W,K,F, ∗), (v1, . . . ,vm),Tab) :
Tab := {Tabi}i ∧ Tabi = vi · 1F ∀ i ∈ [m]


This is equivalent to the equality relation we introduced in Section 4.2.1. The only

difference here is that public entries in the instance may be represented as words,

instead of field elements. Therefore the equality relation above includes checking that

a word has been correctly encoded in a field element.

Lookup Relations. A lookup relation checks the membership of a tuple of field el-

ements w in the set of rows of a table Tab. This differs from the previous relation as

both w and Tab are in the witness.

Rlookup =

 (pp, u, w) := ((W,K,F, ∗),⊥, (w,Tab)) :
Tab := {Tabi}i ∧ ∃ i : Tabi = w


We extend this relation in the natural way to check the membership of multiple tuples

w1,w2, . . . in a table.

106 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

Unknown Permutation Relations. An unknown permutation relation can be used

to check that two ordered sets of the same size are permutation of each other. Differ-

ently from the known permutation relation we introduced in Section 4.2.4, the permu-

tation may not be publicly known.

Rperm =

 (pp, u, w) := ((W,K,F, ∗),m, ({ai,bi}mi=1, π)) :
π ∈ Σm ∧ aπ(i) = bi


Range Relations. We use a range relation to check that a field element a can be writ-

ten as a W -bit word, i.e., a is in the range [0, 2W − 1].

Rrange =

 (pp, u, w) := ((W,K,F, ∗),W,a) :
0 ≤ a ≤ 2W − 1


As we will see next, by including the table EvenBits in the witness we can reduce a

range relation to a lookup relation and a set of linear consistency checks.

5.2.4 Efficient Bit Decomposition for Range and Logical Relations

Embedding W -bit words into elements of a field of size p > 22W − 2W−1 enables ef-

ficient verification of arithmetic TinyRAM instructions since the sum and the product

of two W -bits word does not cause a modular reduction in the field. However, as we

embed words into a large field one has to additionally check that inputs and output

of an instruction can be represented as W -bits words. Another inconvenience is that

logical operations cannot be checked directly using field operations on the embed-

ded words. Both issues can be addressed by storing for each word a additional W

field elements embedding the binary decomposition of a. Looking ahead to the next

sections, this decomposition would make the prover incur a multiplicative overhead

proportional to W = Ω(log λ). As our main goal is to reduce this overhead, we devise

a different approach. In this section we introduce a new decomposition technique to

enable efficient verification of range and logical relations.

Let a be a field element that can be written as a W -bit word. For a =
∑W−1

i=0 ai2i

such that ai ∈ {0F, 1F} we write a ↔ (aW−1, . . . ,a2,a1,a0) . While proving range

relations and logical operations, we find it helpful to split a into a pair of field elements

5.2. Arithmetization of TinyRAM 107

ao,ae corresponding to the even-position bits and the odd-positions bits (shifted into

even-position) of the word stored in a, i.e.

ae ↔ (0,aW−2, . . . , 0,a2, 0,a0) ao ↔ (0,aW−1, . . . , 0,a3, 0,a1)

Given this decomposition one can recompute a as follows.

a = 2ao + ae

Range Relations. To check that a field element a is in the range [0, 2W −1], one could

use a lookup table of size 2W storing all values in the range and check that a is one of

the entries in the table. However, this would give a table of size 2W which is too large,

as 2W may even exceed the running time T of the program in the instance. Instead,

we can use a shorter table EvenBits of size 2
W
2 , storing all the words with odd-position

bits equal to zero. To check that a is in the range [0, 2W − 1] it is sufficient to check that

a = 2ao + ae for ao,ae ∈ EvenBits. This is summarised in the following relation

Rrange =

 (pp, u, w) := ((W,K,F, ∗),⊥, (a, (ao,ae),EvenBits)) :
(pp,⊥, ((ao,ae),EvenBits)) ∈ Rlookup ∧ a = 2ao + ae


This relation can be extended to a decomposition using κ = O(1) words of length W

κ ,

reducing the size of the lookup table to |EvenBits| = 2
W
κ . Each range check then re-

quires κ lookups and a linear check over κ terms. To get good efficiency, it is important

that 2
W
κ � T . Here we assume for simplicity 2

W
2 � T , which allows us to use κ = 2

but our proof system can be modified to handle any T = poly(λ) with an appropriate

choice of κ.

Bitwise AND and XOR. It turns out that the above decomposition can be also ex-

ploited to check the correctness of logical operations. Here we describe the high-level

idea and omit for example how to check the consistency of the flag. A full description

on how the check all the TinyRAM instructions is given in Section 5.3.3. Let a,b be the

inputs of the bit-wise AND or bit-wise XOR operation, and let c be the output. To ver-

ify the correctness of the operation, e.g. a ∧ b = c, consider the decompositions of the

108 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

inputs into their odd and even-position bits, namely a = 2ao + ae and b = 2bo + be.

If we take the sum of the integers storing the even-positions ae and be we get

ae + be ↔ (0,aW−2, . . . , 0,a0) + (0,bW−2, . . . , 0,b0)

= (aW−2 ∧ bW−2,aW−2 ⊕ bW−2, . . . ,a0 ∧ b0,a0 ⊕ b0)

The above contains the bit-wise AND of the even bits of a and b placed in odd position

and the bit-wise XOR of the even bits of a and b in even position. We can consider

taking again the decomposition of ae + be into its odd and even-position bits, i.e.

eo ↔ (0,aW−2 ∧ bW−2, 0, . . . , 0,a0 ∧ b0)

ee ↔ (0,aW−2 ⊕ bW−2, 0, . . . , 0,a0 ⊕ b0)

such that ae + be = 2eo + ee. Then half of the bits of a∧ b are stored in eo and half of

the bits of a⊕ b are stored in ee. We can repeat the above procedure starting from the

odd-position bits of a and b to get the following

ao + bo ↔ (0,aW−1, . . . , 0,a1) + (0,bW−1, . . . , 0,b1)

= (aW−1 ∧ bW−1,aW−1 ⊕ bW−1, . . . ,a1 ∧ b1,a1 ⊕ b1) ↔ 2oo + oe

where oo stores half of the bits of a∧b and oe stores and half of the bits of a⊕b. Putting

everything together, given the decompositions ao,ae,bo,be,oo,oe,eo,ee ∈ EvenBits

such that the following hold

a = 2ao + aegg b = 2bo + begg ao + bo = 2oo + oegg ae + be = 2eo + ee

then the bit-wise AND and XOR of a and b are given by the followings

a ∧ b = 2oo + eo a⊕ b = 2oe + ee

To check that a ∧ b = c is then sufficient to commit to the above decompositions

and check their consistency with a and b as well as check that c = 2oo + eo. This can

5.3. Decomposition of TinyRAM Relation 109

be summarised in the following relationRAND

RAND =



(pp, u, w) := ((W,K,F, ∗),⊥, (a,b,c, (ao,ae,bo,be,oo,oe,eo,ee),EvenBits)) :
(pp,⊥, (a, (ao,ae),EvenBits)) ∈ Rrange (pp,⊥, (ao + bo, (oo,oe),EvenBits)) ∈ Rrange

(pp,⊥, (b, (bo,be),EvenBits)) ∈ Rrange (pp,⊥, (ae + be, (eo,ee),EvenBits)) ∈ Rrange

c = 2oo + eo


A similar relation can be given for the bit-wise XOR and the other logical operations.

5.3 Decomposition of TinyRAM Relation

Here we gradually decompose the relationRfield
TinyRAM into the building-block relations

we introduced earlier, as well as a set of linear and quadratic constraints the entries

in w have to satisfy. Figure 5.2 illustrates the entire decomposition of Rfield
TinyRAM into

progressively simpler relations.

FIGURE 5.2: Diagram of the decompositon of TinyRAM into equality,
lookup, permutation, range relations and arithmetic constraints.

5.3.1 Checking the Correctness of Values

The role ofRcheck is to check that w consists of the correct number of field elements that

can be partitioned into the appropriate tables and also to check that specific entries in

these tables are correct. In more details, the relationRcheck is specified by the following

conditions

110 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

• The first row Exe1 of the execution table Exe contains the following values: time

is set equal to 1, the program counter pc1 is equal to 0, the instruction instpc1

is equal to the first instruction of the program, the immediate value A0 is the

first immediate value of the program, and the contents of the registers ri,1, the

memory address addr1 and its content value vaddr1 are all set equal to 0.

• The last row ExeT contains the following values: the time is set equal to T , the

instruction instpcT is answer, and the immediate value is 0. Without loss of gen-

erality we assume that the instruction answer 0 is positioned in the last line

(L− 1) of the Prog table.

• The auxiliary lookup table EvenBits contains the embeddings of all W -bit words

with 0 in all odd positions, i.e.

EvenBits =

0, 1, 4, 5 . . . ,

W
2
−1∑

i=0

22i


• The auxiliary lookup table Pow contains the embeddings of all integers i ∈ [0,W]

and their powers 2i mod 2W .

• The program table Prog contains the correct field element embedding of the pro-

gram P as well as the correct auxiliary entries. In the relationReq checking table

Prog we omitted the auxiliary entries which we have not yet specified. It will

later become clear that these entries can be efficiently computed given the pro-

gram P and checked within the above relation.

• The memory table Mem contains the correct embedding of the input words listed

in v and of the auxiliary entry usd. This only refers to the first |v| entries of the

memory table, as the rest is initialised with the private inputs w.

The above conditions are included in the relationRcheck.

5.3. Decomposition of TinyRAM Relation 111

Rcheck =



(pp, u, w) := ((W,K,F, ∗), (P, v, T,M),w) :
w := (Exe,Prog,Mem,EvenBits, ∗),

Exe := {Exet}Tt=1, Prog := {Progi}L−1
i=0

Prog0 := (0, inst0,A0, . . .)

(pp, (1, 0, inst0,A0, 0, . . . , 0, . . .) ,Exe1) ∈ Req

(pp, (T, L− 1,answer, 0, . . .),ExeT) ∈ Req(
pp,

(
0, 1, 4, 5, . . . ,

∑W
2
−1

i=0 22i

)
,EvenBits

)
∈ Req(

pp,
{

(i, 2i mod 2W)
}W
i=0

,Pow
)
∈ Req

(pp, P,Prog) ∈ Req (pp, v,Mem) ∈ Req


5.3.2 Checking Memory Consistency

The relation Rmem checks that the memory is used consistently across different steps

in the execution. For instance, if at step t a value is loaded from memory, then it

should be equal to the last value stored at the same address. If it is the first time a

memory address is accessed, we need to ensure consistency with its initial value. If

two consecutive memory accesses to the same address are placed into two adjacent

rows of Exe it is easy to check their consistency. However, this is generally not the

case since the Exe table is sorted by execution time rather than memory access. To

avoid committing to the memory-sorted execution trace we devise a way to check the

consistency of memory accesses located in any position of Exe. Overall the memory

consistency relationRmem decomposes as follows

Rmem =



(pp, u, w) := ((W,K,F, ∗), (T,M),w) :
w := (Exe,Prog,Mem,EvenBits, π, ∗),

Exe := {Exet}Tt=1 Mem := {Memj}2M−2
j=0

(pp, T, (Exe, π)) ∈ Rcycle, (pp, T, (Exe,EvenBits)) ∈ Rtime

(pp, (T,M), (Exe,Mem)) ∈ Rblookup, (pp, T,Exe) ∈ Rload


To help with checking the memory consistency, we include in each row of the exe-

cution table the following auxiliary entries

auxExe = τlink vlink vinit usd S L · · ·

112 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

where τlink contains the previous time-step at which the current address was accessed.

In case this row stores the first time a location is accessed, we use τlink to store the

last time-step the location is accessed. This will be convenient to show that sequential

accesses to the same memory location can be arranged in cycles. Similarly, vlink stores

the value contained in the address after time τlink, unless this is the first time that

location is accessed, in which case it stores the last value stored in that location. The

value vinit is a copy of the initial value assigned to that memory location, which is also

stored in the memory table Mem. The value usd is a flag which is set equal to 0 if this

is the first time we access the current memory address, and 1 otherwise. The values

S, L are flags set equal to 1 in case the current instruction is a store or load operation,

respectively, and 0 otherwise. The values S, L are also stored in the auxiliary entries

of the program table and thus their consistency is checked byRcheck together with the

program.

auxProg = S L · · ·

Memory Accesses form Cycles. We check memory consistency by specifying cycles

of memory accesses, so that consecutive terms in a cycle correspond to the time of two

consecutive accesses to the same memory location. We let the memory access pattern

in the rows of Exe being in correspondence with a permutation π ∈ Σ[T] defined by

such cycles. By using the above auxiliary entries, the relation Rcycle checks that all

memory accesses (i.e. for which S + L = 1) relative to the same address addr are

connected into cycles, and that rows not involving memory operations (S + L = 0) are

not included in these cycles. Moreover, if two accesses are connected by a cycle the

relation checks that τlink stores the time of the previous access and vlink the content of

the memory at that time.

Rcycle =



(pp, u, w) := ((W,K,F, ∗), T, (Exe, π)) :
Exet := (t, . . . , addrt, vlinkt, τlinkt, . . . ,St, Lt, . . .) for t ∈ [T]

at := (τlinkt, addrt, vlinkt,St + Lt) for t ∈ [T]

bt := (t, addrt, vaddrt ,St + Lt) for t ∈ [T]

((W,K,F, ∗), T, ({ai, bi}Ti=1, π)) ∈ Rperm



5.3. Decomposition of TinyRAM Relation 113

We recall that the unknown permutation relation over tuples ai, bj checks that exists

a permutation π ∈ Σ[T] such that bi = aπ(i) for i ∈ [T], i.e.

t = τlinkπ(t) addrt = addrπ(t) vaddrt = vlinkπ(t) St + Lt = Sπ(t) + Lπ(t)

To construct zero-knowledge proofs for the correct program execution of TinyRAM

programs, it is important not to leak the memory access pattern, as this may depend

on the secret inputs w of the program. Therefore, the permutation cannot be publicly

known.

Memory Accesses are in the Correct Order. Consecutive terms in a cycle should

correspond to the consecutive time-steps in which the memory is accessed. To check

that the memory cycles are time-ordered we can simply verify that1 t > τlinkt for any

given time-step t ∈ [T]. Since memory accesses are connected into cycles, the first

time we access a new memory location the τlink entry stores the last point in time that

location is accessed by the program. In this case we verify that t ≤ τlinkt. To perform

these checks we use the auxiliary entry usd, which we set usd = 0 for the first time a

memory location is accessed, and usd = 1 otherwise.

The above inequalities can be checked by showing that either t − τlinkt − 1 ≥ 0 or

τlinkt− t ≥ 0, respectively. Moreover, by using the auxiliary value usd, both checks can

be combined

(1− usd)(τlinkt − t) + usd(t− τlinkt − 1) ≥ 0

Since we have a range relation in place we can then add a pair of field elements to, te ∈

EvenBits in the auxiliary entries of the execution table

auxExe = · · · to te · · ·

1For this to be sufficient we also need the time-steps stored in the execution table to be correct. This is
ensured by the Rcheck and Rcons (which appears later) relations.

114 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

and check that (1 − usd)(τlinkt − t) + usd(t − τlinkt − 1) ∈ [0, 2W]. The relation Rtime

incorporates the above conditions

Rtime =



(pp, u, w) := ((W,K,F, ∗), T, (Exe,EvenBits)) :
Exet := (t, . . . , τlinkt, . . . , usdt, . . . , to, te, . . .) for t ∈ [T]

∀ t ∈ [T] : t := (1− usd)(τlinkt − t) + usd(t− τlinkt − 1) ∧

(pp,⊥, (t, (to, te),EvenBits)) ∈ Rrange


Memory Locations are in no more than one Cycle. To ensure that the cycles cor-

respond to sequences of memory addresses we also need that all the rows touching

the same memory address are included in the same cycle. Since the cycles are time-

ordered, they need to include one time-step for which usd = 0 to close a cycle. Thus,

we can ensure each memory location to be part of at most on cycle by letting usd to be

set equal to 0 at most once for each memory address. We introduce a bounded lookup

relation Rblookup to address this requirement. The relation checks that for any row in

Exe, the tuple (addrt, vinitt, usd) is contained in one row of the table Mem and that each

row (j, vj , 0) of Mem is accessed at most once by the program. At the same time this

relation checks that the values vinit stored in the execution table are consistent with the

initialisation of the memory.

Rblookup =



(pp, u, w) := ((W,K,F, ∗), (T,M), (Exe,Mem)) :
Exet := (t, . . . , addrt, . . . , vinitt, usd, . . .) for t ∈ [T]

∀ t ∈ [T] : (pp,⊥, ((addrt, vinitt, usd) ,Mem)) ∈ Rlookup ∧

∀ (j, vj , 0) ∈ Mem : (. . . , j, . . . , vj , 0, . . .) occurs at most once in Exe


Load Instructions are Consistent. Finally, we are only left to check that if the pro-

gram executes a load instruction the value vaddrt loaded from memory is consistent

with the value stored at the same address at the previous access. Similarly, if load is

executed on a new memory location, then the value loaded should match with the ini-

tial value vinitt. No additional checks are required for store instructions. These checks

5.3. Decomposition of TinyRAM Relation 115

are incorporated in the relationRload.

Rload :=


(pp, u, w) = ((W,K,F, ∗), T,Exe) :

Exet := (t, . . . , addrt, vaddrt , τlinkt, vlinkt, vinitt, usdt, . . .) for t ∈ [T]

∀ t ∈ [T] : Lt(vaddrt − vinitt + usdt(vinitt − vlinkt)) = 0


Later, when we will give proofs for all the arithmetic constraints included in the de-

composition of Rfield
TinyRAM, it will be convenient to express them as either quadratic or

linear constraints. The one included in the relationRtime can be expressed as a pair of

quadratic constraints by introducing another auxiliary entry LUt in the execution table

and check that both the followings hold

LUt = usdt(vinitt − vlinkt) Lt(vaddrt − vinitt + LUt) = 0

5.3.3 Checking Correct Execution of Instructions

The relation Rstep guarantees that each step of the execution has been performed cor-

rectly. This involves checking for each row Exet of the execution table that the stored

words are in the range [0, 2W−1], the flagt is a bit, the program counter pct matches the

instruction as well as the immediate value At in the program, and that instt is correctly

executed. An instruction takes some inputs, e.g., values indicated by the operands

regj , A (or the flag) and as a result may change the program counter, a register value, a

value stored at a memory address, and the flag. Since we have already checked mem-

ory correctness, if the operation is a load or store we may assume the memory value

vaddrt is correct. Overall the relationRstep decomposes into three relationsRmux,Rcons

andRinst as follows.

Rstep =



(pp, u, w) := ((W,K,F, ∗),⊥,w) :
w := (Exe,Prog,Mem,EvenBits, ∗) ∧ Exe := {Exet}Tt=1

∀t ∈ [1, . . . , T − 1] :

(pp,⊥, (Exet,Exet+1)) ∈ Rmux

(pp,⊥, (Exei,Exei+1,Prog)) ∈ Rcons

(pp,⊥, (Exei,Exei+1,EvenBits)) ∈ Rinst



116 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

To help checking the correctness of the instructions, the rows of the execution and

program tables include the following auxiliary entries

auxExe = . . . a b c d out sa sb sc sd sout sch . . .

auxProg = . . . sa sb sc sd sout sch

These consist of some temporary variables a,b,c,d, an output vector out, and some

selection vectors sa, . . . , sch which are also listed in the program table. The temporary

variables are used to store a copy of the inputs and outputs of an instruction. For ex-

ample, if we have to check an addition operation add regi regj A, we let c = ri,t+1,a =

rj,t,b = At and check c = a + b. The advantage of using the temporary variables is

that for each addition operation we check, we will always have the inputs and out-

put in a,b and c, instead of handling multiple registers holding inputs and output in

arbitrary order.

The Execution Table and the Program Table are Consistent. The consistency rela-

tion Rcons checks that the time is correctly incremented and that the program counter

is in the correct range, i.e. pct+1 ∈ {0, . . . , L − 1} and is incremented unless a jump-

instruction is executed. It also checks that the instruction, the immediate value and

the selection vectors stored in the execution table are consistent with the program

line indexed by pc. Furthermore, it checks that the content of the registers does not

change, unless specified by the instruction, e.g. the register storing the result of the

computation. For this we use a selection vector sch of length K + 2. Let Ẽxet =

(pct, r0,t, . . . , rK−1,t, flagt) be the restriction of the row Exet to the entries concerning

the program counter, the register values and the flag. The selection vector sch has en-

tries equal to 0 in correspondence of entries of Ẽxet changing during the execution,

and equal to 1 for entries that do not change in the execution. The consistency relation

5.3. Decomposition of TinyRAM Relation 117

Rcons is defined as follows

Rcons =



(pp, u, w) := ((W,K,F, ∗),⊥, (Exet,Exet+1,Prog)) :
Exet := (t, pct, instt,At, . . . , r0,t, . . . , rK−1,t, . . . ,St, Lt, . . . , sa, sb, sc, sd, sout, sch) ∧

Exet+1 := (t′, pct+1, . . . , r0,t+1, . . . , rK−1,t+1, . . .)

t′ = t+ 1 ∧ pct+1 ∈ {0, . . . , L− 1} ∧

sch ◦ (Ẽxet+1 − Ẽxet − (1, 0, . . . , 0)) = (0, 0, . . . , 0) ∧

(pp,⊥, ((pct, instt,At,St, Lt, sa, sb, sc, sd, sout, sch),Prog)) ∈ Rlookup


Notice that the entries of sch are determined by the program line and can be easily

computed from it. The above relation, together with Rcheck, guarantees that sch is

consistent with the program line is related to and that the copy of sch in the execution

table matches the one stored in the program table. This also applies to the rest of the

selection vectors.

Ensuring Temporary Values are Correct. A multiplexing relation Rmux is used to

check that values a,b,c,d are consistent with operands contained in instt. To check

operations on temporary values a,b,c and d it requires to multiplex the correspond-

ing register, immediate, and memory values in and out of the temporary values. This

is done with the aid of selection vectors sa, sb, sc, sd, which are bit-vectors encoding

the operands of an instruction. Each row of the execution table includes multiple vari-

ables that may be selected as an operand, e.g., pct,At, r0,t, . . . and variables in the next

row of the execution table pct+1,At+1, r0,t+1, . . . may also be selected. A selection vec-

tor will have a bit for each of these variables indicating whether it is picked or not. For

instance, if we let sa = (0, 0, 1, 0, . . . , 0) this corresponds to pick a as r0,t.

Let Exet = (pct,At, r0,t, . . . , rK−1,t, flagt, addrt, vaddrt) be the tuple of selectable en-

tries of row Exet and let sa, sb, sc, sd be binary vectors of length 2|Exet|. We can then

express the multiplexing relationRmux in terms of inner product relations as follows

Rmux =



(pp, u, w) := ((W,K,F, ∗),⊥, (Exet,Exet+1)) :
Exet := (t, . . . ,a,b,c,d,out, sa, sb, sc, sd, . . .)

a = sa ·
(
Exet||Exet+1

)
b = sb ·

(
Exet||Exet+1

)
c = sc ·

(
Exet||Exet+1

)
d = sd ·

(
Exet||Exet+1

)



118 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

5.3.4 Instruction Checker Relation

Multiplexing the operands into temporary variables leaves us with the task of check-

ing that a given instruction is correctly executed on a,b,c and d. Since we want our

proof system to be zero knowledge, we cannot reveal which operation we execute in

a given step. This means, in particular, that our instruction checker relation Rinst has

to include checks for all the 26 TinyRAM instructions. However, we can still obtain

significant savings compared to using 26 independent instruction checkers. We make

the key observation that many operations are closely related. For instance checking a

subtraction operation sub regi regj A corresponds to check c = a+b with c = rj,t,a =

ri,t+1,b = At, which is of the same form as an addition operation. Using clever multi-

plexing we reduce the checking of the 26 possible instructions to check the correctness

of nine easily computable values AND,XOR,OR, SUM,SSUM,PROD,SPROD,MOD,

SHIFT and four additional values FLAG1,FLAG2,FLAG3,FLAG4 for the consistency of

the flag. We include all these values into the vector out, i.e.

out = (AND,XOR,OR, SUM,SSUM,PROD,SPROD,MOD, SHIFT,FLAG1,FLAG2,FLAG3,FLAG4)

Each instruction can be verified by checking that an appropriate subset of the values

are 0. For instance, we will check2 that SUM = a + b − c, and if the operation is an

addition, we will also check that SUM = 0. Similarly, we will define all the entries in

out in terms of a,b,c,d. For each operation only a subset of the entries in outwill be

relevant. As for the selection of the operands, we use a binary selection vector sout to

select which entries of out are relevant for each operation and check that sout◦out = 0,

where ◦ is the entry-wise product.

The instruction checker relation Rinst checks that entries a,b,c,d are in the range

[0, . . . , 2W − 1], the vector out is consistent with a,b,c,d, and that the relevant en-

tries in out are all equal to zero. We divide the entries of out into four groups:

logical (AND,XOR,OR), arithmetic (SUM,PROD,SSUM, SPROD,MOD), shift (SHIFT),

and flag (FLAG1,FLAG2,FLAG3,FLAG4). By specifying constraints to all these entries,

we can directly verify all the logical, arithmetic, and shifts operations after which the

2The actual definition of SUM will also incorporate the correctness of the flag.

5.3. Decomposition of TinyRAM Relation 119

variables are named. TheRinst can be decomposed as follows.

Rinst =



(pp, u, w) := ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits)) :
Exet := (t, . . . ,out, . . . , sout, . . .) ∧ sout ◦ out = 0

(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rlogic

(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rarith

(pp,⊥, (Exet,Exet+1,EvenBits)) ∈ Rshift


In what follows we describe the relationsRlogic,Rarith,Rshift, specifying what con-

straints the entries of out need to satisfy and the appropriate choices of selection vec-

tors sa, sb, sc, sd, sout for each TinyRAM operation. A summary of these selection

vectors for all the operations is given in Table 5.1.

Before moving to describe how to verify each group of operations, we recall that

each line in the program consists of a TinyRAM instruction (Table 3.1) and up to three

operands, e.g. add regi regj A. The first operand (regi) usually points at the register

storing the result of the operation (add) computed on the words specified by the next

two operands (regj , A). The last operand A indicates an immediate value that could

be either used directly in the operation or to point to the content of another register.

We refer to the value to be used in the operation generically as A, stressing that the

selection between either the immediate value or a register value can be handled by

using the appropriate selection vector.

Logical Operations. Logical operations can be verified using the odd/even-bits de-

composition introduced in Section 5.2.4. We recall that for bit-wise AND and XOR if

we let a,b store the inputs and consider their decomposition into the following

a = 2ao + aegg b = 2bo + begg ao + bo = 2oo + oegg ae + be = 2eo + ee

then the result of the operations can be computed as follows

a ∧ b = 2oo + eo a⊕ b = 2oe + ee

Let AND = 2oo + eo − c and XOR = 2oe + ee − c. We can verify the execution of an

instruction and regi regj A by setting the selection vectors so that a = At,b = rj,t,c =

120 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

Operation sa sb sc sd sout sch
and At rj,t ri,t+1 / AND,FLAG1,FLAG2 ri, flag
or At rj,t ri,t+1 / OR,FLAG1,FLAG2 ri, flag
xor At rj,t ri,t+1 / XOR,FLAG1,FLAG2 ri, flag
not At 2W − 1 ri,t+1 / XOR,FLAG1,FLAG2 ri, flag
add At rj,t ri,t+1 0 SUM ri, flag
sub At ri,t+1 rj,t 0 SUM ri, flag
mull At rj,t c ri,t+1 PROD,FLAG1,FLAG2 ri, flag
umulh At rj,t ri,t+1 d PROD,FLAG1,FLAG2 ri, flag
smulh At rj,t ri,t+1 d SPROD,FLAG1,FLAG2 ri, flag
umod ri,t+1 b At rj,t MOD,FLAG1,FLAG2,FLAG3 ri, flag
udiv a ri,t+1 At rj,t MOD,FLAG1,FLAG2,FLAG3 ri, flag
shl At rj,t c ri,t+1 SHIFT,FLAG4 ri, flag
shr At rj,t ri,t+1 d SHIFT,FLAG4 ri, flag
cmpe At ri,t c / XOR,FLAG1,FLAG2 flag
cmpa ri,t b At 0 SUM flag
cmpae ri,t b At 1 SUM flag
cmpg ri,t b At 0 SSUM flag
cmpge ri,t b At 1 SSUM flag
mov At pct+1 0 / XOR ri
jmp At ri,t+1 0 / XOR pc
cmov ri,t+1 At 0 rj,t MOD ri
cjmp pct+1 At 0 pct + 1 MOD pc
cnjmp pct+1 pct + 1 0 At MOD pc
store vaddrt ri,t 0 0 XOR /
load vaddrt ri,t+1 0 0 XOR ri

TABLE 5.1: Choices of selection vectors to ensure that Rinst is satis-
fied. The entries specified in the table correspond to the entries of
sa, sb, sc, sd, sout which are set equal to 1, while the rest are set equal
to 0. The entries specified in the table correspond to the entries of sch
which are set equal to 0. Where the selection vector is the zero vector
we write /. We assume that constant entries 0, 1, 2W − 1 are stored in

the execution table and that they can be selected by sa, sb, sc, sd.

5.3. Decomposition of TinyRAM Relation 121

ri,t+1 and check that AND = 0. Similarly, a bit-wise XOR operation can be checked by

setting the same selection vectors as above and check that XOR = 0.

Bit-wise OR and NOT. Given a ∧ b and a ⊕ b we can compute a ∨ b in the following

way

a ∨ b = (a ∧ b) + (a⊕ b)

Let OR = XOR + AND +c. To verify the execution of or regi regj A it is sufficient to set

the selection vectors such that a = At,b = rj,t,c = ri,t+1 and check that OR = 0, which

happens if and only if c = a ∨ b.

The bit-wise NOT can be handled by computing the bit-wise XOR of A with the

word 2W − 1. We can use an additional auxiliary entry in the execution table storing

the word 2W − 1 and use the selector vector to route b to it.

Flag. The execution of the above logical operations can also affect the flag. Specifically,

the flag is set equal to 1 exactly when the output is equal to the 0 word. This can be

verified by letting

FLAG1 = flagt+1 · c FLAG2 = (flagt+1 + c) · aflag − 1

and checking both of them to be equal to 0. The first condition guarantees that at least

one among c and flagt+1 is zero, while the second guarantees that not both of them are

equal to zero. In fact, FLAG2 can be made equal to 0 by choosing aflag as the inverse of

flagt+1 + c unless their sum is 0.

We append the decompositions of a,b,c,d as well as oo,oe,eo,ee aflag to the aux-

iliary entries of the execution table, i.e.

auxExe = . . . ao ae bo be co ce do de oo oe eo ee aflag . . .

122 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

We now give the Rlogic relation which includes all the above checks, as well as the

range checks on a,b,c,d.

Rlogic =



(pp, u, w) := ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits)) :

Exet := (t, . . . , . . . ,a,b,c,d,out, . . . ,ao,ae,bo,be,co,ce,do,de,eo,ee,oo,oe,aflag, . . .)

out := (AND,XOR,OR, . . . ,FLAG1,FLAG2, . . .)

Exet+1 := (t+ 1, . . . , flagt+1, . . .)

(pp,⊥, (a, (ao,ae),EvenBits) ∈ Rrange (pp,⊥, (b, (bo,be),EvenBits) ∈ Rrange

(pp,⊥, (c, (co,ce),EvenBits) ∈ Rrange (pp,⊥, (d, (do,de),EvenBits) ∈ Rrange

(pp,⊥, (ao + bo, (oo,oe),EvenBits) ∈ Rrange (pp,⊥, (ae + be, (eo,ee),EvenBits) ∈ Rrange

XOR = 2oe + ee − c AND = 2oo + eo − c OR = XOR + AND + c

FLAG1 = flagt+1 · c FLAG2 = (flagt+1 + c) · aflag − 1


The choices for the selection vectors are given in Table 5.1. For example, an AND

operation is checked by using selection vectors such that a = At,b = rj,t,c = ri,t+1.

The entries of out that are equal to 1 are AND,FLAG1,FLAG2. The entries of sch that

are equal to 0 ri and flag, which are the entries that can be affected by the execution of

a bit-wise AND.

Integer Operations. Embedding W -bit words into elements of a field of size p >

22W −2W−1 enables efficient verification of arithmetic TinyRAM instructions since the

sum and the product of two W -bits word does not cause a modular reduction in the

field.

Addition and Subtraction. The execution of an addition operation add regi regj A can

be verified by picking selection vectors such that a = At,b = rj,t,c = ri,t+1 and then

checking that the following holds

a + b− c− 2Wflagt+1 = 0

Note that this is equal to 0 if and only if c contains the result of a + b with the flag

flagt+1 indicating overflow.

The same check can be used to verify a subtraction operation sub regi regj A by

swapping the role of the selection vector sb, sc and letting b = ri,t+1 and c = rj,t. The

5.3. Decomposition of TinyRAM Relation 123

above equation is identically 0 if and only if b is equal to the difference of c and a

where the flag flagt+1 denotes borrow.

Let SUM = a+b−c−2Wflagt+1 +d. We can check both additions and subtractions

by letting d = 0 and checking that SUM = 0. While the temporary variable d is not

required for the verification of the above operations, we will see later that including

this variable simplifies the verification of other operations.

Multiplications. TinyRAM instruction set includes three multiplication instructions:

mull, for computing the lower word of the product of two unsigned integers; umull,

for computing the upper word of the product of two unsigned integers; umulh, for

computing the upper word of the product of two signed integers.

Let PROD = a·b−d−2Wc. We can then verify the correct execution of mull regi regj A

by setting the temporary variables such that a = At,b = rj,t,d = ri,t+1, c to contain

some non-deterministic advice and check that PROD = 0. Note that the latter is equal

to 0 if and only if d stores the lower word of the product a · b and the upper word is

stored in c.

For the execution of umulh regi regj Awe can simply change the role of the selector

vectors sc, sd, letting c = ri,t+1 and d be some non-deterministic advice, and checking

that PROD = 0.

Signed Integers. SignedW -bit words use the two’s complement representation to store

an integer. We write σa for the most significant bit of a word a. We recall that according

to the two’s complement representation, a negative word a has σa = 1. We define the

corresponding field element aσ = −σa2W + a ∈ {−2W−1, . . . , 2W−1 − 1}. Note that in

case a is negative, the most significant bit of a, and thus of ao, is equal to 1. Given the

decomposition of a it is easy to check the sign is correct by testing ao+(1−2σa)2W−2 ∈

EvenBits, which is correct if and only if the most significant bit of ao is equal to σa.

Thus, in order to ensure that a,b,c,d are in the correct range, and the matching signs

and signed values are correct we include the following entries in the auxiliary inputs

of the execution table

auxExe = . . . aσ σa bσ σb cσ σc . . .

124 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

To verify the execution of signed multiplication operations smulh regi regj A we

proceed similarly to umullh. Let SPROD = aσ · bσ − d − 2Wcσ. By selecting a =

At,b = rj,t,c = ri,t+1, and letting d be some non-deterministic advice, we can verify

the execution of signed multiplication by checking that SPROD = 0.

The consistency of the flag of the signed and unsigned multiplication operations

can be verified by checking FLAG1 = 0,FLAG2 = 0.

We notice that the two’s complement representation allows to perform additions

and subtractions by reusing the unsigned operation. However, in order to verify com-

parison operations for signed integers it will be helpful to define a signed counterpart

of SUM. Thus, we define

SSUM = aσ + b− cσ − 2Wflagt+1 + d

Modular Reduction. To check the execution of modular reduction umod regi regj A,

let d = rj,t, c be the modulus At, b be the quotient of the division d
c , and a be the

remainder ri,t+1. We can then check that d − b · c − a = 0. This check however is

not sufficient to guarantee the correctness of the the operation umod. For example, in

case the modulus is set equal to 0, the operation should return 0 and set the flag equal

to 1. We can get around this by first checking that FLAG1 = 0 and FLAG2 = 0, which

ensures that flagt+1 = 1 if and only if c = 0. Then, by checking the following

− flag · d + d− b · c− a = 0 (5.1)

In case c = 0, we have that flagt+1 = 1 and then a = 0. Otherwise if c 6= 0, then

flagt+1 = 0 and the check corresponds to the previous one.

The last thing that we need to check in order to guarantee the correctness of the

computation is that a < c, in case c 6= 0. We can do this by doing a range check on

the value c− a− 1, which involves computing its odd/even-bits decomposition ro, re

and checking that c − a − 1 = 2ro + re. We can include the decomposition ro, re into

the auxiliary entries of the execution table

auxExe = · · · ro re · · ·

5.3. Decomposition of TinyRAM Relation 125

and check both that ro, re ∈ EvenBits and that

(1− flagt+1)(c− a− 1− 2ro − re) = 0 (5.2)

Since the above checks also include the verification of the correctness of the quo-

tient, we can reuse them to check the execution of udiv operation. It is sufficient to

swap the selector vectors sa, sb so that ri,t+1 = b and check that Eq. (5.1). Again, this

check is not sufficient in the case of division by c = 0. In this case the operation is

expected to return 0 and set the flag equal to 1. The above check does not suffice since

it is merely checking that the remainder a is equal to 0, instead of the quotient b. This

can be addressed by additionally checking the following

b · flagt+1 = 0 (5.3)

In case c 6= 0, we still need to ensure that a < c to guarantee the correctness of the

result. Note that we can combine Eq. (5.2) and (5.3) into a single equation

FLAG3 = b · flagt+1 + (1− flagt+1)(c− a− 1− 2ro − re)

This does not affect the umod operation since in case flagt+1 = 1, the prover can

simply set the non-deterministic advice b equal to 0.

Looking ahead, Equation 5.1 will be used to check other operations by appropri-

ate choices of the selector vector. With this goal in mind, it will be useful to replace

Equation 5.1 with the following

MOD = flagt+1(b− d) + d− b · c− a

Note that replacing Eq. (5.1) with MOD = 0 does not affect the checks done for

umod,udiv. In case flagt+1 = 0, the two equations are equivalent. In case flagt+1 = 1,

we have that c = 0 which means that b − a = 0. In this case we get that FLAG3 = 0

implies b = 0, and hence a = 0, as in the case of Eq. (5.1).

The relationRarith incorporates all the checks for the above arithmetic operations.

126 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

Rarith =



(pp, u, w) := ((W,K,F, ∗),⊥, (Exet,Exet+1,EvenBits)) :

Exet := (t, . . . , flagt, . . . ,a,b,c,d,out, . . . ,ao,bo,co, . . . σa, σb, σc, ro, re . . . ,)

out := (. . . ,SUM,SSUM,PROD,SPROD,MOD, . . . ,FLAG3, . . .)

Exet+1 := (t+ 1, . . . , flagt+1, . . .)

(pp,⊥, (ao + (1− 2σa)2W−2,EvenBits) ∈ Rlookup

(pp,⊥,co + (1− 2σc)2W−2,EvenBits) ∈ Rlookup

(pp,⊥,bo + (1− 2σb)2W−2,EvenBits) ∈ Rlookup

σa, σb, σc, flagt, flagt+1 ∈ {0, 1} aσ = −σa2W + a

bσ = −σb2W + b cσ = −σc2W + c

SUM = a + b− c− 2Wflagt+1 + d PROD = a · b− d− 2Wc

MOD = flagt+1(b− d) + d− b · c− a

SSUM = aσ + b− cσ − 2Wflagt+1 + d SPROD = aσ · bσ − d− 2Wcσ

FLAG3 = b · flagt+1 + (1− flagt+1)(c− a− 1− 2ro − re)


Shift Operations. Operations shl regi regjA and shr regi regjA are used to shift the

word rj,t of A positions to the left, respectively to the right, filling the vacant posi-

tions with 0. The flag is set to the most significant bit and least significant bit of rj,t,

respectively.

Following the observation that to shift a word by A positions is equivalent to mul-

tiply or divide rj,t by 2A, we can treat shifts similarly to the integers operations shown

above. To efficiently check the correctness of shift operations we include into w the

table Pow storing the pairs (a, 2a mod 2W) for a ∈ [0,W]

Values Powers
0 1
1 2
2 4
3 8
...

...
W − 1 2W−1

W 0

TABLE 5.2: Table Pow.

In addition to Pow we store two additional values ashift,apower in the auxiliary

5.3. Decomposition of TinyRAM Relation 127

entries of Exe. Say that a stores the value At, the offset of a shift operation. Then the

entry ashift can be used to check if At ∈ [W] by checking that

ashift(ashift − 1) = 0 ∧ (1− ashift)(W − a− 2ro − re) = 0 (5.4)

where the first equation checks that ashift is a bit and the second checks that if a > W

then ashift = 1. The entry apower can be used to store the element 2a mod 2W in case

ashift = 0 and 0 otherwise. We can then check that apower is consistent with a by

checking that

(pp, (a + ashift(W − a),apower),Pow) ∈ Rlookup (5.5)

A left shift operation shl can be checked by setting b = rj,t,d = ri,t+1, respectively,

and checking that the following is equal to 0

SHIFT = apower · b− d− 2Wc (5.6)

where c is some non-deterministic advice. The consistency of the flag with the most

significant bit of rj,t is checked by the following

flagt+1 − σb = 0

Observe that if we had registers storing two words of W -bits each, shifting a W -

bit word to the right of A positions would correspond to shifting the same word to

the left by W − A positions and taking the resulting upper W bits. Since the size of

the field F is big enough, we can use the above observations to check a right shift as

a left shift. This allows us to reuse most of the above checks. It is sufficient to set

a = W − At,b = rj,t,d = ri,t+1, let c be some non-deterministic advice and check

conditions (5.4), (5.5) and (5.6) as well as the following

flagt+1 − ρb = 0

where ρb is the least significant bit of b. We can introduce an additional auxiliary value

bflag in the auxiliary information of the program and duplicated in the execution table

which is set equal to 1 for left shifts and equal to 0 otherwise. We can then merge the

128 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

above flag checks in the following

FLAG4 = flagt+1 − bflagσb − (1− bflag)ρb.

We can now give the relationRshift for the correct execution of shifts operations.

Rshift =



(pp, u, w) := ((W,K,F, ∗),⊥, (Exet,Exet+1, (EvenBits,Pow))) :

Exet := (t, . . . , flagt, . . . ,a,b,c,d,out, . . . ,be, . . . ,bflag, σb, . . . ,ashift,apower)

out := (. . . ,SHIFT, . . . ,FLAG4)

Exet+1 := (t+ 1, . . . , flagt+1, . . .)

ashift ∈ {0, 1}

(pp,⊥,be + (1− 2ρb),EvenBits) ∈ Rlookup

(pp, (a + ashift(W − a),apower),Pow) ∈ Rlookup

SHIFT = apower · b− d− 2Wc

FLAG4 = flagt+1 − bflagσb − (1− bflag)ρb


Remaining Operations. The instruction relation Rinst ensures that logical, arith-

metic and shift operations are carried out correctly. The remaining TinyRAM oper-

ations that need to be checked are move and jump operations, memory operations,

and a terminating answer operation. The correct execution of these can be reduced

to check the correctness of the previous operations by choosing the selection vectors

appropriately.

Comparison Operations. The compare-equal instruction compe regi A sets the flag

equal to 1 if ri,t = At, and 0 otherwise. To check the execution of this operation we

can set a = At,b = ri,t and check that either their bit-wise XOR is equal to 0 or that

flagt+1 = 0. Therefore, we can reuse the checks specified for the bit-wise XOR to check

the compare-equal instruction.

The compare-above instruction compa regi A sets the flag equal to 1 if and only

if ri,t > At and to 0 otherwise. Let a = ri,t, c = At, d = 0, and b store some non-

deterministic advice. By checking that SUM = 0 we have that (a−c) = (2Wflagt+1−b).

Note that if flagt+1 = 1, the right-hand side is greater than 0 since b ∈ [0, 2W − 1] has

been checked by the relationRlogic, and therefore also the left-hand side is greater than

5.3. Decomposition of TinyRAM Relation 129

0. Thus, if the flagt+1 = 1 then a > c. On the other hand, if flagt+1 = 0, the right-hand

side is less or equal than 0 and thus a ≤ c. The operation compg is the equivalent of

compa for the comparison of signed integers and can be checked in a similar way by

checking that SSUM = aσ + b − cσ − 2Wflagt+1 + d is equal to 0, where d is also set

equal to 0 and the other temporary variables are set as above.

Similarly, the compae regi A sets the flag equal to 1 if and only if ri,t ≥ At and

to 0 otherwise. We can set the selection vectors as for the previous operation while

setting d = 1. Whenever SUM = 0 we will have that (a − c) = (2Wflagt+1 − b − 1).

Now, flagt+1 = 1 makes the right-hand side greater or equal than 0, and thus a ≥ c.

On the other hand, flagt+1 = 0 makes the right-hand side strictly less than 0, giving

us a < c. The operation compge is the equivalent of compa for the comparison

of signed integers and can be checked in a similar way by checking that SSUM =

aσ + b − cσ − 2Wflagt+1 + d is equal to 0, where d is also set equal to 1 and the other

temporary variables are set as above.

Move and Jump Operations. The instruction mov regi A stores the value At into regi

and the instruction jmp A sets the program counter pct+1 equal to At. We can check

both these operations by storing input and output in a and b, respectively, and check

that their bit-wise XOR is equal to 0. We summarise the selection vectors for these

operations in Table 5.1.

The operation cmov is the conditional operation executing a mov instruction only

in the case the flagt is set equal to 1. It can be verified by setting the selection vectors

so that a = ri,t+1,b = At,c = 0,d = ri,t and check that MOD = 0. Note that when

c = 0, the latter amounts to check

flagt+1(b− d) + d− a = 0

which checks that At = ri,t in case flagt = 1 and that regi remains the same in case

flagt = 0, i.e. ri,t = ri,t. To conclude, by setting the entry of vector sch relative to the

flag equal to 1, we can check that flagt = flagt+1.

The conditional operation cjmp executes a jump operation only in case flagt = 1.

This can be checked in the same way as above by setting a = pct+1,b = At,c = 0,d =

pct + 1 and check that MOD = 0. The conditional operations cnjmp only performs

130 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

a jump instruction if flagt = 0. It is sufficient to swap the roles of b a d and check

MOD = 0.

Memory Operations. The consistency of memory operations across the execution has

been checked by the memory check relationRmem. Among other things,Rmem verifies

that entries addrt and vaddrt are updated consistently. The last thing that remains to

check is that when performing load and store operations, the registers are updated

consistently to the value stored in vaddrt . This involves checking equality between

vaddrt and either the value stored in the input or output register, which can be done by

checking that their bit-wise XOR is equal to 0.

Answer. A correct program execution terminates in step T with answer 0. With little

loss of generality we can assume this is done by jumping to the last line of the pro-

gram, which has instruction answer A specifying immediate value A = 0, which we

check in Rcheck. A correct program execution only executes answer once so we also

need to ensure the program execution does not encounter an answer instruction pre-

maturely. We ensure this by removing all answer instructions from the program table

Prog such that no execution step checked byRinst for t = 1, . . . , T −1 can be an answer

instruction.

5.4 ILC proofs for Building Blocks

In the previous sections we described the arithmetization of TinyRAM and its full

decomposition into few building-block relations: equality, unknown permutation,

lookup, range relations and sets of quadratic constraints. Next, we give an outline

of the proof systems over the ILC for these building blocks, referring to [BCG+18] for

the complete specifications of the permutation and lookup proofs. The proof systems

described in this section refer to matrices and vectors committed using the ILC. In the

next section we will see how to parse the witness w into several matrices and how to

combine these building blocks to give proofs for the correct execution of TinyRAM

programs.

5.4. ILC proofs for Building Blocks 131

5.4.1 ILC proofs for Equality Relations

The equality relation Req is analogous to the one we introduced in the Section 4.2.1,

were we also described a proof system in the ILC model. In Table 5.3 we restate the

efficiency of the proof system to check the equality of s public vectors with committed

vectors in the ILC.

Prover computation TPILC
= //

Verifier computation TVILC
= O(sk) F+

Prover communication t = //
Verifier communication CILC = 0

Query complexity qc = 1
Round complexity µ = 0

TABLE 5.3: Efficiency of the proof of knowledge for Req. F+ stands for
the cost of a single field addition.

5.4.2 ILC Proof for Unknown Permutation Relations

We will now give the outline of a proof system over the ILC for the relation Rperm.

To express the statement in a format that is more compatible with the ILC channel we

write the values to be permuted as entries in matrices. Therefore we reformulate the

unknown permutation relation as follows.

Rperm =

 (ppILC, u) := ((W,K,F, k) , (mn), (A,B, π)) :
A,B ∈ Fmn×k ∧ π ∈ Σ[mn]×[k] ∧ Aπ(i,j) = Bi,j ∀(i, j) ∈ [mn]× [k]


The proof system for an unknown permutation relation unfolds (Figure 5.3) very sim-

ilarly to the case of a known permutation relation we outlined in Section 4.2.4. Define

J ∈ Fmn×k to be the matrix that has 1 in all entries, i.e.,

J =


1 1

. . .

1 1



Suppose the prover has committed to the rows of the two matrices A,B ∈ Fm×k.

The idea behind the construction is to let the verifier pick a random challenge x and

let the prover commit toA−xJ andB−xJ . The prover will now convince the verifier

132 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

FIGURE 5.3: Decomposition of the unknown permutation proof over
the ILC.

that the product of the entries inA−xJ is equal to the product of the entries inB−xJ ,

i.e.
mn,k∏
i,j

(Ai,j − x) =

mn,k∏
i,j

(Bi,j − x).

As in the case of a known permutation, this can be done by executing a proof for the

same-product of matrices.

Permutation of Tuples. When checking the consistency of the memory, we use a

permutation relation over tuples of entries in the execution table rather than single

entries. This means that all entries in a tuple are subject to the same permutation. Over

the ILC this can be phrased as checking that entries in matrices {Ai}i are permutation

of entries in {Bi}i, for the same permutation π. Our proof system can be extended to

check an unknown permutation of collection of matrices by introducing an additional

round of interaction between prover and verifier. It is sufficient to let the verifier pick

a random challenge z ← F and let the prover commit to the matricesA = zA1 +z2A2 +

z3A3 + . . ., and B = zB1 + z2B2 + z3B3 + The prover shows that the compressed

matrices A and B are correctly formed using a proof for the correct sum of committed

vectors (Section 4.2.23) and that these two matrices are permutation of each other. In

the specific case of the Rcycle relation, the last entry of the tuple consists of elements

of the form S + L which is used to distinguish between memory operations from the

rest. In our final proof the entries of S and L will be committed into distinct matrices.

These two can be merged into a single one in the compression step by weighting them

with the same power of z, i.e. z4L + z4S = z4(S + L).

3We only presented a proof for the sum of vectors rather than for their weighted sum. However,
it is easy to see that the proof can be generalised by changing the verifier’s opening query to include
the weights of the linear combination. In the notation, we differentiate the case of a weighted sum by
including the weights of the linear combination in the instance.

5.4. ILC proofs for Building Blocks 133

The description of our unknown permutation proof forRperm on collection of ma-

trices is given in Fig. 5.4. As in the previous chapter we delimit steps that are executed

in other proofs with / ∗ and ∗/, and include [A] in the verifier’s inputs to denote that

the statement refers to the commitment of A in the ILC. Steps marked with ILC → ◦

and ILC← • denote incoming and outgoing messages to the ILC, respectively.

Pperm(ppILC, (mn, c), ({Ai, Bi}ci=1, π))

Round 1:

/ ∗ILC← • Send (commit, {Ai, Bi}ci=1) to the ILC ∗/

Round 2:

ILC→ ◦ Get message z from the ILC

• A :=
∑c

i=1Aiz
i

• B :=
∑c

i=1Biz
i

• z := (z, z2, . . . , zc)

ILC← • Send (commit, A,B) to the ILC

Round 3 to logm+ 4:

ILC→ ◦ Get message x from the ILC

• For (i, j) ∈ [mn]× [k]:

– J ′i,j := x

• A′ := A− J ′

• B′ := B − J ′.

ILC← • Send (commit, J ′, A′, B′) to the ILC

• Run Psum (ppILC, (mn, z), (A1, . . . , Ac, A))

• Run Psum (ppILC, (mn, z), (B1, . . . , Bc, B))

• Run Peq(ppILC, J
′, J ′)

• Run Psum(ppILC, (mn), (A′, J ′, A))

• Run Psum(ppILC, (mn), (B′, J ′, B))

• Run Psame-prod(ppILC, (mn), (A′, B′))

Vperm(ppILC, (mn, c, ({[Ai], [Bi]}ni=1)))

Round 1:

/ ∗ ILC→ ◦ Get message 2mnc from the ILC ∗/

• z ← F

• z := (z, z2, . . . , zn)

ILC← • Send (send, z) to the ILC

Round 2:

ILC→ ◦ Get message 2mn from the ILC

• x← F

• For (i, j) ∈ [mn]× [k]:

– J ′i,j := x

ILC← • Send (send, x) to the ILC

Round 3 to logm+ 4:

ILC→ ◦ Get message 3mn from the ILC

• Run Vsum(ppILC, (mn, z, [A1], . . . , [An], [A]))

• Run Vsum(ppILC, (mn, z, [B1], . . . , [Bn], [B]))

• Run Veq(ppILC, (mn, J ′, [J ′]))

• Run Vsum(ppILC, (mn, [A′], [J ′], [A])

• Run Vsum(ppILC, (mn, [B′], [J ′], [B])

• Run Vsame-prod(ppILC, (mn, [A′], [B′]))

• If all the sub-proofs accept return 1, else
return 0

FIGURE 5.4: Proof of knowledge for the relationRperm.

Theorem 5.1. (GILC,Pperm,Vperm) is a proof system for the relation Rperm in the ILC model

with perfect completeness, statistical strong knowledge soundness with straight-line extrac-

tion, and perfect special honest verifier zero-knowledge.

134 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

Proof. We start by showing completeness. If the statement is true, then there exists

a permutation π between the entries of matrices {Ai}i and the entries of {Bi}i. This

means that for the same permutation π we have A′π(i,j) = B′i,j . Therefore each entry

of A′ appears somewhere in matrix B′. Perfect completeness follows by the perfect

completeness of the sub-proofs.

Next we show statistical strong knowledge soundness. As usual the knowledge

extractor sees the vectors sent from the prover to the ILC, and therefore it has straight-

line extraction. The knowledge soundness of the sum sub-proofs, guarantees that

matrices A,B correspond to the weighted sums of Ai and Bi, respectively, apart with

negligible probability. By the Schwartz-Zippel Lemma, if the statement is false then

with overwhelming probability (1 − c
|F|) over the choices of z there will be entries

only contained either in A or B. The knowledge soundness of the equality and sum

sub-proofs guarantees that, apart with negligible probability, matrix J ′ is correctly

formed and that committed matrices A,B are the sums of A′+ J ′, and B′+ J ′, respec-

tively. Moreover, from the knowledge soundness of the same-product proof, we get∏
i,j(Ai,j − x) =

∏
i,j(Bi,j − x). By applying the Schwartz-Zippel Lemma again, the

probability over the random choice of x ← F of the above equality to hold is at most

mnk
|F| , which is negligible.

Finally, the proof system has perfect SHVZK. Matrix J ′ can be computed given

the statement and the random challenges sent from the verifier. This is sufficient to

simulate the view of the equality sub-proofs. The sub-proofs for the sum relation can

be trivially simulated. The simulator then is only required to execute the simulator for

the same-product sub-proof.

Efficiency. The round complexity of the proof is of two rounds more than the same-

product proof in the case of permutation of tuples, i.e. log(m) + 4 rounds. The number

of verifier’s queries is equal to the sum of the queries of the sub-proofs, i.e. qc = 16 in

the tuples case.

The verifier communication is O(log(m)) challenges. The computational cost for

the verifier is O(mn + k) field multiplications for the sum and same-product proofs.

The equality sub-proof normally requires a linear number of additions. However, here

the equality is used to check that matrix J ′ has entries all equal to x, and therefore

5.4. ILC proofs for Building Blocks 135

most of the computation can be reused. In this case the verifier can check that the

response to the opening query is a vector with entries all equal to each other, and that

this value is consistent with the linear combination of one column of J ′. This only

requiresO(mn) field multiplications to compute. Therefore, the overall computational

cost of the verifier is dominated byO(mn +k) field multiplications, which is sublinear

in the size of the matrices. It is worth noting that the verification cost of the known

permutation proof of Section 4.2.4 is a linear number of additions.

The communication complexity for the prover isO(mn) vectors of length k, assum-

ing that the tuples are of constant size (c = O(1)), which is the only case we will use.

The computational complexity of the prover is dominated by the cost of the same-

product proof, which is in turn dominated by the cost of the product proof of Section

4.2.3 and therefore is equal to O(mnk + kn log(n)). The efficiency of the proof system

is summarised in Table 5.7.

Prover computation TPILC
= O(kn log n + kmn) F×

Verifier computation TVILC
= O(k + mn) F×

Prover communication t = O(mn) log |Fk|
Verifier communication CILC = (log m + 4) log |F|
Query complexity qc = 16
Round complexity µ = log m + 4

TABLE 5.4: Efficiency of the proof of knowledge for the Rperm relation.
F× stands for the cost of a single field multiplication, F+ stands for the
cost of a single field addition, and log |F| for the size of a field element.

5.4.3 ILC Proofs for Lookup Relations

Here we give an idea behind the proof system over the ILC for lookup relationsRlookup.

As above, we reformulate the lookup relationRlookup in terms of the entries in matrices

for compatibility with the ILC channel. We think of the entries of a lookup table to be

arranged in a matrix B ∈ FnB×k and all the values we want to check in the lookup

table to be arranged in a matrix A ∈ FnA×k. A lookup statement is that all entries Ai,j

in A are equal to some entry Bi′,j′ in B. The corresponding relation is

Rlookup =

 (ppILC, u) := ((W,K,F, k) , (nA, nB), (A,B)) :

A ∈ FnA×k ∧ B ∈ FnB×k ∧ {Ai,j}nA,ki=1,j=1 ⊆ {Bi,j}
nB ,k
i=1,j=1



136 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

In a completely identical way to the case of permutations of tuples, we can also extend

the lookup relation to work on collection of matrices {Ai}i, {Bi}i.

The idea behind the construction of the proof is similar to the one used for checking

permutations of entries in two matrices. Namely, we let the verifier pick a random

challenge x← F and have the prover show that

nA,k∏
i=1,j=1

(Ai,j − x) =

nB ,k∏
i=1,j=1

(Bi,j − x)e(i,j)

for some exponents ei,j , denoting the number of times the entry Bi,j in table B has be

looked up from table A. For the left-hand side, the proof proceeds as in the permuta-

tion proof, where the prover commits to matrix A− xJ for a matrix J with all entries

equal to 1. For the right-hand side the prover has to commit to a matrix

E =



e(1,1)1 . . . e(1,k)1

...
...

e(1,1)log(nAk)
. . . e(1,k)log(nAk)

e(2,1)1 . . . e(2,k)1

...
...

e(nB ,1)log(nAk)
. . . e(nB ,k)log(nAk)


∈ FnB log(nAk)×k

where e(i,j)k is the k-th bit in the binary decomposition of exponent e(i,j) associated

with the lookup table entry Bi,j . The prover then shows the following holds

• The entries of E are all zeros and ones, i.e (E ◦ E = E).

• The sum of the exponents is equal to the number of entries in matrix A, i.e.∑nB ,k
i=1,j=1 ei,j = nAk.

• Commit to a matrix F ∈ FnB log(nAk)×k whose entries are equal to (Bi,j −x)e(i,j)k .

The correctness of this matrix is checked using few additional product and sum

proofs.

• Use a same-product proof to show that product of entries inA′ = A−xJ is equal

to the product of entries in F .

5.4. ILC proofs for Building Blocks 137

We refer to [BCG+18] for a description on how to perform each of the above checks

and for the full specifications of the proof system (GILC,Plookup,Vlookup). From there we

also recall the next theorem which we state without proof.

Theorem 5.2 ([BCG+18]). (GILC,Plookup,Vlookup) is a proof system for the relationRlookup in

the ILC model with perfect completeness, statistical strong knowledge soundness with straight-

line extraction, and perfect special honest verifier zero-knowledge.

This proof system uses as a building block the same-product proof which repre-

sents the dominant cost of the proof. The efficiency of the proof system is stated in

Table 5.5, with respect to the case of lookup tables of constant size tuples. In the ap-

plication of this proof, we typically have a much larger matrix A of elements that we

lookup and a smaller lookup table B, so that nA dominates nB log(nAk).

Prover computation TPILC
= O(nAk + nBk log(nAk)) F×

Verifier computation TVILC
= O(k + nA + nB log(nAk)) F×

Prover communication t = O(nA + nB log(nAk)) log |Fk|
Verifier communication CILC = (log(nB) + 4) log |F|
Query complexity qc = 65
Round complexity µ = log(nB) + 4

TABLE 5.5: Efficiency of the proof of knowledge for theRlookup relation.
F× stands for the cost of a single field multiplication, F+ stands for the
cost of a single field addition, and log |F| for the size of a field element.

Bounded Lookups. In the process of checking the consistency of the memory, we

introduced a bounded lookup relation to check that certain entries of the lookup table

B could occur at most once in matrix A. It is easy to extend the previous lookup proof

to incorporate the extra conditions required by a bounded lookup relation. The high

level decomposition of the bounded lookup proof system is given in Figure 5.6

FIGURE 5.5: Decomposition of the bounded lookup proof over the ILC.

In the decomposition of the TinyRAM relation, the bounded lookup relation is

used to check the consistency of tuples in rows of the execution table with rows of the

138 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

memory table Mem, which consist of three entries each (address, value, and usd). Let

B1, B2, B3 be the matrices composing the lookup table storing addresses, values, and

usd flags respectively. Without loss of generality assume that the part of the lookup

table that can be accessed at most once corresponds to the top half of the matrices

(B>1 , B
>
2 , B

>
3) while the part that can be accessed multiple times corresponds to the

bottom halves (B⊥1 , B
⊥
2 , B

⊥
3). Similarly, consider matrices A1, A2, A3 for the tuples of

entries that we want to check in the table. As for the unknown permutation proof, we

start compressing the above matrices into two matrices using a challenge z ← F from

the verifier, i.e.

A = A1z +A2x
2 +A3z

3 B = B1z +B2x
2 +B3z

3

Once the matrices have been compressed, prover and verifier run a lookup proof on

A and B. In the process, the prover has to commit to matrix E ∈ FnB log(nAk)×k that

encodes in binary form the number of times that each entry in B appears in A.

Let B> be the top half of the matrix B containing the entries that can occur at most

once in A, and B⊥ be the bottom half of B. The prover commits to another matrix

G ∈ FnB log(nAk)×k, the same size of E. This matrix contains zeros at entries relating to

the positions in E that describe all but the least significant bits of the number of times

B> occurs in A. All the remaining entries of G are set equal to 1.

E =



e(1,1)1 . . . e(1,k)1

e(1,1)2 . . . e(1,k)2

...
...

e(1,1)log(nAk)
. . . e(1,k)log(nAk)

e(2,1)1 . . . e(2,k)1

...
...

e(nB ,1)log(nAk)
. . . e(nB ,k)log(nAk)



G =



0 . . . 0

1 . . . 1

...
...

1 . . . 1

0 . . . 0

...
...

0 . . . 0


The correctness of the matrix G can be checked efficiently by using a proof system

for equality relations. Lastly, the prover shows that G ◦ E is the zero matrix. This

shows that E contains all zeroes for entries corresponding to B>, except possibly the

least significant bit, which may be a zero or a one. The description of the proof system

5.4. ILC proofs for Building Blocks 139

over the ILC for the bounded lookup relationRblookup is given in Figure 5.6.

Pblookup(ppILC, (nA, nB), ({Ai}3i=1, {Bi}3i=1))

Round 1:

/ ∗ ILC← • Send (commit, {Ai, Bi}3i=1) to the ILC ∗/

Round 2 to lognB + 4:

ILC→ ◦ Get message z from the ILC

• z := (z, z2, z3)

• A := A1z +A2z
2 +A3z

3

• B := B1z +B2z
2 +B3z

3

• For (i, j) ∈ [nB log(nAk)
2]× [k]:

– If i = 1 (mod log(nAk)): G>i,j := 0

– Else: G>i,j := 1

– G⊥i,j := 0

– O>i,j := 0

– O⊥i,j := 0

• G :=

(
G>

G⊥

)
, O :=

(
O>

O⊥

)
ILC← • Send (commit, A,B,G,O) to the ILC

• Run Psum(ppILC, (nA, z), (A1, A2, A3, A))

• Run Psum(ppILC, (nB, z), (B1, B2, B3, B))

• Run Peq(ppILC, G,G)

• Run Peq(ppILC, O,O)

• Run Plookup(ppILC, (nA, nB), (A,B))

• Run Pprod(ppILC, (nB log(nAk)), (G,E,O))

Vblookup(ppILC, (nA, nB, {[Ai]}3i=1, {[Bi]}3i=1))

Round 1:

/ ∗ ILC→ ◦ Get message 3(nA + nB) from the ILC ∗/

• z ← F

• z := (z, z2, z3)

ILC← • Send (send, z) to the ILC

Round 2 to lognB + 4:

ILC→ ◦ Get message nA+nB +2nB log(nAk) from
the ILC

• For (i, j) ∈ [nB log(nAk)
2]× [k]:

– If i = 1 (mod log(nAk)): G>i,j := 0

– Else: G>i,j := 1

– G⊥i,j := 0

– O>i,j := 0

– O⊥i,j := 0

• Run Vsum(ppILC, (nA, z, [A1], [A2], [A3], [A]))

• Run Vsum(ppILC, (nB, z, [B1], [B2], [B3], [B]))

• Run Veq(ppILC, (G, [G]))

• Run Veq(ppILC, (O, [O]))

• Run Vlookup(ppILC, (nA, nB, [A], [B])).

• Run Vprod(ppILC, (nB log(nAk), [G], [E], [O]))

• If all the sub-proofs accept return 1,
else return 0

FIGURE 5.6: Proof of knowledge for the relation Rblookup. Matrix E is
the exponent matrix used inside the proof forRlookup

Theorem 5.3. (GILC,Pblookup,Vblookup) is a proof system for Rblookup in the ILC model with

perfect completeness, statistical strong knowledge soundness with straight-line extraction, and

perfect special honest verifier zero-knowledge.

Proof. We start by showing completeness. If the statement is true, then all entries in

(A1, A2, A3) are also entries in (B1, B2, B3). Moreover, entries in matrices B>i are only

accessed once in the Ai. The same holds for the compressed matrices A,B. Matrices

140 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

G and O are constructed such that G ◦ E = O. Perfect completeness then follows by

the perfect completeness of all the sub-proofs.

Next we show statistical strong knowledge soundness. As usual the knowledge

extractor sees the vectors sent from the prover to the ILC, and therefore it has straight-

line extraction. The knowledge soundness of the sum sub-proofs, guarantees that

matrices A,B correspond to the weighted sums of Ai and Bi, respectively, apart with

negligible probability. By the Schwartz-Zippel Lemma, if the statement is false then

with overwhelming probability (1 − 3
|F|) over the choices of z either there will be en-

tries only contained either in A or B, or some entries of B> are included more than

once inA. The knowledge soundness of the equality sub-proofs guarantees that, apart

with negligible probability, matrices G and O are correctly formed. From the knowl-

edge soundness of the lookup proof, we get that all entries in A are contained in B,

apart with negligible probability. This proof also guarantees that matrix E is correctly

storing the number of times entries ofB occur inA. Finally, the knowledge soundness

of the product proof guarantees that if matrix B> has entries occurring more than

once in matrix A, then there is negligible probability that the verifier will accept that

G ◦ E = O.

Finally, the proof system has perfect SHVZK. MatricesG,O can be computed given

the statement. This is sufficient to simulate the view of the equality sub-proofs. The

sub-proofs for the sum relation can be trivially simulated. The transcript of a product

subproof can be simulated by picking responses v1,v2 ← Fk and v3 := v1 ◦ v2. The

simulator then calls the simulators of the lookup proof and terminates.

The efficiency of the bounded lookup proof (Table 5.6) is similar to the efficiency

of the lookup proof. We stress that the verification cost of the equality sub-proofs can

be reduced as in the case the unknown permutation proof, since the columns of the

matrix are all the same.

5.4.4 ILC Proof for Range Relations

In Section 5.2.4 we showed that range relations can be reduced to lookup and sum

relations. To perform range checks efficiently we batch them in a single proof. This

5.4. ILC proofs for Building Blocks 141

Prover computation TPILC
= O(nAk + nBk log(nAk)) F×

Verifier computation TVILC
= O(k + nA + nB log(nAk)) F×

Prover communication t = O(nA + nB log(nAk)) log |Fk|
Verifier communication CILC = (log(nB) + 4) log |F|
Query complexity qc = 72
Round complexity µ = log(nB) + 4

TABLE 5.6: Efficiency of the proof of knowledge for the Rblookup rela-
tion. F× stands for the cost of a single field multiplication, F+ stands
for the cost of a single field addition, and log |F| for the size of a field

element.

is done by gathering all the values in a ∈ [0, 2W − 1] into a single matrix A and in-

sert their odd/even-bits decomposition (ao,ae) into two matrices Ao, Ae. Prover and

verifier perform a lookup proof for matrices Ao, Ae and matrix B storing the lookup

table EvenBits. The only thing that remains to show is that the values in A are con-

sistent with their odd/even-bits decomposition, i.e. A = 2Ao + Ae. The high-level

decomposition of the range proof system over the ILC is given in Figure 5.7.

FIGURE 5.7: Decomposition of the range proof over the ILC.

We omit the formal description of the proof system for range relations as it consists

of a straightforward combination of sum and lookup proofs. Furthermore, we have

to check several other arithmetic constraints over the entries of two consecutive rows

in the execution table. We can batch these together with the above sum relations in a

single proof. Overall, range relations will be checked by lookup proofs and a proof for

the consistency of arithmetic constraints which we describe next.

5.4.5 ILC Proof for Arithmetic Constraints

In the previous sections we decomposed the arithmetized TinyRAM relation into sev-

eral simpler relations, some of which contained arithmetic constraints over the entries

of one row of the execution table,Rtime,Rload or over pairs of consecutive rows in the

execution table, Rmux,Rcons,Rinst,Rlogic,Rarith,Rshift. One way to handle all these

142 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

constraints would be to gather all of them into an arithmetic circuit over the entries

of Exe and then use the proof for the satisfiability of arithmetic circuits we gave in the

Chapter 4. Since the set of constraints is the same for every pair of rows, the result-

ing arithmetic circuit would be a repetition of the same sub-circuit applied for every

pair of consecutive rows. Since we are interested to prove evaluations of the same

circuit many times on different inputs, there are batching techniques to perform this

check more efficiently. Since all the constraints we used are either linear constraints

or quadratic constraints over the entries of the execution table, we can use quadratic

arithmetic programs (QAP), which were used by [GGP+13] in the context of succinct

non-interactive argument of knowledge. Quadratic arithmetic programs are a means

to batch together a set of quadratic equations into a single polynomial equation. In

the interactive settings, similar batching techniques were used in [Bay14] and [BG18]

to construct arguments for batch evaluation of polynomials.

A quadratic arithmetic program QAP over a field F consists of three sets of poly-

nomials {ui(X)}mi=0, {vi(X)}mi=0, {wi(X)}mi=0 and a target polynomial t(X) such that

• All polynomials ui(X), vi(X), wi(X) and t(X) are in F[X].

• The polynomials ui(X), vi(X), wi(X) have degree strictly lower than n, for 1 ≤

i ≤ m.

• The degree of t(X) is equal to n.

The size of the QAP is the size of the sets of polynomials, i.e. m, while the degree of the

QAP is the degree of t(X), i.e. n.

Let QAP = (F, n, {ui(X), vi(X), wi(X)}mi=0, t(X)) be a quadratic arithmetic pro-

gram. Elements {ai}mi=1 ∈ F are said to constitute a valid assignment to the QAP if the

polynomial t(X) divides the following polynomial

(
u0(X) +

m∑
i=1

ai · ui(X)

)
·

(
v0(X) +

m∑
i=1

ai · vi(X)

)
−

(
w0(X) +

m∑
i=1

ai · wi(X)

)

Gennaro et al. [GGP+13] shows how to construct QAP for general arithmetic cir-

cuits, such that valid assignments to the wires of the circuit correspond to valid as-

signments of a QAP. Given a circuit with n inputs and s fan-in 2 multiplication gates

they show how to construct a QAP of size n+s and degree s ([GGP+13, Theorem 12]).

5.4. ILC proofs for Building Blocks 143

Overall, the relations Rtime,Rload,Rmux,Rcons,Rinst,Rlogic,Rarith,Rshift specify a

constant number of quadratic constraints over entries of at most two rows, comprising

a constant number of field elements each. Therefore, by following [GGP+13] we can

construct a QAP of constant size and constant degree and give a proof that the entries

in two consecutive rows constitute a valid assignment to the QAP. Namely, we are

interested in giving a proof system for the following relation.

RQAP =



(ppILC, u, w) :=
(

(F, k), (QAP), ({ai}mi=1, {zj}
n−2
j=0)

)
:

QAP := (F, n, {ui(X), vi(X), wi(X)}mi=0, t(X)) ∧

∀ i ∈ [m], ai ∈ F ∧ ∀ j ∈ [0, n− 2], zj ∈ F ∧

u(x) := u0(X) +
∑m

i=1 aiui(X) ∧ v(X) := v0(X) +
∑m

i=1 aivi(X)∧

w(X) := w0(X) +
∑m

i=1 aiwi(X) ∧ z(X) :=
∑n−2

i=0 ziX
i ∧

u(X) · v(X) = w(X) + t(X)z(X)


More precisely, we will give a proof to check the validity of T − 1 assignments to

the same QAP, corresponding to the entries of the T − 1 pairs of consecutive rows

in the execution table. Since the ILC allows to commit to vectors of length k, we can

extend the polynomial expression used to check the validity of one assignment to a

polynomial expression with vector coefficients to check k instances of the same QAP

at the same time. This is done by arranging the assignment to the same instance into

the same position of vectors ai ∈ Fk for 1 ≤ i ≤ m, and check that t(X) divides each

component of the following vector of polynomials

(1 · u0(X) +
∑m

i=1 ai · ui(X)) ◦ (1 · v0(X) +
∑m

i=1 ai · vi(X))− (1 · w0(X) +
∑m

i=1 ai · wi(X))

where 1 is the vector of length k with entries all equal to 1.

Let mn be the number of vector assignments to be checked on the same QAP, i.e.

T ≈ mnk. In our proof system, the prover starts by committing to vectors {ai,j}m,mn
i=1,j=1

such that for every fixed j, the vectors {ai,j}mi=1 correspond to a batch of k QAP as-

signments as described above. Furthermore, let {a0,j}mn
j=1 be the vectors with entries

all equal to 1. Then, the prover computes the quotient polynomials zj(X) for every

144 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

j ∈ [mn]

zj(X) =

n−2∑
k=0

zk,jX
i

=

[(
m∑
i=0

ai,jui(X)

)
◦

(
m∑
i=0

ai,jvi(X)

)
−

m∑
i=0

ai,jwi(X)

]
/t(X) (5.7)

and commits to their coefficient {zk,j}n−2,mn
k=0,j=1. At this point the prover shows that for

each j ∈ [mn] the following holds

(
m∑
i=0

ai,jui(X)

)
◦

(
m∑
i=0

ai,jvi(X)

)
=

m∑
i=0

ai,jwi(X) + zj(X)t(X)

These identities can be tested using the Schwartz-Zippel Lemma. The verifier picks

a random challenge x ← F and the prover evaluates the above polynomials in x to

obtain

âj =

m∑
i=0

ai,jui(x)

b̂j =

m∑
i=0

ai,jvi(x)

ĉj =

m∑
i=0

ai,jwi(x) +

m∑
i=1

zi,jx
it(x)

At this point the prover shows the consistency of the ai,j with the above evalua-

tions and that âj ◦ b̂j = ĉj for all j ∈ [mn]. The full description of the proof system for

a batch of mnk instances of the same QAP is given in Figure 5.8.

Theorem 5.4. (GILC,PQAP,VQAP) is a proof system for the (batched) relation RQAP in the

ILC model with perfect completeness, statistical strong knowledge soundness with straight-

line extraction, and perfect special honest verifier zero-knowledge.

Proof. We start by showing completeness. If the statement is true, then there exist

polynomials zj(X) of degree at most n− 2 such that

(
m∑
i=0

ai,jui(X)

)
◦

(
m∑
i=0

ai,jvi(X)

)
=

m∑
i=0

ai,jwi(X) + zj(X)t(X)

5.4. ILC proofs for Building Blocks 145

PQAP(ppILC, (mn,QAP), ({{ai,j}mi=1, {zk,j}
n−2
k=0}

mn
j=1))

Round 1:

• Parse QAP as
(F, n, {ui(X), vi(X), wi(X)}mi=0, t(X))

• For j ∈ [mn]:

– a0,j := 1

– zj(X) :=
∑n−2

k=0 zk,jX
i (as in (5.7))

/ ∗ ILC← • Send (commit, {ai,j}m, mn
i=1,j=1) to the ILC ∗/

ILC← • Send (commit, {a0,j}mn
j=1, {zk,j}

n−2, mn
k=0,j=1) to

the ILC

Round 2 to logm+ 3:

ILC→ ◦ Get message x from the ILC

• For j ∈ [mn]:

– âj :=
∑m

i=0 ai,jui(x)

– b̂j :=
∑m

i=0 ai,jvi(x)

– ĉj :=
∑m

i=0 ai,jwi(x) + zjt(x)

ILC← • Send (commit, {âj , b̂j , ĉj}mn
j=1) to the ILC

• Run Peq(ppILC, {1}mn
j=1, {a0,j}mn

j=1)

• Run Psum(ppILC, (mmn, {u(x)i}mi=0),
({a0,j , . . .am,j , âj}mn

j=1))

• Run Psum(ppILC, (mmn, {v(x)i}mi=0),
({a0,j , . . . ,am,j , b̂j}mn

j=1))

• Run Psum(ppILC, (mmn, ({w(x)i}mi=0, t(x)),
({a0,j , . . . ,am,j , zj , ĉj}mn

j=1))

• Run Pprod(ppILC, (mn), ({âj , b̂j , ĉj}mn
j=1))

VQAP(ppILC, (mn,QAP, {{[ai,j]}mi=1, {[zk,j]}
n−2
k=0}

mn
j=1)

Round 1:

/ ∗ ILC→ ◦ Get message mmn from the ILC ∗/

ILC→ ◦ Get message nmn from the ILC

• x← F

ILC← • Send (send, x) to the ILC

Round 2 to logm+ 3:

ILC→ ◦ Get message 3mn from the ILC

• Parse QAP as
(F, n, {ui(X), vi(X), wi(X)}mi=0, t(X))

• Run Veq(ppILC, ({1}mn
j=1, {[a0,j]}mn

j=1))

• Run Vsum(ppILC, (mmn, {u(x)i}mi=0,
{[a0,j], . . . [am,j], [âj]}mn

j=1))

• Run Vsum(ppILC, (mmn, {v(x)i}mi=0,
{[a0,j], . . . , [am,j], [b̂]j}mn

j=1))

• Run Vsum(ppILC, (mmn, ({w(x)i}mi=0, t(x),
{[a0,j], . . . , [am,j], [zj], [ĉj]}mn

j=1))

• Run Pprod(ppILC, (mn, {[âj], [b̂j], [ĉj}mn
j=1]))

• If all the sub-proofs accept return 1,
else return 0

FIGURE 5.8: Proof of knowledge for the batchedRQAP relation.

146 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

The above equality holds also when evaluating the polynomials at x. The complete-

ness of the proof system then follows from the completeness of the sub-proofs.

Next, we show that the proof has statistical strong knowledge soundness. As usual

the extraction is straight-line since the extractor sees the transcript of the communica-

tion between the prover and the ILC channel, and thus obtain a witness. It remains

to show that for any deterministic malicious prover P∗, if the committed vectors are

not a valid witness for RQAP, then there is negligible probability of accept. By the

knowledge soundness of the equality sub-proof, the vectors a0,j are equal to 1 with

overwhelming probability. Also, by the knowledge-soundness of the sum proof, it

must be that for each j, the values âj , b̂j , ĉj were computed correctly, i.e.

âj =

m∑
i=1

ai,jui(x)

b̂j =

m∑
i=1

ai,jvi(x)

ĉj =

m∑
i=1

ai,jwi(x) +

m∑
i=1

zi,jx
it(x)

In case the statement is false, then the vectors ai,j do not form valid assignments for

the QAP. This means that there exists at least one component for which t(X) does not

divide (
m∑
i=0

ai,jui(X)

)
◦

(
m∑
i=0

ai,jvi(X)

)
−

m∑
i=0

ai,jwi(X)

By the knowledge-soundness of the product proof, we have that

(
m∑
i=1

ai,jui(x)

)
◦

(
m∑
i=1

ai,jvi(x)

)
=

m∑
i=1

ai,jwi(x) +

m∑
i=1

zi,jx
it(x).

If the statement is false, then the left-hand side polynomial and the right-hand side

polynomial are not equal. By the Schwartz-Zippel Lemma, the above check has proba-

bility at most 2n−2
F to succeed. Therefore, the proof system has statistical strong knowl-

edge soundness.

Finally, the proof system has perfect SHVZK. Given vector 1 it is possible to sim-

ulate the view of the equality sub-proof. The sub-proofs for the sum relations can be

trivially simulated. The transcript of a product subproof can be simulated by picking

5.4. ILC proofs for Building Blocks 147

responses v1,v2 ← Fk and v3 := v1 ◦ v2. By the perfect SHVZK of the sub-proofs, the

transcript produced by the simulator has the same distribution of a real transcript.

Efficiency. Here we report the efficiency of the proof system for mnk batches of QAP

of size m = O(1) and degree n = O(1). The round complexity of the proof is of one

round more than the product proof of Section 4.2.3, i.e. log(m)+3 rounds. The number

of queries done by the verifier is equal to the sum of the queries of the sub-proofs, i.e.

qc = 7.

The verifier communication is O(log(m)) challenges. The computational cost for

the verifier is of O(mn + k) field multiplications for the sum and product proofs. The

equality sub-proof normally requires a linear number of additions. However, here the

equality is used to check that vectors have all entries all equal to 1. Therefore, the

cost of verifying this query can be reduced to only check the first component of the

response, and then check that all components of the response vector are equal. Thus,

this only requiresO(mn) field multiplications to verify. For a QAP of constant size and

degree, the overall computational cost of the verifier is dominated by O(mn + k) field

multiplications.

The communication complexity for the prover is O(mn) vectors of length k, as-

suming that the size of the QAP is constant. The computational complexity of the

prover is dominated by the cost of the Hadamard product proof which is equal to

O(mnk + kn log(n)). The efficiency of the proof system is summarised in Table 5.7.

Prover computation TPILC
= O(kn log n + kmn) F×

Verifier computation TVILC
= O(k + mn) F×

Prover communication t = O(mn) log |Fk|
Verifier communication CILC = O(log m) log |F|
Query complexity qc = 7
Round complexity µ = log m + 3

TABLE 5.7: Efficiency of the proof of knowledge for the RQAP relation,
in the case of batches of size mnk. F× stands for the cost of a single
field multiplication, F+ stands for the cost of a single field addition,

and log |F| for the size of a field element.

148 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

5.5 ILC Proof for the Correct Execution of TinyRAM

In this section we combine the building-block proof introduced in the previous section

to construct a proof system for the correct execution of a TinyRAM program over the

ILC channel. We recall that we target programs performing intensive computation, for

which the execution time dominates both the program length and the memory usage,

i.e. T > L+M . In Section 5.3 we broke the relationRfield
TinyRAM (recalled next) down to

a number of sub-relations defined over a finite field F.

Rfield
TinyRAM =



(pp, u, w) := ((W,K,F, ∗), (P, v, T,M),w) :
w := (Exe,Prog,Mem,EvenBits,Pow, π)

(pp, (P, v, T,M),w) ∈ Rcheck

(pp, (T,M),w) ∈ Rmem

(pp,⊥,w) ∈ Rstep


The relation Rcheck checks that certain entries in the extended witness w contain pub-

licly known values included in the instance. This relation decomposes into five equal-

ity relations. The relationRmem checks the consistency of the memory throughout the

execution and it is decomposed into an unknown permutation relation, a bounded

lookup relation and a number of lookup and arithmetic constraints. Finally the rela-

tionRstep checks the execution of each TinyRAM instruction. This is decomposed into

several lookup and arithmetic constraints relations. Our strategy to prove that they

are all satisfied is to commit to the extended witness w using the ILC channel. Then,

we gather all the lookup relations and arithmetic constraints together and we give

proof for these, as well as for the equalities, permutation and bounded lookup.

To begin we describe how to arrange the extended witness into matrices, so that

they can be committed using the ILC. To facilitate the sub-proofs for arithmetic con-

straints, the witness is committed using a specific format. In addition to the above

relations, then we also need to check that the committed matrices are committed as

specified which is done by checking some additional relationRformat described below.

5.5. ILC Proof for the Correct Execution of TinyRAM 149

5.5.1 Commitments to the Tables

In our proof system, the prover first commits to the extended witness w. The extended

witness includes the field elements in the execution table Exe, the memory table Mem,

the program table Prog, the auxiliary lookup tables EvenBits and Pow. The prover

arranges these tables in multiple matrices and commits to their rows using the ILC.

The prover arranges each column of the execution table in an ` × k matrix (such

as the T entries containing the time t, the T entries containing the program counter

pct, etc. are in the same matrix), and then she commits to each row of the resulting

matrices. Entries of Exe relative to the same TinyRAM state (i.e. entries to the same

row of the Exe) will be inserted in the same position across the different matrices.

Furthermore, in all these matrices the last entry of each column is duplicated in the

first entry of the next column. As an example, let us consider the first column of Exe

which contains field elements representing the time-steps of the execution. Without

loss of generality let T = (`− 1)k + 1, where T is the number of steps executed by the

program and k is the vector length of the ILC. The prover organizes the field elements

representing time in a matrix Et ∈ F`×k

Et =



1 ` 2`− 1 . . .

2 `+ 1 2` . . .

...
. . .

`− 1 2`− 2 3`− 3 . . . (`− 1)k

` 2`− 1 3`− 2 . . . T


Similarly, the prover organizes the rest of the Exe table into a constant number

of matrices Epc,Einst,EA, . . . one for each column. Let E be the matrix obtained by

stacking all matrices on top of each other and let E = {ei}, for ei ∈ Fk. The prover

commits to Exe by sending the command (commit,E) to the ILC.

150 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

Each column of the program table is also committed to the ILC separately. In case

L ≤ k we can store each column of Prog in one vector, i.e.

P =



Ppc

Pinst

PA

. . .


=



0 1 . . . L− 1

inst0 inst1 . . . instL−1

A0 A1 . . . AL−1

.


otherwise, multiple rows can be used. The prover commits the program table Prog by

sending (commit,P) to the ILC channel.

The memory table Mem, is arranged in matrix M in the following way.

M =



Maddr

Mv

Musd,0

Musd,1


=



0 1 . . . M − 1

v0 v1 . . . vM−1

0 0 . . . 0

1 1 . . . 1


The entries of the memory table are not committed twice for each value of the flag usd.

The reason we duplicated the memory in Section 5.2 is that in the bounded lookup

relation we must check that for each address addr, the entries associated with usd = 0

are accessed at most once. However in the proof we can parse the vectors and ar-

range them into sub-matrices without the need of recommitting to the rows. The

sub-matrices used in the bounded lookup proofs are M>, whose entries can only be

accessed once, and M⊥.

M> =


Maddr

Mv

Musd,0

 M⊥ =


Maddr

Mv

Musd,1


The prover commits the memory table Mem by sending (commit,M) to the ILC chan-

nel.

5.5. ILC Proof for the Correct Execution of TinyRAM 151

The auxiliary lookup table EvenBits and the exponent table Pow can be committed

in a similar way using matrices R and S

R =


0 1 4 5 . . .

∑W
2
−1

i=0 ki2
2i

. . . ∑W
2
−1

i=0 22i

 S =

0 1 2 3 . . . W − 1 W

1 2 4 8
. . . 2W−1 0



where (kW
2
−1, . . . , k0) is the binary expansion of k. If any of the above tables have

rows that are shorter that k, these can be filled with zeros. These additional entries are

checked together with the correctness of the table by the relationRcheck. We also need

to ensure we use an odd/even-bits decomposition that allows to store |EvenBits| � T ,

for instance |EvenBits| = O(
√
T). This can always be done by using a decomposition

into κ = O(1) words since W = O(log(n)).The prover commits the auxiliary lookup

tables EvenBits,Pow by sending (commit,R,S) to the ILC channel.

Format Relation. The reason we duplicate the last entry in each column of matrix E

is due to the way we check arithmetic constraints. This is done by using a QAP over

pairs of consecutive rows (in the execution table Exe) that correspond to entries in

consecutive rows in the sub-matrices of E. Since we batched k QAP together by using

vector coefficients, entries relative to the same QAP-assignment need to be in the same

component of the committed vectors. Therefore, the duplication of the last entries in

the columns allows to check the transition between consecutive states that would be

otherwise dislocated in different components of the committed vectors. On the other

hand, this introduces an additional consistency check for on the entries of the first and

last rows of matrices {Epc,Einst,EA, . . .} comprising E, as described by the following

relation.

Rformat =


(ppILC, u, w) := ((W,K,F, ∗),⊥,E) :

E := {Epc,Einst,EA, . . .}

∀ (t, j) ∈ {pc, inst, A, . . .} × [k − 1] : (Et)`,j = (Et)1,j+1



152 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

Generally, these type of statements can be proven by showing that committed matrices

have entries that are shifted, which can be done similarly to a same-product relation4.

Let a, b be the two vectors that we want to check have shifted entries. The idea is for

the verifier to pick a challenge y ← F and let the prover weight entries of a and b

with shifted powers of y, e.g. (1, y, y2, . . . ,) and (y, y2, y3, . . .). Then, a same-product

proof can be used to check that product of the weighted entries in the vectors are the

same. We omit a description of the proof system (GILC,Pformat,Vformat) and refer to

[BCG+18] for the description of a proof for general shifts of committed matrices. The

proof system achieves the same features of the same-product proof: perfect complete-

ness, statistical strong knowledge soundness with straight-line extraction and perfect

SHVZK. We remark that this statement involves only two vectors for each sub-matrix

of E, thus a constant number of vectors in total. The computational and communica-

tion costs for the relationRformat are stated in Table 5.8

Prover computation TPILC
= O(k) F×

Verifier computation TVILC
= O(k) F×

Prover communication t = O(1) log |Fk|
Verifier communication CILC = O(1) log |F|
Query complexity qc = 3
Round complexity µ = O(1)

TABLE 5.8: Efficiency of the proof of knowledge for theRformat relation.
F× stands for the cost of a single field multiplication, and log |F| for the

size of a field element.

5.5.2 Proof for the Correct TinyRAM Execution in the ILC Model

We are now in the position to describe the proof system for the correct execution of a

TinyRAM program over the ILC. Given the execution trace of the program, the prover

computes the extended witness w, arranges it into matrices E,P,M,R,S and commits

to them. Then she performs the following proofs

• A proof for the correct formatting of the matrices in E storing the execution table

Exe, i.e. for the relationRformat.

• Five equality proofs to check that public entries in the committed matrices E,P,M,R,

S are correct as described in the relationRcheck.
4To be more precise, the same-product relation proof of [BCG+17] is based on a proof for shift relations

of matrices.

5.5. ILC Proof for the Correct Execution of TinyRAM 153

• A proof for an unknown permutation of collections of four sub-matrices of E as

described by the relationRcycle. In this proof we letA,B be the matrices obtained

by stacking the following matrices.

A := {Eτlink ,Eaddr,Evlink ,ES + EL} B := {Et,Eaddr,Evaddr
,ES + EL}

• A bounded lookup proof for the relation Rblookup. Namely, to check that entries

in E are contained in the lookup table formed by M> and M⊥, with entries in M>

restricted to at most one access. In this proof we let EM be the matrix obtained

by stacking the following matrices.

EM := {Eaddr,Evinit ,Eusd}

• A lookup proof for entries in E with respect to the lookup table P. This proof

checks the lookup conditions enclosed in the relation Rcons. In this proof we let

EP be the matrix obtained by stacking the following matrices.

EP := {Epc,Einst,EA,ES,EL,Esa ,Esb ,Esc ,Esd ,Esout ,Esch}

• A lookup proof for entries in E with respect to the lookup table R. This proof

checks the lookup conditions enclosed in the relationsRtime,Rlogic,Rarith,Rshift.

In this proof we let ER be the matrix obtained by stacking all the sub-matrices of

E on involved in range checks, i.e.

ER := {Eto ,Ete ,Eao ,Eae ,Ebo ,Ebe ,Eco ,Ece ,Edo ,Ede ,Eoo ,Eoe ,Eeo ,Eee . . .}

• A lookup proof for entries in E with respect to the lookup table S. This proof

checks the lookup conditions enclosed in the relation Rshift. In this proof we let

ES be the matrix obtained by stacking all the sub-matrices of E on involved in

lookups in table Pow, i.e.

ES := {Ea,Eapower}

154 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

• A proof for the validity of (`−1)k assignments in E for the same quadratic arith-

metic program QAP. We let QAP check all the arithmetic constraints enclosed in

the relationsRload,Rtime,Rmux,Rinst,Rcons,Rlogic,Rarith,Rshift.

The prover and verifier for the relationRfield
TinyRAM are given in Figure 5.9.

PTinyRAM(ppILC, (P, v, T,M),w)

• w := (Exe,Prog,Mem,EvenBits,Pow, π)

• Parse Exe,Prog,Mem,EvenBits,Pow as
E,P,M,R,S

ILC← • Send (commit,E,P,M,R,S) to the ILC

• Run Pcheck(ppILC, (P, v, T,M), (E,P,M,R, S))

• Run Pformat(ppILC,⊥,E)

• Run Pperm(ppILC, (`, 4), (A,B, π))

• Run Pblookup(ppILC, (3`,
6M
k), (EM, {M>,M⊥}))

• Run Plookup(ppILC, (O(`),O(Lk)), (EP,P))

• RunPlookup(ppILC, (O(`),O
(
|EvenBits|

k

)
, (ER,R)))

• Run Plookup(ppILC, (`,O(1)), (ES,S))

• Run PQAP(ppILC,QAP,E)

VTinyRAM(ppILC, (P, v, T,M))

ILC→ ◦ Get message O(`) from the ILC

• Run Vcheck(ppILC, ((P, v, T,M), [E], [P], [M], [R], [S]))

• Run Vformat(ppILC,⊥, [E])

• Run Vperm(ppILC, (`, 4, [A], [B]))

• Run Vblookup(ppILC, (3`,
6M
k , [EM], {[M>], [M⊥]}))

• Run Vlookup(ppILC, (O(`),O
(
L
k

)
, [EP], [P]))

• Run Vlookup(ppILC, (O(`),O
(
|EvenBits|

k

)
, [ER], [R]))

• Run Vlookup(ppILC, (`,O(1), [ES], [S]))

• Run VQAP(ppILC,QAP,E)

• If all sub-proofs accept return 1, else return 0

FIGURE 5.9: Proof of knowledge for the relation Rfield
TinyRAM in the ILC

model

Theorem 5.5. (GILC,PTinyRAM,VTinyRAM) is a proof system forRfield
TinyRAM over the ILC chan-

nel with perfect completeness, statistical strong knowledge soundness with straight-line extrac-

tion, and perfect special honest-verifier zero-knowledge.

The properties of the proof system follow from the properties achieved by each of

the building-blocks used in the construction.

Efficiency. To model feasible computation, we allow the TinyRAM program to run

in a polynomial number of steps T = poly(λ) and use a polynomial number of words

of memory M = poly(λ). Assuming T,M ≥ λ, this means log T = Θ(log λ) and

logM = Θ(log λ). To address all the memory used by the program we therefore need

the word size to be at least W = Ω(log λ). To keep the circuit size of a processor

modest, it is reasonable to keep the word size low, so we will assume W = Θ(log λ).

Our proof system also works for larger word sizes but it is less efficient when the word

5.5. ILC Proof for the Correct Execution of TinyRAM 155

size is superlogarithmic. Note that we can store register values in memory at the cost

of a constant factor overhead in computation and thus, without loss of generality, we

assume K = O(1). Our proof system is designed for a setting where the running time

is large, so we will assume T � L+M .

Let k the vector length of the ILC channel and let T = `k, so that the execution

table is arranged in ` rows of length k. Although here our main goal is to optimise

prover complexity, the optimal verification complexity is achieved when k ≈ ` ≈
√
T .

In the next chapter, we will set the vector length in this way to also optimize the

communication complexity over the standard channel.

The round complexity of the proof system is equal to the maximum round com-

plexity of the sub-proofs, which is achieved by the unknown permutation proof count-

ing loglog(`) + 4 rounds. This round complexity is attained when all the Hadamard

product sub-proofs involved in the proof system are optimized for prover complexity,

i.e. for matrices consisting of O(`) rows then ` = mn and m = log(`). The query com-

plexity is constant since all the sub-proofs use a constant number of queries. The total

count is qc = 298.

Prover communication is dominated by the communication costs of the lookup

proofs, which amount to O(` + M+L
k log(`)) vectors in Fk. When all the product

subproofs used in the system are optimised towards prover computation, then also

the dominant computational cost for the prover is dominated asymptotically by the

lookup proofs. Overall, the cost is O(`k + (M + L) log(`k)) = O(T + (M + L) log(T))

field multiplications. When the running time of the program dominates the both the

memory and the program length, then the computational cost for the prover is domi-

nated by a liner number (O(T)) of field multiplications.

The verifier communication is proportional to the round complexity of the system

and countsO(loglog(`)) field elements. The verifier complexity is dominated byO(L+

|v|) field additions, to check the encoding of the program table and initialisation of the

memory, and O(` + k) field multiplications, to verify all the remaining sub-proofs.

Therefore, when k = ` =
√
T , the verification cost is a sublinear number of field

multiplications, assuming that M,L <
√
T .

To give a more concrete figure on the computational overhead paid by the prover,

we can measure the above performances in terms of TinyRAM operations, using a

156 Chapter 5. Proofs for the Execution of TinyRAM Programs in the ILC Model

TinyRAM machine with the same word size as used by the program in the instance. To

get negligible knowledge error we need the field to have superpolynomial size |F| =

λω(1). This means we need a superconstant ratio e = log |F|
W = ω(1). On a TinyRAM

machine, field elements require e words to store and using school book arithmetic

field operations can be implemented in α = O(e2). Therefore, the running time of the

prover implemented in a TinyRAM program would terminate within O(αT) steps,

where α is an arbitrarily small superconstant function α = ω(1).

The efficiency of the proof system for the execution of TinyRAM programs is given

in Table 5.9

Prover computation TPILC
= O(T) F×

Verifier computation TVILC
= O(

√
T) F×

Prover communication t = O(
√
T) log |Fk|

Verifier communication CILC = O(loglog(T)) log |F|
Query complexity qc = 298
Round complexity µ = O(loglogT)

TABLE 5.9: Efficiency of the proof of knowledge for Rfield
TinyRAM in the

ILC model. F× is the cost of a single field multiplication and log |F| the
size of a field element. The efficiency is reported in table is for ` =

√
T

and assuming that program length and memory are L,M = O(
√
T).

157

Chapter 6

Compiling ILC Proofs into Standard

Proofs and Arguments

In this chapter we show how to compile proofs of knowledge over the ILC channel into

proofs of knowledge over the standard channel. The compiler uses a linear error cor-

recting code and a commitment scheme to realise the functionality of the ILC channel

over the standard channel. If the commitment scheme is statistically binding, the com-

piled proof has statistical strong knowledge soundness. If the commitment scheme is

computationally binding, the compiled proof has computational strong knowledge

soundness.

In the compiled proof, the prover has to open linear combinations of some en-

coded vectors. To preserve zero knowledge we need to ensure that these openings

do not reveal any information about the witness. We achieve this by introducing a

new primitive that we call exposure-resilient encoding and apply it to the codewords

before revealing the openings.

We then apply the transformation to our proofs of Chapters 4 and 5 and we obtain

efficient proofs for the satisfiability of arithmetic circuits and the for the correct execu-

tion of TinyRAM programs in the standard channel. We instantiate both proofs with

linear-time error correcting codes and linear-time commitments. In the case of cir-

cuit satisfiability, we obtain the first proof system achieving constant overhead for the

prover, optimal verification time and sublinear size proofs. In the case of TinyRAM ex-

ecution, we achieve the first proof system with (arbitrarily small) superconstant over-

head, sublinear verification time and sublinear size proofs.

158 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

6.1 Exposure-Resilient Encodings

In the next section we encode messages, using a linear code, and then commit to them.

Later, we need to open parts of committed codewords to enable checks on relations

between encoded messages. At the same time, our aim is to perform these checks

without revealing anything about the encoded messages.

We achieve this by defining the notion of exposure-resilient encoding. Informally,

an exposure-resilient encoding of a function f(x) is a randomised function f̃(x; r) such

that, given f̃(x; r) it is possible to re-compute f(x), while revealing parts of f̃(x; r)

should perfectly hide f(x).

This primitive has similarities with other existing primitives. Exposure-resilient

functions introduced by Canetti et al. [CDH+00] are functions which are fed with ran-

dom inputs. Differently from our encodings, the entire output should look random,

even when part of the input is revealed. Applebaum et al. [AIK06] define randomised

encodings, for which the encoded output does not reveal anything about the input

other than the output of the function itself. On the one hand, we relax their definition

by only revealing part of the encoded output, while on the other, we strengthen it by

requiring to hide any information about the input, as well as the unrevealed parts of

the output. In [ISV+13], Ishai et al. introduced zero-knowledge codes, which achieve

a similar goal to our exposure-resilient codes. Their notion is used to describe codes

that natively achieve a good degree of exposure-resilience as described above. Dif-

ferently, we start from a code with nice properties, such as large minimum distance,

and we apply an encoding to make it exposure-resilient, while preserving its original

properties. As it turns out, a good encoding does not necessarily make a good code.

Thus, by following our formalisation, it will be easier to argue about the properties of

the resulting exposure-resilient encoding.

For v ∈ Fn and a set J = {j1, . . . , jk} ⊂ [n] with j1 < · · · < jk we recall that the

notation v|J stands for the vector (vj1 , . . . ,vjk). Similarly, for a matrix V ∈ Fm×n we

write V |J ∈ Fm×k for the sub-matrix of V restricted to the columns indicated in J .

Let c ∈ Fnq , and J ⊆ [n], we recall that the notation c|J indicates the projection of c

onto the coordinates in J .

Definition 6.1 (Exposure-Resilient Encoding). Let k, k′, n, n′ be positive integers and let

6.1. Exposure-Resilient Encodings 159

f : Fk → Fn be a function. For a subset J ⊆ [n′] we say that f̃ : Fk × Fk′ → Fn′ is a

J-Exposure-Resilient Encoding (ERE) of f if it is correct and exposure resilient.

• Correctness: There exists a deterministic polynomial time algorithm D that on input

f̃(x; r) computes f(x).

• Exposure resilience: For any x ∈ Fk the distribution f̃(x; r)|J induced by a uniform

choice of r ← Fk′ is distributed uniformly over F|J |.

When f is the encoding function of a linear code C, then we say that the (mini-

mum) distance h̃dmin of f̃ is the minimum distance between f̃(x; r) and f̃(y; s) for any

distinct x,y ∈ Fk. We now show a simple randomised construction of an exposure-

resilient encoding of a linear error-correcting code which preserves its minimum dis-

tance.

Theorem 6.1. Let C be a [n, k, hdmin]F code with associated encoding function EC . Then, the

following function ẼC : Fk × Fn → F2n

ẼC(x; r) :=
(
EC(x) + r, r

)
is an J-ERE of EC for any J ⊆ [2n] satisfying {j ∈ J : j + n ∈ J} = ∅. Moreover, the

minimum distance of ẼC is h̃dmin = hdmin.

Proof. The above construction is clearly correct as it is possible to efficiently re-compute

EC(x) from ẼC(x; r) = (EC(x) + r, r).

The encoding is also exposure resilient. Let J1 = J ∩ [n] and J2 = J \ J1. Then

ẼC(x; r)|J1 = EC(x)|J1 +r|J1 = EC(x)|J1 +ẼC(x; r)|J1+n. Since {j ∈ J : i+n ∈ J} = ∅,

no j ∈ J1 can satisfy j + n ∈ J2. Given r|J1 uniformly distributed on F|J1| indepen-

dently from r|J2 , then ẼC(x; r)|J1 is also distributed uniformly and independently

from ẼC(x; r)|J2 . By construction, ẼC(x; r)|J2 is uniformly distributed, so ẼC(x; r)|J

is uniformly distributed.

By the linearity of ẼC , the minimum distance of ẼC it is equal to the minimum

Hamming weight of ẼC(x; r) for x 6= 0. Note that for any j ∈ [n] for which r|{j} is

non-zero, at least one of ẼC(x; r)|{j} and ẼC(x; r)|{j+n} is non-zero. Therefore, for any

160 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

x 6= 0 and any r, the following holds

wt(ẼC(x; r)) ≥ wt(ẼC(x;0)) = wt(EC(x)) ≥ hdmin

We note that if the original code C admits a linear time encoding function EC , then

ẼC is also computable in linear time.

Corollary 6.1. Let ẼC be a J-ERE constructed as in Theorem 6.1 for J ⊆ [2n] satisfying

{j ∈ J : i + n ∈ J} = ∅. There exists a linear time simulator S that given as input x ∈ Fk,

and y ∈ F|J | returns r ∈ Fn such that the output distribution of r ← S(x,y) is uniform in

Fn, conditioned on ẼC(x; r)|J = y.

Proof. Let J1 := J∩[n] and J2 := J\J1. The simulator S(x,y) simply sets r|J1 := y|J1−

EC(x)|J1 and r|j2−n := y|j2 for all j2 ∈ J2 and then picks the rjs for the remaining

n− |J | values of j uniformly and independently from F.

The above notion of exposure-resilience is also related to the privacy property of

secret sharing schemes. It is well known that linear secret sharing schemes can be

constructed from linear codes [Mas95; CCG+07; CDD+15]. In the next sections, we

could just as well replace the use of our ERE with a linear-time linear secret sharing

scheme. In fact, our ERE can even be seen as a 1-private linear secret sharing scheme.

Even though it does not make a good secret sharing scheme, it turns out to be enough

for our purposes. Moreover, our ERE results in a more efficient instantiation than

using known linear-time linear secret sharing schemes [DI14; CDD+15], which use

linear universal hash functions.

6.2 From the ILC Channel to the Standard Channel

In this section, we present our compiler to realise the ILC channel over standard com-

munication channel. Recall that in the ILC channel the prover commit to vectors of

length k by submitting them to the channel and the verifier can then query the ILC to

open linear combinations of the committed vectors.

6.2. From the ILC Channel to the Standard Channel 161

The idea behind the compilation of an ILC proof is that, instead of committing

to vectors V = {vi}ti=1 using the ILC, the prover first encodes each vector vi in V as

EC(vi) using a linear error-correcting codeEC . In any given round, we can think of the

codewords as rows EC(vi) in a matrix EC(V). Then, instead of committing to the rows

of the matrix, the prover commits to the columns of EC(V) using a non-interactive

commitment scheme and sends the commitments to the verifier. When the verifier

wants to open a linear combination of the original vectors, he sends the coefficients

q = (q1, . . . , qt) to the prover, who responds with the linear combination v′ = qV .

To ensure the prover is not returning a wrong response v′, the verifier performs spot

checks on the encoded response EC(v′) and the committed codewords in the rows

EC(V). The verifier may request a random j-th entry of each committed codeword

EC(vi), corresponding to the j-th column of the error-corrected matrix EC(V). Since

the code EC is linear, the revealed elements should satisfy

EC(v
′)|j =

t∑
i=1

qiEC(vi)|j = qEC(V)|j

The verifier repeats this check on multiple columns, so that if the code has sufficiently

large minimum distance and the prover gives a wrong response v′, then he has high

probability to catch at least one column j where the above equality does not hold.

Revealing entries in a codeword may leak information about the encoded vector.

To get SHVZK, instead of directly committing to the codewords of EC , we commit to

the output of the exposure-resilient encoding ẼC we constructed in Theorem 6.1. This

doubles the length of the rows of the committed matrix but ensures that then nothing

is revealed about the encoded messages, as long as the prover only opens a set J for

which ẼC is a J-ERE. The spot checking technique using ẼC is illustrated in Figure

6.1. In the following, we write ei for the encoding of vector vi and E for the encoding

of the matrix V using the ERE, i.e.

ei := ẼC(vi; ri) = (EC(vi) + ri, ri) E := ẼC(V ;R) = (EC(V) +R,R)

In addition to the above, the verifier queries the prover on a random linear combina-

tion γ ∈ Ft and spot checks the response as for the previous queries. This is to ensure

162 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

V =

 v0
...
vt

 ẼC−−−→ E =

 EC(v0) + r0 r0
...

...
EC(vt) + rt rt



q

y q

y
j1

. . . q

y
jλ

q

y
jλ+1

. . . q

y
j2λ

qV =
(

v′
) ẼC−−−→

(
EC(v

′) + r′ r′
)

FIGURE 6.1: Vectors vi organised in matrix V are encoded row-wise as
matrix E = ẼC(V ;R). The vertical line in the right matrix and vector
denotes concatenation of matrices. The prover commits to each column
of E. On query q he answers with v′ = qV and r′ = qR. The verifier
asks for openings to a set of columns J = {j1, . . . , j2λ} in E and checks

their consistency with ẼC(v′; r′).

that if the prover commits to some vectors ei that are far from being codewords, the

verifier then has high probability to detect some errors. The linear combination q

queried by the ILC verifier does not necessarily suffice to ensure this, since in gen-

eral the query is not chosen uniformly at random. One could, for instance, imagine

that there was a vector vi that was never queried in a non-trivial way, and hence the

prover could choose it to be far from a codeword. To make sure this extra challenge γ

does not reveal information to the verifier, the prover picks a random blinding vector

v0 ← Fk, which is added as the first row of V and will be added to the challenge linear

combination γ queried by the verifier. This is similar to what is used in some of the

ILC proofs in the previous chapters, e.g. the Hadamard product sub-proof of Section

4.2.3, to guarantee that the ILC responses to the opening queries made by the verifier

did not reveal any information about the committed vectors.

6.2.1 The Compiler

Let (GILC,PILC,VILC) be a non-adaptive µ-round SHVZK proof system over the ILC for a

relation R. Recall that non-adaptive means that the verifier waits until the last round

6.2. From the ILC Channel to the Standard Channel 163

to query linear combinations and that these are queried all at once instead of the de-

pending on each other response.1 All the ILC proofs presented in the previous chap-

ters are non-adaptive. Let GenEC be a generator that, given as input the description

of a finite field F and a length parameter k, it outputs a [n, k, hdmin]F code C with

constant rate and linear minimum distance, i.e. n = Θ(k) and hdmin = Θ(k). Let

ẼC be the exposure-resilient encoding of C as constructed in Theorem 6.1. Finally, let

(CSetup,CCommit) be a non-interactive commitment scheme.

We now give our proof system (G,P,V) for the relationR over the standard chan-

nel. The prover starts by invokingPILC on input the instance and the witness, to obtain

vectors {vi}t1i=1 to commit. Let these vectors be arranged in matrix V1. The prover en-

codes the rows of these matrices to obtain matrix E1 = ẼC(V1;R1). In addition to

these, the prover picks a random vector v0 ← Fk and encodes it to obtain e0. The

prover then commits to the columns of matrix E01 :=

e0

E1

. We overload the nota-

tion and write c1 ← CCommit(E01; s1) for the process of committing independently

each column vector E01|i using randomness s1|i. The prover forwards the commit-

ments to the verifier and terminates her move. The verifier invokes VILC to generate a

first message x1 and forwards it to the prover.

The following rounds of the proof unfolds similarly to the first one: the prover

invokes PILC to produce a matrix Vi ∈ Fti×k, she encodes its rows and then commits to

the columns of the encoded matrix Ei. Upon receipt of the commitments, the verifier

replies with a challenge produced by the internal VILC. Given matrices V1, . . . , Vµ,

R1, . . . , Rµ and E1, . . . , Eµ we define

V =


V1

...

Vµ

 R =


R1

...

Rµ

 E =


E1

...

Eµ


In the last move of the ILC proof system the verifier produces a query Q ∈ Fqc×t

for the ILC. The verifier forwards the query to the prover, together with a random

challenge γ ← Ft, where t is the number of rows in V,R and E. The prover answers

1The construction can be easily modified to an adaptive ILC proof. For each round of queries in the
ILC proof, there will one extra round in the compiled proof.

164 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

the queries γ, Q by computing the following linear combinations

v′ = v0 + γV r′ = r0 + γR V ′ = QV R′ = QR

Lastly, the verifier picks at random a set J ⊆ [2n] of 2λ columns such that {j ∈ J :

j + n ∈ J} = ∅ and |J ∩ [n]| = λ. We refer to a set with these properties as admissible.

The verifier challenges the prover to open the commitments indexed by J sent in ev-

ery round of the proof. The verifier checks all the openings to the commitments and

then checks the consistency of these with the J-entries of the encodings of (v′, r′) and

(V ′, R′), i.e.

ẼC(v
′; r′)|J = e0|J + γE|J ẼC(V

′;R′)|J = QE|J

If all the checks pass, the verifier returns the response of the internal VILC on input the

opening query Q, otherwise he returns 0. The full description of the compiled proof

system (G,P,V) is given in Figure 6.2

6.2.2 Security Analysis

Here we show that if (GILC,PILC,VILC) is a proof of knowledge with straight-line extrac-

tion for the relationR over the ILC, then the compiled proof (G,P,V) of Figure 6.2 is a

proof of knowledge without straight-line extraction for the same relation over the stan-

dard channel. Assuming the commitment scheme is statistically binding and compu-

tationally hiding the compiled proof achieves statistical strong knowledge soundness

and computational SHVZK. If the commitment scheme is computationally binding

and statistically hiding, the output of the compilation is an argument of knowledge

with computational strong knowledge soundness and statistical SHVZK.

Theorem 6.2 (Completeness). If the proof system (GILC,PILC,VILC) for the relation R over

the ILC is perfectly complete, then the proof system (G,P,V) in Figure 6.2 is perfectly complete

for the same relationR.

Proof. Given the correct openings to the commitments indexed by J , the verifier’s spot

checks on succeed with probability 1. Since the error correcting code C is linear, then

the exposure-resilient encoding of Theorem 6.1 is also linear. By the linearity of the

6.2. From the ILC Channel to the Standard Channel 165

P(pp, u, w)

• Parse input:

– Parse pp = (ppILC, EC , ck)

– Parse ppILC = (F, k, ∗)
– Get n from EC

• Round 1:

– v0, r0 ← Fk

– e0 ← ẼC(v0; r0)

– (commit, V1)← PILC(ppILC, u, w)

– R1 ← Ft1×k

– E1 ← ẼC(V1;R1)

– E01 :=

(
e0

E1

)
– c1 ← CCommit(E01; s1)

– Send (c1, t1) to the V

• Rounds 2 ≤ i ≤ µ:

◦ Get challenge xi−1 from the V
– (commit, Vi)← PILC(xi−1)

– Ri ← Fti×k

– Ei ← ẼC(Vi;Ri)

– ci ← CCommit(Ei; si)

– Send (ci, ti) to the V

• Round µ+ 1:

◦ Get (γ, Q) from the V
– v′ ← v0 + γV

– r′ ← r0 + γR

– V ′ ← QV

– R′ ← QR

– Send (v′, r′, V ′, R′) to the V

• Round µ+ 2:

◦ Get J from the V
– Send (E01|J , s1|J , . . . , Eµ, sµ|J) to V

G(1λ)

• ppILC ← GILC(1λ)

• Parse ppILC := (F, k, ∗)

• EC ← GenEC(F, k)

• ck ← CSetup(1λ)

• Return pp = (ppILC, EC , ck)

V(pp, u)

• Parse input

– Parse pp = (ppILC, EC , ck)

– Parse ppILC = (F, k, ∗)
– Get n from EC

– Give input (ppILC, u) to the VILC

• Rounds 1 ≤ i < µ:

– Receive (ci, ti)

– (send, xi)← VILC(ti)

– Send xi to the P

• Round µ:

◦ Get message (cµ, tµ) from the P
– t :=

∑µ
i=1 ti

– γ ← Ft

– (open, Q)← VILC(tµ)

– Send (γ, Q) to the P

• Round µ+ 1:

◦ Get (v′, r′, V ′, R′) from the P
– Pick admissible J ⊂ [2n]

– Send J to the P

• Round µ+ 2:

◦ Get (E01|J , s1|J , . . . , Eµ, sµ|J)

– Check:

? ẼC(v
′; r′)|J = e0|J + γE|J

? ẼC(V
′;R′)|J = QE|J

? c1|J = CCommit(E01|J ; s1|J)

? . . .

? cµ|J = CCommit(Eµ|J ; sµ|J)

– If any check fails return 0

– Return b← VILC(V ′)

FIGURE 6.2: Construction of (G,P,V) from (GILC,PILC,VILC), commit-
ment scheme (CSetup,CCommit) and error correcting code C.

166 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

ERE then both ẼC(v′; r′) = e0 + γE and ẼC(V
′;R′) = QE hold with probability 1. If

(pp, u, w) ∈ R then (ppILC, u, w) ∈ R. By the completeness of ILC proof, the internal

verifier VILC accepts with probability 1 and so does verifier V .

Theorem 6.3 (Knowledge Soundness). If (GILC,PILC,VILC) is a proof system for the rela-

tionR over the ILC with statistically strong knowledge soundness with a straight-line extrac-

tion, and (CSetup,CCommit) is computationally (statistically) binding, then the proof system

(G,P,V) in Figure 6.2 has computational (statistical) strong knowledge soundness for the

same relationR.

Proof. We prove the computational case, the statistical case follows similarly.

In order to argue that (G,P,V) is computationally knowledge sound, we will first

show that for every DPT P∗ there exists a deterministic (but not necessarily efficient)

P∗ILC convincing the verifier over the ILC with (almost) the same probability of P∗ over

the standard channel. Namely, that for every DPT P∗ there exists P∗ILC such that for all

PPT A

Pr



pp← G(1λ); pp = (ppILC, ∗); (u, s)← A(pp);

(tranP∗ ; b)← 〈P∗(s)←→ V(pp, u; (ρILC, ρ))〉;

(tranP∗ILC
; bILC)← 〈P∗ILC(u, pp; s)

ILC←→ VILC(ppILC, u; ρILC)〉:
b = 1 ∧ bILC = 0


≈ 0 (6.1)

where ρILC is the randomness the verifier V gives in input to the internal verifier VILC.

Next, we will define an expected PPT transcript extractor Etran that given access to a

rewindable oracle 〈P∗(u, pp; s)←→ V(pp, u; (ρILC, ρ))〉 outputs a view t̃ranP∗ILC
follow-

ing the same distribution of a real communication transcript between P∗ILC and the ILC

channel in the execution of 〈P∗ILC(s, pp, u)
ILC←→ VILC(ppILC, u; ρILC)〉. Formally, we will

show there exists an expected PPT Etran such that for all PPT A

6.2. From the ILC Channel to the Standard Channel 167

Pr



pp← G(1λ); pp = (ppILC, ∗); (u, s)← A(pp);

t̃ranP∗ILC
← E〈P

∗(pp,u;s)←→V(pp,u)〉
tran (pp, u);

(tranP∗ILC
; bILC)← 〈P∗ILC(pp, u; s)

ILC←→ VILC(ppILC, u; ρILC)〉:
b = 1 ∧ tranP∗ILC

6= t̃ranP∗ILC


≈ 0 (6.2)

where b is the output of V on the first execution of the oracle and ρILC given to VILC

is the randomness used by the internal copy of V on the first execution of the oracle.

Note that if (6.1) holds and b = 1, then with overwhelming probability bILC = 1.

Assuming for a moment that both (6.1) and 6.2 hold we describe the knowledge

extractor E for (G,P,V) over the standard channel. The knowledge extractor E runs

the transcript extractor Etran and answers to the oracle queries of Etran with its own

oracle. Eventually, E obtains a transcript t̃ranP∗ILC
from Etran. Since the ILC proof system

has straight-line extractability, E then executes the ILC knowledge extractor on input

t̃ranP∗ILC
and receives a witness w̃ ← EILC(ppILC, u, t̃ranP∗ILC

). Assuming (6.2), the out-

put distribution of Etran is identically distributed to a real communication transcript

between P∗ILC and the ILC, and thus w̃ is distributed as the output of EILC in its own

knowledge soundness game. Assuming (6.1), if b = 1 then with overwhelming prob-

ability also bILC = 1. By the strong knowledge soundness of (GILC,PILC,VILC) there is

a negligible probability that (pp, u, w̃) /∈ R ∧ bILC = 1, hence (G,P,V) is also strong

knowledge sound.

To conclude the proof it is sufficient to show the existence of P∗ILC and Etran satis-

fying both (6.1) and (6.2), which we show, respectively, in Lemma 6.1 and Lemma 6.2

below.

Lemma 6.1. If the commitment scheme (CSetup,CCommit) is computationally binding, then

for every DPT P∗ there exists P∗ILC such that for all PPT A

Pr



pp← G(1λ); pp = (ppILC, ∗); (u, s)← A(pp);

(tranP∗ ; b)← 〈P∗(s)←→ V(pp, u; (ρILC, ρ))〉;

(tranP∗ILC
; bILC)← 〈P∗ILC(u, pp; s)

ILC←→ VILC(ppILC, u; ρILC)〉:
b = 1 ∧ bILC = 0


≈ 0 (6.1)

168 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

Proof. Our constructed P∗ILC runs an internal copy of P∗. Recall that we do not re-

strict P∗ILC to run in polynomial time, this is sufficient since the proof system over

the ILC achieves statistical strong knowledge soundness. When the internal P∗ in

round i sends a message (ci, ti), P∗ILC simulates P∗ on every possible continuation

of the transcript, to obtain the most frequently occurring valid opening ((Ei)|j , (si)|j)

of (ci)|j for each j = 1, . . . , 2n. P∗ILC then uses these openings to form matrices E∗i .

For each row e∗` of these matrices, P∗ILC finds a vector v` and randomness r` such that

hd(ẼC(v`, r`), e
∗
`) <

hdmin
3 if such a vector exists. If for some 1 ≤ ` ≤ ti no such vector

v` exists, then P∗ILC aborts. Otherwise we let Vi and Ri denote the matrices formed

by the row vectors v` and r` in round i and P∗ILC sends Vi to the ILC. Notice that by

Theorem 6.1 the minimum distance of ẼC is at least hdmin, so there is at most one such

vector v` for each e∗` . The prover P∗ILC proceeds in the same way for all the µ rounds in

which the internal prover P∗ sends commitments to the verifier and then terminates.

Notice that the VILC communicates over the ILC with our constructed P∗ILC and at the

end he queries a challenge Q to the ILC, for which he receives V ′ = QV from the ILC.

Next, we show that if P∗ makes the verifier V accept, then with overwhelming

probability VILC interacting with our P∗ILC described above will also accept. Since the

verifier V only accepts if its internal copy of VILC accepts, there are only three ways

we could have 〈P∗(pp, u; s) ←→ V(pp, u; (ρILC, ρ))〉 accept without 〈P∗ILC(pp, u; s)
ILC←→

VILC(ppILC, u; ρILC)〉 being also accepting

1. If P∗ makes an opening to a commitment that is not its most frequent opening

for that commitment.

2. If P∗ILC aborts because for some ` there is no v`, r` such that

hd(ẼC(v`, r`), e
∗
`) <

hdmin

3

3. If P∗’s response to the verifier’s queries contains a matrix V ∗ 6= V ′ .

We will now argue that there is a negligible probability for V to accept in case each of

the above events happen.

6.2. From the ILC Channel to the Standard Channel 169

Case 1. The verifier V only accepts if the openings to the commitments indexed by

the challenge set J are all valid. Since P∗ runs in polynomial time and the commit-

ment scheme is computationally binding, there is only negligible probability that P∗

sends valid openings for some of the commitments in J that are not the most frequent.

Therefore there is only a negligible probability of V accepting in this case.

Case 2. On query (γ, Q), the prover P∗ answers with response (v∗, r∗, V ∗, R∗). In

this case we show that if matrix E∗ contains row e∗` that are not close to a codeword

ẼC(v`; r`) for some v`, r`, then with overwhelming probability (e∗0 + γE∗) is also far

from ẼC(v
∗; r∗), and therefore the verifier V is likely to reject the proof.

Namely, we show that if there exist a linear combination qE∗ for some q ∈ Ft such

that hd
(
C̃, qE∗

)
≥ hdmin

3 , then the probability that hd(C̃, e∗0 + γE∗) < hdmin
6 is at most

1
|F| . This also implies the above claim about all row vectors in E∗.

Assume that hd
(
C̃, qE∗

)
≥ hdmin

3 , then for any r ∈ F∗ we have

hd
(
C̃, e∗0 + γE∗

)
+ hd

(
C̃, e∗0 + (γ + rq)E∗

)
≥ hd

(
C̃, qE∗

)
≥ hdmin

3

To see this, write e∗0 + γE∗ = c1 + d1 and e∗0 + (γ + rq)E∗ = c2 + d2 with c1, c2 ∈ C̃

and wt(d1) = hd
(
C̃, e∗0 + γE∗

)
,wt(d2) = hd

(
C̃, e∗0 + (γ + rq)E∗

)
. Now

qE∗ =(e∗0 + (γ + rq)E∗ − (e∗0 + γE∗))r−1

=(c2 + d2 − c1 − d1)r−1

=(c2 − c1)r−1 + (d2 − d1)r−1

Where (c2 − c1)r−1 ∈ C̃ and (d2 − d1)r−1 has at most

wt(d1) + wt(d2) = hd
(
C̃, e∗0 + γE∗

)
+ hd

(
C̃, e∗0 + (γ + rq)E∗

)

non-zero elements. This implies that at most one of e∗0 + γE∗ and e∗0 + (γ + rq)E∗ can

have distance less than hdmin
6 to C̃. That is, there is at most one γ ∈ Ft in {(γ + rq) :

r ∈ F} that can have distance less than hdmin
6 to C̃. Hence, there is probability at most

1
|F| that a random γ ∈ Ft satisfies hd

(
C̃, e∗0 + γE∗

)
< hdmin

6 .

170 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

Therefore with overwhelming probability we have that

hd(ẼC(v
∗; r∗), e∗0 + γE) ≥ hdmin

6

This means that either in the first half of the codeword ẼC(v∗; r∗) or in the second half,

there will be at least hdmin
12 values of j where it differs from e∗0 + γE∗. It is easy to see

that the λ values of J in one half of [2n] are chosen uniformly and independently at

random conditioned on being different. Since the minimum distance of the code is

linear, then the verifier has only negligible probability of missing an index where the

above words disagree. Hence, the verifier V will reject the proof with overwhelming

probability.

Case 3. We recall that on query (γ, Q), the prover P∗ answers with (v∗, r∗, V ∗, R∗).

From the previous claim we have that P∗ILC does not abort and constructs matrix V

which is sent to the ILC. The ILC channel answers the query Q from VILC with matrix

V ′ = QV . For the last case we show that if P∗ answers the query with a matrix

V ∗ 6= V ′, then QE∗ is not close to the codeword ẼC(V ∗;R∗) and the verifier is likely to

reject the proof when checking these two on indexes in J .

From the previous case, we have that for all q ∈ Ft, we have hd(C̃, qE∗) < hdmin
3 ,

otherwise the verifier rejects with high probability. Assuming this, here we show that

exists r∗ for which

hd(ẼC(qV ; r∗), qE∗) <
hdmin

3

We prove this by induction on the number of non-zero elements wt(q) in q. This is

trivially true for wt(q) = 0. For wt(q) = 1 it follows from our definitions of vectors v`

which are chosen by P∗ILC such that hd(ẼC(v`, r`), e
∗
`) <

hdmin
3 . Assume by induction

that it is true for all vectors in Ft of hamming weight less or equal κ and consider a

vector q with wt(q) ≤ 2κ. We can now write q = q′ + q′′ where wt(q′),wt(q′′) ≤ κ. By

the induction hypothesis, there exists r′ such that hd(ẼC(q
′V ; r′), q′E∗) < hdmin

3 and

6.2. From the ILC Channel to the Standard Channel 171

similar for q′′. Since q = q′ + q′′ this implies

hd
(
ẼC
(
qV ; r′ + r′′

)
, qE∗

)
= hd

(
ẼC
(
(q′ + q′′)V, r′ + r′′

)
, (q′ + q′′)E∗

)
≤ hd

(
ẼC
(
q′V ; r′

)
, q′E∗

)
+ hd

(
ẼC
(
q′′V ; r′′

)
, q′′E∗

)
< 2

hdmin

3

From the previous case we know there exists v and r such that hd(ẼC(v; r), qE∗) <

hdmin
3 . By the triangle inequality for Hamming distance, this implies

hd
(
ẼC (v; r) , ẼC

(
qV ; r′ + r′′

))
≤ hd

(
ẼC (v; r) , qE∗

)
+ hd

(
qE∗, ẼC

(
qV ; r′ + r′′

))
<

hdmin

3
+ 2

hdmin

3
= hdmin

Since hdmin is the minimum distance of ẼC , we must have v = qV , and therefore

hd(ẼC(qV ; r), qE∗) < hdmin
3 . This concludes the induction argument.

The triangle inequality for Hamming distance shows that for any (v∗, r∗) with

v∗ 6= qV we have hd(ẼC(v
∗; r∗), qE∗) ≥ 2hdmin

3 . Now for any V ∗ 6= V ′ = QV

there is a row ` where the two matrices differ. Let q be the `-th row of Q. Then

hd(ẼC(v
∗; r∗), qE∗) ≥ 2hdmin

3 tells us that the `-th row of ẼC(V ∗, R∗) and `-th row of

QE∗ differs in at least 2hdmin
3 positions.

Given that the minimum distance of the code is linear in n, if the distance between

two strings of length 2n is at least 2hdmin
3 , then there is negligible probability that J

will not contain a j such that the two strings differ in position j. Thus, the probability

that P∗ sends a matrix V ∗ 6= V ′ and ẼC (V ∗, R∗) |J = QE∗|J is negligible.

Altogether, the three cases show that the probability that V accepts while VILC re-

jects is negligible.

172 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

Lemma 6.2. Let P∗ILC be defined as in the proof of Lemma 6.1. There exists an expected PPT

Etran such that for all PPT A

Pr



pp← G(1λ); pp = (ppILC, ∗); (u, s)← A(pp);

t̃ranP∗ILC
← E〈P

∗(pp,u;s)←→V(pp,u)〉
tran (pp, u);

(tranP∗ILC
; bILC)← 〈P∗ILC(pp, u; s)

ILC←→ VILC(ppILC, u; ρILC)〉:
b = 1 ∧ tranP∗ILC

6= t̃ranP∗ILC


≈ 0 (6.2)

Proof. On input (pp, u), the transcript extractor Etran first uses its oracle to get a tran-

script of 〈P∗(pp, u; s) ←→ V(pp, u)〉. If V rejects, then Etran aborts. If V accepts, Etran

rewinds the last message of P∗ to get a transcript for a new random challenge J . Etran

continues in this way until it has an accepting transcript for 2n independently chosen

sets J . If there is only one choice of J that results in V accepting, P∗ will likely have

received each allowed challenge around 2n times and Etran will get the exact same

transcript 2n times before it is done rewinding. Still, Etran runs in expected polyno-

mial time: if a fraction p of all allowed sets J give accepting transcripts, the expected

number of rewindings is 2n−1
p , given that the first transcript is accepting. However, the

probability that the first run accepts is p, and if it does not accept, Etran does not do any

rewindings. Overall this gives (2n−1)p
p = 2n− 1 rewindings in expectation.

We let J1, . . . , J2n denote the set of challenges J in the accepting transcripts ob-

tained by Etran. If
⋃2n
i=1 Ji has less than 2n − hdmin

3 elements, Etran terminates. Other-

wise, Etran is defined similarly to P∗ILC: it uses the values of the openings to get at least

2n − hdmin
3 columns of each Ei. For each of the row vectors, e`, it computes v` and r`

such that ẼC(v`, r`) agrees with e` in all entries e`|j for which the j’th column have

been revealed, if such v exists. Since Etran will not correct any errors, finding such v`

and r` corresponds to solving a linear set of equations. Notice that since the minimum

distance is more than 2hdmin
3 there is at most one such v` for each ` ∈ [t]. If for some

` there is no such v`, then Etran aborts, otherwise Etran uses the resulting vectors v` as

the prover messages to define t̃ranP∗ILC
.

If |
⋃κ
i=1 Ji| < 2n − hdmin

3 , there are at least hdmin
6 indexes in [n] \

⋃κ
i=1 Ji or in {n +

1, . . . , 2n} \
⋃κ
i=1 Ji. In either case, a random allowed J has negligible probability of

being contained in
⋃κ
i=1 Ji. Since Etran runs in expected polynomial time, this implies

6.2. From the ILC Channel to the Standard Channel 173

by induction that there is only negligible probability that |
⋃κ
i=1 Ji| < min(κ, 2n− hdmin

3)

and therefore |
⋃2n
i=1 Ji| < 2n− hdmin

3 .

Finally, we need to show there is at most negligible probability that for some `

there are no v` and r` such that ẼC(v`, r`) agrees with e` on all the opened j ∈
⋃2n
i=1 Ji

columns and that b = 1. In particular, this shows that the probability that b = 1 and

Etran does not extract the transcript of P∗ILC is negligible.

Since the expected number of rewindings is polynomial, we can assume that in all

the rewindings, P∗ only makes openings to the most frequent openings. Note that if

this is not the case, after sufficiently many rewindings the extractor also observes the

most frequent openings and can thus break the binding property of the commitment

scheme. In Lemma 6.1 we showed that the probability that b = 1 but P∗ sends a

V ∗ 6= V ′ is negligible and by following the same argument, the probability that b = 1

but P∗ sends v∗ 6= v′ is negligible. Therefore, in the following we will assume v∗ = v′.

Now suppose that there is some e` such that the opened values are inconsistent

with ẼC(v`, r`) for any r`. That is, there is some j such that j, n + j ∈
⋃2n
i=1 Ji and

e`|j − e`|n+j 6= EC(v)|j . For uniformly chosen γ` ∈ F, we get that γ`(e`|j − e`|n+j −

EC(v)|j) is uniformly distributed in F. Hence for a random γ ∈ Ft, we have that

γ(E|j −E|n+j −EC(v)|j) is uniformly distributed. When V queries γ, P∗ will respond

with v∗ = v′ and some r∗. V will only accept on a challenge J if for all j ∈ J we have

(e0 + γE)|j = ẼC(v
′, r∗)|j . Since j, n+ j ∈

⋃2n
i=1 Ji we have (e0 + γE)|j = ẼC(v

′, r∗)|j

and (e0 + γE)|n+j = ẼC(v
′, r∗)|n+j . Consider the following

e0|j − e0|n+j + γE|j − γE|n+j =ẼC(v
′, r∗)|j − ẼC(v′, r∗)|n+j

=EC(v
′)|j

=(EC(v0) + γEC(v))|j

By rearranging the two sides of the first and the last term we have

γE|j − γE|n+j − γEC(v)j = EC(v0)j − (e0)j + (e0)n+j

For random γ the left-hand side is uniform and the right-hand side is fixed, hence

equality only happens with negligible probability. This concludes the proof of the

174 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

lemma and of Theorem 6.3. .

Theorem 6.4 (SHVZK). If (GILC,PILC,VILC) is a public coin proof system for the relation R

over the ILC with perfect SHVZK and (CSetup,CCommit) is computationally (statistically)

hiding then the public coin proof system (G,P,V) of Figure 6.2 is computationally (statisti-

cally) SHVZK.

Proof. To prove SHVZK, we describe the simulator S(pp, u, ρ) that produces a simu-

lated view, which is indistinguishable from the real view of the honest verifier V .

Given the randomness ρ, the simulator learns both the messages and the queries

ρILC = (x1, . . . , xµ−1, Q) produced by the internal VILC and forwarded by the honest

V . S can therefore run SILC(ppILC, u, ρILC) to simulate the view of the internal VILC.

This gives it (t1, . . . , tµ, V
′). By the SHVZK property of (GILC,PILC,VILC) this simulated

transcript is identically distributed to the real view of the internal VILC. The simulator

SILC returns a simulated query response V ′ as part of the simulated transcript.

Then, S reads the rest of ρ to also learn the challenges γ and J that V sends to

the prover. The simulator picks uniformly at random v′ ← Fk. In a real proof v0

is chosen uniformly at random, therefore the simulated v′ is identically distributed

as in a real proof. Since the verifier is honest, the set J is an admissible set and the

exposure resilience of ẼC guarantees that E01|J , . . . , Eµ|J are distributed uniformly at

random, assuming the randomness used in each execution of ẼC is sampled uniformly

and independently at random, as done in a real execution of the proof. Therefore, the

simulator also picks this part of the transcript uniformly at random. Given these, the

simulator computes both e0|J+γE|J andQE|J . The simulator S then invokes the sim-

ulator described in Corollary 6.1. Given an admissible set J and inputs v′, e0|J +γE|J

(resp. V ′, QE|J), this returns randomness r′ (resp. R′) that is uniformly distributed

conditioned on satisfying ẼC(v′; r′)|j = e0|J + γE|J (resp. ẼC(V ′;R′)|j = QE|J). This

part of the transcript is identically distributed as in a real proof.

Finally, S defines E01|J̄ , . . . , Eµ|J̄ to be 0 matrices for J̄ = [2n] \ J . It then picks

s1, . . . , sµ at random and makes the commitments c1, . . . , cµ as in the protocol. We

see that all the ci|J commitments are computed as in the real execution from values

that are identically distributed as in a real proof. The ci|J̄ are commitments to dif-

ferent values than in a real proof. However, by the computational (statistical) hiding

6.3. Efficiency and Instantiations 175

property of the commitment scheme, they have a distribution that is computationally

(statistically) indistinguishable from the correct distribution. Overall, the simulated

view produced by the S is computationally (statistically) indistinguishable from the

real view of the honest verifier.

6.3 Efficiency and Instantiations

Here we report the general efficiency of a compiled proof of knowledge and then dis-

cuss the cases of our ILC proofs for the satisfiability of arithmetic circuits and for the

execution of TinyRAM programs from Chapter 4 and 5. We recall that the only require-

ment of our compiler is that the error correcting code has to be linear, with constant

rate, and linear minimum distance. The commitment scheme does not require any ad-

ditional properties other than the standard notion of hiding and binding. Therefore,

any combination of error correcting codes and commitments with these features can

be used to realise our ILC proofs over the standard channel. However, our main goal

in the previous chapter has been to minimise the asymptotical overhead incurred by

the prover. Therefore, we are interested in optimal choices of error correcting codes

and commitment schemes that allow to preserve the efficiency of our proofs also over

the standard channel. For the error correcting codes we opt for the family by Druk and

Ishai [DI14], which we recalled in Theorem 3.1. These are defined over a generic finite

field F and only require a linear number of field additions to compute. For the commit-

ment scheme we consider two possible instantiations which we described in Section

3.5. The first one is based on the hash function of Applebaum et al. [AHI+17b]. The

resulting commitment is computationally binding assuming the bSVP problem and

statistically hiding. The second one is based on the linear-time computable PRG of

Ishai et al. [IKO+08], which is statistically binding and computationally hiding, and

relies on the hardness of decoding sparsely generated linear codes. By using the first

commitment scheme we obtain statistical special honest verifier zero-knowledge argu-

ments of knowledge. With the second scheme we obtain computational special honest

verifier zero-knowledge proofs of knowledge.

176 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

6.3.1 Efficiency of the Compilation

We recall the notation used to indicate the efficiency measures of an ILC proof system:

µ is the number of rounds, t =
∑µ

i=1 ti is the prover’s communication complexity, CILC

is the verifier’s communication complexity, qc the verifier’s query complexity, TPILC
is

the running time of the prover, and TVILC
the running time of the verifier. Let C be a

[n, k, hdmin]F code. We write T
ẼC

(k) for the cost of encoding a vector in Fk, TCom(ti) for

the cost of committing to ti field elements, TMmul(qc, t, b) for the cost of multiplying

matrices a matrix in Fqc×t by a matrix in Ft×b, and let CCom(ti) be the combined size

of the commitments to ti field elements. We give the dominant factors of efficiency of

the compiled proof in Table 6.1.

Prover Comp. TPILC
+ t · T

ẼC
(k) + 2n ·

∑µ
i=1 TCom(ti) + TMmul(qc + 1, t, k + n)

Verifier Comp. TVILC
+ (qc + 1) · T

ẼC
(k) + 2λ ·

∑µ
i=1 TCom(ti) + TMmul(qc + 1, t, 2λ)

Communication CILC + 2n ·
∑µ

i=1CCom(ti) + (qc + 1) · (k + n+ t) + 2λ · t
Round Comp. µ+ 2

TABLE 6.1: Efficiency of a compiled proof of knowledge (G,P,V) for
(pp, u, w) ∈ R.

6.3.2 Proofs and Arguments for the Satisfiability of Arithmetic Circuits

We now move to analyse the efficiency of the compiled proofs of knowledge for the

satisfiability of arithmetic circuit we gave in Figure 4.10. By instantiating the codes

with the ones in Theorem 3.1 we get T
ẼC

(k) = O(k) field additions. Let us now plug

in the efficiency of our ILC proof given in Table 4.5 into the efficiency formulas in

Table 6.1. We use k ≈
√
N , n = O(k), t = O(

√
N), µ = O(log logN), qc = 20 = O(1)

and assume k � λ. The resulting efficiency is given in Table 6.2

Prover Computation TP = O(N) F× + 2n ·
∑µ

i=1 TCom(ti)
Verifier Computation TV = O(N) F+ + 2λ ·

∑µ
i=1 TCom(ti)

Communication t = O(λ
√
N) log |F|+ 2n ·

∑µ
i=1CCom(ti)

Round Complexity µ = O(log log(N))

TABLE 6.2: Efficiency of our proof of knowledge for the relation RAC

over the standard channel. F×,F+ are the costs of field multiplications
and additions, respectively. log |F| is the size of a field element.

Instantiating with the commitment scheme from Applebaum et al. [AHI+17b] we

get computational knowledge soundness and statistical SHVZK. The commitments

6.3. Efficiency and Instantiations 177

are compact, i.e. a commitment has size CCom(ti) = poly(λ) regardless of the mes-

sage length, giving us sub-linear communication. The commitments can be computed

with a linear number of bit operations, i.e. TCom(ti) = poly(λ) + O(ti) bit operations.

Although we do not have an accurate estimation on the number of the arithmetic oper-

ations required to evaluate this commitment scheme, we notice that the overall com-

putational cost for prover and verifier remains linear. To give a fair account of the

performances of the proof system we measure the efficiency in a unified model which

can perform both natively Boolean and arithmetic operations, and we consider prover

and verifier implemented as RAM programs, e.g. TinyRAM programs.

In Chapter 5 we considered TinyRAM machines with word size equal to W =

Θ(log(λ)). Since the soundness of the proof system requires a large field, i.e. |F| =

λω(1), we have that field elements require e = log |F|
W = ω(1) words for storing. Field

additions then cost O(e) TinyRAM operations and field multiplications cost at most

O(e2) TinyRAM operations. As the hash function operates over bit-strings, if we

stored each bit in a separate word of size W = Θ(log λ) we would incur a logarithmic

overhead. However, the hash function is computable by a linear-size boolean circuit

and we can therefore apply a bit-slicing technique. We view the hash of an n-word

string as W parallel hashes of n-bit strings. Each of the bit-strings is processed with

the same boolean circuit, which means they can be computed in parallel in one go by

a TinyRAM program using a linear number of steps, e.g hashing one field element

requires O(e) TinyRAM steps. Therefore, in this model hashing field elements has a

computational cost comparable to field additions.

Expressing the costs of Table 6.2 in TinyRAM operations, we have that the com-

putational cost of the prover is dominated by O(e2N) TinyRAM steps, which is the

same asymptotic efficiency of a program evaluating the circuit up to a constant over-

head. Regarding verifier computation, the cost of field additions dominates the cost

of checking 2λ committed columns, assuming k � λ, and thus the overall complexity

is dominated byO(eN) TinyRAM steps. Asymptotically this is comparable to the cost

of reading the statement in the memory, therefore the verifier’s cost is optimal up to

a constant factor overhead, unless more compact representations of the statement are

used. Communication complexity amounts to poly(λ)
√
N words.

Instantiating with the commitment from Ishai et al. [IKO+08] we get statistical

178 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

knowledge soundness and computational SHVZK. The commitments have linear size

CCom(ti) = poly(λ)+ti log(|F|) bits, giving us linear communication overall, i.e. O(eN)

words of length Θ(log(λ)). By expressing the performances in TinyRAM, the commit-

ments can be computed in linear time at a cost of TCom(ti) = poly(λ)+eO(ti) TinyRAM

steps, again giving us O(e2N) TinyRAM steps for the prover, which is comparable to

the number of steps for computing O(N) multiplications. The computational cost for

the verifier is dominated again by O(eN) TinyRAM steps, comparable to the cost of

computing O(N) additions on a TinyRAM machine.

We summarise the costs of the instantiated proofs and arguments in Table 6.3, re-

porting the efficiency both in terms of TinyRAM operations and the equivalent amount

of field operations when performed in TinyRAM.

Measure\Inst. Using [AHI+17b] Using [IKO+08]
Prover Comp. O(N) F× ≈ O(e2N) TR O(N) F× ≈ O(e2N) TR
Verifier Comp. O(N) F+ ≈ O(eN) TR O(N) F+ ≈ O(eN) TR
Communication poly(λ)

√
N log |F| ≈ poly(λ)

√
N |W | O(N) log |F| ≈ O(eN) |W |

Round Comp. O(log logN) O(log logN)
Completeness Perfect Perfect
K. Soundness Computational Statistical
SHVZK Statistical Computational

TABLE 6.3: Efficiency of two instantiations of our SHVZK proofs and
arguments for arithmetic circuit satisfiability both in terms of TinyRAM
operations and field operations. F×,F+ are the costs of field multipli-
cations and additions, respectively. log |F|, |W | are the size of field ele-
ments and words, respectively. TinyRAM operations are denoted as TR

and e = log |F|
W .

To summarise, we constructed the first proofs and arguments of knowledge for

the satisfiability of arithmetic circuits with linear complexity for prover and verifier,

which are asymptotically optimal up to constant factor. Our arguments of knowledge

also achieve sublinear communication complexity.

6.3.3 Proofs and Arguments for the Correct Program Execution

We now move on to analyse the efficiency of the compiled version of the proof of

knowledge for the correct program execution of a TinyRAM program we described in

Figure 5.9. As in Chapter 5, we consider programs of length L = poly(λ) terminating

within T = poly(λ) steps and using M = poly(λ) word of memory on a TinyRAM

machine using W = Θ(log(λ)) and K = O(1) registers. The soundness of the proof

6.3. Efficiency and Instantiations 179

Measure\Inst. Using [AHI+17b] Using [IKO+08]
Prover Comp. O(e2T) TR O(e2N) TR
Verifier Comp. poly(λ)O(L+ |v|+

√
T) TR poly(λ)O(L+ |v|+

√
T) TR

Communication poly(λ)O(
√
T) |W | O(eT) |W |

Round Comp. O(log log T) O(log log T)
Completeness Perfect Perfect
K. Soundness Computational Statistical
SHVZK Statistical Computational

TABLE 6.4: Efficiency of two instantiations of our SHVZK proofs and
arguments for the execution of TinyRAM programs. L is the length of
the program and |v| is the size of the public inputs of the program. TR
stands for TinyRAM operations, |W | is the word size of the TinyRAM
machine and e = log |F|

W = ω(1) is the overhead of field operations in
TinyRAM.

system requires the field size to be |F| = λω(1), which results in a superconstant ratio

e = log |F|
W = ω(1), which can be made arbitrarily small. Our proofs are designed for

programs executing intensive computation and for which we consider T � L+M .

For the error correcting codes we use again the ones by Druk and Ishai [DI14]

which are computable by a linear number of TinyRAM steps. Instantiating the con-

struction with the commitment scheme from Applebaum et al. [AHI+17b] we get

computational knowledge soundness, statistical SHVZK and sublinear communica-

tion complexity. Instantiating the construction with the commitments from Ishai et

al. [IKO+08] we get statistical knowledge soundness, computational SHVZK and lin-

ear communication. As all the primitives are computable in linear time, our compiled

proofs achieve the same asymptotics as over the ILC channel.

Let us now combine the efficiency of our ILC proofs given in Table 5.9 with the

efficiency formulas in Table 6.1. In this case we use k ≈
√
T , n = O(k), t = O(

√
T),

µ = O(log log T), qc = 298 = O(1) and assume k � λ. We summarise the costs of

the instantiated proofs and arguments in Table 6.4, reporting the efficiency in terms of

TinyRAM operations, taking into account the overhead of computing field operations

in TinyRAM.

To summarise, we constructed the first proofs and arguments for the correct exe-

cution of programs achieving arbitrarily small superconstant overhead for the prover,

i.e. O(e2). The verification cost of our proofs is very efficient: aside from the cost of

reading the instance, the verifier only pays a sublinear number of steps in the execu-

tion time of the program. Our arguments of knowledge additionally achieve sublinear

180 Chapter 6. Compiling ILC Proofs into Standard Proofs and Arguments

communication complexity.

181

Chapter 7

Foundations of Fully Dynamic

Group Signatures

In this chapter we diverge from the topics of the previous ones and take a look at

group signatures, a compelling application of zero-knowledge proofs. Group signa-

tures are a fundamental cryptographic primitive allowing a member of a group to

anonymously sign messages on behalf of the group: nothing about the identity of the

signer is disclosed apart from her membership in the group. Group membership is ad-

ministered by a designated authority which is referred to as group manager. In case

of a dispute, the group manager or a designated opening authority have the ability to

identify the signer and attribute the signature to her.

Group signatures are typically divided into static, partially dynamic, and fully

dynamic, depending on how flexible the group membership of the users is. In static

group signatures [BMW03], the group members are fixed once and for all during the

setup phase. Partially dynamic group signatures [BSZ05; KY06] allow the enrolment

of members in the group at any time but members cannot leave or be removed from

the group once they have joined. In many settings, however, it is desirable to offer full

flexibility in joining and leaving the group, which is the case covered by fully dynamic

group signatures.

In this chapter we address the fundamental question of defining security for fully

dynamic group signatures. While the security of the static and partially dynamic

group settings has been rigorously formulated [BMW03; BSZ05; KY06; SSE+12] and is

now well understood, the security of their fully dynamic groups counterpart, which

is more relevant to practice, has on the other hand received less attention and is still

182 Chapter 7. Foundations of Fully Dynamic Group Signatures

lacking at present. Particularly, the different design paradigms assume different, and

sometimes informal models, which do not necessarily generalise to other design ap-

proaches. This resulted in various models, the majority of which lack rigour. Conse-

quently, it can be difficult to compare the merits of the different constructions in terms

of their security guarantees. Moreover, existing models place a large amount of trust

in the setup and assume that keys are generated honestly, which does not necessarily

reflect real-world scenarios.

Towards a General Model. In the process of formulating a general model we iden-

tify a subtle difference on the security of models following the revocation list based

approach and other approaches, e.g. based on cryptographic accumulators. In these

models the manager periodically publishes some information about members excluded

from the group, i.e. revocation lists. The life of the scheme spans over different inter-

vals, or epochs, at the start of which the manager updates the revocation lists. Sig-

natures are bound to a specific epoch and it is vital for functionality that old valid

signatures are accepted by the verification algorithm. We observe that constructions

that follow this approach allow group members to sign with respect to an epoch un-

less they are explicitly revoked at that time. However, this allows them to sign with

respect to an epoch predating their joining epoch, as they were not revoked at that

time. In a sense this may be considered an attack against traceability, as those mem-

bers were not in the group at that interval. Since accumulator-based constructions are

generally not susceptible to this issue, they can be seen to achieve a slightly stronger

notion of traceability.

One could, on the other hand, dismiss this attack by arguing that, in these models,

it is implicit that epochs are not references to configurations of the group at a specific

time. The underlying issue is a gap between one’s interpretation of group signatures

and what the definition implies.

To address this, our traceability definition models a more general security notion:

users are not authorised to sign unless they are active members of the group. We regard

the time span when a non-revoked user is considered active to be design-specific and

think of it as the group manager’s official policy upon when users are allowed to sign.

Chapter 7. Foundations of Fully Dynamic Group Signatures 183

Following this interpretation accumulator-based constructions can be seen to satisfy

our traceability notion with respect to stronger policies.

Chapter Outline. In Section 7.1 we provide a rigorous security model for fully dy-

namic group signatures. We consider both the case of a single group manager and the

case where the role of the group manager who can grant or revoke membership is sep-

arated from the role of the opening authority who can identify a signer. Our security

definitions are general and applicable across different design paradigms. In particu-

lar, our model covers both accumulator-based and revocation list based designs. Our

model offers stringent security definitions, including the case where the authorities’

keys are adversarially generated.

We then show that suitable restrictions of our security definitions yield definitions

related to existing formal security definitions for partially dynamic group signatures

(Section 7.2) and static group signatures (Section 7.3).

In Section 7.4 we present a generic construction of fully dynamic group signatures

from accountable ring signatures and show that this satisfies the strongest variant of

our security definitions, namely the ones with separate authorities and adversarial

key generation.

Finally, in Section 7.5 we clarify the difference between the different flavours of

traceability and the use of activation policies in revocation list based constructions.

Notation. In this chapter we adopt a specific notation to model interactions between

algorithms. We recall that for algorithms A and B, (x; y) ← 〈A(a);B(b)〉 denotes the

the joint execution ofA (with input a) andB (with input b) where at the endA outputs

x and B outputs y. Delving into the details of the interaction, it may take place over

several rounds during which the algorithms send messages to each other and after

which they halt and return their outputs. For an interactive algorithm, a move in the

protocol is generated as (out;M ′) ← A(M), where M is the message just received

from the other participant or M = init if this is the first move in the protocol, and M ′

is the message to send to the other participant. We use the convention that when out is

empty (out = ε), it means that A intends for the interaction to continue, but when out

is not empty A will send the last message M ′ (unless empty) and then terminate the

184 Chapter 7. Foundations of Fully Dynamic Group Signatures

interaction with output out. We note that in the setting of group signatures, the group

manager may be involved in multiple concurrent interactions. The group manager’s

state may therefore change between two rounds in any given joint execution. We

write (out;M ′; stA) ← A(M ; stA) when we explicitly want to indicate the state of an

algorithm A may be updated. We use ⊥ as an error symbol. Algorithms do not return

⊥ unless they explicitly want to indicate an error. Conversely, we use the symbol > to

indicate success.

7.1 Definitions for Fully Dynamic Group Signatures

A Fully Dynamic Group Signature (FDGS) scheme involves a set of users who are

potential group members and a group manager GM who is in charge of issuing and

revoking group membership. The group signature scheme enables group members to

sign messages on behalf of the group in an anoymous way, but in case of abuse the

group manager can revoke the anonymity and open the signature to reveal the signer.

We are interested in the fully dynamic setting where users can join and leave the

group at any time at the discretion of the group manager. In static or partially dynamic

group signatures, where members cannot leave, it is possible to fix the group informa-

tion associated with the group at initialization. For a fully dynamic group, however,

there has to be a way to prevent a revoked member from using her old key to sign

messages. This means the group information associated with the group must change

after revocation. We divide the group information into a permanent group public key

gpk and temporary group information infoτ , associated with an index τ referred to as

an epoch. The group information depicts changes to the group, for instance, it could

include the current members of the group (as in accumulator-based constructions) or

those who have been excluded from the group (as in constructions based on revoca-

tion lists). As in existing models, we assume that anyone can verify the authenticity

of the published group information.

Unlike existing security models for group signatures that assume trusted key gen-

eration, we separate key generation from trusted parameter setup. This allows us to

define stringent security that protects against adversarial group managers who might

generate their keys maliciously. Our definitions can easily be adapted to work for the

7.1. Definitions for Fully Dynamic Group Signatures 185

weaker setting where the group manager’s keys are generated honestly as in the case

of existing models.

We give two flavours of our definitions. We start by providing a definition where

the roles of opening signatures and administering group membership are overseen

by the same authority. Subsequently, we specialise the definition to the setting where

each of those roles is overseen by a separate authority.

7.1.1 Syntax

A fully dynamic group signature scheme FDGS involves a group manager GM and

a set of users. Additionally, there might be the presence of a trusted third party that

generates some initial parameters used in the scheme. The scheme consists of the

following algorithms and data structures:

• Interactive polynomial time protocol run by GM and a user: Join

• Probabilistic polynomial time algorithms: GSetup, GKGen, UpdateGroup,

Sign, Open

• Deterministic polynomial time algorithms: IsActive,Verify, Judge

• Data structure: Reg.

We will describe in greater details the data structure, the algorithms and their usage

in a FDGS scheme.

Reg: The registry is a data structure, which is filled as users join the group. The

group manager associates any joining group members with session identifiers

i = 1, 2, 3, When user i joins, she is able to store a record regi in the registry.

Once a record is stored, it cannot be changed. The group manager has read

access to the registry and may store the information and use it during opening

when tracing the originator of a signature. We model access to the registry with

the following two algorithms/oracles:

• ReadReg(i): On input a session identifier i, it returns the corresponding en-

try in the registry regi. If no record regi is stored, it returns ⊥.

186 Chapter 7. Foundations of Fully Dynamic Group Signatures

• WriteReg(i,M): On input a session identifier i and a message M , it sets

regi := M . This oracle can only be used once for every identifier i, further

calls with the same session identifier are ignored.

One way to instantiate the registry is with a PKI, which is done explicitly in

e.g. [BSZ05]. The registry Reg can be hosted by GM but it requires each entry

regi to be signed by the user involved in the i-th instance of the protocol. Whether

one instantiates the registry with a PKI or in a different way it is out of the scope

of this chapter as long as it gives us the desired functionality.

GSetup(1λ)→ param: There may be a trusted third party that runs this algorithm to

generate public parameters param. In case a trusted setup is not required, this

algorithm can be simply regarded as setting param := 1λ.

GKGen(param)→ (outGM; stGM): The group manager uses this algorithm to generate

outGM := (mpk, info0), which consists of the manager’s public key and the initial

group information, and the resulting state stGM of the group manager. The group

public key is gpk := (param,mpk).

Join: To enroll a user as a member, the GM may run the interactive joining protocol

with her. Their respective algorithms are:

• Join
WriteReg(i,·)
User (M ; st) → (out;MGM; st): This algorithm specifies the user’s

execution of the interactive joining protocol with the GM. Given an input

message from the GM and the user’s internal state st it returns a message

for the GM and a new state. In its first call, the algorithm is executed on

initial input (init; gpk). In each instance of the protocol, the user is allowed

a single call to the oracle WriteReg(i, ·) for writing into the registration table

an entry regi corresponding to its identifier i. Joining session i terminates

after at most k(λ) rounds by a call returning (gsk;MGM; st), which includes

the user’s secret key gski := gsk, an optional final message for the issuer in-

cluding a termination message done, and the user final state. If it terminates

with gsk = ⊥, the user will consider it as a fail to join, and on failure it will

always be the case that it ends with MGM = (done,⊥). After termination,

the user will ignore all future inputs to JoinUser.

7.1. Definitions for Fully Dynamic Group Signatures 187

• Join
ReadReg(i)
GM (i,MGM; stGM) → (outGM;M ; stGM): This algorithm specifies

the GM’s execution in the interactive joining protocol with a user. The GM

keeps track of distinct instances of the protocol using unique identifiers i,

which we without loss of generality assume are numbered 1, 2, 3, etc. The

algorithm receives as input a session identifier i, a message MGM received

from the user, and the GM’s internal state and it returns a message M for

the user interacting in session i and updates the state stGM. The algorithm

has access to the oracle ReadReg(i) to read the entry regi in the registration

table Reg. Each joining session will terminate after at most a polynomial

number of rounds. We let k(λ) be the maximal number of rounds before

termination. Termination will be indicated in the local output outGM of the

GM and can be successful (>) or fail (⊥), and if it fails the output message

will be Mi = (done,⊥). After termination the GM will ignore future calls

with the same i.

For conciseness we will often refer to the user involved in the i-th session of the

Join protocol with the manager as user i. Please observe though that the user

may not be aware of her own session identifier i, since she may not be aware of

how many other users are joining or have already joined the group.

UpdateGroup(R; stGM)→ (info; stGM): The group manager runs this algorithm to

update the group information, where the set R consists of session identifiers

associated with users to be revoked. The algorithm returns new public group

information info and updates the state of GM. The group information info may

or may not depend on the set of newly joined members of the group, which

the group manager records in its internal state. The group information info is

intended as group information pertaining to the group and we will in general

assume anybody may have access to the sequence info0, info1, . . . the group man-

ager creates during the lifetime of the group signature scheme.

IsActive(i, τ, stGM)→ 1/0: The Join protocol and the UpdateGroup algorithm de-

scribe how an honest GM adds and revokes group members. The exact moment

when a member is activated and able to sign is design specific. In some construc-

tions, group members are implicitly activated after successfully terminating the

188 Chapter 7. Foundations of Fully Dynamic Group Signatures

Join protocols and may even be able to sign with respect to previous epochs; in

others they are explicitly activated by GM when a new group information infoτ

is published. Consequently, different design choices lead to different time spans

where members are allowed to sign. In order to take into account these differ-

ences in the security definitions without favouring a particular design paradigm,

we use the IsActive procedure, which should be interpreted as the group man-

ager’s policy for when a member is considered active.

The IsActive algorithm takes as input the state of the group manager, a session

identifier i, and an epoch τ associated with group information infoτ the group

manager has published earlier. We refer to a user as an active member of the

group at epoch τ if and only if the algorithm returns 1. We place the following

constraints on the policies an honest group manager can have for when a user is

active:

• If τ is not associated with any infoτ the group manager has published, the

algorithm returns 0.

• If i is not associated with a joining session where the group manager has

terminated succesfully, the algorithm returns 0.

• If i was revoked when creating infoτ for this epoch or earlier, the algorithm

returns 0.

• If i is associated with a joining session where the group manager ended her

part successfully before infoτ was created, and user i is not revoked at or

before epoch τ , the algorithm returns 1.

Sign(gsk, info,m)→ Σ: Given a user’s group signing key gsk, group information info,

and a message m, the signing algorithm outputs a group signature Σ.

Verify(gpk, info,m,Σ)→ 1/0: The verification algorithm checks whether Σ is a valid

group signature on m with respect to the group information info and outputs a

bit: 1 for accept and 0 for reject.

Open(gpk, stGM, info,m,Σ)→ (i, π): The opening algorithm receives as input the group

public key gpk, the state of the group manager, some public group information

info, a message, and a signature. It returns a session identifier i together with a

7.1. Definitions for Fully Dynamic Group Signatures 189

proof π attributing Σ to user i. If the algorithm is unable to open the signature to

a particular group member, it returns (⊥, π) to indicate that it could not attribute

the signature.

Judge(gpk, info, reg,m,Σ, π)→ 1/0: The judge algorithm checks the validity of a proof

π attributing the signature Σ on m under group information info to a user with

registry record reg. It outputs 1 for accept and 0 for reject.

Separating the Role of Group Manager and Opening Authority

Following the suggestion of Camenisch and Michels [CM98], Bellare, Shi and Zhang

[BSZ05] separate the group manager role we described above into two parts: a group

manager GM (who they call the Issuer) administrating group membership, and an

opening authority OA (who they call the Opener) capable of tracing the signer of a

message. There are natural settings where such a division of roles may be called for;

an organization may for instance consider group management the task of the human

resources department, and opening signatures the domain of the fraud department.

While the separation of the group manager and opening authority roles complicate

definitions a little, they also have the advantage of permitting more fine-grained se-

curity notion that allow for adversarial behaviour in either the group manager or the

opening authority.

When separating out the role of the opening authority, the syntax of a group signa-

ture scheme changes. Key generation can now be seen as a joint process that involves

both the group manager and the opening authority. Sometimes it may be desirable to

minimise interaction and allow authorities to generate their own keys independently,

but for maximal generality we define key generation as an interactive protocol be-

tween them, where independent key generation is a special case. Another change is

that since the opening algorithm is run by the opening authority it needs access to read

the registry to know who to attribute a given signature to. We describe these changes

below:

GKGen: To generate the group public key the GM and OA may run an interactive

protocol. Their respective algorithms are:

190 Chapter 7. Foundations of Fully Dynamic Group Signatures

• GKGenGM(MGM; stGM)→ (outGM;MOA; stGM): This algorithm specifies the

GM’s execution in the interactive key generation protocol with the OA. It

gets as input a message MGM received from the OA and the GM’s inter-

nal state and returns an output outGM, a message MOA for the OA and up-

dates the state to stGM. The state of the group manager is initialised as

stGM := param. If the GM initiates the protocol, the input message is ini-

tialised asMGM := init. In a successful execution of the protocol, the last call

of the algorithm returns a non-empty output value outGM := (mpk, info0)

consisting of the GM public key and the initial group information. After

termination, subsequent calls to the algorithm will be ignored.

• GKGenOA(MOA; stOA) → (outOA;MGM; stOA): This algorithm specifies the

OA’s execution in the interactive key generation protocol with the GM. It

gets as input a message from the GM and the OA’s internal state and it re-

turns an output outGM, a message MGM for the GM and updates the state

stOA. The state of the OA is initialised as stOA := param. If the OA initiates

the protocol the input message is initialised as MOA := init. In a success-

ful execution of the protocol, the last call of the algorithm returns an non-

empty output value outOA := (opk, osk) consisting of the OA’s public and

secret keys. Subsequent calls of the algorithm are ignored.

We denote an entire execution of the key generation protocol as

((mpk, info0; stGM); (opk, osk))← 〈GKGenGM(param);GKGenOA(param)〉

and let gpk := (param,mpk, opk) be the group public key.

OpenReadReg(·)(gpk, osk, info,m,Σ)→ (i, π): The opening algorithm receives as input

the group public key gpk, the opening key osk, group information info, a mes-

sage, and a signature. It returns a session identifier i together with a proof π

attributing Σ to user i. If the algorithm is unable to open the signature to a par-

ticular group member, it returns (⊥, π) to indicate that it could not attribute the

signature.

7.1. Definitions for Fully Dynamic Group Signatures 191

Relation Between Definitions with Single and Separate Authorities

Group signatures with and without separate authorities are closely related. Specif-

ically, given a group signature scheme FDGS for separate GM and OA, we can de-

fine a single authority group signature scheme FDGS ′, where the group manager

GM′ first runs the interaction ((mpk, info0; stGM); (opk, osk)) ← 〈GKGenGM(param);

GKGenOA(param)〉 and returns the manager public key mpk′ := (mpk, opk) and sets

the state to be st′GM := (stGM, osk). Whenever a new user joins the group, GM has ac-

cess to an oracle that allows it to read the corresponding record in the registry, and

we imagine GM′ keeps track of these registry entries so it has its own virtual ReadReg

oracle. Whenever GM′ has to run the opening algorithm, it will then just use osk. All

other algorithms inFDGS ′ are defined in the natural way fromFDGS . It is easy to see

that this transformation preserves the efficiency of FDGS and we will in the following

argue that security is preserved as well.

7.1.2 Security Definitions

Definition 7.1. An FDGS with the syntax in Section 7.1.1 is a fully dynamic group signa-

ture if it is correct, anonymous, traceable and non-frameable as defined below.

Correctness

Correctness guarantees that an honest user can enrol in the group and produce sig-

natures that are accepted by the Verify algorithm. We assume in the correctness def-

inition that GM is honest and willing to enrol the user, since otherwise it could just

refuse membership. However, there may be other users that are malicious. We there-

fore model correctness as an adversarial game, where the adversary acts on behalf of

all other users and we require that the honest user can successfully enrol and sign

messages. The correctness definition captures three aspects in this setting:

• An honest user interacting with an honest GM should be able to enroll in at most

k(λ) rounds after which the user terminates successfully with a key gski.

• The group manager should before or in the same round terminate with success

indicator > and activate the user no later than the next update

192 Chapter 7. Foundations of Fully Dynamic Group Signatures

• Once activated the user should be able to sign messages.

These three properties should hold as long as the user is not revoked.

In the game ExpCorr
FDGS,A (shown in Figure 7.1), we grant the adversary A access

to the following oracles, details of which are given in Figure 7.2. We maintain several

global counters: h is the joining session identifier of the honest user which is initialised

as⊥,N is the number of users that initiated the Join protocol with the GM, and τCurrent

is the current epoch, τJoin is the epoch during which the user created her key, τRevoke

is the time the user was revoked (if ever), and K is the number of calls to the AddHU

oracle, i.e., the number of rounds executed by the honest user in the Join protocol.

AddHU(): This oracle adds a single honest user to the group. Each call of the oracle

executes the next round of interaction in the Join protocol between the honest

user and the honest group manager. It returns the exchanged messages as well

as the outputs of both parties. Note that the adversary learns the group signing

key of the honest user at the successful conclusion of the interaction.

SndToM(i,MGM): This oracle allows the adversary to add a corrupt user to the group.

The adversary can deviate from the Join protocol by sending arbitrary messages

MGM to the GM. Each oracle call executes the next move of an honest GM on

input message MGM in the i-th instance of the Join protocol. It returns the GM

response message and output.

Update(R): This oracle allows the adversary to update the public group information.

Here R is the set of the group members to be removed from the group. Calling

this oracle triggers a new epoch.

Write(i,M): Given a session identifier and a message M , the oracle sets regi := M .

The oracle can only be used once for every identifier i, further calls to it return ⊥

without producing changes to the registry. It cannot be called on the identifier

corresponding to the joining session initiated by AddHU.

State(): This oracle returns the current GM’s state stGM.

In the correctness definition, we restrict the adversary to enrolling a single honest user

into the group via calling the AddHU oracle. This generalises to the case of multiple

honest users via a standard hybrid argument.

7.1. Definitions for Fully Dynamic Group Signatures 193

Experiment: ExpCorr
FDGS,A(λ)

− h := ⊥;N := 0;K := 0; τCurrent := 0; τJoin :=∞; τRevoke :=∞
− param← GSetup(1λ)
− (mpk, info0; stGM)← GKGen(param)
− gpk := (param,mpk)
− (m, τ)← AAddHU,SndToM,Update,Write,State(gpk, info0)
− If K = k(λ) and τRevoke =∞ and τJoin =∞ return 0
− If h = ⊥ or τ > τCurrent return 1
− If τJoin < τ < τRevoke and IsActive(h, τ, stGM) = 0 return 0
− If IsActive(h, τ, stGM) = 0 return 1
− Σ← Sign(gskh, infoτ ,m)
− Return Verify(gpk, infoτ ,m,Σ)

FIGURE 7.1: Correctness game.

AddHU()

� If K = k(λ) return ⊥
�K := K + 1
� If h = ⊥:
◦ N := N + 1; h := N
◦Mh := init; sth := gpk
◦ gskh := ⊥

� (outh;MGM; sth)← Join
WriteReg(h,·)
User (Mh; sth)

� If outh 6= ε:
◦ gskh := outh

◦ τJoin = τCurrent

◦K = k(λ) // maximal number of rounds
� (outGM;Mh; stGM)← Join

ReadReg(h)
GM (h,MGM; stGM)

� Return (outh,MGM), (outGM,Mh)

State()

� Return stGM

SndToM(i,MGM)

� If i /∈ [N + 1] ∨ i = h return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

Update(R)

� IfR 6⊆ [N] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� If h ∈ R and τRevoke =∞ set τRevoke = τCurrent

� Return infoτCurrent
:= info

Write(i,M)

� If i = h or regi 6= ⊥ return ⊥
� Set regi := M

FIGURE 7.2: Oracles used in the correctness game.

194 Chapter 7. Foundations of Fully Dynamic Group Signatures

Experiment: ExpCorr
FDGS,A(λ)

− h := ⊥;N := 0;K := 0; τCurrent := 0; τJoin :=∞; τRevoke :=∞
− param← GSetup(1λ)

−
(

(mpk, info0; stGM); (opk; stA)
)
← 〈GKGenGM(param);A(param)〉

− gpk := (param,mpk, opk)
− (m, τ)← AAddHU,SndToM,Update,Write,State(gpk, info0; stA)
− If K = k(λ) and τRevoke =∞ and τJoin =∞ return 0
− If h = ⊥ or τ > τCurrent return 1
− If τJoin < τ < τRevoke and IsActive(h, τ, stGM) = 0 return 0
− If IsActive(h, τ, stGM) = 0 return 1
− Σ← Sign(gskh, infoτ ,m)
− Return Verify(gpk, infoτ ,m,Σ)

FIGURE 7.3: Correctness game for separate GM and OA.

Definition 7.2 (Correctness). An FDGS scheme is correct if for any PPT adversary A

Pr[ExpCorr
FDGS,A(λ) = 1] ≈ 1

If the definition holds also for unbounded adversaries, we say the FDGS scheme is statistically

correct, and if the probability is exactly 1 we say the FDGS scheme is perfectly correct.

Variations of Correctness. In the correctness definition we give the adversary access

to the state of the group manager. This means even if the honest group manager’s

secret data is leaked, an honest user can still enroll and sign messages as long as the

group manager considers her active. A more relaxed but still reasonable definition of

correctness would be to assume the group manager keeps her state secret. In this latter

case, it is then natural to give the adversary access to an opening oracle to model that

the group manager may sometimes trace a member who produced a signature.

In the case where there is a separation between the group manager and an opening

authority, we still need the group manager to be honest for correctness to make sense.

However, we may want correctness to hold even in the presence of a malicious open-

ing authority; since it is the sovereign domain of the group manager to decide who is

an active member and should be able to sign messages. In Fig. 7.3 we therefore de-

fine the correctness game with an adversarial opening authority. It is straightforward

to see that given a group signature scheme FDGS with separate GM and OA satisfy-

ing correctness, the transformation from Section 7.1.1 gives a group signature scheme

7.1. Definitions for Fully Dynamic Group Signatures 195

FDGS ′ with a single group manager that is correct too.

Many definitions of correctness found in the literature [BMW03; BSZ05; KY06] en-

compass not just that an honestly generated signature is accepted by the verification

algorithm but also add other requirements such as an honestly generated signature

should be opened to the honest signer who generated it. In our definition of correct-

ness we only require that honestly generated signatures are accepted and refer to other

security definitions to handle additional requirements that we consider less central.

In particular, for the property of honestly generated signatures opening to the correct

signer, it is captured by the traceability and opening soundness properties we later

define, and captured in a much stronger sense than usually done in correctness defi-

nitions since we explicitly consider opening soundness in a highly adversarial setting

instead of just considering an honest interaction. This leaves a small definitional gap

when considering perfect correctness since traceability and opening soundness may

only hold computationally. However, we find the difference to be insignificant and

have therefore deliberately opted for the minimal and simplest definition of correct-

ness that only demands honest generated signatures to be accepted.

Anonymity

Group signatures should be anonymous and not reveal the identity of the group mem-

ber who produced them. Since the group manager has the ability to trace signers we

must assume the group manager to be honest for anonymity to hold but some of the

other users may be malicious.

In the game ExpAnon−b
FDGS,A (shown in Figure 7.4), we maintain the following counter

and lists: N is the number of users that initiated the Join protocol with the GM,H is a

list of honest users, and C is a list of challenge signatures obtained from the challenge

oracle. We give the adversary access to the following oracles, details of which are

given in Figure 7.5

AddHU(i) : This oracle allows the adversary to add honest users to the group by go-

ing through the join protocol one round at a time. The oracle models full key

exposure, both communication and the user’s signing key are leaked to the ad-

versary.

196 Chapter 7. Foundations of Fully Dynamic Group Signatures

SndToM(i,MGM) : This oracle allows the adversary to add corrupt users to the group.

The adversary can deviate from the Join protocol by sending arbitrary messages

MGM to the GM. Each oracle call executes the next move of an honest GM on

input message MGM in the i-th instance of the Join protocol. It returns the GM

response message and output.

Chalb(info,m, i0, i1) : This a left-right oracle for defining anonymity. It takes as input

some group information info, a message m, and two honest users i0, i1. It returns

a group signature on the message using key gskib for b ← {0, 1} and the given

group information. It is required that both challenge users are able to sign with

respect to info. The adversary can only call this oracle once.

Open(info,m,Σ) : Returns the session identifier i of the signer who produced signature

Σ on m with respect to info, together with a proof π. The oracle cannot be called

on a signature obtained from the Chalb oracle.

ReadReg(i) : Given a session identifier i, it returns the corresponding entry in the reg-

istry regi.

Update(R) : Allows the adversary to prompt a group information update and incre-

ment the epoch. Here R is a set of the group members to be revoked from the

group.

The adversary can interact with honest users and join corrupt users. At some point,

the adversary picks two honest members of the group at a chosen epoch, gets a signa-

ture from one of them, and tries to learn which of them has signed a chosen message.

The goal of the adversary is to guess which member signed the message. For sim-

plicity, the adversary is only allowed a single challenge query but a standard hybrid

argument (similar to that used in [BSZ05]) shows this is equivalent to seeing many

challenge signatures. Our definition covers full key exposure attacks by allowingA to

learn the secret keys of all users in the group.

Definition 7.3 (Anonymity). An FDGS scheme is anonymous if for all PPT adversaries

A the following advantage is negligible

AdvAnon
FDGS,A(λ) :=

∣∣∣Pr[ExpAnon−0
FDGS,A(λ) = 1]− Pr[ExpAnon−1

FDGS,A(λ) = 1]
∣∣∣ .

7.1. Definitions for Fully Dynamic Group Signatures 197

Experiment: ExpAnon−b
FDGS,A(λ)

− param← GSetup(1λ);N := 0;H := ∅; C := ∅
− (mpk, info0; stGM)← GKGen(param)
− gpk := (param,mpk)
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg,Update(gpk, info0)

FIGURE 7.4: Anonymity game.

AddHU(i)

� If i /∈ [N + 1] return ⊥
� If i = N + 1
◦ H := H ∪ {i}
◦ N := N + 1
◦Mi := init
◦ sti := gpk
◦ gski := ⊥

� (outi;MGM; sti)← Join
WriteReg(i,·)
User (Mi; sti)

� If outi 6= ε:
◦ gski := outi

� (outGM;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,MGM), (outGM,Mi)

ReadReg(i)

� Return regi

Update(R)

� IfR 6⊆ [N] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent

:= info

SndToM(i,MGM)

� If i /∈ [N + 1] ∨ i ∈ H return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

Chalb(info,m, i0, i1)

� If {i0, i1} 6⊆ H return ⊥
� Σ0 ← Sign(gski0 , info,m)
� Σ1 ← Sign(gski1 , info,m)
� If Verify(gpk, info,m,Σ0) = 0 return ⊥
� If Verify(gpk, info,m,Σ1) = 0 return ⊥
� C := {(info,m,Σb)}
� Return Σb

Open(info,m,Σ)

� If (info,m,Σ) ∈ C return ⊥
� If Verify(gpk, info,m,Σ) = 0 return ⊥
� Return Open(gpk, stGM, info,m,Σ).

FIGURE 7.5: Oracles used in the anonymity game.

Variations of Anonymity. Our definition of anonymity corresponds to what Bellare

et al. [BMW03] call full anonymity. Their usage of full anonymity emphasizes that ano-

nymity holds even in the presence of an adversary that sees the signing keys of honest

users and has access to an opening oracle. Our definition captures full anonymity,

not only does the adversary see every honest user’s signing key but she also sees the

entire joining transcript. Full anonymity gives strong security guarantees since it en-

sures that even if a user’s secret key is leaked her past or future signatures still do not

reveal her identity.

Group signatures with full anonymity imply the existence of IND-CPA and IND-

CCA secure public-key encryption, as shown in [AW04] and [CG04], respectively. The

anonymity notion therefore has to be relaxed if one wants to build group signatures

based on one-way functions as is done in [CG04]. Such a relaxation can consist in

not giving outi to the adversary in the AddHU oracle but instead give the adversary

access to a signing oracle that will allow it to get signatures from honest users on any

198 Chapter 7. Foundations of Fully Dynamic Group Signatures

message of its choosing.

Boneh, Boyen and Shacham [BBS04] define another relaxed form of anonymity

where the adversary does not have access to the Open oracle. This relaxation is anal-

ogous to the distinction between IND-CPA and IND-CCA secure public-key encryp-

tion, and indeed they refer to the notion as CPA-anonymity.

Let us now consider the case where we separate the roles of managing the group,

GM, and the role of opening signatures, OA. For anonymity to hold, we need the open-

ing authority to be honest, however, we may desire security against a malicious group

manager. We give the corresponding anonymity game in Fig. 7.6. Please observe that

the oracles the adversary has access to are different because when the adversary runs

the group manager it can directly manage the joining interaction with honest users,

simulate the enrolment of corrupt users, and compute group information updates by

itself. Therefore we remove the Update,SndToM oracles and replace the AddHU oracle

with an SndToU oracle that lets the adversarially controlled group manager commu-

nicate with an honest user trying to join the group.

Experiment: ExpAnon−b
FDGS,A(λ)

− param← GSetup(1λ);N := 0; C := ∅
−
(

(mpk; stA); (opk, osk)
)
← 〈A(param);GKGenOA(param)〉

− gpk := (param,mpk, opk)
− Return b∗ ← ASndToU,Open,Chalb,ReadReg(gpk; stA)

FIGURE 7.6: Anonymity game for separate GM and OA.

SndToU(i,Mi)

� If i /∈ [N + 1] return ⊥
� If i = N + 1:
◦ N := N + 1
◦Mi := init
◦ sti := gpk

� (outi;MGM; sti)← Join
WriteReg(i,·)
User (Mi; sti)

� If outi 6= ε ∧ outi 6= ⊥ :
◦ gski := outi

� Return (outi,MGM)

ReadReg(i)

� Return regi

Chalb(info,m, i0, i1)

� If {i0, i1} 6⊆ [N] return ⊥
� Σ0 ← Sign(gski0 , info,m)
� Σ1 ← Sign(gski1 , info,m)
� If Verify(gpk, info,m,Σ0) = 0 return ⊥
� If Verify(gpk, info,m,Σ1) = 0 return ⊥
� C := {(info,m,Σb)}
� Return Σb

Open(info,m,Σ)

� If (info,m,Σ) ∈ C return ⊥
� If Verify(gpk, info,m,Σ) = 0 return ⊥
� Return OpenReadReg(gpk, osk, info,m,Σ)

FIGURE 7.7: Oracles used in the anonymity game for separate GM and
OA.

7.1. Definitions for Fully Dynamic Group Signatures 199

Let FDGS be a group signature scheme with separate GM and OA with full ano-

nymity, and let FDGS ′ be the resulting single authority group signature scheme re-

sulting from the transformation given in Section 7.1.1. Then FDGS ′ is anonymous ac-

cording to the single authority definition because an FDGS adversary can as a special

case run an honest GM algorithm and simulate everything that happens in an attack

against FDGS ′. In particular, by running GM honestly, it can simulate the SndToM

oracle, and use the SndToU oracle to build a simulated AddHU oracle.

Traceability

Traceability protects the group manager by ensuring that all signatures that are valid

for a given epoch can be opened to an active member of the group. In the traceability

game ExpTrace
FDGS,A shown in Figure 7.8, we maintain a counter N for the number of

users that initiated the Join protocol with the GM and the adversary A has access to

the following oracles, details of which are given in Figure 7.9.

SndToM(i,MGM) : This oracle allows the adversary to add corrupt users to the group.

She can deviate from the Join protocol by sending arbitrary messages MGM to

GM. Each oracle call executes the next move of an honest GM on input message

MGM in the i-th instance of the Join protocol. It returns the GM output and

response message.

Update(R) : This oracle allows the adversary to trigger a group information update

and increment the epoch. HereR is the set of the group members to be removed

from the group.

WriteReg(i,M) : Given a session identifier and a message M , the oracle sets regi := M .

The oracle can only be used once for every identifier i.

Open(info,m,Σ) : Returns the session identifier i of the signer who produced signature

Σ on m with respect to info, together with a proof π.

The adversary can add and revoke corrupt users to the group and request the OA

to open any signature. The goal of the adversary in the traceability game is to produce

a valid signature on a message for a given epoch, such that either the signature traces

200 Chapter 7. Foundations of Fully Dynamic Group Signatures

back to a user which was not active at that epoch, or the proof of opening produced

by the honest OA does not verify.

Experiment: ExpTrace
FDGS,A(λ)

− param← GSetup(1λ);N := 0; τCurrent := 0
− (mpk, info0; stGM)← GKGen(param)
− gpk := (param,mpk)

−
(
m,Σ, τ

)
← ASndToM,Update,WriteReg,Open,State(gpk, info0)

− If Verify(gpk, infoτ ,m,Σ) = 0 return 0
− (i, π)← Open(gpk, stGM, infoτ ,m,Σ)
− If IsActive(i, τ, stGM) = 0 return 1
− If Judge(gpk, infoτ , regi,m,Σ, π) = 0 return 1
− Return 0.

FIGURE 7.8: Traceability game.

SndToM(i,MGM)

� If i /∈ [N + 1] return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

WriteReg(i,M)

� If regi 6= ⊥ return ⊥
� regi := M
� Return >

Update(R)

� IfR 6⊆ [N] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent

:= info

Open(info,m,Σ)

� If Verify(gpk, info,m,Σ) = 0 return ⊥
� Return Open(gpk, stGM, info,m,Σ)

State()

� Return stGM

FIGURE 7.9: Oracles used in the traceability game.

Definition 7.4 (Traceability). An FDGS scheme is traceable if for all PPT adversaries A,

the following advantage is negligible

AdvTrace
FDGS,A(λ) := Pr[ExpTrace

FDGS,A(λ) = 1].

Variations of Traceability. Bellare, Micciancio and Warinschi [BMW03] defined trace-

ability purely with respect to identifying a signer but did not require a proof of correct

opening. Bellare, Shi and Zhang [BSZ05] included the use of a proof for correct open-

ing that can be verified by anybody using the Judge algorithm. If we trust the group

manager instead of requiring a proof of correct opening, the defining game in Fig. 7.8

can be simplified by eliminating the proof and the Judge algorithm.

By necessity, the group manager needs to be at least partially trusted since other-

wise it can just enrol some dummy member that can then sign arbitrary messages and

7.1. Definitions for Fully Dynamic Group Signatures 201

act as a scapegoat. However, we have defined traceability such that it holds even if

the honest group managers secret state is leaked. A reasonable relaxation of our defi-

nitions would be to trust the group manager to keep its state secret, in which case we

would remove the State oracle.

Let us consider the case where we separate the roles of group manager and open-

ing authority. The opening authority is the primary stakeholder that wants to ensure

signers can be traced. However, we define security strongly by requiring traceabil-

ity even in case its secret opening key is leaked. As in the single authority setting,

we still need to have some trust in the group manager to keep track of who is active

in the group and not to enrol dummy members, however, again we opt for a strong

definition of security where its state may be leaked.

Experiment: ExpTrace
FDGS,A(λ)

− param← GSetup(1λ);N := 0; τCurrent := 0

−
(

(mpk, info0; stGM); (opk, osk)
)
← 〈GKGenGM(param);GKGenOA(param)〉

− gpk := (param,mpk, opk)

−
(
m,Σ, τ

)
← ASndToM,Update,WriteReg,State(gpk, info0, osk)

− If Verify(gpk, infoτ ,m,Σ) = 0 return 0
− (i, π)← OpenReadReg(gpk, osk, infoτ ,m,Σ)
− If IsActive(i, τ, stGM) = 0 return 1
− If Judge(gpk, infoτ , regi,m,Σ, π) = 0 return 1
− Return 0.

FIGURE 7.10: Traceability game for separate group manager and open-
ing authority.

SndToM(i,MGM)

� If i /∈ [N + 1]: Return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

State
� Return stGM

Update(R)

� IfR 6⊆ [N] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent

:= info

WriteReg(i,M)

� If regi 6= ⊥ return ⊥
� Return regi := M

FIGURE 7.11: Oracles used in the traceability game for separate GM and
OA.

The two games for traceability are very similar, and it is easy to see that the trans-

formation in Sec. 7.1.1 of an FDGS for separate GM and OA to a single group manager

scheme FDGS ′ preserves traceability.

202 Chapter 7. Foundations of Fully Dynamic Group Signatures

Non-Frameability

Non-frameability is a security notion that says even if the rest of the group as well as

the group manager are fully corrupt, they cannot falsely attribute a signature to an

honest member who did not produce it. In the non-frameability game ExpNon−Frame
FDGS,A

shown in Figure 7.12, we grant the adversary access to the oracles described below

and detailed in Figure 7.13, and we keep a global list S of signatures produced by

an honest user. Please note that the adversary controls the group manager and hence

session identifiers no longer carry much meaning, the adversary can pretend the user

has any session identifier. Instead without loss of generality we simply identify the

honest user with a generic record reg and require that only the honest user is able to

write in this record.

SndToHU(Mh) : This oracle allows the adversary to interact with a single honest user

in an instance of the join protocol. Each call executes the next move of the hon-

est user on input a message Mh provided by the adversary (playing the role of

the corrupt group manager) and returns the user response message. The user

may write a message into the register using oracle Write, which can be accessed

only once by the user. Messages received by the Write oracle are revealed to

the adversary. The user output outh, i.e., the signing key, is not disclosed to the

adversary.

SignHU(info,m) : This oracle is used by the adversary against non-frameability to ob-

tain signatures from an honest group member h added to the group via SndToHU

calls. It returns a group signature on the message m using key gskh and group

information info.

The adversary can add a single honest user in the group and request him to sign arbi-

trary messages. The goal of the adversary in the non-frameability game is to produce

a valid signature on a message that was not requested to the signing oracle, together

with an accepting proof attributing the signature to the honest user.

Definition 7.5 (Non-frameability). An FDGS scheme is non-frameable if for all PPT

adversaries A, the following advantage is negligible

AdvNon−Frame
FDGS,A (λ) := Pr[ExpNon−Frame

FDGS,A (λ) = 1].

7.1. Definitions for Fully Dynamic Group Signatures 203

Experiment: ExpNon−Frame
FDGS,A (λ)

− param← GSetup(1λ); h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
− (mpk; stA)← A(param)
− gpk := (param,mpk)

−
(
m,Σ, π, info

)
← ASndToHU,SignHU(stA)

− If Verify(gpk, info,m,Σ) = 0 return 0
− If (info,m,Σ) ∈ S return 0
− Return Judge(gpk, info, reg,m,Σ, π)

FIGURE 7.12: Non-Frameability game.

SndToHU(Mh)

� If h = ⊥:
◦ h := >:
◦Mh := init
◦ sth := gpk

� (outh;MGM; sth)← Join
Write(·)
User (Mh; sth)

� If outh 6= ε set gskh := outh

� Return MGM

SignHU(info,m)

� If gskh = ⊥ return ⊥
� Σ← Sign(gskh, info,m)
� S := S ∪ {(info,m,Σ)}
� Return Σ

Write(M)

� Set reg := M
� Send M to A
� Ignore future calls

FIGURE 7.13: Oracles used in the non-frameability game.

In our definition of non-frameability the adversary controls the group manager

during the key generation process. Thus, our definition is stronger than existing def-

initions, which only allow the group manager to be corrupted after the group keys

have been honestly generated.

We allow only a single honest user in the group and ask the adversary to frame

her. It can be shown that this implies the more general case involving several honest

users in the group by a standard hybrid argument since the adversary can simulate

the actions of additional honest users.

Variations of Non-Frameability. While traceability still makes sense without proofs

and the Judge algorithm, non-frameability does not since it is about whether a corrupt

group manager would be able to prove instead of just falsely accusing an honest user

of having signed a message. If we consider the setting with no proofs and no Judge

algorithm, we can therefore completely eliminate the non-frameability notion from

our definitions.

In Fig. 7.14 we give a variation of the non-frameability game suitable for the setting

where the roles of group manager and opening authority are separated. Since both

are under adversarial control, the game is equivalent to the previous non-frameability

204 Chapter 7. Foundations of Fully Dynamic Group Signatures

game where the group manager has both roles, so it is easy to see the transformation

from Sec. 7.1.1 of a two authority FDGS into a single authority FDGS ′ preserves non-

frameability.

Experiment: ExpNon−Frame
FDGS,A (λ)

− param← GSetup(1λ); h := ⊥;S := ∅; gskh := ⊥
− (mpk, opk; stA)← A(param)
− gpk := (param,mpk, opk)

−
(
m,Σ, π, info

)
← ASndToHU,SignHU(stA)

− If Verify(gpk, info,m,Σ) = 0 return 0
− If (info,m,Σ) ∈ S return 0
− Return Judge(gpk, info, reg,m,Σ, π)

FIGURE 7.14: Non-Frameability game for separate GM and OA.

7.1.3 Additional Security Definitions

In addition to the core security properties correctness, anonymity, traceability and

non-frameability, a group signature scheme may have additional security guarantees.

In the above definitions the opening provided by either the group manager or the

opening authority can be generally thought as a deterrent against misbehaviours of

users. It is not hard, however, to envision applications in which openings could be

also used to create incentives. In such scenarios it may become crucial to prevent an

attacker exploiting the opening mechanism to her own advantage rather than eluding

it.

Opening Binding

Opening binding1 defined by Sakai et al. [SSE+12] in the context of partially dynamic

group signatures guarantees that even if all authorities and users collude they should

not be able to produce a valid signature that can be selectively attributed to two dif-

ferent members. Consider for instance a contest to find the best stock market analyst.

Group signatures are used to sign stock market predictions by the experts, who should

remain anonymous in order not to influence the markets, and later we use the open-

ing algorithm in order to tally up who is the best expert. There may be a financial

1Sakai et al. [SSE+12] refer to this notion as opening soundness.

7.1. Definitions for Fully Dynamic Group Signatures 205

incentive to become the leading expert, so we could imagine a collusion where an “ex-

pert" and a “fool" enrol and then collaborate to attribute all correct predictions to the

“expert" and all wrong predictions to the “amateur".

We define opening binding game in Fig. 7.15, where the goal of the adversary is

to create a signature and two distinct attributions to who signed it. We consider a

strongly adversarial setting, where both the authorities and users may be adversarial

but want the guarantee that each signature must be attributed to a unique record in

the registry.

Definition 7.6 (Opening Binding). An FDGS scheme is opening binding if for all PPT

adversaries A

AdvOpening−Bind
FDGS,A (λ) := Pr[ExpOpening−Bind

FDGS,A (λ) = 1] ≈ 0.

Experiment: ExpOpening−Bind
FDGS,A (λ)

− param← GSetup(1λ)
− (mpk, info, opk,m,Σ, reg, π, reg′, π′)← A(param)

//This is for separate GM and OA, use opk = ε if only single GM
− gpk := (param,mpk, opk)
− If Verify(gpk, info,m,Σ) = 0 return 0
− If Judge(gpk, info, reg,m,Σ, π) = 0 return 0
− If Judge(gpk, info, reg′,m,Σ, π′) = 0 return 0
− If reg 6= reg′ return 1, else return 0

FIGURE 7.15: Opening binding game.

Opening Soundness

Consider again the example of a competition to determine who is a the best stock mar-

ket prediction expert, this time from the perspective of an honest expert. It would be

problematic if it was possible to “steal" the group signatures by the honest user, i.e.,

falsely attribute them to somebody else. The worst-case scenario here is that dishon-

est authorities are collaborating with a malicious user to attribute the honest user’s

signature to the malicious user instead.

We define the opening soundness experiment in Fig. 7.16, where the adversary is

trying to attribute a signature Σ of an honest user to a different registry. The experi-

ment uses an oracle to enrol and honest user and an oracle that provides an honestly

generated signature described in Fig. 7.17.

206 Chapter 7. Foundations of Fully Dynamic Group Signatures

Definition 7.7 (Opening soundness). An FDGS scheme is opening sound if for all PPT

adversaries A

AdvOpening−Sound
FDGS,A (λ) := Pr[ExpOpening−Sound

FDGS,A (λ) = 1] ≈ 0.

Related notions of opening soundness were previously considered by Kiayias and

Yung [KY06], as a requirement for correctness, and Sakai et al. [SSE+12], under the

name of weak opening soundness. Our definition considers highly adversarial settings

and thus captures a much more stringent notion.

Experiment: ExpOpening−Sound
FDGS,A (λ)

− param← GSetup(1λ); h = ⊥; reg := ⊥; gskh = ⊥; Σ := ⊥
− (mpk, opk; stA)← A(param)

//This is for separate GM and OA, use opk = ε if only single GM
− gpk := (param,mpk, opk)
− (info∗, reg∗,m∗, π∗)← ASndToHU,SignHU(stA)
− If Judge(gpk, info∗, reg∗,m∗,Σ, π∗) = 0 return 0
− If reg 6= reg∗ return 1, else return 0

FIGURE 7.16: Opening soundness game.

SndToHU(Mh)

� If h = ⊥:
◦ h := >:
◦Mh := init
◦ sth := gpk

� (outh;MGM; sth)← Join
Write(·)
User (Mh; sth)

� If outh 6= ε set gskh := outh

� Return (outh,MGM, sth)

SignHU(info,m)

� Σ← Sign(gskh, info,m)
� Return Σ
� Ignore future calls

Write(M)

� Set reg := M
� Send M to A
� Ignore future calls

FIGURE 7.17: Oracles used in the opening soundness game.

7.2 Partially Dynamic Group Signatures

In the previous section, we defined fully dynamic group signatures. Earlier formal

definitions covered static groups, where the membership is fixed at initialisation [BMW03],

and partially dynamic groups where new members may enrol but without revoca-

tion [BSZ05; KY06]. We will now discuss how our definitions for fully dynamic group

signatures can be relaxed to the partially dynamic settings, and we will show that

7.2. Partially Dynamic Group Signatures 207

aside from minor differences earlier formal definitions of group signatures can be seen

as restrictions of our definitions to special cases.

7.2.1 Restriction to Partially Dynamic Signatures

In prior works, the term dynamic group signature refers to the case where new mem-

bers may enrol. These definitions do not cover revocation though, the group can grow

but it will never shrink. This partially dynamic setting is simply a special case of our

fully dynamic group signatures, where we never revoke members, i.e., in all calls to

Update we have revocation setR = ∅.

For some designs of group signatures, the group information does not change as

new members are enrolled. This is unlike the fully dynamic setting, where by neces-

sity the group information must change to prevent revoked signers from using their

current keys to produce valid signatures. When the group information is immutable,

we can eliminate the Update function entirely from our scheme and remove the cor-

responding oracle in the security definitions. This in turn means we only have one

epoch τ = 0 and also the IsActive policy now simply says that an enrolled user is

active immediately after the group manager considers her joining procedure to have

ended successfully. Since info0 is generated by GM together with the manager pub-

lic key mpk, we can without loss of generality assume info0 = ε. For the special case

of partially dynamic group signatures with immutable group information, the defi-

nitions can therefore be simplified by excluding the epoch τ = 0, the public group

information info0 = ε and the Update procedure.

These notational simplifications lead us to the following syntax for a partially dy-

namic group signature scheme with immutable group information:

Reg: Data structure with records regi for joining session identifiers i = 1, 2, 3, . . . with

algorithms/oracles.

• ReadReg(i): Return regi (or ⊥ if no such record exists).

• WriteReg(i,M): Set regi := M and ignore further calls with the same i.

GSetup(1λ)→ param: PPT algorithm generating trusted parameters (or 1λ if there is

no trusted setup).

208 Chapter 7. Foundations of Fully Dynamic Group Signatures

GKGen(param)→ (mpk; stGM): PPT algorithm for group manager key generation.

The group public key is gpk := (param,mpk).

If we separate the roles of group manager GM and opening authority OA, they

instead run the interactive key generation protocol

((mpk; stGM); (opk, osk))← 〈GKGenGM(param);GKGenOA(param)〉

and let gpk := (param,mpk, opk) be the group public key.

Join: Interactive protocol for enrolling user in group. Defined by PPT algorithms

• Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st).

• Join
ReadReg(i)
GM (i,MGM; stGM)→ (outGM;M ; stGM).

IsActive(i, stGM)→ 1/0 : DPT algorithm defining when user is considered active. In

the partially dynamic case, the policy is that the user joining in session i is active

if and only if the group manager terminated with success symbol >.

Sign(gsk,m)→ Σ: PPT signing algorithm.

Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.

Open(gpk, stGM,m,Σ)→ (i, π): PPT opening algorithm.

If we separate the roles of group manager and opening authority, OA instead

uses the opening key osk to run OpenReadReg(·)(gpk, osk,m,Σ)→ (i, π).

Judge(gpk, reg,m,Σ, π)→ 1/0: DPT algorithm determining if signature was correctly

attributed to registry record reg.

The corresponding simplified security experiments for partially dynamic group sig-

nature scheme with immutable group information is given in Fig. 7.18. We list the ex-

periments for the single group manager setting, and note in the comments indicated

by // how to adapt them to the separate GM and OA setting. The oracles are defined

exactly as in the case of fully dynamic group signatures and simplified by excluding

the group information info = ε and epochs τ = 0.

7.2. Partially Dynamic Group Signatures 209

Experiment: ExpCorr
PDGS,A(λ)

− param← GSetup(1λ); h := ⊥; N := 0;K := 0
− (mpk; stGM)← GKGen(param); gpk := (param,mpk)

//
(

(mpk; stGM); (opk; stA)
)
← 〈GKGenGM(param);A(param)〉

// gpk := (param,mpk, opk)
−m← AAddHU,SndToM,Write,State(gpk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
PDGS,A(λ)

− param← GSetup(1λ);N := 0;H := ∅; C := ∅
− (mpk; stGM)← GKGen(param); gpk := (param,mpk)

//
(

(mpk; stA); (opk, osk)
)
← 〈A(param);GKGenOA(param)〉

// gpk := (param,mpk, opk)
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg(gpk)

// Return b∗ ← ASndToU,Open,Chalb,ReadReg
(

gpk; stA

)
Experiment: ExpTrace

PDGS,A(λ)

− param← GSetup(1λ);N := 0
− (mpk; stGM)← GKGen(param); gpk := (param,mpk)

//
(

(mpk; stGM); (opk, osk)
)
← 〈GKGenGM(param);GKGenOA(param)〉

// gpk := (param,mpk, opk)
− (m,Σ)← ASndToM,WriteReg,Open,State(gpk)

//
(
m,Σ

)
← ASndToM,WriteReg,State(gpk, osk)

− If Verify(gpk,m,Σ) = 0 return 0
− (i, π)← Open(gpk, stGM,m,Σ)

// (i, π)← OpenReadReg(gpk, osk,m,Σ)
− If IsActive(i, stGM) = 0 return 1
− If Judge(gpk, regi,m,Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
PDGS,A (λ)

− param← GSetup(1λ); h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
− (mpk; stA)← A(param); gpk := (param,mpk)

// (mpk, opk; stA)← A(param); gpk := (param,mpk, opk)

−
(
m,Σ, π

)
← ASndToHU,SignHU

(
stA

)
− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− Return Judge(gpk, reg,m,Σ, π)

FIGURE 7.18: Security experiments for partially dynamic group signa-
tures.

210 Chapter 7. Foundations of Fully Dynamic Group Signatures

7.2.2 Comparison to Bellare, Shi and Zhang [BSZ05]

Bellare, Shi and Zhang [BSZ05] define partially dynamic group signatures with sepa-

rate group manager (called Issuer) and opening authority (called Opener). Their def-

inition is a specific type of partially dynamic group signature with immutable group

information. We will now describe restrictions to our definition of partially dynamic

group signatures that yields a definition similar to their definition.

Bellare, Shi and Zhang consider a group manager state formed as stGM = (msk,

{stiGM}). The state is therefore compartmentalized to consist of a fixed part msk, which

we call the manager’s secret key, and other parts sti
GM that are specific to the joining

sessions. It is assumed joining session states are independent of each other, which

makes it easier to reason about concurrent joins. In particular, since the joins are in-

dependent of each other, we can under the same assumption of compartmentalized

group manager state define correctness in terms of a single joining session and ignore

any concurrent joining sessions.

Bellare, Shi and Zhang assume a trusted key generation procedure. If we assume

keys to be honestly generated, we can combine the trusted parameter generation and

the joining protocol into a single algorithm, which first runs the parameter generation

and then honestly execute the interactive key generation protocol. So there is little loss

of generality in assuming a single trusted algorithm that generates all keys.

Taken together, for a partially dynamic group signature scheme with compart-

mentalized group manager state and trusted key generation we can simplify the syn-

tax and security experiments as described below. A group signature scheme with

compartmentalized group manager state satisfying our definition in Fig. 7.18 directly

yields a partially dynamic group signature scheme satisfying the definition in Fig. 7.19

by letting the key generation procedure run the setup algorithm and the interactive

key generation protocol honestly and outputting the resulting keys.

Reg : Data structure with records regi for joining session identifiers i = 1, 2, 3, . . .with

algorithms/oracles.

• ReadReg(i) : Return regi (or ⊥ if no such record exists).

• WriteReg(i,M) : Set regi := M and ignore further calls with the same i.

7.2. Partially Dynamic Group Signatures 211

GKGen(1λ)→ (gpk,msk, osk): Trusted PPT algorithm for key generation.

Join : Interactive protocol for enrolling user in group. Defined by PPT algorithms.

• Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st).

• Join
ReadReg(i)
GM (i,MGM,msk; sti

GM)→ (outGM;M ; sti
GM).

IsActive(i, stGM)→ 1/0 : DPT algorithm defining when user is considered active. In

the partially dynamic case, the policy is that the user joining in session i is active

if and only if the group manager terminated with success symbol >.

Sign(gsk,m)→ Σ: PPT signing algorithm.

Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.

OpenReadReg(·)(gpk, osk,m,Σ)→ (i, π) : PPT opening algorithm.

Judge(gpk, reg,m,Σ, π)→ 1/0: DPT algorithm determining if signature was correctly

attributed to registry record reg.

The matching simplified security experiments are given in Fig. 7.19. The oracles are

defined exactly as in the previous definitions.

Bellare, Shi and Zhang assume a confidential communication channel between the

group manager and joining users, while we assume an open channel. A scheme satis-

fying our security definition will of course also satisfy the weaker security definition

that assumes confidential communication channels. Conversely, the group manager

and user can use public-key cryptography to establish a confidential channel, so this

definitional difference is immaterial. Bellare, Shi and Zhang also consider a slightly

stronger definition of correctness where an honestly generated signature must always

open to identify the signer, which as discussed in Sec. 7.1.2 is covered in a computa-

tional sense by traceability and therefore in our opinion immaterial.

It can now be seen by direct comparison with [BSZ05] that the experiments in

Fig. 7.19 yield a security definition very similar to the one given by Bellare, Shi and

Zhang. One remaining difference is that Bellare, Shi and Zhang explicitly include

a public key infrastructure where each user has an identity j ∈ N and generates a

key pair (upk[j], usk[j]), and they consider the registry to be under the jurisdiction

of the group manager. However, as discussed in Section 7.1.1 we can eliminate this

212 Chapter 7. Foundations of Fully Dynamic Group Signatures

Experiment: ExpCorr
BSZ,A(λ)

− (gpk,msk, osk)← GKGen(1λ) ; h := ⊥; N := 0;K := 0
−m← AAddHU,Write(gpk,msk, osk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
BSZ,A (λ)

− (gpk,msk, osk)← GKGen(1λ) ; N := 0;H := ∅; C := ∅
− Return b∗ ← ASndToU,Open,Chalb,ReadReg(gpk,msk)

Experiment: ExpTrace
BSZ,A(λ)

− (gpk,msk, osk)← GKGen(1λ) ; N := 0

−
(
m,Σ

)
← ASndToM,WriteReg(gpk,msk, osk)

− If Verify(gpk,m,Σ) = 0 return 0
− (i, π)← OpenReadReg(gpk, osk,m,Σ)
− If IsActive(i, stGM) = 0 return 1
− If Judge(gpk, regi,m,Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
BSZ,A (λ)

− (gpk,msk, osk)← GKGen(1λ) ; h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
−
(
m,Σ, π

)
← ASndToHU,SignHU(gpk,msk, osk)

− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− Return Judge(gpk, reg,m,Σ, π)

FIGURE 7.19: Security experiments for partially dynamic group signa-
tures akin to Bellare, Shi and Zhang [BSZ05]

7.2. Partially Dynamic Group Signatures 213

extra step to simplify definitions and just consider the registry record to be under

control of the user. For concreteness, this can be done by letting the user generate

a key pair (upk, usk) for an sEUF-CMA secure digital signature scheme and create a

signature σ on her intended record together with her identity j and public key upk[j].

I.e., in Bellare et al. [BSZ05] let the record created when she is joining in session i be

reg[i] = (j, upk[j], regi, σ). The user can now send this record to the group manager

when she wants to write to the registry. Since the group manager cannot forge the

user’s signature, this is equivalent to letting the user have one-time write access to

the registry, and given the record index i it is easy to map to the user identity j. Our

definition in Fig. 7.19 is mostly similar to the definition of Bellare et al. [BSZ05] modulo

this difference.

7.2.3 Comparison to Kiayias and Yung [KY06]

Kiayias and Yung [KY06] also give a formal definition of partially dynamic group sig-

natures with immutable group information. Their definition is in the single authority

setting and deviates from our definition and Bellare, Shi and Zhang [BSZ05] by trust-

ing the group manager to open honestly and not requiring proofs of correct attribution

to a signer. This simplification is easy to implement given a single authority partially

dynamic group signature; the opening algorithm can simply discard the proof of cor-

rect attribution. Kiayias and Yung assume the key generation process is honest and

they also assume the group manager’s internal state can be compartmentalized as

stGM = (msk, {sti
GM}), both of which are special cases of our definition.2 In their mode,

opening takes place against a public record, so we let the opening algorithm have ac-

cess to the registry, while it is of course easy to just incorporate it into the state of the

group manager. We present the syntax and security experiments below.

Reg : Data structure with records regi for joining session identifiers i = 1, 2, 3, . . .with

algorithms/oracles.

• ReadReg(i) : Return regi (or ⊥ if no such record exists).

• WriteReg(i,M) : Set regi := M and ignore further calls with the same i.
2 Kiayias and Yung use very different notation. What they call ‘state’ is what we call ‘registry’. Their

public state contains also the transcripts of the execution of the Join protocol.

214 Chapter 7. Foundations of Fully Dynamic Group Signatures

GKGen(1λ)→ (gpk; msk): PPT algorithm for group manager key generation.

Join : Interactive protocol for enrolling user in group. Defined by PPT algorithms.

• Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st).

• Join
ReadReg(i)
GM (i,MGM,msk; sti

GM)→ (outGM;M ; sti
GM).

IsActive(i, stGM)→ 1/0 : DPT algorithm defining when user is considered active. In

the partially dynamic case, the policy is that the user joining in session i is active

if and only if the group manager terminated with success symbol >.

Sign(gsk,m)→ Σ: PPT signing algorithm.

Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.

OpenReadReg(gpk,msk,m,Σ)→ i: DPT opening algorithm.

The matching security experiments are given in Fig. 7.20. The oracles are defined

exactly as in the previous definitions.

The security definition given in Fig. 7.20 is close to the security definition given by

Kiayias and Yung. There are some immaterial differences, such as allowing arbitrary

identifier i versus numbering them consecutively, and their specifying that the registry

must have entries of a specific form corresponding to the joining transcript. There is

one significant difference in the anonymity experiment. Here Kiayias and Yung re-

quire indistinguishability of two signers as long as the keys are consistent with the

protocol, i.e., could plausibly have been generated. We on the other hand, just re-

quire indistinguishability for honestly generated keys. In our opinion, the stronger

anonymity notion of Kiayias and Yung is overkill; it is reasonable to assume honest

signers will follow the protocol and therefore our anonymity experiment suffices to

protect them. Aside from this difference, inspection reveals that there are mainly no-

tational and terminological differences between our security definition in Fig. 7.20 and

Kiayias and Yung [KY06].

7.2. Partially Dynamic Group Signatures 215

Experiment: ExpCorr
KY,A(λ)

− (gpk,msk)← GKGen(1λ) ; h := ⊥; N := 0;K := 0
−m← AAddHU,SndToM,WriteReg,State(gpk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
KY,A (λ)

− (gpk,msk)← GKGen(1λ); N := 0;H := ∅; C := ∅
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg(gpk)

Experiment: ExpTrace
KY,A(λ)

− (gpk,msk)← GKGen(1λ)
− (m,Σ)← ASndToM,WriteReg,Open(gpk)
− If Verify(gpk,m,Σ) = 0 return 0
− i← OpenReadReg(gpk,msk,m,Σ)
− If IsActive(i, stGM) = 0 return 1, else return 0

Experiment: ExpNon−Frame
KY,A (λ)

− (gpk,msk)← GKGen(1λ) ; h := ⊥;S := ∅
−
(
m,Σ

)
← ASndToHU,SignHU(gpk,msk)

− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0

− If OpenReadReg(gpk,msk,m,Σ) = h return 1, else return 0

FIGURE 7.20: Security experiments for partially dynamic group signa-
tures akin to Kiayias and Yung [KY06].

216 Chapter 7. Foundations of Fully Dynamic Group Signatures

7.3 Static Group Signatures

Similarly to the previous section we now discuss further relaxations of our definitions

to the static settings and show that definitions of [BMW03] can be seen as special case

of ours.

7.3.1 Restriction to Static Group Signatures

In static group signatures, the set of group members is fixed from the start and never

changes. This means the setup procedure is different, since it includes the key gen-

eration for all the group members, so strictly speaking static group signatures are not

just a definitional restriction of dynamic group signatures but a distinct definition al-

together. However, we can easily convert a dynamic group signature into a static one

by incorporating the join procedure for the users into the key generation process and

then at the end hand them their secret keys.

In our definition of static group signatures, we will replace the group manager key

generation with a trusted combined key generation protocol that also generates keys

for the group members. Since the set of group members is static, there is no manage-

ment operations taking place so the sole purpose of the group manager is to be able

to open group signatures and identify the signer. We therefore only consider the sin-

gle authority setting. Also, since membership does not change, the group information

does not need to change either and we only have a single epoch, so we can without

loss of generality fix info0 = ε and τ = 0 and omit them from the definition. We can

also eliminate reference to the IsActive procedure since all group members are auto-

matically considered active. Finally, since enrolment of users takes place during setup

we can only get non-frameability if the registry is honestly generated. This means that

in all the security experiments, we must assume trusted key generation, and therefore

we can incorporate the trusted parameters generation into the key generation proce-

dure.

With these changes in mind we get the following security experiments for static

group signatures, where N is an arbitrary polynomially bounded function of the se-

curity parameter.

Reg: Data structure with records regi for members numbered i = 1, 2, 3, . . . , N .

7.3. Static Group Signatures 217

• ReadReg(i): Return regi (or ⊥ if no such record exists).

• WriteReg(i,M): Set regi := M and ignore further calls with the same i.

GKGenWriteReg(1λ, N)→ (gpk, gsk1, . . . , gskN ; stGM): PPT algorithm for group man-

ager key generation, which depends on the number of desired group members

N . Returns the group public key, secret keys for the users, writes registry entries

reg1, . . . , regN , and sets the state of the group manager (which can be interpreted

as a group manager secret key).

Sign(gsk,m)→ Σ: PPT signing algorithm.

Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.

Open(gpk, stGM,m,Σ)→ (i, π): PPT opening algorithm.

Judge(gpk, reg,m,Σ, π)→ 1/0: DPT algorithm determining if signature was correctly

attributed to registry record reg.

The matching simplified security experiments for static group signature scheme and

oracle Keys are given in Fig. 7.21. The remaining oracles are defined exactly as in

the case of fully dynamic group signatures and simplified by excluding the group

information info = ε and epochs τ = 0.

7.3.2 Comparison to Bellare, Micciancio and Warinschi [BMW03]

Bellare, Micciancio and Warinschi [BMW03] gave a formal definition of static group

signatures where group membership is fixed at the beginning of the protocol. Their

definition does not include proof of correct opening, they just require the group man-

ager to identify the signer. This can be seen as a special case of our static group sig-

nature scheme, where we omit the Judge algorithm and simply trust the judgment of

the group manager. We still need the core properties of traceability, i.e., we can open

all valid signatures to one of the members, and still want from non-frameability that a

signature will not be opened to a member who did not sign it. We present the simpli-

fied definition of static group signatures in Fig. 7.22 and the syntax below. Oracle are

defined as for the previous definitions. Bellare et al. [BMW03] combine the traceabil-

ity and non-frameability notions into a combined notion they call full-traceability. It

218 Chapter 7. Foundations of Fully Dynamic Group Signatures

Experiment: ExpCorr
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)
− (h,m)← AReadReg(gpk, gsk1, . . . , gskN , stGM)
− If h /∈ [N] return 1
− Σ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)
− Return b∗ ← AOpen,Chalb,ReadReg(gpk, gsk1, . . . , gskN)

Experiment: ExpTrace
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)
− (m,Σ)← AReadReg(gpk, gsk1, . . . , gskN , stGM)
− If Verify(gpk,m,Σ) = 0 return 0
− (i, π)← Open(gpk, stGM,m,Σ)
− If Judge(gpk, regi,m,Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
SGS,A,N (λ)

− S = ∅, h = ⊥
− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)

−
(
m,Σ, π

)
← AReadReg,Keys,SignHU

(
gpk, stGM

)
− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− Return Judge(gpk, regh,m,Σ, π)

Oracle: Keys(h)

� If h /∈ [N] return ⊥
� Return {gski}i 6=h and ignore future calls

FIGURE 7.21: Security experiments for static group signatures.

7.3. Static Group Signatures 219

is not hard to see though that the definition given in Fig. 7.22 is almost equivalent to

their security definition for static group signatures.

GKGen(1λ, N)→ (gpk, gsk1, . . . , gskN ; stGM): PPT algorithm for group manager key

generation, which depends on the number of desired group members N . Re-

turns the group public key, secret keys for the users, and sets the state of the

group manager (which can be interpreted as a group manager secret key).

Sign(gsk,m)→ Σ: PPT signing algorithm

Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.

Open(gpk, stGM,m,Σ)→ i: DPT opening algorithm.

Experiment: ExpCorr
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)
− (h,m)← A(gpk, gsk1, . . . , gskN , stGM)
− If h /∈ [N] return 1
− Σ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)
− Return b∗ ← AOpen,Chalb(gpk, gsk1, . . . , gskN)

Experiment: ExpTrace
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)
− (m,Σ)← A(gpk, gsk1, . . . , gskN , stGM)
− If Verify(gpk,m,Σ) = 0 return 0
− i← Open(gpk, stGM,m,Σ)
− If i /∈ [N] return 1
− Return 0

Experiment: ExpNon−Frame
BMW,A,N (λ)

− S = ∅, h = ⊥
− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)

−
(
m,Σ

)
← AKeys,SignHU

(
gpk, stGM

)
− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− If Open(gpk, stGM,m,Σ) = h return 1, else return 0

FIGURE 7.22: Security experiments for static group signatures akin to
Bellare, Micciancio and Warinschi [BMW03].

220 Chapter 7. Foundations of Fully Dynamic Group Signatures

If we have a static group signature scheme with proofs of correct opening satisfy-

ing the definition in Fig. 7.21, then it is easy to convert it into a similar group signature

without proofs of correct opening satisfying the definition in Fig. 7.22. The group key

generation algorithm can include registry record regi in the secret signing key gski and

the group manager state stGM may include the entire registry (we could in principle

instead include the registry information in the group public key, but this might lead

to an undesirable increase in the size of gpk). When the Open algorithm is called, it

runs the original opening algorithm to get (i, π), verifies the proof using the Judge

algorithm, and returns i. It follows from the security definitions in Fig. 7.21 that this

simple modification leads to a static group signature scheme without proof of correct

opening that satisfies the definitions in Fig. 7.22.

7.4 Fully Dynamic Group Signatures from Accountable Ring

Signatures

Bootle et al. [BCC+15] give a generic construction of accountable ring signatures,

where every signature can be traced back to a user in the ring. Differently from group

signatures, accountable ring signatures lack of appointed authorities, and thus sign-

ers choose their designated opener at signing time. In addition, they give an efficient

instantiation in the random oracle model that is based on the DDH assumption. Their

instantiation yields signatures of logarithmic size (in the size of the ring), they cost

quasi-linear time to generate, and linear time to verify.

In this section we show that accountable ring signatures imply fully dynamic group

signatures. We start by recalling the security definitions of accountable ring signatures

and then present a generic construction of fully dynamic group signatures from ac-

countable ring signatures. Combined with [BCC+15], this gives a generic construction

of fully dynamic group signatures from one-way functions, IND-CPA encryption, and

non-interactive zero-knowledge proofs. We then show that our construction satisfies

the strongest variant of our definitions, i.e. with respect to separate authorities and

adversarial key generation.

7.4. Fully Dynamic Group Signatures from Accountable Ring Signatures 221

7.4.1 Accountable Ring Signatures

Bootle et al. [BCC+15] define an accountable ring signature scheme over a PPT setup

ARSSetup as a tuple of polynomial time algorithms (ARSOKGen,ARSUKGen,ARSSign,

ARSV fy,ARSOpen,ARSJudge).

ARSSetup(1
λ): Given the security parameter, produces public parameters pp used (some-

times implicitly) by the rest of the scheme. The public parameters define key

spaces PK,DK, V K, SK with efficient algorithms for sampling and deciding

membership.

ARSOKGen(pp): Given the public parameters pp, it produces a public key pk ∈ PK

and secret key dk ∈ DK for an opener. Without loss of generality, we assume dk

defines pk deterministically and write pk = ARSOKGen(pp, dk) when computing

pk from dk.

ARSUKGen(pp): Given the public parameters pp, it produces a verification key vk ∈

V K and a secret signing key sk ∈ SK for a user. We can assume sk deterministi-

cally determines vk and write vk = ARSUKGen(pp, sk) when computing vk from

sk.

ARSSign(pk, sk,R,m): Given an opener’s public key, a message, a ring (i.e. a set of

verification keys) and a secret key, it produces a ring signature σ. The algo-

rithm returns the error symbol ⊥ if pk /∈ PK,R 6⊂ V K, sk /∈ SK or vk =

ARSUKGen(pp, sk) /∈ R.

ARSV fy(pk,R,m, σ): Given an opener’s public key, a message, a ring and a signature,

it returns 1 if accepting the signature and 0 otherwise. We assume the algorithm

always returns 0 if pk /∈ PK or R 6⊂ V K.

ARSOpen(dk,R,m, σ): Given a message, a ring, a ring signature and an opener’s se-

cret key, it returns a verification key vk and a proof ψ that the owner of vk

produced the signature. If dk /∈ DK or σ is not a valid signature using pk =

ARSOKGen(pp, dk), the algorithm returns ⊥.

222 Chapter 7. Foundations of Fully Dynamic Group Signatures

ARSJudge(pk,R, vk,m, σ, ψ): Given an opener’s public key, a message, a ring, a sig-

nature, a verification key and a proof, it returns 1 if accepting the proof and 0

otherwise. We assume the algorithm returns 0 if σ is invalid or vk /∈ R.

Accountable ring signatures should be correct, anonymous, traceable, fully un-

forgeable and tracing sound. We recall [BCC+15] definitions of all these properties

below.

Definition 7.8 (Correctness). An accountable ring signature scheme is correct if for any PPT

adversary A

Pr


pp← ARSSetup(1

λ); (vk, sk)← ARSUKGen(pp);

(pk,R,m)← A(pp, sk);σ ← ARSSign(pk, sk,R,m) :
If pk ∈ PK,R ⊂ V K, vk ∈ R then ARSV fy(pk,R,m, σ) = 1

 ≈ 1

Anonymity ensures that a signature does not reveal the identity of the ring mem-

ber who produced it without the opener explicitly wanting to open the particular

signature. The definition below implies anonymity against full key exposure attacks

([BKM09]) since in the game the adversary is allowed to choose the secret signing keys

of the users.

Definition 7.9 (Anonymity). An accountable ring signature scheme is anonymous if for any

PPT adversary A

Pr

 pp← ARSSetup(1
λ); b← {0, 1}; (pk, dk)← ARSOKGen(pp):
AChalb,Open(pp, pk) = b

 ≈ 1

2

• Chalb: is an oracle that the adversary can only call once. On query (R,m, sk0, sk1) it

runs σ0 ← ARSSign(pk, sk0, R,m); σ1 ← ARSSign(pk, sk1, R,m). If σ0 6= ⊥ and

σ1 6= ⊥ it returns σb, otherwise it returns ⊥.

• Open: is an oracle that on a query (R,m, σ) returns ARSOpen(dk,R,m, σ). If σ was

obtained by calling Chalb on (R,m, ·, ·), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the ring mem-

ber who produced a signature and that she is able to produce a valid proof for her

decision.

7.4. Fully Dynamic Group Signatures from Accountable Ring Signatures 223

Definition 7.10 (Traceability). An accountable ring signature scheme is traceable if for any

PPT adversary A

Pr


pp← ARSSetup(1

λ); (dk,R,m, σ)← A(pp);

pk ← ARSOKGen(pp, dk); (vk, ψ)← ARSOpen(dk,R,m, σ):
ARSV fy(pk,R,m, σ) = 1 ∧ ARSJudge(pk,R, vk,m, σ, ψ) = 0

 ≈ 0

Full unforgeability ensures that an adversary, who may control the opener, can

neither falsely accuse an honest user of producing a ring signature nor forge ring sig-

natures on behalf of an honest ring. The former should hold even when all other users

in the ring are corrupt.

Definition 7.11 (Full Unforgeability). An accountable ring signature scheme is fully un-

forgeable if for any PPT adversary A

Pr



pp← ARSSetup(1
λ); (pk, vk,R,m, σ, ψ)← AUKGen,Sign,RevealU(pp):(

vk ∈ QUKGen \QRevealU ∧ (pk, vk,R,m, σ) /∈ QSign

∧ARSJudge(pk,R, vk,m, σ, ψ) = 1
)

∨
(
R ⊂ QUKGen \QRevealU ∧ (pk, ·, R,m, σ) /∈ QSign

∧ ARSV fy(pk,R,m, σ) = 1
)


≈ 0

• UKGen: runs (vk, sk) ← ARSUKGen(pp) and returns vk. QUKGen is the set of verifi-

cation keys vk that have been generated by this oracle.

• Sign: is an oracle that on query (pk, vk,R,m) checks if vk ∈ R ∩ QUKGen, in which

case returns σ ← ARSSign(pk, sk,R,m). QSign contains the queries and responses

(pk, vk,R,m, σ).

• RevealU: is an oracle that when queried on vk ∈ QUKGen returns the corresponding

signing key sk. QRevealU is the list of verification keys vk for which the corresponding

signing key has been revealed.

Tracing soundness is analogous to our opening binding definition for group signa-

tures and ensures that a signature cannot be traced to two different users in the ring.

That is, only one person can be identified as the signer, even when all users, as well as

the opener, are fully corrupt.

224 Chapter 7. Foundations of Fully Dynamic Group Signatures

Definition 7.12 (Tracing Soundness). An accountable ring signature scheme satisfies trac-

ing soundness if for any PPT adversary A

Pr

 pp← ARSSetup(1
λ); (pk,R,m, σ, vk1, ψ1, vk2, ψ2)← A(pp):

∀i ∈ {1, 2}, ARSJudge(pk,R, vki,m, σ, ψi) = 1 ∧ vk1 6= vk2

 ≈ 0.

7.4.2 Generic Construction from Accountable Ring Signatures

Next, we show a generic construction of a fully dynamic group signature scheme ob-

tained from an accountable ring signature. The main difference between the two prim-

itives is that the latter does not feature designated authorities. In order to minimise

the amount of trust placed in the authority, we set our group signature in the case of

separate group manager and opening authority.

The key generation protocol of our group signature consists of two independent

processes run by the group manager and the opening authority, respectively. The

opening authority computes a pair of keys by executing the opener key generation

algorithm ARSOKGen, and announces her public key. The group manager simply ini-

tialise her internal state and the group information, which are initially set equal to

empty sets.

A user initiates a joining session with the group manager by generating a key pair

(vk, sk), using ARSUKGen, and then she adds the verification key vk into the registry.

The manager reads the registry entry and checks if the same key had already being

registered, in which case the joining fails. We do not spell out the details of the registry,

but we assume users can write once into the registry and that the manager can read

the content of it. We recall that a registry offering these features can be instantiated

with a PKI and thus we abstract it out to simplify the construction.

The group manager stores the outcome of all the joining sessions as well as the

lists Iτ of active users at each epoch. To activate new members, the manager keeps a

list of users that have joined in the current epoch and updates the group information

info, which triggers a new epoch. The information of the group info consists of the

verification keys of all active members. A group signature consists of an accountable

ring signature using the current information info as the ring, and the opening authority

public key as the opener’s key.

7.4. Fully Dynamic Group Signatures from Accountable Ring Signatures 225

Details of our fully-dynamic group signature from an accountable ring signature

are given in Figure 7.23.

7.4.3 Security in our Separate Authorities Model

Theorem 7.1. The generic group signature scheme construction from accountable ring sig-

natures of Figure 7.23 satisfies our separate authority definitions for a secure, fully-dynamic

group signature scheme, and is additionally opening binding.

Proof. We use a similar proof strategy for all properties: we assume the existence of an

adversary A against the corresponding property of the group signature scheme. We

then show how to build an adversary B that uses A to break the same property of the

accountable ring signature.

For correctness, we start with B in the correctness experiment of Definition 7.8.

The adversary receives pp and the secret key sk of the target user. Given pp, the ad-

versary B provides param to A and let her pick the public key opk for the opening

authority of the group signature, while B plays the role of the honest group manager

in the game of Figure 7.3. The adversary B generates the initial group information

info0 and provides it to A. When simulating AddHU for A, B uses the secret key sk for

the challenge user; note that vk can be efficiently obtained given sk. The oracle calls

to SndToM,Update,Write,State used by A are also simulateable by B, which keeps the

internal state of the group manager. Once A returns a message and epoch pair (m, τ),

B retrieves the group information infoτ , consisting of the public keys of active group

members at epoch τ , and returns (opk,m, infoτ). We observe thatA only wins the game

of Figure 7.3 when either the registration protocol fails to complete successfully for the

target user, or the target user is flagged as inactive even though she has joined and is

not revoked, or if the produced signature fails to verify. The registration of the target

user fails only in case A has already successfully registered the same verification key

vk in a previous session. Since vk is not exposed to A before AddHU is called, this cor-

responds to guessing the target key vk. Assuming the key space V K is large enough,

this only happens with small probability and we can thus assume the target user to

successfully complete the joining protocol. When B updates the group information,

the target user verification key is included in info until explicitly removed by another

226 Chapter 7. Foundations of Fully Dynamic Group Signatures

GSetup(1λ)→ param

� Return pp← ARSSetup(1
λ)

GKGen
� GKGenOA(init; param)→ (outOA;MGM)

◦ (opk, osk)← ARSOKGen(param)
◦ Return ((opk, osk); done)

� GKGenGM(init; param)→ (outGM;MOA; stGM)

◦ info0 := ∅;L := ∅; Inew := ∅; I0 := ∅
◦ Return ((param, info0); done; (L, Inew, I0))

gpk := (param, opk)

Join

� JoinWriteReg(i,·)
User (M ; st)→ (out;MGM; st)

◦ If M = init:
� (vk, sk)← ARSUKGen(param)
� Call WriteReg on input vk
� Return (ε; init; sk)
◦ If M = (done,⊥):
� gsk := ⊥
◦ If M = (done,>):
� gsk := st
◦ Return (gsk; done; st)

� JoinReadReg(i)
GM (i, init; stGM)→ (outGM;M ; stGM)

◦ Parse stGM as (L, Inew, I0, . . . , Iτ)
◦ If ∃ (i, ·) ∈ L return (ε; done; stGM)
◦ vk := ReadReg(i)
◦ If (∃ j < i s.t. (j, vk) ∈ L) ∨ vk /∈ V K:
� L := L ∪ {(i,⊥)}
� Return (⊥; (done,⊥); stGM)
◦ L := L ∪ {(i, vk)}
◦ Inew := Inew ∪ {i}
◦ Return (>; (done,>); (L, Inew, I0, . . . , Iτ))

UpdateGroup(R; stGM)→ (info; stGM)
� Parse stGM as (L, Inew, I0, . . . , Iτ)
� Iτ+1 := (Iτ \ R) ∪ Inew

� infoτ+1 := {vki : (i, vki) ∈ L ∧ i ∈ Iτ+1 ∧ vki 6= ⊥}
� Return (infoτ+1; (L, ∅, I0, . . . , Iτ+1))

Sign(gsk, info,m)→ Σ
� Return Σ← ARSSign(opk, gsk, info,m)

Verify(gpk, info,m,Σ)→ 1/0
� Return ARSV fy(opk, info,m,Σ)

OpenReadReg(gpk, osk, info,m,Σ)→ (i, π)
� (vk, π)← ARSOpen(osk, info,m,Σ).
� If vk 6= ReadReg(j) for all j, return (⊥, π)
� i := min{j : vk = ReadReg(j)}
� Return (i, π)

Judge(gpk, info, reg,m,Σ, π)→ 1/0
� Return ARSJudge(opk, info, reg,m,Σ, π)

IsActive(i, τ, stGM)→ 1/0
� Parse stGM as (L, Inew, I0, . . . , Iτ ′)
� If τ /∈ N ∨ τ > τ ′ return 0
� If ((i, vk) ∈ L ∧ i ∈ Iτ ∧ vk 6= ⊥) return 1
� Return 0

FIGURE 7.23: Construction of a fully dynamic group signature from an
accountable ring signature [BCC+15] .

7.4. Fully Dynamic Group Signatures from Accountable Ring Signatures 227

update. The verification key can only be removed either by revoking the target user

or if the adversary adds another group member with the same vk and then requests to

revoke her. However, registering the same verification key in a later session of the join-

ing protocol would cause the new session to fail. The remaining winning condition of

A in the game of Figure 7.3 is captured by the the last line of Definition 7.8.

For anonymity, we follow the same strategy: the adversary B plays the game of

Definition 7.9 and obtains the public parameters pp and a public key pk. Then he

proceeds to simulate the key generation protocol for the group signature (Figure 7.6):

he lets A generate the group manager public key and sets pk as the opening public

key of the opening authority. Note that the key generation protocol in Figure 7.23

consists of each authority independently producing and announcing their own keys.

This implies that pk is sufficient for B to simulate the protocol. Finally, B needs to

simulate A’s oracle calls. For the challenge and opening oracles, this is done by using

his own oracles, whereas for SndToU,ReadReg it can simply answer directly. We note

that B will correctly guess the challenge if and only if A’s guess is also correct.

For traceability, B starts by receiving pp and internally running both sides of the

key generation protocol. He then starts the group signature traceability game of Fig-

ure 7.10 and calls A. As B plays the role of the group manager in A’s game, he can

directly reply to her oracle queries. To complete the proof, we examine when A wins

her game: it must be the case that user i is inactive or that the Judge algorithm fails.

In the accountable ring signature definition the first case folds into the second: i being

inactive implies vki /∈ R which will explicitly cause the judging algorithm to fail. In

either case, A succeeding in the game of Figure 7.10 implies B succeeding according

to Definition 7.10.

For non-frameability, let B play in the full unforgeability game of Definition 7.11.

The adversary B receives pp and initialises A in the game of Figure 7.14, which gen-

erates the group public key gpk. B uses his oracles UKGen and Sign to respond to the

queries of the SndToHU and SignHU, respectively. Adversary B forwards A’s output

together with the opener public key and the honest user verification key. A wining

output by A in her game will cause B to win via the first branch on his own game:

note that B does not make use of his RevealU oracle and thatA does not output a user

identity since she only includes a single honest user in the group.

228 Chapter 7. Foundations of Fully Dynamic Group Signatures

Reduction to opening binding is near-trivial from tracing soundness: B simply

passes the setup parameters and converts the output ofA into a ring. We complete the

proof by pointing out that under the accountable ring signatures definitions ARSJudge

implies correct verification.

Instantiating the Register. The joining protocol specified in Figure 7.23 assumes the

existence of an ideal register which could be instantiated in different ways. We do

point out however, that for the traceability proof to go through, it is necessary that the

manager does not accept keys that have already been registered. At the same time, to

avoid the opening authority to misattribute signatures, it is important for the registry

to be robust enough, such that attempts to modify or copy its entries will fail. The

former is captured by our idealization of the registry, which we recall can be realised

with a PKI. The latter is accomplished by considering valid only the first occurrence of

a key in the registry, and ignoring all later occurrences as the group manager should

have rejected the corresponding joining sessions.

7.5 On the Security of Constructions Based on Revocation Lists

A common approach for designing efficient fully dynamic group signatures is by us-

ing revocation lists. Users interacts with the manager to obtain a certificate for their

group membership. The group information, periodically updated by the manager,

consists of a revocation list which stores information about the revoked users. To sign,

users have to show they hold a valid certificate and that they are not part of the set

of revoked users. Examples of efficient schemes following this approach include the

ones of Libert et al. [LPY12b; LPY12a] and Nakanishi et al. [NFH+10].

In these constructions, a user is considered authorised to sign unless the manager

explicitly includes her in the revocation list. However, this means that a user can also

sign with respect to old epochs, including those predating her joining to the group.

As the user was not yet part of the group at that time, it raises the question to whether

this represents an issue for the security of the scheme.

At first glance, this is the dual of a well known issue with many revocation systems.

If a user is revoked and anonymity is maintained, the revoked user is able to produce

7.5. On the Security of Constructions Based on Revocation Lists 229

back-dated signatures that still verify. The difference here is that while the revoked

user was authorised to be part of the group for the epoch in question, in the situation

described above, however, the signing user was in fact not part of the group at that

time. If the adversary is able to obstruct or delay the opening of this signature (e.g. via

legal action), its existence would implicitly frame the group’s past membership as the

signature would be attributed to them.

The issue resides mainly on the interpretation one gives to the epochs in the lifes-

pan of the scheme. Namely, whether epochs reference the state of the group at the

time the corresponding group information was created. Our model does not opt for

a specific choice, as different design paradigms may have different takes on this. To

capture different options, our model includes the IsActive algorithm for spelling out

the conditions that makes a user active. This helps to clear potential ambiguities a

construction may have regarding the timespan users are meant to be authorised sign.

Moreover, it also enables to compare the security achieved by different schemes based

on how strong their underlying IsActive policy is.

The IsActive policy has to satisfy some necessary requirements, imposed by our

model, which ensure the definitions capture the intended security notions. One of

these requirements is the following: if user i is associated with a joining session where

the group manager ended her part successfully before infoτ was created, and user i is

not revoked at or before epoch τ , the algorithm returns 1. However, the policy does

not impose a specific outcome in case the joining session terminates after the infoτ was

created, which could then be set equal to either 0 or 1. For example, we can include

the following condition into the policy

• If i is associated with a joining session where the group manager ended her part

after infoτ was created, and user i is not revoked at or before epoch τ , the algo-

rithm returns 0.

Observe that this requirement is achieved by the policy of the construction in Figure

7.23. On the other hand, this policy may be too strict for constructions following the

revocation list approach, as members can typically sign with respect to epochs pre-

dating their enrolment into the group. The violation of the above condition translates

into a trivial attack against traceability: an adversary can simply enrol a user and then

230 Chapter 7. Foundations of Fully Dynamic Group Signatures

return a signature produced by the same user with respect to an epoch predating her

joining epoch. If the signature is valid, this represents a breach of traceability because

the user is not regarded as active with respect to that epoch. We notice that in case

such a policy is adopted, construction such as [LPY12b; LPY12a; NFH+10] are all sus-

ceptible to this attack. For such constructions we can then replace the above with the

following condition, which was implicitly assumed in their respective models

• If i is associated with a joining session where the group manager ended her part

successfully after infoτ was created, and user i is not revoked at or before epoch τ ,

the algorithm returns 1.

Note that the IsActive algorithm receives as input the internal state of the group

manager, thus the outcome of the policy can depend on whether the joining session

for user i has currently terminated. This enables to capture the immediate activation

of certificate based constructions, i.e users become active as soon as they successfully

terminate the join protocol, without requiring further action from the group manager.

Given the above trivial attack, it seems that constructions based on revocation lists

can only achieve a slightly weaker notion of traceability than the construction pre-

sented in the previous section. Whether the difference on the two notions is substan-

tial may depend on the intended applications of the primitive. In the case of [LPY12b;

LPY12a; NFH+10], these constructions can be easily adjusted to support stronger poli-

cies. At an high level, these schemes fix the maximal number of users of the system

in the setup of the primitive. Therefore, one could initialise all users that have not yet

joined the protocol as revoked. In this way, the revocation list is used to effectively

store the configuration of the group at each epoch. However, this modification may

affect the efficiency of these constructions, introducing dependencies on the maximal

number of users rather than the number of revoked members.

231

Chapter 8

Conclusions

In the first part of this work we addressed the question of whether it is possible to con-

struct zero-knowledge proofs and arguments with constant computational overhead

for the prover and gave a positive answer to it. In the process, we introduced an infor-

mation theoretic model, the ILC model, in which we assembled the core components

of our proofs. The level of abstraction encompassed by the model contributed to iso-

late the key features of the arguments presented by Groth in [Gro09], decoupling them

from the underlying commitment scheme used in their construction. This was a piv-

otal process towards the achievement of our efficiency improvements since it opened

up the possibility to instantiate our construction with different primitives and to relax

the requirements imposed on these.

Our zero-knowledge proofs and arguments for the satisfiability of arithmetic cir-

cuits are highly efficient. They achieve constant computational overhead for the prover,

optimal verification time (up to a constant factor), sublinear communication and small

round complexity. Our zero-knowledge proofs and arguments for the correct execu-

tion of TinyRAM programs do not reach our designated goal of constant computa-

tional overhead for the prover. Nonetheless, they achieve good performances and

they improve upon the efficiency of existing arguments, which brings us one step

closer towards the result. In our arguments the overhead incurred by the prover is an

arbitrarily small superconstant function with respect to the time it takes to execute the

program directly, while both the verification and communication costs are sublinear.

These contributions leave space for improvements and indicate future research di-

rections. Firstly, our proofs achieve the desired efficiency only for arithmetic circuits

232 Chapter 8. Conclusions

over large enough fields. An interesting question is whether our results can be gener-

alised for Boolean circuits or arithmetic circuits over a small field, without introducing

undesirable overheads in computation. As already mentioned above, another inter-

esting question is on the possibility to achieve constant overhead for zero-knowledge

proofs for the execution of programs. The challenge underpinning both these ques-

tions is related to the reduction of the field size, without affecting the soundness of the

proofs.

The other important challenge left open by this work is to achieve good concrete

efficiency. Our proofs are not optimised for this, and the constant inside the asymp-

totic complexity are not yet practical. The main bottleneck here is due to the choice

of the primitives we used to instantiate our constructions, which are optimal from an

asymptotic point of view. Since our approach is general and imposes minimal require-

ments on the primitives, other instantiations could offer different efficiency tradeoffs.

Another interesting question comes from the observation that various recent zero-

knowledge proofs seem to share similarities, despite they use different approaches,

e.g. from the MPC and IOP settings. It is an interesting question to see if these ap-

proaches can be combined within a unified model and to exploit the several improve-

ments stemming from the different directions.

In the second part of this work, we proposed a formal security model for fully dy-

namic group signatures. We think that our definitions provide a good level of abstrac-

tion of the primitive, and that this can be used to capture the security of constructions

which follow very different approaches from each other. Our model covers a wide

spectrum of security definitions and offers several relaxations to help capturing secu-

rity in different settings. Finally, our model offers stringent security properties which

require minimal trust in the designated authorities.

233

Bibliography

[AW04] M. Abdalla and B. Warinschi, “On the minimal assumptions of group

signature schemes”, in Information and Communications Security, 6th In-

ternational Conference, ICICS 2004, Malaga, Spain, October 27-29, 2004, Pro-

ceedings, 2004, pp. 1–13.

[AFG+16] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo, “Structure-

preserving signatures and commitments to group elements”, J. Cryptol-

ogy, vol. 29, no. 2, pp. 363–421, 2016.

[AH91] W. Aiello and J. Håstad, “Statistical zero-knowledge languages can be

recognized in two rounds”, J. Comput. Syst. Sci., vol. 42, no. 3, pp. 327–

345, 1991.

[Ale11] M. Alekhnovich, “More on average case vs approximation complexity”,

Computational Complexity, vol. 20, no. 4, pp. 755–786, 2011.

[AHI+17a] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero: Light-

weight sublinear arguments without a trusted setup”, in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Se-

curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017,

pp. 2087–2104.

[ABG+13] P. Ananth, R. Bhaskar, V. Goyal, and V. Rao, “On the (in)security of Fis-

chlin’s paradigm”, in Theory of Cryptography - 10th Theory of Cryptogra-

phy Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, 2013,

pp. 202–221.

[AHI+17b] B. Applebaum, N. Haramaty, Y. Ishai, E. Kushilevitz, and V. Vaikun-

tanathan, “Low-complexity cryptographic hash functions”, in 8th Inno-

vations in Theoretical Computer Science Conference, ITCS 2017, January 9-11,

2017, Berkeley, CA, USA, 2017, 7:1–7:31.

234 Bibliography

[AIK06] B. Applebaum, Y. Ishai, and E. Kushilevitz, “Cryptography in NC0”,

SIAM J. Comput., vol. 36, no. 4, pp. 845–888, 2006.

[AIK08] ——, “On pseudorandom generators with linear stretch in NC0”, Com-

putational Complexity, vol. 17, no. 1, pp. 38–69, 2008.

[AS92] S. Arora and S. Safra, “Probabilistic checking of proofs; A new charac-

terization of NP”, in 33rd Annual Symposium on Foundations of Computer

Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, 1992, pp. 2–13.

[ACH+05] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros, “Prac-

tical group signatures without random oracles”, IACR Cryptology ePrint

Archive, vol. 2005, p. 385, 2005.

[ACJ+00] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and prov-

ably secure coalition-resistant group signature scheme”, in Advances in

Cryptology - CRYPTO 2000, 20th Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 20-24, 2000, Proceedings, 2000,

pp. 255–270.

[Bab85] L. Babai, “Trading group theory for randomness”, in Proceedings of the

17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Prov-

idence, Rhode Island, USA, 1985, pp. 421–429.

[BHS18] M. Backes, L. Hanzlik, and J. Schneider, “Membership privacy for fully

dynamic group signatures”, IACR Cryptology ePrint Archive, vol. 2018,

p. 641, 2018.

[BP97] N. Bari and B. Pfitzmann, “Collision-free accumulators and fail-stop sig-

nature schemes without trees”, in Advances in Cryptology - EUROCRYPT

’97, International Conference on the Theory and Application of Cryptographic

Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, 1997, pp. 480–

494.

Bibliography 235

[BBC+18] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky,

“Sub-linear lattice-based zero-knowledge arguments for arithmetic cir-

cuits”, in Advances in Cryptology - CRYPTO 2018 - 38th Annual Interna-

tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,

Proceedings, Part II, 2018, pp. 669–699.

[Bay14] S. Bayer, “Practical zero-knowledge protocols based on the discrete log-

arithm assumption”, PhD thesis, University College London, 2014.

[BG92] M. Bellare and O. Goldreich, “On defining proofs of knowledge”, in Ad-

vances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings,

1992, pp. 390–420.

[BJY97] M. Bellare, M. Jakobsson, and M. Yung, “Round-optimal zero-knowledge

arguments based on any one-way function”, in Advances in Cryptology -

EUROCRYPT ’97, International Conference on the Theory and Application of

Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding,

1997, pp. 280–305.

[BMW03] M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group sig-

natures: Formal definitions, simplified requirements, and a construction

based on general assumptions”, in Advances in Cryptology - EUROCRYPT

2003, International Conference on the Theory and Applications of Cryptographic

Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, 2003, pp. 614–629.

[BR93] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm

for designing efficient protocols”, in CCS ’93, Proceedings of the 1st ACM

Conference on Computer and Communications Security, Fairfax, Virginia, USA,

November 3-5, 1993., 1993, pp. 62–73.

[BSZ05] M. Bellare, H. Shi, and C. Zhang, “Foundations of group signatures:

The case of dynamic groups”, in Topics in Cryptology - CT-RSA 2005, The

Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA,

February 14-18, 2005, Proceedings, 2005, pp. 136–153.

236 Bibliography

[BGG+88] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali,

and P. Rogaway, “Everything provable is provable in zero-knowledge”,

in Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceed-

ings, 1988, pp. 37–56.

[BBH+18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-

ent, and post-quantum secure computational integrity”, IACR Cryptology

ePrint Archive, vol. 2018, p. 46, 2018.

[BCG+16a] E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner, “Short

interactive oracle proofs with constant query complexity, via composi-

tion and sumcheck”, Electronic Colloquium on Computational Complexity

(ECCC), vol. 23, p. 46, 2016.

[BCG+16b] E. Ben-Sasson, A. Chiesa, A. Gabizon, and M. Virza, “Quasi-linear size

zero knowledge from linear-algebraic PCPs”, in Theory of Cryptography -

13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13,

2016, Proceedings, Part II, 2016, pp. 33–64.

[BCG+13a] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs

for C: verifying program executions succinctly and in zero knowledge”,

in Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-

ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,

2013, pp. 90–108.

[BCG+13b] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, TinyRAM

architecture specification, v0.991, 2013. [Online]. Available: http://www.

scipr- lab.org/doc/TinyRAM- spec- 0.991.pdf (visited on

09/14/2018).

[BCR+18] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.

Ward, “Aurora: Transparent succinct arguments for R1CS”, IACR Cryp-

tology ePrint Archive, vol. 2018, p. 62, 2018. [Online]. Available: http:

//eprint.iacr.org/2018/828.

http://www.scipr-lab.org/doc/TinyRAM-spec-0.991.pdf
http://www.scipr-lab.org/doc/TinyRAM-spec-0.991.pdf
http://eprint.iacr.org/2018/828
http://eprint.iacr.org/2018/828

Bibliography 237

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle proofs”, in

Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,

China, October 31 - November 3, 2016, Proceedings, Part II, 2016, pp. 31–60.

[BCT+14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive

zero knowledge for a von Neumann architecture”, in Proceedings of the

23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,

2014., 2014, pp. 781–796.

[BCT+17] ——, “Scalable zero knowledge via cycles of elliptic curves”, Algorith-

mica, vol. 79, no. 4, pp. 1102–1160, 2017.

[BRS17] E. Ben-Sasson, N. Ron-Zewi, and M. Sudan, “Sparse affine-invariant lin-

ear codes are locally testable”, Computational Complexity, vol. 26, no. 1,

pp. 37–77, 2017. DOI: 10.1007/s00037-015-0115-6. [Online]. Avail-

able: https://doi.org/10.1007/s00037-015-0115-6.

[BdM93] J. C. Benaloh and M. de Mare, “One-way accumulators: A decentral-

ized alternative to digital sinatures (extended abstract)”, in Advances in

Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of

of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings,

1993, pp. 274–285.

[BKM09] A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger defini-

tions, and constructions without random oracles”, J. Cryptology, vol. 22,

no. 1, pp. 114–138, 2009.

[Ben65] V. E. Beneš, Mathematical theory of connecting networks and telephone traffic.

Academic press, 1965, vol. 17.

[BCN+10] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi, “Get

shorty via group signatures without encryption”, in Security and Cryp-

tography for Networks, 7th International Conference, SCN 2010, Amalfi, Italy,

September 13-15, 2010. Proceedings, 2010, pp. 381–398.

[BCC+12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable

collision resistance to succinct non-interactive arguments of knowledge,

https://doi.org/10.1007/s00037-015-0115-6
https://doi.org/10.1007/s00037-015-0115-6

238 Bibliography

and back again”, in Innovations in Theoretical Computer Science 2012, Cam-

bridge, MA, USA, January 8-10, 2012, 2012, pp. 326–349.

[BCC+13] ——, “Recursive composition and bootstrapping for SNARKs and proof-

carrying data”, in Symposium on Theory of Computing Conference, STOC’13,

Palo Alto, CA, USA, June 1-4, 2013, 2013, pp. 111–120.

[BCI+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, “Succinct

non-interactive arguments via linear interactive proofs”, in Theory of Cryp-

tography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,

March 3-6, 2013. Proceedings, 2013, pp. 315–333.

[BFM88] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge

and its applications (extended abstract)”, in Proceedings of the 20th Annual

ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,

USA, 1988, pp. 103–112.

[BBS04] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures”, in Ad-

vances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology-

Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,

2004, pp. 41–55.

[BEF19] D. Boneh, S. Eskandarian, and B. Fisch, “Post-quantum EPID group sig-

natures from symmetric primitives”, in Topics in Cryptology - CT-RSA

2019 - The Cryptographers’ Track at the RSA Conference 2019, San Francisco,

CA, USA, March 4-8, 2019, Proceedings, Springer, 2019.

[BS04] D. Boneh and H. Shacham, “Group signatures with verifier-local revoca-

tion”, in Proceedings of the 11th ACM Conference on Computer and Commu-

nications Security, CCS 2004, Washington, DC, USA, October 25-29, 2004,

2004, pp. 168–177.

[BCC+16a] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth, “Foundations

of fully dynamic group signatures”, in Applied Cryptography and Network

Security - 14th International Conference, ACNS 2016, Guildford, UK, June

19-22, 2016. Proceedings, 2016, pp. 117–136.

Bibliography 239

[BCC+15] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit, “Short

accountable ring signatures based on DDH”, in Computer Security - ES-

ORICS 2015 - 20th European Symposium on Research in Computer Security,

Vienna, Austria, September 21-25, 2015, Proceedings, Part I, 2015, pp. 243–

265.

[BCC+16b] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient zero-

knowledge arguments for arithmetic circuits in the discrete log setting”,

in Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Vi-

enna, Austria, May 8-12, 2016, Proceedings, Part II, 2016, pp. 327–357.

[BCG+17] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakob-

sen, “Linear-time zero-knowledge proofs for arithmetic circuit satisfia-

bility”, in Advances in Cryptology - ASIACRYPT 2017 - 23rd International

Conference on the Theory and Applications of Cryptology and Information Se-

curity, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, 2017,

pp. 336–365.

[BCG+18] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller, “Arya: Nearly

linear-time zero-knowledge proofs for correct program execution”, in

Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference

on the Theory and Applications of Cryptology and Information Security, 2018.

[BG18] J. Bootle and J. Groth, “Efficient batch zero-knowledge arguments for

low degree polynomials”, in Public-Key Cryptography - PKC 2018 - 21st

IACR International Conference on Practice and Theory of Public-Key Cryptog-

raphy, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II, 2018,

pp. 561–588.

[BCN18] C. Boschini, J. Camenisch, and G. Neven, “Floppy-sized group signa-

tures from lattices”, in Applied Cryptography and Network Security - 16th

International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Pro-

ceedings, 2018, pp. 163–182.

240 Bibliography

[BW06] X. Boyen and B. Waters, “Compact group signatures without random

oracles”, in Advances in Cryptology - EUROCRYPT 2006, 25th Annual In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, 2006,

pp. 427–444.

[BW07] ——, “Full-domain subgroup hiding and constant-size group signatures”,

in Public Key Cryptography - PKC 2007, 10th International Conference on

Practice and Theory in Public-Key Cryptography, Beijing, China, April 16-20,

2007, Proceedings, 2007, pp. 1–15.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau, “Minimum disclosure proofs of

knowledge”, J. Comput. Syst. Sci., vol. 37, no. 2, pp. 156–189, 1988.

[BCY91] G. Brassard, C. Crépeau, and M. Yung, “Constant-round perfect zero-

knowledge computationally convincing protocols”, Theor. Comput. Sci.,

vol. 84, no. 1, pp. 23–52, 1991.

[BFR+13] B. Braun, A. J. Feldman, Z. Ren, S. T. V. Setty, A. J. Blumberg, and M.

Walfish, “Verifying computations with state”, in ACM SIGOPS 24th Sym-

posium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,

November 3-6, 2013, 2013, pp. 341–357.

[BS01] E. Bresson and J. Stern, “Efficient revocation in group signatures”, in Pub-

lic Key Cryptography, 4th International Workshop on Practice and Theory in

Public Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15,

2001, Proceedings, 2001, pp. 190–206.

[Bri04] E. Brickell, “An efficient protocol for anonymously providing assurance

of the container of a private key”, Submitted to the Trusted Computing

Group, 2004.

[BCC04] E. F. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation”,

in Proceedings of the 11th ACM Conference on Computer and Communica-

tions Security, CCS 2004, Washington, DC, USA, October 25-29, 2004, 2004,

pp. 132–145.

Bibliography 241

[CG04] J. Camenisch and J. Groth, “Group signatures: Better efficiency and new

theoretical aspects”, in Security in Communication Networks, 4th Interna-

tional Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Se-

lected Papers, 2004, pp. 120–133.

[CL02] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-

cation to efficient revocation of anonymous credentials”, in Advances in

Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, 2002,

pp. 61–76.

[CL04] ——, “Signature schemes and anonymous credentials from bilinear maps”,

in Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-

tologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-

ceedings, 2004, pp. 56–72.

[CM98] J. Camenisch and M. Michels, “A group signature scheme with improved

efficiency”, in Advances in Cryptology - ASIACRYPT ’98, International Con-

ference on the Theory and Applications of Cryptology and Information Security,

Beijing, China, October 18-22, 1998, Proceedings, 1998, pp. 160–174.

[CNR12] J. Camenisch, G. Neven, and M. Rückert, “Fully anonymous attribute to-

kens from lattices”, in Security and Cryptography for Networks - 8th Interna-

tional Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings,

2012, pp. 57–75.

[CDH+00] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai, “Exposure-

resilient functions and all-or-nothing transforms”, in Advances in Cryptol-

ogy - EUROCRYPT 2000, International Conference on the Theory and Appli-

cation of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Pro-

ceeding, 2000, pp. 453–469.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodol-

ogy, revisited”, J. ACM, vol. 51, no. 4, pp. 557–594, 2004.

[CRV+02] M. R. Capalbo, O. Reingold, S. P. Vadhan, and A. Wigderson, “Random-

ness conductors and constant-degree lossless expanders”, in Proceedings

242 Bibliography

of the 17th Annual IEEE Conference on Computational Complexity, Montréal,

Québec, Canada, May 21-24, 2002, 2002, p. 15.

[CW77] L. Carter and M. N. Wegman, “Universal classes of hash functions (ex-

tended abstract)”, in Proceedings of the 9th Annual ACM Symposium on

Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, 1977, pp. 106–

112.

[CDD+16] I. Cascudo, I. Damgård, B. David, N. Döttling, and J. B. Nielsen, “Rate-1,

linear time and additively homomorphic UC commitments”, in Advances

in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Con-

ference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III,

2016, pp. 179–207.

[CDG+17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-

berger, D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge

and signatures from symmetric-key primitives”, in Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 1825–

1842.

[CGM16] M. Chase, C. Ganesh, and P. Mohassel, “Efficient zero-knowledge proof

of algebraic and non-algebraic statements with applications to privacy

preserving credentials”, in Advances in Cryptology - CRYPTO 2016 - 36th

Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-

gust 14-18, 2016, Proceedings, Part III, 2016, pp. 499–530.

[CvH91] D. Chaum and E. van Heyst, “Group signatures”, in Advances in Cryp-

tology - EUROCRYPT ’91, Workshop on the Theory and Application of of

Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings, 1991,

pp. 257–265.

[CCG+07] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan,

“Secure computation from random error correcting codes”, in Advances

in Cryptology - EUROCRYPT 2007, 26th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Barcelona, Spain,

May 20-24, 2007, Proceedings, 2007, pp. 291–310.

Bibliography 243

[CTV15] A. Chiesa, E. Tromer, and M. Virza, “Cluster computing in zero knowl-

edge”, in Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, 2015, pp. 371–

403.

[CPS+16] M. Ciampi, G. Persiano, L. Siniscalchi, and I. Visconti, “A transform for

NIZK almost as efficient and general as the Fiat-Shamir transform with-

out programmable random oracles”, in Theory of Cryptography - 13th In-

ternational Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,

Proceedings, Part II, 2016, pp. 83–111.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-

putation with streaming interactive proofs”, in Innovations in Theoreti-

cal Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, 2012,

pp. 90–112.

[CD98] R. Cramer and I. Damgård, “Zero-knowledge proofs for finite field arith-

metic; or: Can zero-knowledge be for free?”, in Advances in Cryptology -

CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 23-27, 1998, Proceedings, 1998, pp. 424–441.

[CDD+15] R. Cramer, I. B. Damgård, N. Döttling, S. Fehr, and G. Spini, “Linear

secret sharing schemes from error correcting codes and universal hash

functions”, in Advances in Cryptology - EUROCRYPT 2015 - 34th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, 2015, pp. 313–

336.

[CDP12] R. Cramer, I. Damgård, and V. Pastro, “On the amortized complexity

of zero knowledge protocols for multiplicative relations”, in Information

Theoretic Security - 6th International Conference, ICITS 2012, Montreal, QC,

Canada, August 15-17, 2012. Proceedings, 2012, pp. 62–79.

[CDS94] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-

edge and simplified design of witness hiding protocols”, in Advances

244 Bibliography

in Cryptology - CRYPTO ’94, 14th Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 21-25, 1994, Proceedings, 1994,

pp. 174–187.

[Dam00] I. Damgård, “Efficient concurrent zero-knowledge in the auxiliary string

model”, in Advances in Cryptology - EUROCRYPT 2000, International Con-

ference on the Theory and Application of Cryptographic Techniques, Bruges,

Belgium, May 14-18, 2000, Proceeding, 2000, pp. 418–430.

[DF02] I. Damgård and E. Fujisaki, “A statistically-hiding integer commitment

scheme based on groups with hidden order”, in Advances in Cryptology

- ASIACRYPT 2002, 8th International Conference on the Theory and Applica-

tion of Cryptology and Information Security, Queenstown, New Zealand, De-

cember 1-5, 2002, Proceedings, 2002, pp. 125–142.

[DI06] I. Damgård and Y. Ishai, “Scalable secure multiparty computation”, in

Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceed-

ings, 2006, pp. 501–520.

[DIK10] I. Damgård, Y. Ishai, and M. Krøigaard, “Perfectly secure multiparty

computation and the computational overhead of cryptography”, in Ad-

vances in Cryptology - EUROCRYPT 2010, 29th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Monaco /

French Riviera, May 30 - June 3, 2010. Proceedings, 2010, pp. 445–465.

[DLO+18] I. Damgård, J. Luo, S. Oechsner, P. Scholl, and M. Simkin, “Compact zero-

knowledge proofs of small hamming weight”, in Public-Key Cryptography

- PKC 2018 - 21st IACR International Conference on Practice and Theory of

Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceed-

ings, Part II, 2018, pp. 530–560.

[DZ13] I. Damgård and S. Zakarias, “Constant-overhead secure computation of

boolean circuits using preprocessing”, in Theory of Cryptography - 10th

Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013.

Proceedings, 2013, pp. 621–641.

Bibliography 245

[DP06] C. Delerablée and D. Pointcheval, “Dynamic fully anonymous short group

signatures”, in Progressin Cryptology - VIETCRYPT 2006, First Interna-

tional Conferenceon Cryptology in Vietnam, Hanoi, Vietnam, September 25-28,

2006, Revised Selected Papers, 2006, pp. 193–210.

[DS18] D. Derler and D. Slamanig, “Highly-efficient fully-anonymous dynamic

group signatures”, in Proceedings of the 2018 on Asia Conference on Com-

puter and Communications Security, AsiaCCS 2018, Incheon, Republic of Ko-

rea, June 04-08, 2018, 2018, pp. 551–565.

[DKN+04] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, “Anonymous identifica-

tion in ad hoc groups”, in Advances in Cryptology - EUROCRYPT 2004, In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, 2004, pp. 609–

626.

[DI14] E. Druk and Y. Ishai, “Linear-time encodable codes meeting the Gilbert-

Varshamov bound and their cryptographic applications”, in Innovations

in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14,

2014, 2014, pp. 169–182.

[EKS18] A. El Kaafarani, S. Katsumata, and R. Solomon, “Anonymous reputation

systems achieving full dynamicity from lattices”, in Financial Cryptogra-

phy and Data Security - 22st International Conference, FC 2018, Mar. 2018.

[FFS88] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity”, J.

Cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[FS89] U. Feige and A. Shamir, “Zero knowledge proofs of knowledge in two

rounds”, in Advances in Cryptology - CRYPTO ’89, 9th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,

Proceedings, 1989, pp. 526–544.

[FS86] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to

identification and signature problems”, in Advances in Cryptology - CRYPTO

’86, Santa Barbara, California, USA, 1986, Proceedings, 1986, pp. 186–194.

246 Bibliography

[Fis05] M. Fischlin, “Communication-efficient non-interactive proofs of knowl-

edge with online extractors”, in Advances in Cryptology - CRYPTO 2005:

25th Annual International Cryptology Conference, Santa Barbara, California,

USA, August 14-18, 2005, Proceedings, 2005, pp. 152–168.

[For89] L. Fortnow, “The complexity of perfect zero-knowledge”, Advances in

Computing Research, vol. 5, pp. 327–343, 1989.

[FNO15] T. K. Frederiksen, J. B. Nielsen, and C. Orlandi, “Privacy-free garbled cir-

cuits with applications to efficient zero-knowledge”, in Advances in Cryp-

tology - EUROCRYPT 2015 - 34th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April

26-30, 2015, Proceedings, Part II, 2015, pp. 191–219.

[FI06] J. Furukawa and H. Imai, “An efficient group signature scheme from

bilinear maps”, IEICE Transactions, vol. 89-A, no. 5, pp. 1328–1338, 2006.

[FY04] J. Furukawa and S. Yonezawa, “Group signatures with separate and dis-

tributed authorities”, in Security in Communication Networks, 4th Interna-

tional Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Se-

lected Papers, 2004, pp. 77–90.

[GGP10] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-

puting: Outsourcing computation to untrusted workers”, in Advances in

Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Bar-

bara, CA, USA, August 15-19, 2010. Proceedings, 2010, pp. 465–482.

[GGP+13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span pro-

grams and succinct NIZKs without PCPs”, in Advances in Cryptology -

EUROCRYPT 2013, 32nd Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.

Proceedings, 2013, pp. 626–645.

[Gen09] C. Gentry, “A fully homomorphic encryption scheme”, PhD thesis, Stan-

ford University, 2009.

Bibliography 247

[GGI+15] C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. D. Smith, “Using

fully homomorphic hybrid encryption to minimize non-interative zero-

knowledge proofs”, J. Cryptology, vol. 28, no. 4, pp. 820–843, 2015.

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster zero-knowledge

for boolean circuits”, in 25th USENIX Security Symposium, USENIX Secu-

rity 16, Austin, TX, USA, August 10-12, 2016., 2016, pp. 1069–1083.

[GH98] O. Goldreich and J. Håstad, “On the complexity of interactive proofs

with bounded communication”, Inf. Process. Lett., vol. 67, no. 4, pp. 205–

214, 1998.

[GK96a] O. Goldreich and A. Kahan, “How to construct constant-round zero-

knowledge proof systems for NP”, J. Cryptology, vol. 9, no. 3, pp. 167–

190, 1996.

[GK96b] O. Goldreich and H. Krawczyk, “On the composition of zero-knowledge

proof systems”, SIAM J. Comput., vol. 25, no. 1, pp. 169–192, 1996.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing

but their validity or all languages in NP have zero-knowledge proof sys-

tems”, J. ACM, vol. 38, no. 3, pp. 691–729, 1991.

[GSV98] O. Goldreich, A. Sahai, and S. P. Vadhan, “Honest-verifier statistical zero-

knowledge equals general statistical zero-knowledge”, in Proceedings of

the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,

Texas, USA, May 23-26, 1998, 1998, pp. 399–408.

[GVW02] O. Goldreich, S. P. Vadhan, and A. Wigderson, “On interactive proofs

with a laconic prover”, Computational Complexity, vol. 11, no. 1-2, pp. 1–

53, 2002.

[GK03] S. Goldwasser and Y. T. Kalai, “On the (in)security of the Fiat-Shamir

paradigm”, in 44th Symposium on Foundations of Computer Science (FOCS

2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, 2003, pp. 102–

113.

248 Bibliography

[GKR15] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computa-

tion: Interactive proofs for muggles”, J. ACM, vol. 62, no. 4, 27:1–27:64,

2015.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of

interactive proof systems”, SIAM J. Comput., vol. 18, no. 1, pp. 186–208,

1989.

[GS89] S. Goldwasser and M. Sipser, “Private coins versus public coins in inter-

active proof systems”, Advances in Computing Research, vol. 5, pp. 73–90,

1989.

[GKV10] S. D. Gordon, J. Katz, and V. Vaikuntanathan, “A group signature scheme

from lattice assumptions”, in Advances in Cryptology - ASIACRYPT 2010

- 16th International Conference on the Theory and Application of Cryptology

and Information Security, Singapore, December 5-9, 2010. Proceedings, 2010,

pp. 395–412.

[Gro04] J. Groth, “Honest verifier zero-knowledge arguments applied”, PhD the-

sis, University of Aarhus, 2004.

[Gro06] ——, “Simulation-sound NIZK proofs for a practical language and con-

stant size group signatures”, in Advances in Cryptology - ASIACRYPT

2006, 12th International Conference on the Theory and Application of Cryp-

tology and Information Security, Shanghai, China, December 3-7, 2006, Pro-

ceedings, 2006, pp. 444–459.

[Gro07] ——, “Fully anonymous group signatures without random oracles”, in

Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on

the Theory and Application of Cryptology and Information Security, Kuching,

Malaysia, December 2-6, 2007, Proceedings, 2007, pp. 164–180.

[Gro09] ——, “Linear algebra with sub-linear zero-knowledge arguments”, in

Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptol-

ogy Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings,

2009, pp. 192–208.

Bibliography 249

[Gro10] ——, “Short pairing-based non-interactive zero-knowledge arguments”,

in Advances in Cryptology - ASIACRYPT 2010 - 16th International Confer-

ence on the Theory and Application of Cryptology and Information Security,

Singapore, December 5-9, 2010. Proceedings, 2010, pp. 321–340.

[Gro16] ——, “On the size of pairing-based non-interactive arguments”, in Ad-

vances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Vienna,

Austria, May 8-12, 2016, Proceedings, Part II, 2016, pp. 305–326.

[GKM+18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers, “Updat-

able and universal common reference strings with applications to zk-

SNARKs”, in Advances in Cryptology - CRYPTO 2018 - 38th Annual In-

ternational Cryptology Conference, Santa Barbara, CA, USA, August 19-23,

2018, Proceedings, Part III, 2018, pp. 698–728.

[GM17] J. Groth and M. Maller, “Snarky signatures: Minimal signatures of knowl-

edge from simulation-extractable SNARKs”, in Advances in Cryptology -

CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Bar-

bara, CA, USA, August 20-24, 2017, Proceedings, Part II, 2017, pp. 581–612.

[GOS12] J. Groth, R. Ostrovsky, and A. Sahai, “New techniques for non-interactive

zero-knowledge”, J. ACM, vol. 59, no. 3, 11:1–11:35, 2012.

[GI01] V. Guruswami and P. Indyk, “Expander-based constructions of efficiently

decodable codes”, in 42nd Annual Symposium on Foundations of Computer

Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, 2001,

pp. 658–667.

[GI02] ——, “Near-optimal linear-time codes for unique decoding and new list-

decodable codes over smaller alphabets”, in Proceedings on 34th Annual

ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,

Canada, 2002, pp. 812–821.

[GI03] ——, “Linear time encodable and list decodable codes”, in Proceedings of

the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003,

San Diego, CA, USA, 2003, pp. 126–135.

250 Bibliography

[GI05] ——, “Linear-time encodable/decodable codes with near-optimal rate”,

IEEE Trans. Information Theory, vol. 51, no. 10, pp. 3393–3400, 2005.

[HM96] S. Halevi and S. Micali, “Practical and provably-secure commitment schemes

from collision-free hashing”, in Advances in Cryptology - CRYPTO ’96,

16th Annual International Cryptology Conference, Santa Barbara, California,

USA, August 18-22, 1996, Proceedings, 1996, pp. 201–215.

[HMR15] Z. Hu, P. Mohassel, and M. Rosulek, “Efficient zero-knowledge proofs

of non-algebraic statements with sublinear amortized cost”, in Advances

in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa

Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, 2015, pp. 150–

169.

[IY87] R. Impagliazzo and M. Yung, “Direct minimum-knowledge computa-

tions”, in Advances in Cryptology - CRYPTO ’87, A Conference on the The-

ory and Applications of Cryptographic Techniques, Santa Barbara, California,

USA, August 16-20, 1987, Proceedings, 1987, pp. 40–51.

[IKO07] Y. Ishai, E. Kushilevitz, and R. Ostrovsky, “Efficient arguments without

short PCPs”, in 22nd Annual IEEE Conference on Computational Complexity

(CCC 2007), 13-16 June 2007, San Diego, California, USA, 2007, pp. 278–

291.

[IKO+08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Cryptography with

constant computational overhead”, in Proceedings of the 40th Annual ACM

Symposium on Theory of Computing, Victoria, British Columbia, Canada, May

17-20, 2008, 2008, pp. 433–442.

[IKO+09] ——, “Zero-knowledge proofs from secure multiparty computation”, SIAM

J. Comput., vol. 39, no. 3, pp. 1121–1152, 2009.

[ISV+13] Y. Ishai, A. Sahai, M. Viderman, and M. Weiss, “Zero knowledge LTCs

and their applications”, in Approximation, Randomization, and Combinato-

rial Optimization. Algorithms and Techniques - 16th International Workshop,

APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley,

CA, USA, August 21-23, 2013. Proceedings, 2013, pp. 607–622.

Bibliography 251

[JKO13] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using

garbled circuits: How to prove non-algebraic statements efficiently”, in

2013 ACM SIGSAC Conference on Computer and Communications Security,

CCS’13, Berlin, Germany, November 4-8, 2013, 2013, pp. 955–966.

[KR08] Y. T. Kalai and R. Raz, “Interactive PCP”, in Automata, Languages and Pro-

gramming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,

July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory

of Programming & Track C: Security and Cryptography Foundations, 2008,

pp. 536–547.

[Kat12] J. Katz, “Which languages have 4-round zero-knowledge proofs?”, J. Cryp-

tology, vol. 25, no. 1, pp. 41–56, 2012.

[KTY04] A. Kiayias, Y. Tsiounis, and M. Yung, “Traceable signatures”, in Advances

in Cryptology - EUROCRYPT 2004, International Conference on the Theory

and Applications of Cryptographic Techniques, Interlaken, Switzerland, May

2-6, 2004, Proceedings, 2004, pp. 571–589.

[KY05] A. Kiayias and M. Yung, “Group signatures with efficient concurrent

join”, in Advances in Cryptology - EUROCRYPT 2005, 24th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Aarhus, Denmark, May 22-26, 2005, Proceedings, 2005, pp. 198–214.

[KY06] ——, “Secure scalable group signature with dynamic joins and separable

authorities”, IJSN, vol. 1, no. 1/2, pp. 24–45, 2006.

[Kil92] J. Kilian, “A note on efficient zero-knowledge proofs and arguments (ex-

tended abstract)”, in Proceedings of the 24th Annual ACM Symposium on

Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada,

1992, pp. 723–732.

[KP17] S. Kumawat and S. Paul, “A new constant-size accountable ring signa-

ture scheme without random oracles”, in Information Security and Cryp-

tology - 13th International Conference, Inscrypt 2017, Xi’an, China, November

3-5, 2017, Revised Selected Papers, 2017, pp. 157–179.

252 Bibliography

[LLL+13] F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé, “Lattice-based group

signatures with logarithmic signature size”, in Advances in Cryptology -

ASIACRYPT 2013 - 19th International Conference on the Theory and Applica-

tion of Cryptology and Information Security, Bengaluru, India, December 1-5,

2013, Proceedings, Part II, 2013, pp. 41–61.

[LZC+16] R. W. F. Lai, T. Zhang, S. S. M. Chow, and D. Schröder, “Efficient san-

itizable signatures without random oracles”, in Computer Security - ES-

ORICS 2016 - 21st European Symposium on Research in Computer Security,

Heraklion, Greece, September 26-30, 2016, Proceedings, Part I, 2016, pp. 363–

380.

[LLM+16] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang, “Signature

schemes with efficient protocols and dynamic group signatures from lat-

tice assumptions”, in Advances in Cryptology - ASIACRYPT 2016 - 22nd

International Conference on the Theory and Application of Cryptology and In-

formation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II,

2016, pp. 373–403.

[LLN+16] B. Libert, S. Ling, K. Nguyen, and H. Wang, “Zero-knowledge argu-

ments for lattice-based accumulators: Logarithmic-size ring signatures

and group signatures without trapdoors”, in Advances in Cryptology - EU-

ROCRYPT 2016 - 35th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,

Proceedings, Part II, 2016, pp. 1–31.

[LMN16] B. Libert, F. Mouhartem, and K. Nguyen, “A lattice-based group signa-

ture scheme with message-dependent opening”, in Applied Cryptography

and Network Security - 14th International Conference, ACNS 2016, Guildford,

UK, June 19-22, 2016. Proceedings, 2016, pp. 137–155.

[LPY12a] B. Libert, T. Peters, and M. Yung, “Group signatures with almost-for-

free revocation”, in Advances in Cryptology - CRYPTO 2012 - 32nd Annual

Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-

ceedings, 2012, pp. 571–589.

Bibliography 253

[LPY12b] ——, “Scalable group signatures with revocation”, in Advances in Cryp-

tology - EUROCRYPT 2012 - 31st Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cambridge, UK, April

15-19, 2012. Proceedings, 2012, pp. 609–627.

[LV09] B. Libert and D. Vergnaud, “Group signatures with verifier-local revoca-

tion and backward unlinkability in the standard model”, in Cryptology

and Network Security, 8th International Conference, CANS 2009, Kanazawa,

Japan, December 12-14, 2009. Proceedings, 2009, pp. 498–517.

[Lin03] Y. Lindell, “Parallel coin-tossing and constant-round secure two-party

computation”, J. Cryptology, vol. 16, no. 3, pp. 143–184, 2003.

[Lin15] ——, “An efficient transform from sigma protocols to NIZK with a CRS

and non-programmable random oracle”, in Theory of Cryptography - 12th

Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,

2015, Proceedings, Part I, 2015, pp. 93–109.

[LNR+18] S. Ling, K. Nguyen, A. Roux-Langlois, and H. Wang, “A lattice-based

group signature scheme with verifier-local revocation”, Theor. Comput.

Sci., vol. 730, pp. 1–20, 2018.

[LNW15] S. Ling, K. Nguyen, and H. Wang, “Group signatures from lattices: Sim-

pler, tighter, shorter, ring-based”, in Public-Key Cryptography - PKC 2015

- 18th IACR International Conference on Practice and Theory in Public-Key

Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceed-

ings, 2015, pp. 427–449.

[LNW+18] S. Ling, K. Nguyen, H. Wang, and Y. Xu, “Lattice-based group signatures:

Achieving full dynamicity (and deniability) with ease”, CoRR, vol. abs/1801.08737,

2018.

[Mas95] J. L. Massey, “Some applications of coding theory in cryptography”, in

Codes and Ciphers: Cryptography and Coding IV, 1995, pp. 33–47.

[Mic94] S. Micali, “CS proofs (extended abstracts)”, in 35th Annual Symposium on

Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 Novem-

ber 1994, 1994, pp. 436–453.

254 Bibliography

[MP03] D. Micciancio and E. Petrank, “Simulatable commitments and efficient

concurrent zero-knowledge”, in Advances in Cryptology - EUROCRYPT

2003, International Conference on the Theory and Applications of Cryptographic

Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, 2003, pp. 140–159.

[MRS17] P. Mohassel, M. Rosulek, and A. Scafuro, “Sublinear zero-knowledge ar-

guments for RAM programs”, IACR Cryptology ePrint Archive, vol. 2017,

p. 129, 2017.

[NFH+10] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki, “Revocable group signa-

ture schemes with constant costs for signing and verifying”, IEICE Trans-

actions, vol. 93-A, no. 1, pp. 50–62, 2010.

[NF07] T. Nakanishi and N. Funabiki, “Verifier-local revocation group signature

schemes with backward unlinkability from bilinear maps”, IEICE Trans-

actions, vol. 90-A, no. 1, pp. 65–74, 2007.

[NNL01] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes

for stateless receivers”, in Advances in Cryptology - CRYPTO 2001, 21st

Annual International Cryptology Conference, Santa Barbara, California, USA,

August 19-23, 2001, Proceedings, 2001, pp. 41–62.

[Nao03] M. Naor, “On cryptographic assumptions and challenges”, in Advances

in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, 2003,

pp. 96–109.

[NOV+92] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, “Perfect zero-knowledge

arguments for NP can be based on general complexity assumptions (ex-

tended abstract)”, in Advances in Cryptology - CRYPTO ’92, 12th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

16-20, 1992, Proceedings, 1992, pp. 196–214.

[Nef01] C. A. Neff, “A verifiable secret shuffle and its application to e-voting”,

in CCS 2001, Proceedings of the 8th ACM Conference on Computer and Com-

munications Security, Philadelphia, Pennsylvania, USA, November 6-8, 2001.,

2001, pp. 116–125.

Bibliography 255

[Ngu05] L. Nguyen, “Accumulators from bilinear pairings and applications”, in

Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA

Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings,

2005, pp. 275–292.

[NS04] L. Nguyen and R. Safavi-Naini, “Efficient and provably secure trapdoor-

free group signature schemes from bilinear pairings”, in Advances in Cryp-

tology - ASIACRYPT 2004, 10th International Conference on the Theory and

Application of Cryptology and Information Security, Jeju Island, Korea, Decem-

ber 5-9, 2004, Proceedings, 2004, pp. 372–386.

[NOV06] M. Nguyen, S. J. Ong, and S. P. Vadhan, “Statistical zero-knowledge ar-

guments for NP from any one-way function”, Electronic Colloquium on

Computational Complexity (ECCC), vol. 13, no. 075, 2006.

[NZZ15] P. Q. Nguyen, J. Zhang, and Z. Zhang, “Simpler efficient group signa-

tures from lattices”, in Public-Key Cryptography - PKC 2015 - 18th IACR

International Conference on Practice and Theory in Public-Key Cryptography,

Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, 2015, pp. 401–

426.

[PHG+16] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly prac-

tical verifiable computation”, Commun. ACM, vol. 59, no. 2, pp. 103–112,

2016.

[Ped91] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-

able secret sharing”, in Advances in Cryptology - CRYPTO ’91, 11th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

11-15, 1991, Proceedings, 1991, pp. 129–140.

[RST01] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret”, in Ad-

vances in Cryptology - ASIACRYPT 2001, 7th International Conference on the

Theory and Application of Cryptology and Information Security, Gold Coast,

Australia, December 9-13, 2001, Proceedings, 2001, pp. 552–565.

[SV00] A. Sahai and S. P. Vadhan, “A complete problem for statistical zero knowl-

edge”, Electronic Colloquium on Computational Complexity (ECCC), vol. 7,

no. 84, 2000.

256 Bibliography

[SSE+12] Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta, “On the

security of dynamic group signatures: Preventing signature hijacking”,

in Public Key Cryptography - PKC 2012 - 15th International Conference on

Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May

21-23, 2012. Proceedings, 2012, pp. 715–732.

[Sch91] C. Schnorr, “Efficient signature generation by smart cards”, J. Cryptology,

vol. 4, no. 3, pp. 161–174, 1991.

[Sch80] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-

mial identities”, J. ACM, vol. 27, no. 4, pp. 701–717, 1980.

[Sha92] A. Shamir, “IP = PSPACE”, J. ACM, vol. 39, no. 4, pp. 869–877, 1992.

[Son01] D. X. Song, “Practical forward secure group signature schemes”, in CCS

2001, Proceedings of the 8th ACM Conference on Computer and Communica-

tions Security, Philadelphia, Pennsylvania, USA, November 6-8, 2001., 2001,

pp. 225–234.

[Spi96] D. A. Spielman, “Linear-time encodable and decodable error-correcting

codes”, IEEE Trans. Information Theory, vol. 42, no. 6, pp. 1723–1731, 1996.

[Tha13] J. Thaler, “Time-optimal interactive proofs for circuit evaluation”, in Ad-

vances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,

Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, 2013,

pp. 71–89.

[TW87] M. Tompa and H. Woll, “Random self-reducibility and zero knowledge

interactive proofs of possession of information”, in 28th Annual Sympo-

sium on Foundations of Computer Science, Los Angeles, California, USA, 27-

29 October 1987, 1987, pp. 472–482.

[TX03] G. Tsudik and S. Xu, “Accumulating composites and improved group

signing”, in Advances in Cryptology - ASIACRYPT 2003, 9th International

Conference on the Theory and Application of Cryptology and Information Se-

curity, Taipei, Taiwan, November 30 - December 4, 2003, Proceedings, 2003,

pp. 269–286.

Bibliography 257

[Unr12] D. Unruh, “Quantum proofs of knowledge”, in Advances in Cryptology -

EUROCRYPT 2012 - 31st Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.

Proceedings, 2012, pp. 135–152.

[VSB+13] V. Vu, S. T. V. Setty, A. J. Blumberg, and M. Walfish, “A hybrid architec-

ture for interactive verifiable computation”, in 2013 IEEE Symposium on

Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, 2013,

pp. 223–237.

[WHG+16] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish, “Verifiable

ASICs”, in IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,

USA, May 22-26, 2016, 2016, pp. 759–778.

[WJB+17] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat, J. Thaler, M. Walfish, and

T. Wies, “Full accounting for verifiable outsourcing”, in Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 2071–

2086.

[WSR+15] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish, “Ef-

ficient RAM and control flow in verifiable outsourced computation”, in

22nd Annual Network and Distributed System Security Symposium, NDSS

2015, San Diego, California, USA, February 8-11, 2015, 2015.

[WTS+18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-

efficient zkSNARKs without trusted setup”, in 2018 IEEE Symposium on

Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,

California, USA, 2018, pp. 926–943.

[XY04] S. Xu and M. Yung, “Accountable ring signatures: A smart card approach”,

in Smart Card Research and Advanced Applications VI, IFIP 18th World Com-

puter Congress, TC8/WG8.8 & TC11/WG11.2 Sixth International Conference

on Smart Card Research and Advanced Applications (CARDIS), 22-27 August

2004, Toulouse, France, 2004, pp. 271–286.

258 Bibliography

[ZGK+17] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,

“A zero-knowledge version of vSQL”, IACR Cryptology ePrint Archive,

vol. 2017, p. 1146, 2017.

[ZGK+18] ——, “vRAM: Faster verifiable RAM with program-independent prepro-

cessing”, in 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-

ceedings, 21-23 May 2018, San Francisco, California, USA, 2018, pp. 908–

925.

[Zip79] R. Zippel, “Probabilistic algorithms for sparse polynomials”, in Symbolic

and Algebraic Computation, EUROSAM ’79, An International Symposiumon

Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceed-

ings, 1979, pp. 216–226.

	Declaration of Authorship
	Abstract
	Impact Statement
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Efficient Zero-Knowledge Proofs
	Group Signatures
	Structure and Content

	Literature Review
	Zero-Knowledge Proofs and Arguments
	Interaction
	Communication
	Verifier Computation
	Prover Computation

	Group Signatures

	Preliminaries and Definitions
	Notation
	Models of Computations
	Arithmetic Circuits
	TinyRAM

	Proof of Knowledge and the ILC Channel
	Relations and Languages
	Communication Channels
	Proof of Knowledge
	Efficiency Measures

	Linear-Time Linear Error-Correcting Codes
	Commitment Schemes

	Proofs for the Satisfiability of Arithmetic Circuits in the ILC Model
	Relation for the Satisfiability of an Arithmetic Circuit
	ILC Proofs for Simple Relations
	ILC Proof for the Correct Opening of Committed Vectors
	ILC Proof for the Sum of Committed Matrices
	ILC proof for the Hadamard Product of Committed Matrices
	ILC Proof for a Known Permutation Relation

	ILC Proofs for the Satisfiability of an Arithmetic Circuit

	Proofs for the Execution of TinyRAM Programs in the ILC Model
	Overview
	Arithmetization of TinyRAM
	Formatting the Witness
	Arithmetized TinyRAM Relation
	Building-Block Relations
	Efficient Bit Decomposition for Range and Logical Relations

	Decomposition of TinyRAM Relation
	Checking the Correctness of Values
	Checking Memory Consistency
	Checking Correct Execution of Instructions
	Instruction Checker Relation

	ILC proofs for Building Blocks
	ILC proofs for Equality Relations
	ILC Proof for Unknown Permutation Relations
	ILC Proofs for Lookup Relations
	ILC Proof for Range Relations
	ILC Proof for Arithmetic Constraints

	ILC Proof for the Correct Execution of TinyRAM
	Commitments to the Tables
	Proof for the Correct TinyRAM Execution in the ILC Model

	Compiling ILC Proofs into Standard Proofs and Arguments
	Exposure-Resilient Encodings
	From the ILC Channel to the Standard Channel
	The Compiler
	Security Analysis

	Efficiency and Instantiations
	Efficiency of the Compilation
	Proofs and Arguments for the Satisfiability of Arithmetic Circuits
	Proofs and Arguments for the Correct Program Execution

	Foundations of Fully Dynamic Group Signatures
	Definitions for Fully Dynamic Group Signatures
	Syntax
	Security Definitions
	Correctness
	Anonymity
	Traceability
	Non-Frameability

	Additional Security Definitions
	Opening Binding
	Opening Soundness

	Partially Dynamic Group Signatures
	Restriction to Partially Dynamic Signatures
	Comparison to Bellare, Shi and Zhang BSZ05
	Comparison to Kiayias and Yung KY06

	Static Group Signatures
	Restriction to Static Group Signatures
	Comparison to Bellare, Micciancio and Warinschi BMW03

	Fully Dynamic Group Signatures from Accountable Ring Signatures
	Accountable Ring Signatures
	Generic Construction from Accountable Ring Signatures
	Security in our Separate Authorities Model

	On the Security of Constructions Based on Revocation Lists

	Conclusions
	Bibliography

