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Computing using a continuous-time evolution, based on the natural interaction Hamiltonian of the quantum
computer hardware, is a promising route to building useful quantum computers in the near term. Adiabatic
quantum computing, quantum annealing, computation by a continuous-time quantum walk, and special purpose
quantum simulators all use this strategy. In this work, we carry out a detailed examination of adiabatic
and quantum-walk implementation of the quantum search algorithm, using the more physically realistic
hypercube connectivity, rather than the complete graph, for our base Hamiltonian. We calculate optimal adiabatic
schedules both analytically and numerically for the hypercube and then interpolate between adiabatic and
quantum-walk searching, obtaining a family of hybrid algorithms. We show that all of these hybrid algorithms
provide the quadratic quantum speedup when run with optimal parameter settings, which we determine and
discuss in detail. We incorporate the effects of multiple runs of the same algorithm, noise applied to the qubits,
and two types of problem misspecification, determining the optimal hybrid algorithm for each case. Our results
reveal a rich structure of how these different computational mechanisms operate and should be balanced in
different scenarios. For large systems with low noise and good control, a quantum walk is the best choice, while
hybrid strategies can mitigate the effects of many shortcomings in hardware and problem misspecification.

DOI: 10.1103/PhysRevA.99.022339

I. INTRODUCTION

Quantum computing based not on discrete quantum gates,
but on continuous-time evolution under quantum Hamiltoni-
ans, is a promising route towards near-future useful quantum
computers. This is in part because of the success of exper-
imental quantum annealing efforts [1–5], and also because
of special purpose quantum simulators [6,7] that employ this
technique, and are potentially useful for a wider range of
computations. Problems known to be suitable for continuous-
time algorithms are wide ranging across many important
areas, including finance [8], aerospace [9], machine learning
[10–12], theoretical computer science [13], decoding of com-
munications [14], mathematics [15,16], and computational
biology [17].

Continuous-time computation is less familiar than the
ubiquitous digital computation that underpins everything from
mobile phones to internet servers. There is no classical equiva-
lent of computing via continuous-time manipulation of digital
data to guide our intuition or provide a source of classical
algorithmic resources that might be adapted to a quantum set-
ting. A detailed study based on a well-characterized problem
can thus serve to elucidate the mechanisms in continuous-time
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quantum computing and build a firm foundation for further
development. Hence, we focus this work on the unordered
search problem, which was first studied in the quantum set-
ting by Grover [18]. Grover’s algorithm provides a quadratic
speedup over classical searching, proved by Bennett et al. [19]
to be the best possible improvement.

Two further examples of quantum search algorithms are
quantum-walk (QW) searching [20] and the adiabatic quan-
tum computing (AQC) search algorithm [21], which both
obtain the optimal quadratic speedup. There remain the ques-
tions of which is more efficient in terms of the prefactors
[22] or more robust in the face of imperfections. While the
results in [19] imply that any protocol we develop here will not
provide better scaling properties, asymptotic scaling factors
do not give a full account of algorithm performance. A recent
study in which a quantum annealer appears to show the same
asymptotic scaling as a classical algorithm, but with a pref-
actor advantage [3] of ∼108, underscores the importance of
practical computational advantages beyond asymptotic scal-
ing. This prompts more detailed study of exactly how the
quantum search algorithms work, the topic of many papers
since the original algorithms were presented [23–26].

Quantum-walk searching has been shown to implement a
similar type of rotation in Hilbert space to that which Grover’s
algorithm employs [20]. On the other hand, adiabatic quantum
searching alters the Hamiltonian over time, turning on the
term for the marked state slowly enough to keep the quantum
system in its ground state throughout. On the face of it, these
are quite different dynamics, as has been highlighted in [27].
However, both use the same Hamiltonians and initial states
and we argue here that both are best viewed as extreme
cases of possible quantum annealing schedules. This invites
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consideration of intermediate quantum annealing schedules,
and we show how to interpolate smoothly between QW and
AQC searching, enabling both mechanisms to contribute to
solving the search problem. We examine the hybrid algo-
rithms thus created using simplified models for the asymptotic
scaling, and numerical simulation to explore smaller systems
where more complex finite-size effects contribute. Taking into
account realistic factors, such as a finite initialization time for
each run of the algorithm, our results reveal a rich structure of
intermediate strategies available to optimize the performance
of a practical quantum computer.

The paper is structured as follows. In Sec. II we give the
background and lay the groundwork for our study in terms of
the QW and AQC protocols which we interpolate between.
In Sec. III we introduce the two AQC schedules which we
use in this study and we explain in detail how they arise
from the dynamics of the quantum search Hamiltonian on
a hypercube. In Sec. IV we construct interpolated protocols
which can take advantage of both QW and AQC mecha-
nisms. We then turn to the performance of the interpolated
protocols in finite-size systems. In Sec. IV C we examine
the scaling for larger systems in detail and demonstrate that
the interpolated protocols also yield a quadratic speedup over
classical searching. In Sec. V we incorporate strategies which
involve performing multiple runs, including in Sec. V C the
effect of adding decoherence, and in Sec. VI we examine the
effect of problem misspecification. Finally, in Sec. VII we
summarize our results and their implications for future work.
The calculation of the optimal schedule for the hypercube is
outlined in Appendix A and notes on our numerical methods
are in Appendix B.

II. BACKGROUND

We begin with a discussion of how the unstructured search
problem may be encoded into qubit states. From here we show
how, with the use of very similar Hamiltonians, the search
problem can be solved with an optimal quantum scaling
advantage, via both QW and AQC algorithms.

A. Encoding search into quantum states

The search problem can be framed in terms of the N = 2n

basis states of an n-qubit system {| j〉} = {|0〉, |1〉}⊗n, where
{|0〉, |1〉} is the basis of a single qubit. We are given that one of
the basis states behaves differently from the others and denote
this “marked” state by |m〉, where m is an n-digit bit string
identifying one of the basis states. Because of the difference
in behavior, we can easily verify whether a given state is the
marked state. One way to implement this is for the marked
state to have a lower energy than all other states, e.g., using
a Hamiltonian like Ĥp = 1̂ − |m〉〈m|, where 1̂ is the identity
operator. In terms of Pauli operators,

Ĥp = 1̂ − 1

2n

n∏
j=1

(
q j σ̂

z
j + 1̂

)
, (1)

where q j ∈ {−1, 1} define a logical bit string m via the map-
ping 1 → 0 and −1 → 1. The search problem is then to de-
termine which of the basis labels j corresponds to the marked
state label m, given that a priori we have no knowledge of m,

apart from it being a basis state. We represent this ignorance
of the marked state by starting with the system in a uniform
superposition over the basis states,

|ψinit〉 = 1√
N

N−1∑
j=0

| j〉. (2)

The quantum search algorithms considered in this paper
solve the search problem by evolving the system into a state
with a large overlap with the marked state so that a measure-
ment can be made to return the marked state label m with
high probability. This is achieved by applying a (generally
time-dependent) Hamiltonian to evolve the system initially in
state |ψinit〉 to a final state |ψfinal〉. Performing a measurement
of this state in the basis {| j〉} will yield the marked state
label with probability |〈ψfinal|m〉|2. If |〈ψfinal|m〉|2 = 1 then
the search is perfect and the problem is solved. If the search
is imperfect then the problem can be solved by searching
multiple times: Since the result of each search is checked
independently, a single successful search is sufficient. As long
as |〈ψfinal|m〉|2 is greater than 1/poly(n) this form of amplitude
amplification will be efficient. Multiple runs have a cost; see
Sec. V for details of the tradeoff between multiple runs and
the initialization time for each run.

In general, problems with full permutation symmetry, such
as the search problem, are considered to be toy problems from
a practical point of view. A naive implementation of such
a problem, in this case Ĥp = 1 − |m〉〈m|, the marked state
Hamiltonian, requires exponentially many terms of the form∏

j∈m σ̂
( j)
z , where m is a binary number with n bits (with j ∈ m

indicating the 1 digits of the number) and j iterates over the
bits in m that are equal to one. However, it has recently been
shown [13] that the spectrum of such terms in permutation-
symmetric problems can be reproduced using n extra qubits
and a number of extra coupling terms of the form σ̂

( j)
z σ̂ (k)

z

which scales as n2. It has also been suggested that such
models may be fully realized perturbatively [28,29]. Although
this approach to construct such terms is much closer to the
realm of what can be experimentally realized, it would still
be highly nontrivial to implement. Nonetheless, the insights
gained from studying the search problem can be adapted to
realistic problems of practical interest.

B. Quantum-walk-search algorithm

A continuous-time quantum walk can be defined by con-
sidering the labels j of the n-qubit basis states {| j〉} to be the
labels of vertices of an undirected graph G. The edges of G can
be defined through its adjacency matrix A, whose elements
satisfy Ajk = 1 if an edge in G connects vertices j and k and
Ajk = 0 otherwise. Since G is undirected, A is symmetric,
hence it can be used to define a Hamiltonian. Although we
can use the adjacency matrix A directly, it is in general more
convenient mathematically to define the Hamiltonian of the
quantum walk using the Laplacian L = A − D, where D is a
diagonal matrix with entries Dj j = d j the degree of vertex j in
the graph. We follow this convention here, but note that in this
work we use regular graphs for which the degree dj = d is the
same for all vertices, so that D = d1, where 1 is the identity
matrix (ones on the diagonal) of the same dimension as A.
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Terms proportional to the identity in the Hamiltonian shift the
zero point of the energy scale and contribute an unobservable
global phase, but otherwise do not affect the dynamics. The
quantum-walk Hamiltonian is then defined as ĤQW = −γ L̂,
where L̂ is the Laplacian operator and the prefactor γ is the
hopping rate of the quantum walk. For any regular graph of
degree d we thus have

ĤQW = γ

⎛
⎝d 1̂ −

∑
jk

A jk| j〉〈k|
⎞
⎠ ≡ γ (d 1̂ − Â), (3)

where the adjacency operator Â has matrix elements in the
vertex basis {| j〉} given by the adjacency matrix A. The action
of ĤQW is to move amplitude between connected vertices,
as specified by the nonzero entries in A. During a quantum
walk, a pure state |ψ (0)〉 evolves according to the Schrödinger
equation to give

|ψ (t )〉 = exp(−iĤQWt )|ψ (0)〉 (4)

after a time t , where we have used units in which h̄ = 1.
Quantum-walk dynamics can be used to solve the search

problem by modifying the energy of the marked state |m〉 to
give a quantum-walk-search Hamiltonian

ĤQWS = γ (d 1̂ − Â) − |m〉〈m|. (5)

In the units we are using, this amounts to giving state |m〉
an energy of −1 while all other states have zero energy.
This also makes γ a dimensionless parameter controlling the
ratio of the strengths of the two parts of the quantum-walk-
search Hamiltonian. Applying ĤQWS to the search initial state
|ψinit〉 in Eq. (2) produces a periodic evolution such that the
overlap with the marked state oscillates. The frequency of
these oscillations depends on the hopping rate γ , which must
be chosen correctly, along with the measurement time t f ,
to maximize the final success probability P = |〈ψ (t f )|m〉|2,
where |ψ (t f )〉 = exp(−iĤQWSt f )|ψinit〉 is the state at time t f .

The performance of quantum-walk-search algorithms will
clearly have some dependence on the choice of the graph G.
Provided the connectivity is not too sparse or low-dimensional
[30], most choices of graph will work, even random graphs
[31]. Two convenient choices on which the quantum walk is
analytically solvable are the complete graph, for which all
vertices are directly connected, and a graph whose edges form
an n-dimensional hypercube. Moore and Russell [32] studied
quantum walks on hypercubes and Hein and Tanner [33]
performed a detailed analysis of discrete-time quantum-walk
searching on the hypercube, extending the work of Shenvi
et al. [20]. We choose to focus our work on a hypercube,
rather than a fully connected graph, because it is the more
practical graph in terms of implementation on a quantum
computer. A hypercube graph is the natural choice for a
quantum walk encoded into qubits because moving from one
vertex to a neighboring vertex corresponds to flipping a qubit.
The techniques and scaling arguments we give in this work
also apply in the case of a fully connected graph and can be
easily extended to a more general setting, for example, to the
“typical” random graphs considered in [31].

The adjacency matrix of an n-dimensional hypercube
graph has elements Ajk = 1 if and only if the vertex labels j

and k have a Hamming distance of one. That is, when written
as n-digit bit strings, they differ in exactly one bit position.
The corresponding adjacency operator can be conveniently
expressed as

Â(h) =
n∑

j=1

σ̂ ( j)
x , (6)

where the sum is over all n qubits and σ̂
( j)
x is the Pauli-X

operator applied to the jth qubit with the identity operator on
the other qubits. That is,

σ̂ ( j)
x =

(
j−1⊗
r=1

1̂2

)
⊗ σ̂x ⊗

⎛
⎝ n⊗

r= j+1

1̂2

⎞
⎠, (7)

where ⊗ denotes the tensor product and 1̂2 is the identity
operator of dimension 2. The Hamiltonian for the quantum
walk on the hypercube is thus given by

Ĥ (h)
QW = γ

⎛
⎝n1̂ −

n∑
j=1

σ̂ ( j)
x

⎞
⎠, (8)

since an n-dimensional hypercube has vertices which have
degree n.

To construct the quantum-walk-search Hamiltonian on
the hypercube, we include two trivial adjustments for later
mathematical convenience. If we make the energy of the
marked state lower by adding 1 − |m〉〈m| to the quantum-walk
Hamiltonian, this gives the marked state an energy of zero
while all other states have an energy of one for this part of
the Hamiltonian. Here, we define the hopping rate γ with an
explicit factor of 1

2 to match Refs. [30,34,35] and facilitate
the mapping to the symmetric subspace (Appendix A). Our
quantum-walk search on the hypercube is then

Ĥ (h)
QWS = γ

2

⎛
⎝n1̂ −

n∑
j=1

σ̂ ( j)
x

⎞
⎠ + (1 − |m〉〈m|). (9)

Childs and Goldstone [30] analyze the quantum-walk-
search algorithm for both the complete and hypercube graphs.
For each graph, they find optimal values of γ for which the
performance of the search matches the quadratic quantum
speedup achieved by Grover’s search algorithm. The mecha-
nism for finding the marked state can be understood intuitively
as follows. Note that the initial state |ψinit〉 from Eq. (2)
is the (nondegenerate) ground state of both the complete
graph and the hypercube Hamiltonians, i.e., Ĥ (h)

QW of Eq. (8).
The marked state |m〉 is, by design, the ground state of the
marked state component of the search Hamiltonian. For large
values of γ , the marked state term is relatively small, so the
graph Hamiltonian dominates, and the ground state of the full
search Hamiltonian Ĥ (h)

QWS of Eq. (9) is approximately |ψinit〉.
Conversely, for small values of γ , the ground state of Ĥ (h)

QWS
is approximately |m〉. Over a narrow range of intermediate
values of γ , the ground state switches between the two. By
calculating the low-level part of the energy spectrum of Ĥ (h)

QWS,
Childs and Goldstone tune γ until both the initial state |ψinit〉
and the marked state |m〉 have significant overlap with both
the ground state E0 and the first excited state E1 of the search
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Hamiltonian. Intuitively, we want the search Hamiltonian to
drive transitions between |ψinit〉 and |m〉 as efficiently as possi-
ble. This occurs when the overlaps are evenly balanced, which
in turn occurs when the gap g = E1 − E0 between the ground
and first excited state is smallest: gmin. With this optimally
chosen value of γ , the time it takes for the transition to occur
turns out to be proportional to 1/gmin. For the hypercube
graph, the optimal value of γ is

γ (h)
o = 1

N

n∑
r=1

(
n

r

)
1

r
≡ R1, (10)

where
(n

r

)
is the binomial coefficient n choose r. This sum

appears many times in the following calculations, so it is con-
venient to abbreviate it by R1. Note also that it is not always
sufficiently accurate to use the approximation R1 
 2/n given
in [30]. The time to reach the first maximum overlap with
the marked state is t (h)

o 
 (π/2)
√

N , providing a quadratic
speedup equivalent to Grover’s original search algorithm.

C. Adiabatic quantum search algorithm

Adiabatic quantum computing, introduced by Farhi et al.
[34], works as follows. The problem of interest is encoded
into an n-qubit Hamiltonian Ĥp in such a way that the solution
can be derived from the ground state of Ĥp. The system is
initialized in the ground state of a different Hamiltonian Ĥ0,
for which this initialization is easy. The computation then
proceeds by implementing a time-dependent Hamiltonian that
is transformed slowly from Ĥ0 to Ĥp. In general, this adiabatic
“sweep” Hamiltonian can be parametrized in terms of a time-
dependent schedule function s ∈ [0, 1] as

ĤAQC(s) = (1 − s)Ĥ0 + sĤp, (11)

with s ≡ s(t ) such that s(t = 0) = 0 and at the final time
t f we have s(t = t f ) = 1. It is useful to define a reduced
time τ = t/t f , with 0 � τ � 1. Whereas τ is linear in t ,
the schedule function s(τ ), written as a function of t or τ ,
allows for nonlinear transformation. Nonlinear schedules are
essential to obtain a quantum speedup.

The adiabatic theorem of quantum mechanics [36] says
that the system will stay in the instantaneous ground state of
the time-dependent Hamiltonian ĤAQC(s) provided the follow-
ing two conditions are satisfied: (i) There is at all times an en-
ergy gap g(s) > 0 between the instantaneous ground and first
excited states and (ii) the Hamiltonian is changed sufficiently
slowly. Provided these are both true, the system will be in the
desired ground state of Ĥp at the end of the computation, thus
solving the problem encoded in Ĥp. In practice, the duration of
this adiabatic sweep would be prohibitively long, so a realistic
sweep will incur some probability of error. We discuss this
and other subtleties of the adiabatic theorem in Sec. III, after
we introduce the adiabatic quantum search algorithm. For a
comprehensive overview of AQC, see Ref. [37].

Roland and Cerf [21] describe how adiabatic quantum
computing can be used to solve the search problem with a
quadratic quantum speedup. Define the problem Hamiltonian
as

ĤP = 1̂ − |m〉〈m|, (12)

whose nondegenerate ground state is equal to the marked
state |m〉 with eigenvalue zero. We then need to choose our
easy Hamiltonian Ĥ0 such that it has |ψinit〉, as defined in
Eq. (2), as its nondegenerate ground state. There are many
possible choices; Roland and Cerf use Ĥ0 = 1̂ − |ψinit〉〈ψinit|.
With the system initialized in |ψinit〉, the algorithm proceeds
by implementing the time-dependent Hamiltonian in Eq. (11),
with a suitable schedule function s(τ ), so that after a time t f

the final state of the system is close to the marked state |m〉.
Roland and Cerf demonstrate that a linear schedule function
s(l )(τ ) = τ = t/t f does not produce a quantum speedup. It is
necessary to use a more efficient nonlinear s(τ ), whose rate of
change is in proportion to the size of the gap g(s) at that point
in the schedule, in order to produce the quadratic speedup of
Grover’s search algorithm.

It is easy to show that Ĥ0 = 1̂ − |ψinit〉〈ψinit| is proportional
to the adjacency operator of the fully connected graph with
N = 2n vertices. For the reasons already given in the context
of the quantum-walk-search algorithm, a Hamiltonian corre-
sponding to a less connected graph is preferable for practical
applications. In order to make direct comparisons between
adiabatic and quantum-walk searching, we use the hypercube
graph, since this also has |ψinit〉 as its nondegenerate ground
state, with Hamiltonian (in its Laplacian form) given by

Ĥ (h)
0 = 1

2

⎛
⎝n1̂ −

n∑
j=1

σ̂ ( j)
x

⎞
⎠, (13)

where we have again included a factor of one-half for math-
ematical convenience. As further motivation for this choice,
we note that this corresponds to a transverse-field driver
Hamiltonian applied to qubits, which is the most common
choice for quantum annealing hardware and which can be
experimentally realized on a large scale [38]. Combining
Eqs. (12) and (13), we have the adiabatic quantum computing
Hamiltonian for search on a hypercube,

Ĥ (h)
AQC = (1 − s)

1

2

⎛
⎝n1̂ −

n∑
j=1

σ̂ ( j)
x

⎞
⎠ + s(1 − |m〉〈m|). (14)

We note that Ĥ (h)
AQC contains the same terms as Ĥ (h)

QWS in
Eq. (9), only in different, time-varying proportions. It remains
to specify the function s(τ ) for the optimal performance of
this Hamiltonian for searching. There are several subtleties to
deriving an optimal s(τ ) for the hypercube, which we address
in the next section.

III. OPTIMIZING AQC SCHEDULES

We have seen that QW and AQC searching may be
achieved with Hamiltonians that have the same terms but
different, time-varying, coefficients. Next we would like to
interpolate these coefficients to generate hybrid search algo-
rithms. However, we must first determine an optimal sched-
ule s(τ ) for the AQC search. In fact, this is not entirely
straightforward: It is possible to find more than one optimal
schedule. In this section we derive two different schedules via
an analytical method and a numerical method and demonstrate
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that these both give optimal quantum scaling advantage for the
unstructured search problem.

A. Adiabatic condition and method

We now return to the nuances of the adiabatic theorem and
how, in the regime of limited running time, the schedule s(τ )
may be optimized to minimize the error. A more quantitative
statement of the adiabatic theorem [21,34,37,39,40] proceeds
as follows: Consider a time-dependent Hamiltonian of the
form in Eq. (11), with initial and final Hamiltonians Ĥ0 and
Ĥp, respectively, and parametrized by the schedule function
s(τ ) that sweeps from s(0) = 0 to s(1) = 1 over a time t f ,
the runtime of the sweep. Denote by |Ej (t )〉 the jth energy
eigenstate of the Hamiltonian at time t and its energy by Ej (t ),
where j = 0, 1 denotes the ground and first excited states,
respectively. Provided that E1(t ) > E0(t ) for t ∈ [0, t f ] and
transitions to higher energy eigenstates can be ignored, the
final state obeys

|〈ψ (t f )|E0(t f )〉|2 � 1 − ε2 (15)

for small parameter ε � 1, provided that at all times∣∣〈 dĤ
dt

〉
0,1

∣∣
g2(t )

� ε � 1, (16)

where the matrix element 〈dĤ/dt〉0,1 is given by〈
dĤ

dt

〉
0,1

=
〈
E0(t )

∣∣∣∣dĤ

dt

∣∣∣∣E1(t )

〉
(17)

and the gap g(t ) is given by

g(t ) = E1(t ) − E0(t ). (18)

However, adiabatic protocols derived from Eq. (16) are
not always optimal. This equation accounts for probability
amplitude leaking from the ground state into a nearly empty
first excited state. Thus it will break down in situations where
transitions to higher excited states are important or where
the population of the first excited state is significant. We
can therefore describe Eq. (16) as a two-level approximation.
In the context of the search algorithms studied here, such an
approximation turns out to be good for all but the smallest val-
ues of n and becomes more accurate for larger search spaces.
We make extensive use of this in what follows, especially in
Sec. IV E.

Equation (16) also does not take into account the return
of probability amplitude which has already entered the ex-
cited state. Such effects can become the most relevant to the
dynamics under two circumstances. If the first excited state
is populated significantly, then nonadiabatic dynamics can
occur such that this amplitude returns and interferes with the
ground-state amplitude. This is the regime which we primarily
study in this work. Quantum-walk dynamics are an extreme
example of such behavior as they can be viewed as time-
independent coherent evolution bracketed by instantaneous
quenches, which are the ultimate nonadiabatic transitions. The
second and more subtle case is deep in the adiabatic regime,
where the Hamiltonian sweep rate is so slow that the rate
of excitation formation is very low during the middle of the
anneal. In these cases, boundary effects become important,

which depend in a complicated way on both the nature of the
annealing schedule and the total runtime [41–43]. While this
regime is very interesting, it is outside the scope of this study
and not relevant for practical implementation of algorithms.
For this reason, we limit our numerical studies to a maximum
runtime of ∼5π/gmin, about ten times the typical runtime
derived from the minimum gap. With runtimes t f � 5π/gmin,
we do not observe any appreciable boundary effects in our
numerical results.

Roland and Cerf [21] derived a schedule s(τ ) for the fully
connected graph by optimizing Eq. (16), by matching the
instantaneous rate of change of the schedule function s(t ) to
the size of the gap at that time. Using〈

dĤ

dt

〉
0,1

= ds

dt

〈
dĤ

ds

〉
0,1

(19)

in the adiabatic condition of Eq. (16) gives∣∣∣∣ds

dt

∣∣∣∣ � ε
g2(t )∣∣〈 dĤ
ds

〉
0,1

∣∣ . (20)

The instantaneous gap g(t ) and 〈dĤ/ds〉0,1 can be calcu-
lated from the eigensystem of the Hamiltonian, which is
analytically tractable for the complete graph. The schedule
they obtain this way produces the full quadratic quantum
speedup for the adiabatic quantum search algorithm on the
fully connected graph.

B. Hypercube schedule calculation

Since we are using the hypercube graph, we must do the
equivalent calculation for the hypercube AQC search Hamil-
tonian given by Eq. (14). The eigensystem of this Hamilto-
nian has been solved in Refs. [30,34,35] by mapping it to
the symmetric subspace. From here the position and size of
the minimum gap can be found exactly and the eigenvalue
equations expanded about this point. This is combined with
the saturation of Eq. (20) at the minimum gap point, where the
right-hand side takes its minimum value. From the resulting
expressions it is possible to derive an analytical expression
for the schedule s(t ). The full calculation is somewhat lengthy
and is outlined in Appendix A. We find the calculated optimal
schedule

s(c)(t ) = 2
√

R2√
N (1 + R1)2

tan

{
8ε

√
R2R2

1t

n
√

NR2
2

− c

}
+ 1

1 + R1
,

(21)

where terms O(1/N ) and smaller have been dropped,

c = arctan

{
(1 + R1)

√
N

2
√

R2

}
, (22)

and the constant R1 is defined in Eq. (10) and R2 by

R2 ≡ 1

N

n∑
r=1

(
n
r

)
1

r2
. (23)

This analytical schedule is guaranteed to satisfy Eq. (20) only
in the region of the minimum gap, however it is here that
transitions to unwanted higher energy levels are most rapid,
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(a)

(b)

(c) (d)

FIG. 1. (a) and (b) Energy levels and (c) and (d) gap for (a) and
(c) a hypercube of size n = 9 and (b) and (d) a complete graph. Both
the true gap (blue solid line) and the approximate, analytical, gap (red
dashed line) are shown for the hypercube in (c). The analytical gap
is only accurate near the true minimum gap, however it is here that
transitions to higher-energy levels are most rapid, so the resulting
analytical schedule still yields optimal quantum speedup. Energy
units are defined by Eq. (14).

so the net effect is that this schedule still manages to produce
optimal quantum speedup. For N � 1, the runtime is given by

εt (c)
f 
 π

√
N

4
, (24)

where the approximation of the arctangents by π/2 becomes
exact as N → ∞. Note that choosing a value for ε, the
accuracy with which the system stays in the ground state
[see Eq. (15)], determines the corresponding runtime t f and
vice versa. For our numerical calculations we have chosen
to specify t f , since this enables direct comparisons with QW
searching to be made. The energy levels of Ĥ (h)

AQC are shown
in Fig. 1(a) for n = 9 and for comparison the energy levels of
the search Hamiltonian for the complete graph (which is the
same for any size) are shown in Fig. 1(b).

We also solve Eq. (16) numerically to obtain s(n) using
an explicit numerical calculation of the gap g(t ) and using
the maximum value of 〈dĤ (h)

AQC/dt〉0,1, which is shown in
Appendix A to be n/4. Our numerical algorithm is described
in Appendix B. While it does not provide a closed-form
solution, results using s(n) do provide insight into the accuracy
of s(c). Provided the numerics are performed to a sufficient
accuracy, s(n) will always provide an optimal

√
N speed up.

The analytically and numerically calculated gaps are plotted
in Fig. 1(c) for n = 9 and the corresponding gap for the
complete graph is shown in Fig. 1(d). For the hypercube, the
analytical and numerical gaps are strikingly different, yet both
produce schedules that obtain a quantum speedup. As we will
see, this is because for the quantum search problem only the
position and size of the gap are important. Elsewhere, the
transition probabilities are so small it does not matter how fast
the schedule proceeds.

However, note that both of these schedules assume a two-
level approximation, as they start from Eq. (16). While in gen-
eral for large N this is a good approximation, for small system

(a)

(b)

FIG. 2. Comparison of annealing schedules from Sec. III for
AQC searching over a hypercube of (a) n = 20 qubits and (b) n =
5 qubits for a two-level approximation analytically calculated s(c)

(dashed line) and numerically calculated s(n) (solid line). Note the
different scale for s in (a).

sizes the higher-energy levels do affect the performance, as
we show in the next section.

C. Performance of hypercube schedules

Having calculated optimal schedules both analytically and
numerically, we now compare their performance for system
sizes up to n = 20 qubits. Note that the size of the minimum
gap g(min) calculated from the two-level approximation in
Sec. III is exactly the same for both. Since both are based only
on the interactions of the two lowest-energy levels, both will
find the correct shape for the annealing protocol in this region.
Numerical results support this prediction in that for n = 20 the
numerically calculated optimal schedule s(n) slows down at
the same value as s(c) in Fig. 2. For n = 5 qubits the schedules
are distinct over the whole range of τ , while for n = 20 the
schedules are almost identical, the only visible difference
occurring at τ � 0.1. The difference between them around
τ � 0.1 is likely due to interactions with the higher excited
states of the hypercube Hamiltonian early in the schedule. In
the large-system limit this difference will have little effect
on the overall success probability, as the overlap with the
initial ground state and the manifold of states participating in
the avoided crossing approaches one exponentially fast in the
number of qubits n (see Table I).

For n < 20, the difference between s(c) and s(n) at early
times in the run does affect their relative performance, as
Fig. 3 shows. Although the numerical schedule s(n) is a more
accurate solution of the optimization in Eq. (16), s(c) does
better than s(n). The reason is that, while the gap is relatively
small early in the schedule, so is the matrix element between
the ground and first excited state of the marked state Hamil-
tonian, as shown in the top inset of Fig. 3. As a result, the
numerically calculated schedule slows down unnecessarily in
this region, as can be seen in Fig. 2. The approximate expan-
sion for the gap used to derive the schedule s(c) in Appendix
A grows within this region (see Fig. 1). Hence, s(c) traverses
this part of the schedule much faster than s(n). Effectively,
the approximate nature of the expansion for the gap used
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TABLE I. Numerical fits for various quantities related to quan-
tum walks and adiabatic protocols. These fits were performed using
linear fitting on either logarithmic or semilogarithmic axes in the
range n = 40–70, except for |〈ψinit|E0〉|2 + |〈ψinit|E1〉|2, which was
fit over the range n = 11–40 due to numerical precision issues. The

coefficient of determination r2 ≡ 1 −
∑

i (yi− fi )2∑
i (yi−ȳ)2 , where fi are the

data and y is the fitting function, is calculated against the linear
function on the logarithmic or semilogarithmic axes. These fits are
plotted along with the data used to produce them in Fig. 10. The
slight difference from −1 in the scaling exponent for γ (h)

o is due to
numerical finite-size effects.

Quantity Scaling 1 − r2

P(QW)
max 1 − 1.734n−1.112 7.820 × 10−5

|〈E0|m〉|2 + |〈E1|m〉|2 1 − 1.734n−1.112 7.820 × 10−5

|〈ψinit|E0〉|2 + |〈ψinit|E1〉|2 1 − 4.2922−1.186n 0.00143
γ (h)

o 1 − 1.233n−1.0425 1.120 × 10−5

to calculate s(c) partially cancels an unnecessary slowdown
caused by the approximation that 〈 dH

ds 〉0,1 is constant for all
s. However, as the main figure and lower inset of Fig. 3 show,
the difference between the success probabilities using the two
schedules shrinks as system size increases and the avoided
crossing becomes more dominant.

IV. HYBRID ANNEALING SCHEDULES

Having arrived at a common Hamiltonian form for QW and
AQC searching on an n-dimensional hypercube and having
derived optimal coefficients for each case, we can now inter-
polate the coefficients to generate hybrid search algorithms.
In this section we show how this may be done and study the

FIG. 3. Difference in success probabilities Pc − Pn between the
annealing schedule calculated analytically s(c) and the numerically
calculated schedule s(n) for a single run over a time π/gmin. The
lower inset shows the offset plot of the success probabilities P versus
t f gmin/π for s(c) [red (gray) line] and s(n) (black line) for n = 5–20.
The upper inset shows the sum of the overlaps of |E1〉 with |m〉 and
|ψinit〉 (PFE = |〈E1|m〉|2 + |〈E1|ψinit〉|2) against s for 20 qubits. Since
the relevant avoided crossing is in the space spanned by |m〉 and
|ψinit〉, a vanishing value PFE is indicative of very little rotation of
the ground state. The vertical dashed line is the position of gmin.

resulting dynamics. We begin by looking at small systems
with n = 5 and 8 and then study the dynamics of systems with
very large n by demonstrating that this limit corresponds to a
two-state single-avoided-crossing model.

A. Motivation and definition

We have already noted that QW and AQC search algo-
rithms both use the same terms in the Hamiltonian, differing
only in the time dependence. With appropriate choice of
parameters, both provide a quadratic quantum speedup: a
search time proportional to

√
N for a search space of size N .

This suggests the question of whether we can map smoothly
between QW and AQC searching while maintaining the quan-
tum speedup.

To construct the mapping, we generalize the AQC Hamil-
tonian of Eq. (11) by defining a time-dependent Hamiltonian

Ĥ (τ ) = A(τ )Ĥ0 + B(τ )Ĥp (25)

as a function of the reduced time τ = t/t f , where the an-
nealing schedules A(τ ) and B(τ ) satisfy A(0) � B(0) and
B(1) � A(1). The AQC algorithm as described by Eq. (11)
is obtained by setting

AAQC(τ ) = 1 − s(τ ),

BAQC(τ ) = s(τ ). (26)

The QW search Hamiltonian with hopping rate γ , described
by Eq. (9), can also be obtained by setting

A(γ )
QW(τ ) =

{
γ , τ < 1
0, τ = 1,

B(γ )
QW(τ ) =

{
1, τ > 0
0, τ = 0.

(27)

We can make this even closer to the AQC form by defining
β = 1/(1 + γ ) and setting

AQW(τ ) =
{

1 − β, τ < 1
0, τ = 1,

BQW(τ ) =
{
β, τ > 0
0, τ = 0.

(28)

For a QW search on the hypercube, using Eq. (10) for γ (h)
o , to

achieve optimal
√

N scaling we must set β equal to

β (h)
o = 1

1 + R1
. (29)

For 0 < τ < 1, the reparametrization of Eq. (27) in
Eq. (28) maintains the ratio of AQW(τ )/BQW(τ ) = γ . How-
ever, it also introduces a global energy shift AQW(τ ) =
βA(γ )

QW(τ ) and BQW(τ ) = βB(γ )
QW(τ ). The observant reader will

note that, because the optimal γ (h)
o is dependent on the size

of the system, this reparametrization introduces a weak de-
pendence of the global energy scale on system size N =
2n. However, since β (h)

o → 1 in the large-N limit, this weak
dependence cannot affect the leading-order term in the asymp-
totic scaling and the reparametrized quantum-walk-search
algorithm still provides optimal

√
N scaling.
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(a)

(b)

FIG. 4. Interpolated schedule functions A(α, β, τ ) (dashed lines)
and B(α, β, τ ) (solid lines) as defined by Eq. (30) for hybrid
QW-AQC quantum searching on an (a) (n = 5)- and (b) (n = 8)-
dimensional hypercube graph for α = 0 (QW), blue (dark gray) line;
α = 0.1, black line; α = 0.5, green (medium gray) line; and α = 1
(AQC), red (light gray) line, calculated numerically following the
method in Appendix B.

In the way we have parametrized them above, the AQC
and QW protocols differ only in the annealing schedules A(τ )
and B(τ ). Hence, we can use the QW and AQC schedules as
end points of a smooth interpolation between these two search
algorithms to define a continuum of hybrid protocols. Using a
parameter α ∈ [0, 1], where α = 0 corresponds to a quantum
walk and α = 1 corresponds to AQC, we can define

A(α, β, τ ) = 1 − s(τ )

α + (1 − α) [1−s(τ )]
(1−β )

,

B(α, β, τ ) = s(τ )

α + (1 − α) s(τ )
β

, (30)

giving a family of hybrid quantum algorithms defined by the
Hamiltonian

ĤAB = A(α, β, τ )Ĥ0 + B(α, β, τ )Ĥp. (31)

This interpolation is quite general, for well-behaved Ĥ0 and
Ĥp, with the caveat about the extra dependence of the energy
scale on the QW hopping rate through β mentioned above.
The resulting family of functions is illustrated in Fig. 4 for
search over five- and eight-qubit hypercube graphs.

Note that, although it is plausible, it does not follow a
priori from the construction that these interpolated AQC-QW
schedules will yield a quantum speedup at all for search-
ing, let alone an optimal

√
N scaling. This is because the

different mechanisms in a quantum walk and AQC could
be incompatible in combination. We return to this important
question in Sec. IV C, where we show that properly specified
interpolations can indeed achieve the theoretical optimum

√
N

scaling.

B. Small-size examples

To gain intuition for how our interpolated schedules be-
have, we study small systems of five and eight qubits. These

(a) (b) (c)

(d)

FIG. 5. Numerically calculated hybrid schedules A and B against
runtime τ for a quantum search on a five-qubit hypercube graph for
(a) α = 0 (QW) (black line), (b) α = 0.5 [red (medium gray) line],
and (c) α = 1 (AQC) [cyan (light gray) line]. (d) Success probability
of the corresponding searches [indicated by matching color (shade of
gray)] against total search time t f , in units given by Eq. (25). Note
that this does not show the time evolution against t or τ .

have been simulated using the full Hamiltonian on the hy-
percube; for numerical methods see Appendix B. Figure 5
shows how the final success probability varies with the search
duration t f for a QW, an AQC, and an intermediate α = 0.5
search over the five-qubit hypercube graph. Note that, because
the schedules A and B are in general nonlinear functions of
time, in all plots against t f each point represents a separate run
of the quantum search algorithm for that value of t f ; the plots
do not also represent the time evolution 0 � t � t f , except for
α = 0 when the schedule functions are constant (A = 1 − β

and B = β). Plots of the time evolution for a single search can
be seen in Sec. V C. Also plotted in Fig. 5 are the annealing
schedules A and B as a function of the reduced time τ ,
illustrating how the shape of the functions A(α, τ ) and B(α, τ )
changes for different values of α, from flat for a quantum
walk to a curving AQC annealing schedule for α = 1. We see
that the qualitative behavior of adiabatic evolution is funda-
mentally different from that of the quantum-walk search. For
the optimal AQC schedule the success probability increases
monotonically to a value very close to one. In contrast, a
quantum walk shows oscillatory behavior, and although the
success probability does not approach one, it does show a
faster initial increase than for AQC. The intermediate schedule
shows a mix of both behaviors, with a locally oscillating but
globally increasing success probability that shows an initial
increase rate between that of a quantum walk and AQC.

We now turn to the probability P of finding the marked
state that is obtained for different choices of α and t f . For
a continuum of α values, Figs. 6 and 7 illustrate the same
qualitative behavior for five-qubit and eight-qubit quantum
searches. The oscillatory behavior associated with a quantum
walk slowly fades away as the interpolation approaches the
respective AQC schedule, at which point the success proba-
bility P increases monotonically with t f . If a relatively low
success probability is sufficient, only a short total runtime
t f is needed and a quantum walk is the best strategy. As
t f is increased, the best strategy is to increase α and start
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(a)

(b)

(c)

FIG. 6. Success probabilities P of a hybrid QW-AQC quantum
search on a five-qubit hypercube graph plotted against the interpola-
tion parameter α and total runtime t f using optimal schedules (a)
s(c) from analytical solution and (b) s(n) from numerical solution.
Dashed lines with black points indicate the optimal protocol at a
given runtime t f . (c) Probability corresponds to the optimal protocol
for analytical [blue (dark gray) line] and numerical [green (medium
gray) line] solutions. Time units are given by Eq. (25).

adding some adiabatic character into the protocol. Finally, if
a high success probability is required and a long runtime t f

is possible, then AQC becomes the best strategy. We also see
that, for these system sizes, the hybrid protocols maintain the
quantum speedup for the search algorithm runtime.

We now consider the differences between the calculated
and numerical annealing schedules s(c) and s(n) for these small
systems. Figure 6 depicts results for n = 5 qubits. The main
difference for five qubits is that the numerically calculated

(a)

(b)

(c)

FIG. 7. Success probabilities P of a hybrid QW-AQC quantum
search on an eight-qubit hypercube graph plotted against the inter-
polation parameter α and total runtime t f using optimal schedules
(a) s(c) from analytical solution and (b) s(n) from numerical solution.
Dashed lines with black points indicate the optimal protocol at a
given runtime t f . (c) Probability corresponds to the optimal protocol
for analytical [blue (dark gray) line] and numerical [green (medium
gray) line] solutions. Time units are given by Eq. (25).

optimal schedule s(n) is able to perform substantially better
for α < 0.4, where “better” means a higher probability of
success for a given runtime t f and value of α. Figure 7 shows
the same comparisons for the slightly larger value of n = 8
qubits. The optimal α moves away from α = 0 at a smaller
value of t f and P for s(c) than it does for s(n). There is also
more structure in the optimal α line (black dashes) for s(c)

than for s(n), with a range of α values that are optimal for more
than one value of P. Otherwise, the two behave quite similarly
for these small sizes, suggesting that both s(c) and s(n) are
able to provide a quantum speedup for hybrid protocols. To
confirm this in general, not just for small n, further analysis
and simulations of larger systems are required, which we
tackle in the following sections.

C. Performance of hybrid algorithms

Our strategy for analyzing the scaling of the hybrid quan-
tum search algorithms is to show that the performance is
dominated by a single, low-energy, avoided crossing (see
Fig. 1), which is present at the same position in all our hybrid
algorithms. We then show that the essential features of the
behavior are captured by a simple two-state single-avoided-
crossing model which all the hybrid algorithms map to in
the large-size limit. For this simple avoided-crossing model
we can easily show that the hybrid algorithms all provide an
optimal quantum speedup. It then follows that our full-size
hybrid algorithms have the same asymptotic scaling.

We first consider the end points of the interpolation, QW
and AQC searches. For the AQC search, the optimal schedule
s(c)(τ ) or s(n)(τ ) is derived directly from the functional form
of the lowest avoided crossing, ensuring that the Hamiltonian
is changed slowly enough to avoid transitions to higher-energy
levels. We only need to show that the low-energy structure of
the Hamiltonian is dominated by a single avoided crossing
throughout the process. This is shown numerically in Fig. 8.
The width w(n) of the avoided crossing decreases rapidly
with n. Even for a modest size of n = 50 qubits, the switch
from 95% overlap with the hypercube Hamiltonian ground
state to 95% overlap with the marked state occurs in less
than 10−6 of the total dynamic range of the protocol, which
runs from s(τ ) = 0 to s(τ ) = 1.1 In contrast, for the QW
search, transitions to higher-energy levels are a necessary part
of the evolution to the marked state, so we need to determine
the scaling of several related quantities to show that a single
avoided crossing dominates in determining the behavior.

D. Minimum gap scaling in the QW search

For the QW search, to show numerically that the lowest
avoided crossing is the only relevant feature in the large-N
limit, we must demonstrate two things: first, that the minimum
gap gmin = (E1 − E0) between the ground state and the first

1While the dynamical range w(n) = 
s(τ ) in which the state
rotates between the two nearly orthogonal states |ψinit〉 and |m〉
becomes exponentially small, the total runtime t f ∼ √

N = exp(n/2)
grows even more quickly, so the time taken w(n)/t f increases
with n.
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FIG. 8. Optimal schedule s(τ ) scaled by 1 + 1/n against the
number of qubits n for 90% [blue (dark gray) lines], 93% [red (light
gray) lines], 95% [green (medium gray) lines] overlap of |ψ (t )〉 with
|m〉 (solid lines) and with |ψinit〉 (dot-dashed lines). Magenta stars
are the transition point, the value of s(τ ) when the minimum gap
gmin occurs. The left inset shows gmin = min(E1 − E0) (lower black
stars) and min(E2 − E0 ) [upper red (light gray) stars]. Energy units
are given by Eq. (25). The right inset shows the width of the transition
w(n) = 
s(τ ), the difference between solid and dot-dashed curves
of the same color in the main figure. The data were calculated using
the AQC search hypercube Hamiltonian mapped to the line (see
Appendix B).

excited state becomes much smaller than the minimum gap
between the ground state and the second excited state, and
second, that the lowest avoided level crossing, where g(τ ) =
gmin, dominates the transition between the ground state of
the hypercube Hamiltonian Ĥ (h)

0 and the ground state of the
marked state Hamiltonian ĤP and becomes more dominant
as system size increases. Noting that, as illustrated in Fig. 4,
around the minimum gap, where all the schedules cross, we
have 1 − s(τ ) 
 γ (h)

o , Fig. 8 shows that both of these do in
fact occur. The left inset shows that at the avoided crossing,
the gap between the ground state and first excited state shrinks
exponentially faster in n than the gap between the ground state
and second excited state. The main figure and right inset of
Fig. 8 show how the transition between the two ground states
becomes dominated by the dynamics at gmin as n increases.

For a pure quantum-walk search, this convergence to be-
havior dominated by a single avoided crossing can be seen
in Fig. 9, which shows not only that does the search success
probability P approach one in the large system limit, but also
that the time evolution of P (shown in the inset) approaches
the functional form for the single avoided crossing P(τ ) =
sin2(gmint f /2). The nonsinusoidal shapes of these curves at
low qubit number are due to the influence of excited states
higher than the first exited state. These small-size effects are
clearly significant up to about n = 12 qubits. This highlights
the potentially atypical nature of the five- and eight-qubit
examples in Sec. IV B and the importance of examining larger
system sizes. For n > 12, the probability P smoothly ap-
proaches one, although relatively slowly (polynomially) as a
function of n. Based on the data in Table I, we can deduce that
this effect relates to the fact that the overlap of the manifold

FIG. 9. Search success probability P at the first peak for a
quantum-walk search against qubit number n up to n = 50. The inset
shows the rescaled offset plot of P against t starting at the bottom
with n = 5 qubits and going to n = 20. The data were calculated
using the hypercube QW search mapped to the line.

where the avoided crossing takes place with the marked state
only approaches one polynomially in n (logarithmically in N).

Since states of higher energy than the first excited state
play very little role in the QW-search dynamics for larger
systems, we can approximate the probability that the marked
state can be reached using only the manifold T = {|E0〉, |E1〉}
of ground and first excited states of the full search Hamil-
tonian Ĥ (h)

QWS. This can be upper bounded by considering the
probability that the dynamics transfers as much as possible of
|ψinit〉 into T and then optimally aligns the system state with
|m〉 without leaving T . Using P̂T = |E0〉〈E0| + |E1〉〈E1|, the
projector onto T , this can be shown to be given by the product
of the sums of the overlaps

P(QW)
max = |P̂T |ψinit〉|2 × |P̂T |m〉|2

= (|〈ψinit|E0〉|2 + |〈ψinit|E1〉|2)

× (|〈E0|m〉|2 + |〈E1|m〉|2), (32)

when single-avoided-crossing behavior dominates.
Figure 10 shows how P(QW)

max approaches one as n increases,
by plotting the difference from one on a logarithmic or log-
log scale. Figure 10(b) shows that P(QW)

max → 1 only happens
relatively slowly, with a polynomial scaling in n and therefore
logarithmic in N . By plotting the first overlap in Eq. (32)
separately, Fig. 10(a) shows that the overlap of |ψinit〉 with
|E0〉 and |E1〉 rapidly approaches one. Hence, the scaling of
P(QW)

max shown in Fig. 10(b) is dominated by the overlap of the
marked state with the lowest-energy states |E0〉 and |E1〉 at
the gap. We can quantify how slowly P approaches one by
doing numerical fits to determine the scaling of the relevant
quantities; these are summarized in Table I. In particular, we
note that γ (h)

o only approaches 1/n linearly in n, consistent
with the analytical results in Ref. [30].

The fact that P(QW)
max → 1 suggests that the optimal proto-

col for all success probabilities should approach a quantum
walk (α = 0) for large system size, because a quantum walk
does not slow down at the minimum gap like AQC does.
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(a) (b)

(c)

FIG. 10. Scaling of various quantities related to QW searching:
(a) difference from one of the overlap of |ψinit〉 with |E0〉 and |E1〉
against number of qubits n, (b) difference from one of the marked
state with |E0〉 and |E1〉 (stars) and P(QWS)

max (squares) against n, and (c)
γ (h)

o − 1/n versus n. Red solid lines are numerical fits, summarized
in Table I. Data were calculated using the hypercube QW search
mapped to the line.

However, P(QW)
max → 1 only happens relatively slowly: The

maximum P(QW)
max which a QW search obtains only reaches

99% by around 100 qubits. Brute force classical techniques
will become computationally nontrivial beyond around 30
bits, where P(QW)

max ≈ 95%. The finite-size effects we study
here are thus relevant to real-world applications.

E. Single-avoided-crossing model

We have shown that a single avoided crossing dominates
for large N for both QW and AQC search algorithms on
the hypercube. Dominance of a single avoided crossing is
the method used to solve analytically for all Hamiltonian-
based quantum search algorithms treated to date, including
the complete graph [21] and Cartesian lattices (which provide
a quantum speedup for d � 4 dimensions) [30]. It is also
the typical behavior for a broad class of random search
graphs [31]. We now introduce a simple, two-state, single-
avoided-crossing model for quantum search which provides
the quadratic quantum speedup. We will then show how all of
our hybrid protocols can be mapped onto it.

There are several ways to parametrize a two-state single-
avoided-crossing model. If we designate the marked state
to be the |0〉 state of a qubit, this will be the end point of
the schedule. The initial state needs to be orthogonal to |0〉,
i.e., it has to be |1〉. These two states are the lowest-energy
eigenstates of 1

2 (1 + σ̂z ) and 1
2 (1 − σ̂z ), respectively, where

the factor of 1
2 makes the eigenenergies zero and one in

our units. We also need a hopping Hamiltonian term σ̂x to
drive transitions between |1〉 and |0〉. The relative strength
of the hopping Hamiltonian is gmin, the minimum gap at the
avoided crossing. The single-avoided-crossing AQC search
Hamiltonian is

Ĥ (AC)(s) = (1 − s)Ĥ (AC)
0 + sĤ (AC)

p

= (1 − s)
{

1
2 (1 + σ̂z ) − gminσ̂x

} + s 1
2 (1 − σ̂z ).

(33)

The initial state |1〉 is only an approximate eigenstate of Ĥ (AC)
0 ,

but the approximation improves as gmin decreases. Solving the
eigensystem for this Hamiltonian gives

g(AC)(s) = {
(1 − 2s)2 + 4g2

min(1 − s)2
}1/2

(34)

for the gap between the two energy levels. In the limit of small
gmin the minimum gap is gmin and occurs for s = 1

2 . We can
then apply the method of [21] to find the optimal schedule
s(t ) for this system. Calculating dĤ/ds, we find

dĤ

ds

(AC)

= −σ̂z + gminσ̂x, (35)

giving a maximum value of one2 for |〈 dĤ (AC )
ds 〉0,1| in the large-

size limit. Using Eq. (20) to find the optimal schedule, we
need to solve

ds

dt
= ε[g(AC)(s)]2∣∣〈 dĤAC

ds

〉
0,1

∣∣ = ε
{
(1 − 2s)2 + 4g2

min(1 − s)2
}
, (36)

where the maximum value is used for |〈 dĤ (AC )
ds 〉0,1|. This can

be integrated straightforwardly to give

arctan

{
2gmin(s − 1) + 2s − 1

gmin

}
= 2gminεt + c, (37)

with

c = − arctan

{
2gmin + 1

gmin

}
. (38)

From this we find for s = 1 that the runtime t (AC)
f is given by

εt (AC)
f =

π
2 − arctan(gmin)

gmin

 π

2gmin
− 1, (39)

where the approximate expression uses arctan(1/gmin) 
 π
2 −

gmin for gmin � 1 and terms of order g2
min have been dropped.

The runtime of the optimal schedule thus depends inversely
on the size of the minimum gap, as expected. Solving for s(t )
and dropping terms of order g2

min gives

s(t ) 
 1
2 {1 − gmin cot[gmin(2εt + 1)]}. (40)

In this limit where gmin � 1, an equivalent way to
parametrize Ĥ (AC) is

Ĥ (AC) = gmin

2
[ f (t )σ̂z − σ̂x], (41)

where −∞ < f (t ) < ∞. This form is obtained by taking
(1 − 2s(t ))/gmin → f (t ) and shifting the zero point of the
energy scale to the middle of the avoided crossing. As f (t )
changes from −∞ to ∞ it passes through zero as the sign of
the σ̂z term changes, when the σ̂x term drives the transition
from |1〉 to |0〉. Although the σ̂x term is no longer turned off at
the end of the schedule, it becomes negligible in comparison
to the σ̂z term and does not significantly alter the dynamics.
This can be intuitively thought of as scaling all features of
Ĥ (AC) other than the avoided crossing to ±∞.

2Strictly the maximum value is
√

1 + g2
min = 1 + O(g2

min), however
this correction simply modifies ε in what follows and disappears
altogether when terms of order g2

min are dropped.
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FIG. 11. Probability P of finding the marked state versus runtime
t f and interpolation parameter α for the single-avoided-crossing
model. White contours show success probability P = 0.9 (solid line),
P = 0.99 (dashed line), and P = 0.999 (dotted line).

The QW form of the single-avoided-crossing search
Hamiltonian is also simple to analyze. We deduce the optimal
value of γo = 1 from the value of s = 1

2 at the avoided cross-
ing. We then use Eqs. (28) in which βo = 1/(1 + γo) = 1

2 ,
whence

ĤAC
(QWS) = (1 − βo)Ĥ (AC)

0 + βoĤ (AC)
p

= 1
2

{
1
2 (1 + σ̂z ) − gminσ̂x + 1

2 (1 − σ̂z )
}

= 1
2 (1 − gminσ̂x ). (42)

The σ̂x term causes deterministic transitions between the two
states regardless of their energies, at a rate determined by
gmin. By solving for the dynamics, the time for the input state
|1〉 to evolve to the marked state |0〉 can be shown to be
t (QW)

f = π/gmin.
We can now map between QW and AQC in the avoided-

crossing model using Eqs. (30) for A(α, β, τ ) and B(α, β, τ ).
Using β = 1

2 = 1/(1 + γo), for s(t ) from Eq. (40) we have
hybrid schedules

AAC(α, t ) = 1 − s(t )

α + 2(1 − α)[1 − s(t )]
,

BAC(α, t ) = s(t )

α + 2(1 − α)s(t )
. (43)

We can easily show numerically that all the hybrid algorithms
defined by Eqs. (43) find the marked state with high proba-
bility (given by ε) in a runtime �εt (AC)

f given by Eq. (39),
the runtime required by the optimal AQC s(t ) used to define
the hybrid schedules. Figure 11 shows this is indeed the case.
The white contours highlight the difference between the pure
QW search, which succeeds with certainty, and the AQC and
hybrid algorithms, which always have a probability of error ε2

that can be traded against the runtime t f . The shallow upward
curve of these contours towards the AQC end of the hybrid
protocols shows in what sense the QW search is better than
AQC in the large-size limit.

The hybrid algorithms on the full hypercube map onto the
hybrid single-avoided-crossing-model algorithms for large n.

(a)

(b)

FIG. 12. (a) Value of interpolation parameter α giving the short-
est runtime for a fixed success probability P for a single search,
using numerically calculated optimal schedules s(n) for hypercube
dimensions (listed from the top line to the bottom line): n = 12
(red), n = 14 (green), n = 16 (blue), n = 18 (magenta), and n =
20 (black). (b) Normalized runtime versus P for α and hypercube
dimension corresponding to (a) (solid lines, same ordering). Dashed
lines show the single-avoided-crossing model (large-N limit) for
t f = gmin/π , the time at which a quantum walk reaches a success
probability of one (red), the time for the quantum walk to reach P
(blue), and the time for AQC to reach P (black).

This follows from the solution methods for the end points,
QW and AQC searching, which all use the two-level approx-
imation to prove the quadratic speedup. Since the full hyper-
cube hybrid algorithms are defined from these in the same way
as the single-avoided-crossing-model hybrid algorithms are
defined, the hybrid algorithms also map to the corresponding
single-avoided-crossing hybrid algorithm. They therefore also
obtain the quantum speedup for large n, which is what we set
out to show.

F. Optimal hybrid algorithm for a single run

Having shown that hybrid protocols between QW and AQC
searching maintain the quadratic quantum speedup, the next
question is how to optimize over this continuum of hybrid
schedules for finite-size systems. The single-avoided-crossing
model gives the large-size limit in which QW protocol is
the optimal strategy. However, this limit is only reached in
a polynomial scaling with n, as described in Sec. IV D.

For a single run of a search algorithm, we can trade off
between the magnitude of the success probability and the
runtime of the search. For QW searches, there is a maximum
probability P(QW)

max that can be obtained; shorter runtimes reach
lower success probabilities and so do longer runtimes. For
AQC searches a longer runtime always reaches a higher suc-
cess probability. We can thus specify the success probability
we require and ask which hybrid algorithm attains this success
probability with the shortest runtime. We consider multiple
run strategies in Sec. V.

As Fig. 12(a) illustrates for sizes from n = 12 to n = 20,
the optimal protocol jumps from QW to hybrid at P ≈ P(QW)

max
and the optimal hybrid strategy it jumps to becomes more
QW-like (smaller α) as the system size increases. As P is
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increased further, the optimal hybrid strategy becomes
steadily more AQC-like (larger α). Figure 12(b) shows that
the hybrid strategies require runtimes t f larger than gmin/π to
achieve higher success probabilities in a single run.

V. MULTIPLE RUNS FOR ONE SEARCH

In the previous sections we derived hybrid search Hamilto-
nians for the hypercube and studied their dynamics. However,
this does not yet give us a full picture of the relative usefulness
of the different dynamics. In this section we study the relative
performance of the different searches when we allow for the
possibility of multiple searches and when the system suffers
from decohering interactions with its environment.

A. Motivation

In a realistic setting of the search problem we can easily
check whether the result of a search is the correct answer or
not. Hence, we must consider not only single-run strategies,
but also multirun strategies, where the success probability
is defined as the probability of succeeding in at least one
of several runs. In the context of a quantum search on the
hypercube, we measure which site of the hypercube our state
is on and then determine the energy of this state with respect
to the search Hamiltonian. If this energy is zero, then we
have found the state we are looking for; otherwise we should
reinitialize and run the search again. However, we also need
to account for a nonzero initialization time tinit associated
with each run of the search. Such an initialization time is
mathematically as well as physically necessary. The fidelity
between the initial state and marked state |〈ψinit|m〉|2 = 1

N
is nonzero. An arbitrarily short run is equivalent to making
a random guess. Therefore, without an additional penalty
per run, it would be possible to guess an arbitrarily large
number of times for free, thus finding the marked state in a
total arbitrarily short time. Any physical device will take a
significant amount of time both to setup the initial state and
to measure the final state. For the purposes of our study, the
effects on the total search time of initialization and readout
times are the same, therefore the quantity we call tinit should
be taken to include all of the time associated with a single
run other than the actual runtime of the algorithm t f , i.e., as
including both initialization and measurement.

B. Multiple-run searching

As examples, we consider n = 12 and 14 qubits using
the numerically calculated optimal strategy s(n). Referring to
Fig. 9, n = 12 still shows finite-size effects, while n = 14
is just into the smoothly scaling regime. We find for chosen
success probabilities in the range 0.95–0.99 that the optimal
strategy depends on both tinit and Ptarget as shown in Fig. 13.
For the range of tinit we examine, both sizes show a transition
from a single run able to reach the required success probability
to a region requiring two runs. The single runs are hybrid,
becoming progressively more AQC-like as the required proba-
bility increases. At the point where two runs can do better than
one AQC run, the two-run strategy is much closer to quantum
walk, but becomes progressively more hybrid as the target
success probability increases further. Finite-size effects are

(a) (b)

(c)

(d)

FIG. 13. (a) and (b) Optimal α and (c) and (d) optimal number
of runs r for the numerically optimized strategy s(n) with (a) and (c)
n = 12 and (b) and (d) n = 14 qubits versus tinit and search success
probability P. Here tinit is in inverse energy units, the same as t f in
other figures.

visible for n = 12 in the nonmonotonic shape of the boundary
between one run and two runs in Figs. 13(a) and 13(c). For
smaller n < 12, these effects become more complicated; there
is no single best strategy for a small search space. Indeed,
we also found that the optimal strategy changes significantly
when any of the parameters are varied. The complexity in the
optimal search strategy for small n is because the two-level
approximation does not hold well in this regime and interac-
tions with higher excited states have a non-negligible effect.
This suggests that a similarly complex situation will likely
be present in more sophisticated optimization Hamiltonians,
whenever a two-level approximation is not valid.

C. Noisy quantum searching

Another realistic situation where multiple runs can be help-
ful is when there is a significant level of unwanted decoher-
ence or other forms of noise acting on the quantum hardware.
In this case, shorter runs that end before decoherence effects
are too strong, but consequently have lower success probabil-
ities and hence need more repeats, may be able to maintain a
quantum speedup. Decoherence effects on the different AQC
and QW mechanisms are analyzed in more detail in related
work and the effects of noise in AQC search have been studied
in [44,45]. Here we focus on hybrid algorithms and the extra
options these provide for optimizing the search.

We choose a simple model of decoherence by adding a
Lindblad term to the von Neumann equation for the system
density operator ρ̂(t ),

∂ρ̂(t )

∂t
= − i

h̄
[Ĥ (t ), ρ̂(t )] + κP[ρ̂(t )], (44)

where Ĥ (t ) is the search Hamiltonian and κP[ρ(t )] is a
decoherence term tuned by a rate κ . We choose a form
for P that uniformly reduces the coherences between states
corresponding to vertices of the hypercube (the computational
basis). This type of decoherence has been well studied in the
context of quantum walks [46–48] and, for high decoherence
rate κ � γ , can be thought of as continuous measurement in
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FIG. 14. Shaded regions show the fastest protocol: QW (blue),
AQC (red), hybrid advantage (yellow), and not achievable in a single
run (black). The maximum success probability P is shown as dashed
lines in matching colors versus decoherence rate κ for n = 7. The
insets show, from left to right, P against reduced time τ for the QW
(blue line), the AQC (red line), and the optimal hybrid strategy (thin
black line) for κ = 0, 0.0385 (vertical dotted line), and 0.075.

the search space resulting in a quantum Zeno effect [49]. It is
equivalent to coupling with an infinite-temperature bath.

Since we now have five parameters to optimize over for
a given search size n (P, t f , α, κ , and number of runs r),
we first consider single-run searches with success probability
P(t f , α, κ ). This is the final success probability of a hybrid
search specified by α of duration t f in the decoherence
model of Eq. (44) with decoherence rate κ . We simulate the
searches for durations 0 � t f � 200 and define the search
duration to that maximizes P for a particular choice of α and
κ . We also define αo as the value of α which maximizes
P(to, κ, α), which corresponds to the search that reaches
the highest success probability for a given decoherence rate
κ . Note that, for computational reasons, we limit α to the
values 0.0, 0.1, 0.2, . . . , 0.9, 1.0 when performing the max-
imizations; intermediate values are of course possible.

We begin by looking at how the instantaneous success
probability P(t ) = 〈m|ρ(t )|m〉 evolves during a search, where
m denotes the marked site. Inset in Fig. 14 are plots of the
evolution of P during a search over a seven-qubit hypercube
graph for varying decoherence rates κ , in terms of reduced
time τ = t/t f , for a t f that shows the first peak of the QW
search. The broad effect of the decoherence is to reduce the
instantaneous success probability towards a value of 1/N ,
equivalent to classical guessing. The QW, AQC, and hybrid
search algorithms retain their characteristics up to an overall
decoherence damping, which is independent of α. As can be
seen for the κ = 0 subplot (left) in Fig. 14, the QW search
spreads out more quickly over the search space and therefore
exhibits a more rapid initial increase in P. On the other hand,
AQC searching can reach higher values of P for sufficiently
small values of κ , albeit at later times

Figure 14 shows which is fastest out of individual QW,
AQC, and hybrid searches for a single search, for a given
value of κ and of P: from AQC through to the hybrid when
maximal success probability is required, with the QW search
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(a)

(b)

FIG. 15. Quantum searching on the n = 7 hypercube for the QW
[red (medium gray)], the AQC [blue (dark gray)], and the hybrid
search which yields the maximum P [orange (light gray)] given
by αo. (a) Search time to, which maximizes P versus κ . The first
data point (not shown) for the AQC and αo series exceeds t f = 200,
the upper limit of search times sampled. (b) Search probability
P(t f , α, κ ) versus decoherence rate κ maximized over search times
0 � t f � 200 (left axis). The value of αo changes as κ varies (black,
right axis label). The α values sampled are 0.0, 0.1, . . . , 1.0. The
analytic expression (21) is used for the AQC schedule. Time and rate
units given are by Eq. (25).

performing best for slightly lower values of P. This indicates
a remarkably large range of situations where QW dynamics
is desirable, either as part of hybrid algorithms that hit the
highest success probabilities for all but the smallest decoher-
ence rates or alone in the form of a static Hamiltonian, if a
marginally smaller success probability can be tolerated.

Another way to compare the different searches under deco-
herence is to ask whether a QW, AQC, or hybrid search will
give the maximum possible success probability P for a given
value κ . Figure 15(b) shows how this maximum P varies for
the three cases, as well as the value of interpolation parameter
α(o) for the best-case hybrid search. For small values of κ ,
αo = 1, i.e., AQC gives the highest peak success probability.
As κ is increased, the highest-scoring search changes and αo

decreases monotonically, indicating hybrid searches perform
the best overall for intermediate levels of decoherence. In the
limit of very high decoherence we are in a quantum Zeno
effect regime which keeps the search in the initial superpo-
sition over all possible states. This means all searches will
succeed with the same probability P = |〈ψinit|m〉|2 = 1/N ,
equivalent to classical guessing. The usefulness of a search
is also determined by how quickly it can be performed, and so
the search time t f is shown in Fig. 15(a), showing that while
the QW search never has the highest success probability in the
range we examine, it can be substantially quicker. This helps
to explain why hybrid schedules take on more QW character
as κ is increased and soon begin to achieve higher success
probabilities than AQC in shorter search times.

Having characterized the effects of decoherence on a single
run, we now consider multiple-run search strategies where
each search is of the same duration t f . We define the optimal
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FIG. 16. Optimal hybrid search parameter αo and number of runs
ro for multiple-run searching on an n = 7 hypercube. The optimal
search is that which achieves the target success probability P in the
shortest total time r(tinit + t f ), where tinit and t f are the initialization
time and runtime, respectively. (a) and (b) Dependence on tinit and
decoherence rate κ when P is set equal to 0.95. The black indicates
the region of instantaneous measuring with t f = 0, where r = 382.
(c) and (d) Dependence on P and κ when tinit is set equal to 10. Plots
(a) and (c) show αo and (b) and (d) show ro. The analytic expression
(21) is used for the AQC schedule. Time and rate units are given by
Eq. (25).

annealing schedule as that which minimizes the time taken
to reach a given success probability, optimized over all equal
duration multiple-run hybrid search strategies, with durations
of individual searches in the range 0 < t f � 200. There are
three variables to optimize over: the success probability P, the
initialization time between searches tinit, and the decoherence
rate κ . We denote the number of runs by r, so the combined
search time is rt f , the combined initialization time is rtinit, and
the total time taken is r(t f + tinit ).

To make this multiple parameter optimization
tractable, we considered a discrete set of values for
α ∈ {0.0, 0.1, . . . , 0.9, 1.0} and then minimized the total
time r(t f + tinit ) while varying P, tinit, and κ . The results can
be seen for a seven-dimensional hypercube in Fig. 16, which
shows the optimal hybrid schedule α and number of runs
r taken by the best performing multiple-run hybrid search
algorithm, as a function of κ , tinit, and P.

There is a small threshold initialization time below which
the best strategy is to take multiple measurements of the
system state as soon as it is prepared at a small cost rtinit,
indicating that our device can do no better than classical
random guessing. Other than this threshold, there is little
dependence on initialization time. There is a broad tendency
towards AQC-like searches as P is increased, however for
larger values of κ an AQC search ceases to ever be optimal
and hybrid or QW searches are preferred. As κ is increased,
there is a localized trend for more AQC-like searches to
be optimal, however this is punctuated with discontinuous
changes to a more QW-like search. The reason for these
discontinuous changes can be seen in Figs. 16(b) and 16(d).

The boundaries where another run is required correspond
exactly to the regions where the optimal value of α suddenly
drops. This transition arises when the decoherence rate κ

and/or target success probability P have increased such that
the best performing strategy with r searches drops below
P, and another run is required. In this case the target can
be reached by r + 1 lower quality searches. This drop in
the quality required of the single search means that a faster
more QW-like search can be used to succeed and therefore
the optimal value of α drops.

Our numerical results for hybrid algorithms in the presence
of noise can be understood intuitively by considering how P
scales with a small amount of noise in the AQC and QW edge
cases. For noise rate κ per unit time, the success probability
for a single run reduces as P 
 exp(−κt f ), where t f is the
time taken for one run of the search algorithm. For P ∼ 1
we thus require κt f � 1, i.e., κ � 1/t f . For QW searching
on the hypercube, we have t (QW)

f 
 π
2

√
N , hence we obtain

κQW � 2/π
√

N for tolerable noise rates. For AQC, on the
other hand, from Eq. (24) we have t (AQC)

f 
 π
4ε

√
N for large N .

For high success probability, since P ∼ 1 − ε, the adiabatic
condition requires ε � 1 and we obtain κAQC � 4ε/π

√
N .

The extra factor of ε implies κAQC � κQW. Hence, the QW
search will be more robust to disturbance by noise, as we
have found numerically for the single-run case. For our n = 7
example, κQW � 0.056 and κAQC � 0.11ε = 0.011 for P =
0.99 and indeed we see in Fig. 14 that performance drops
below P = 0.5 for κQW � 0.025. However, when multiple
runs are included, hybrid strategies with significant adiabatic
character can still outperform the QW search, depending on
hardware characteristics determining the initialization and
measurement time required per run.

VI. PROBLEM MISSPECIFICATION

So far we have studied the dynamics of the hybrid search
Hamiltonians as part of single- and multiple-run algorithms
and in the presence of noise. In the following section we
consider misspecification of the problem, for which the dy-
namics remain coherent, but some parameters are changed in
unknown ways.

A. Motivation

Studying the effects of problem misspecification is particu-
larly relevant given the critical difficulties which many classi-
cal analog computing efforts have faced due to propagation of
errors [50]. Misspecifications can come about in a variety of
ways, such as limited precision for setting the controls in the
computer, ignorance of what the optimal parameters should
be, or noise which is at a much lower frequency than the
rate of the relevant quantum dynamics. An important example
of the latter is so-called 1

f noise in superconducting qubit
devices [51,52], such as the quantum annealers constructed
by D-Wave Systems Inc. It has been shown, for instance, that
such misspecifications can cause AQC to give an incorrect
solution on Ising spin systems [53,54] and it effectively limits
the maximum useful size of such devices. For an example of
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(a)

(b)

FIG. 17. (a) Probability P of finding the marked state versus
runtime and α for the single-avoided-crossing model, same as in
Fig. 11. (b) Same as in (a) with a 30% misspecification of the energy

gmin.

the effects of problem misspecification on a real experiment,
see [14].

For this work, we will consider simple misspecification
models in the large-system limit, where the Hamiltonian can
be mapped to a single avoided crossing in the form of Eq. (33)
or (41). For the purpose of studying problem misspecification,
it is most convenient to work with the form in Eq. (41), which
we use for the duration of this section. Because the initial
and marked states are orthogonal in this limit, considering
multiple runs which can be performed with negligible initial-
ization time is not mathematically pathological. Furthermore,
physically, we expect initialization and readout time to scale,
at worst, polynomially with n, while runtime will scale as√

N ∝ 2n/2. Therefore, in the large-N limit, it is a natural
physical assumption that t f � tinit. We first examine the effect
of having the size of the minimum gap be misspecified, so that
we do not know when to measure for QW protocols, and then
examine the effect of not knowing the position of the avoided
crossing, which will cause QW protocols to use the wrong
value of γ and AQC protocols to slow down at the wrong
point.

B. Error in gap size

The effect of misspecifying the size of the minimum gap
can be modeled as an uncertainty in the total energy scale

gmin, which is equivalent to a misspecification of the total
runtime t f through Eq. (41). The effect of uncertainty can be
modeled by performing a convolution of the success proba-
bility versus runtime with a distribution describing the uncer-
tainty. An example result of such a convolution is depicted in
Fig. 17(b). Assuming that the misspecification is distributed
in a Gaussian manner around the intended runtime, the new
success probability for a given anneal time t f and α becomes

P(t f , α,
gmin)

=
∫ ∞

−∞
dt ′

f

P(|t ′
f |, α)


gmin

√
2π

exp

{
− (t ′

f − t f )2

2(
gmint f )2

}
, (45)

(a)

(b)

FIG. 18. (a) Optimal value of α versus success probability P and

gmin from Eq. (45). (b) Number of repeats r in optimal strategy
versus P and 
gmin.

where 
gmin is the (unitless) fractional uncertainty in gmin and
the absolute value in the argument of P within the integral
is included to avoid negative time arguments. For reasonable
values of 
gmin, it will be rare for t ′

f < 0 and the effect of
taking the absolute value will be negligible.

Figure 17 shows how the evolution makes a smooth
transition between the characteristically sinusoidal behavior
of success probability versus runtime for a quantum walk
and the characteristically monotonic behavior of AQC. As
the comparison between the perfect and misspecified cases
demonstrates, gap misspecification causes a large reduction
in the success probability of QW protocols, but has almost
no effect on the monotonic AQC search. Figure 18 illustrates
that, for moderately high success probability and moderate
amounts of misspecification of 
gmin, the best protocol is no
longer a quantum walk, but lies in between the optimal AQC
schedule and a quantum walk. For large gap misspecification
where a high success probability is required, the best approach
is to run an intermediate strategy twice.

The reason that gap-size misspecification makes hybrid
protocols (α > 0) outperform QW protocols for a large range
of parameter space is because a quantum walk can only
succeed with a probability approaching one if t f gmin is an
odd multiple of π . The misspecification smears out these
peaks and implies that the success probability of a quantum
walk will not approach one for any value of t f . For protocols
with some adiabatic character, however, the maximum success
probability will still approach one as t f becomes larger, as
the adiabatic theorem holds for any finite gap. In cases where
the misspecification overstates the size of the gap the success
probability of AQC will actually improve.

C. Error in avoided-crossing location

Another type of problem misspecification is incorrectly
specifying the position of the avoided crossing. To model this,
we consider a modification of the problem Hamiltonian

Ĥ (AC)′(t, q) = Ĥ (AC)(t ) + q

2
gminσ̂z. (46)
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(a)

(b)

FIG. 19. (a) Optimal value of α versus success probability P and

q from Eq. (47). (b) Number of repeats r in optimal strategy versus
P and 
q.

This addition to the problem Hamiltonian provides a shift in
the avoided-crossing position f (t ) → f (t ) + q in Eq. (41).
Effectively introducing this shift causes the schedule to slow
down at the wrong point, reducing the success probability. As
we did for the case of gap mis-specification, we can model the
effect of this error as a convolution of the success probability
distribution with q with a Gaussian of width 
q. We define
the success probability with misspecified avoided-crossing
position as

P(t, α,
q) =
∫ ∞

−∞
dq

P(t, α, q)


q
√

2π
exp

(
− q2

2(
q)2

)
, (47)

where 
q is the (unitless) fractional uncertainty in q that con-
trols the degree of misspecification. Figure 19 illustrates that,
in contrast to gap misspecification, the best strategy is almost
always a quantum walk. Intermediate strategies only become
the superior method briefly, at the edge of the regime where
single runs are the best way to reach the desired probability.
At higher misspecification, multiple repeated quantum walks
become the best strategy.

Misspecification in the avoided-crossing position does sig-
nificant harm to both AQC and QW protocols. The success
probability of a QW protocol performed with an incorrectly
chosen γ does not approach one. Similarly, an AQC protocol
with a poorly chosen schedule will require a much longer
runtime for the success probability to approach one. The faster
runtime of the quantum walk then means it beats AQC for
multiple runs.

VII. SUMMARY AND OUTLOOK

In this paper we provided a detailed study of the scaling of
continuous-time quantum search algorithms on a hypercube
graph. Noting that both quantum-walk and adiabatic quan-
tum search algorithms can be expressed as two extremes of
quantum annealing schedules, we defined a family of quantum
search algorithms that are hybrids between QW and AQC
algorithms. By mapping the algorithms to a one-qubit single-

avoided-crossing model, we showed that the whole family
achieves the maximum possible

√
N quantum speedup. There

are a number of subtleties in the scaling behavior on the
hypercube that we treated in detail for short search times,
complementing the work by Weibe and Babcock [42] on long
timescales.

Our hybrid QW-AQC schedules are an example of the
advantages we gain by treating both a quantum walk and AQC
as part of the same method of continuous-time quantum com-
puting. We found that hybrid strategies intermediate between
a quantum walk and AQC provide the best quantum search
algorithm under a range of realistic conditions. The techniques
we used here can easily be extended to a hybrid quantum
search on other graphs and to other quantum-walk or adiabatic
quantum computing algorithms.

This work focused on the search problem due to its rela-
tive simplicity and the fact that annealing schedules can be
derived analytically, which we do for the hypercube graph in
Appendix A. The core ideas and methods are quite general
and can easily be extended to more complex and realistic
problems, such as a fixed-point search, where multiple states
are marked. Fixed-point search algorithms have been studied
in both the QW [55] and AQC [56] regimes, so interpolation
to generate hybrid algorithms should be straightforward. The
quantum-walk search on random graphs solved in [31] is
based on the same kind of single-avoided-crossing arguments
which appear in this work, meaning that these are also natural
for hybrid QW-AQC protocols.

Hybrid algorithms such as the ones we presented here
can be viewed as particular instances of quantum control
techniques applied to solving optimization and search prob-
lems. Another application of quantum control to quantum
algorithms is based on the Pontryagin minimum principle of
optimal control: that optimal control protocols for solving
these problems will follow a bang-bang scheme, with succes-
sive applications of the extreme values of the controls [57].
An algorithm based on such controls, called the quantum
approximate optimization algorithm (QAOA), was proposed
by Farhi et al. [58,59]. This protocol can be implemented
either through digital quantum circuits or by successively
applied Hamiltonians. It has been shown that the QAOA can
obtain an optimal

√
N scaling in solving the search problem

using a transverse field search unitary [60], essentially the
problem we consider in this paper.

However, there are two caveats worth noting in terms of the
optimality of QAOA-type bang-bang protocols. First, when
viewed as an application of successive Hamiltonians, these
protocols require infinitely fast switching time, which is gen-
erally unphysical. Second, while the optimal control scheme
to find the solution is mathematically always of a bang-
bang form, this solution may exhibit Fuller’s phenomenon
[61,62], in which the optimal solution involves switching
back and forth between the two extremal Hamiltonians an
infinite number of times in a finite-time window. While
mathematically valid, such a control scheme is clearly not
physically realizable. It is an open question what happens
to a Hamiltonian-based QAOA when finite switching time is
added as a constraint. Our result that intermediate protocols
between quantum-walk and adiabatic protocols are still able
to obtain an optimal speedup provide an encouraging sign
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that the QAOA may remain effective with realistic constraints
applied.

Recent studies by Muthukrishnan et al. [63,64] on a class
of permutation symmetric problems related to, but distinct
from, searching have found that, deep in the diabatic regime,
the problem can be solved by dynamics which are effectively
classical through diabatic cascades. Muthukrishnan et al.
focused only on changing the rate of evolution of an AQC
algorithm; in contrast, we examined both the shape of the
schedule and the rate of evolution. Furthermore, since all of
the qubits need to align to interact meaningfully with the
energy landscape of the search problem, it is unlikely that a
similar classical diabatic cascade regime exists in our study.

In addition to problem size, the performance of a quantum
search in a realistic setting will depend on many other factors.
By performing a fairly general and multifaceted analysis of
such factors, we uncover a landscape where no single protocol
dominates. In asymptotically large systems with perfectly
specified problems, a straightforward QW approach is best.
However, this limit is approached slowly, since the success
probability for QW scales only as n, i.e., logarithmically
in problem size N . A rich structure exists for computation-
ally interesting nonasymptotic sizes. On the other hand, for
asymptotically large systems with some degree of problem
misspecification, interpolated protocols can outperform the
QW approach. A simple open system analysis reveals another
layer of structure that can be exploited in realistic settings.
Application of these techniques to algorithms with useful ap-
plications which can be run on near-future quantum hardware
is left to future work [65].
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APPENDIX A: HYPERCUBE OPTIMAL SCHEDULE
CALCULATION

Starting from the Hamiltonian for the AQC search on a
hypercube (14),

Ĥ (s) = (1 − s)
n∑

j=1

1

2

(
1 − σ̂ ( j)

x

) + s(1 − |m〉〈m|),

we first apply a gauge transformation (a swap of the 1 ↔ 0
labels on a subset of the qubits) to map the marked state
|m〉 to the state |0〉. We then express the Hamiltonian in the
symmetric subspace in terms of total spin operators

Ŝa = 1

2

n∑
j=1

σ̂ ( j)
a (A1)

for a ∈ {x, y, z}, which have eigenstates | n
2 − r〉a for r ∈

{0, . . . , n}. In this representation, the marked state is | n
2 〉z and

the AQC search Hamiltonian becomes

Ĥ (s) = (1 − s)
(

n
2 − Ŝx

) + s
(
1 − ∣∣ n

2

〉
z

〈
n
2

∣∣). (A2)

Following Farhi et al. [34], to analyze the eigensystem we
obtain the eigenvalue equation

1 − s

s
= 1

N

n∑
r=0

(
n
r

)
1

r − λ
(A3)

for the energy eigenvalues Ek = s + (1 − s)λk . Farhi et al.
[34] solved this at the minimum gap, which occurs at s = sm

for

1 − sm

sm
= 1

N

n∑
r=1

(
n
r

)
1

r
≡ R1, (A4)

and showed that λ
(gmin)
1,0 
 ±n/2

√
N for the two lowest eigen-

values corresponding to the ground state E0 and first excited
state E1.

To obtain the optimal schedule following the method in
Roland and Cerf [21], we need an expression for the gap as
a function of s(t ), not just at the minimum gap. We expand
the eigenvalue equation (A3) for λ � 1,

1 − s

s
= −1

Nλ
+ 1

N

n∑
r=1

(
n
r

)
1

r
(1 + λ/r) + O(λ2). (A5)

Using R1 and R2 from Eqs. (10), (A4), and (23), we obtain

1 − s

s
= −1

Nλ
+ R1 + λR2. (A6)

This quadratic equation in λ has roots

λ = 1

2R2

{
1 − s

s
− R1

}

± 1

2

{
1

R2
2

(
1 − s

s
− R1

)2

+ 4

NR2

}1/2

(A7)

and gives, for the gap g(s) = (1 − s)(λ1 − λ0),

g(s) = (1 − s)

{
1

R2
2

(
1 − s

s
− R1

)2

+ 4

NR2

}1/2

. (A8)

To optimize the schedule, we need to solve Eq. (16),

∣∣∣∣ds

dt

∣∣∣∣ � ε
g2(s)∣∣〈 dĤ
ds

〉
0,1

∣∣ ,
using the expression for g(s) in Eq. (A8). To obtain a suitable
approximate value for 〈 dĤ

ds 〉0,1, we first calculate dĤ
ds in the

symmetric subspace representation of Eq. (A2),

dĤ

ds
= −

(n

2
− Ŝx

)
+

(
1 −

∣∣∣n

2

〉
z

〈n

2

∣∣∣). (A9)
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It is sufficient to use the maximum value of 〈 dĤ
ds 〉0,1, which

occurs at sm, where the eigenstates |E1,0〉 
 (| n
2 〉x ± | n

2 〉z )/
√

2,

giving 〈 dĤ
ds 〉(max)

0,1 � n
4 . We then have the following equation to

solve for s(t ):

ds

dt
= 4ε

nR2
2

(1 − s)2

{(
1 − s

s
− R1

)2

+ 4R2

N

}
. (A10)

This can be integrated to obtain

4εt

nR2
2

+ c = R2
1 − 4R2/N

2
√

R2/N
(
R2

1 + 4R2/N
)2

× arctan

{
[(1 + R1)2 + 4R2/N]s − (1 + R1)

2
√

R2/N

}

+ 1

(1 − s)
(
R2

1 + 4R2/N
)

+ R1(
R2

1 + 4R2/N
)2 ln

{
(1 − s − R1s)2 + 4R2

N s2

(1 − s)2

}
,

(A11)

where c is the constant of integration. To obtain the constant,
set s = t = 0, giving

c′ = arctan

{
(1 + R1)

√
N

2
√

R2

}
+ R2

1 + 4R2/N

R2
1 − 4R2/N

2
√

R2√
N

, (A12)

where the factors in front of the arctan term have been
rearranged to give a more convenient form for the constant.
One can then in principle solve for s(t ). However, the terms
on the right-hand side, apart from the arctan, are potentially
problematic as s → 1. Given that we started with the approx-
imation λ � 1, which occurs at the position of the minimum
gap, we cannot necessarily expect that the solution will be
valid for s → 1. We first note that taking only the arctan term
on the right-hand side gives a schedule that is valid for all
0 � s � 1 and it provides a runtime proportional to

√
N . If

we do not discard these extra terms, we can show that they
can be neglected, provided we stop the anneal very slightly
before s = 1, but still well past the minimum gap.

To solve for s(t ) retaining the full expression, invert the
arctan to give

s(t ) = 2
√

R2√
N{(1 + R1)2 + 4R2/N}

× tan

{
8εt

√
R2

nR2
2

√
N

R2
1 + 4R2/N

R2
1 − 4R2/N

− c′′
}

+ 1 + R1

(1 + R1)2 + 4R2/N
, (A13)

where c′′ now contains the awkward extra terms

c′′ = c′ − 1

(1 − s)

R2
1 + 4R2/N

R2
1 − 4R2/N

2
√

R2√
N

− R1

R2
1 − 4R2/N

2
√

R2√
N

ln

{
(1 − s − R1s)2 + 4R2

N s2

(1 − s)2

}

= arctan

{
(1 + R1)

√
N

2
√

R2

}
+ s

(1 − s)

R2
1 + 4R2/N

R2
1 − 4R2/N

2
√

R2√
N

− R1

R2
1 − 4R2/N

2
√

R2√
N

ln

{
(1 − s − R1s)2 + 4R2

N s2

(1 − s)2

}
.

(A14)

The arctan argument is large, so the arctan is close to π/2.
We note that the extra terms are small for most values of s
and only become large as s → 1. To check when these terms
become O(1), for the first extra term we solve

s

1 − s

R2
1 + 4R2/N

R2
1 − 4R2/N

2
√

R2√
N


 1 (A15)

to obtain

s 
 1

1 + 2
√

R2/N

 1

1 + 4/n
√

N
. (A16)

This is well past the minimum gap, which occurs at s =
1/(1 + R1) 
 1/(1 + 2/n). Applying the same procedure to
the second extra term gives, to leading order,

s 
 1 − e−√
N/4, (A17)

which is even closer to s = 1 and further from the minimum
gap. Since the transition probabilities are only significant
close to the minimum gap and hence all the important slowing
down of the schedule occurs around the gap, what happens
this close to s = 1 has essentially no effect on the success or
runtime of the algorithm.

Dropping the extra terms from the solution provides an
expression for s(t ),

s(t ) = 2
√

R2√
N (1 + R1)2

tan

{
8ε

√
R2R2

1t

n
√

NR2
2

− c′′′
}

+ 1

1 + R1
,

(A18)

where we have also dropped terms O(1/N ) and

c′′′ = arctan

{
(1 + R1)

√
N

2
√

R2

}
. (A19)

Strictly speaking, this is valid for s � 1
1+4/n

√
N

, although in
fact it is well behaved right up to and including s = 1. From
this we can obtain the runtime

εt f 
 π
√

N

4
, (A20)

where the two arctan terms have each been approximated by
π/2, since their arguments are large, O(

√
N ).

APPENDIX B: NUMERICAL METHODS

Our numerical calculations were carried out using the
PYTHON programming language (both PYTHON 2.7 and
PYTHON 3.5), making considerable use of the NUMPY, SCIPY,
and MATPLOTLIB packages [66–69]. High performance com-
puting resources were not used in this study, although some
of the simulations took several days to run on standard
desktop workstations. Most of the simulations consisted of
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solving the time evolution of the quantum search algorithm
by numerically integrating the Schrödinger equation using
the appropriate Hamiltonian. This was done by diagonaliz-
ing the Hamiltonian and exponentiating it in the diagonal
basis, before applying it to the wave function. This process
was iterated for time-dependent Hamiltonians, rotating from
one instantaneous diagonal basis to the next at small time
intervals. For the decoherence studies in Sec. V C, the same
process was applied to the density matrix, with dephasing
operators also applied along with the unitary time evolution.

For larger simulations, we can take advantage of the sym-
metry in the hypercube to map the dynamics to a search on the
line with appropriately weighted edges, as given by Eq. (A2).
Provided the initial state is also invariant with respect this
symmetry, the evolution will be restricted to this symmetric
subspace. This allows us to perform simulations for much
larger numbers of qubits n � 100 and hence extract reliable
information about the scaling with n from numerics alone.
This provides important checks of the validity of the two-level
approximations made to facilitate the analytical calculations.

Optimal AQC schedules s(n)(τ ) were calculated numer-
ically as solutions of Eq. (20), both to check the analyti-
cal solutions for the hypercube and because we can solve
numerically with fewer approximations than are required to
obtain analytical expressions. Specifically, we calculate the
gap g(s) directly from the Hamiltonian eigensystem, rather
than expanding about gmin as was done in Appendix A.
However, we do make the same approximation in the analytics
and numerics by using the maximum value of n

4 for 〈 dĤ
ds 〉0,1

obtained in Appendix A. For the hypercube, the matrix which
describes these systems is (n + 1) × (n + 1), even after taking
advantage of symmetry by mapping to a line. A Hermitian 2 ×
2 matrix can always be diagonalized analytically by finding
the roots of the characteristic polynomial, as was done in [21].
For larger matrices this is no longer feasible, nor generally
possible if the matrix is bigger than 4 × 4. Fortunately, the gap
g(s) can easily be calculated numerically using the iterative
eigensolution modules in NUMPY [67] and we are thence
able to iteratively solve | ds

dt | = ε4g2(s)/n. We first define a
normalized function

F (s) =
∫ s

0
ds′ 1

εg2(s′)

[∫ 1

0
ds′ 1

εg2(s′)

]−1

, (B1)

where s is a function of the reduced time τ . To obtain s(τ ),
we need to invert this function, s(τ ) = F−1(τ ). The following
method accomplishes this.

Deliberately using a programminglike notation, we define
τLIST to be a linearly spaced list of points between τ = 0 and
τ = 1 and sLIST to be a list of the corresponding values of
s(τ ), obtained by applying F−1(τ ) to each element of τLIST.
Defining j(s) equal to the number of elements in sLIST which
are strictly less than s, we approximate F (s) numerically by
F̃ (s), where we replace the integral by a finite sum plus linear
interpolation. Writing s̃ j = 1

2 [sLIST( j(s)) + sLIST( j(s) + 1)],

F̃ (s) =
j(s)∑
j′=1

sLIST( j′ + 1) − sLIST( j′)
Ng2(s̃ j′ )

+ s − sLIST( j(s))
Ng2(s̃ j )

, (B2)

where N is a normalization factor which is included to ensure
that F̂ (s = 1) = 1. It is straightforward to numerically invert
F̂ (s). This can be accomplished by first finding jmax(s), the
largest value of j(s) for which F̂ (s) < τ , and then solving

F̂ (s)| j(s)= jmax(s) = τ (B3)

for s. Based on this numerical function inversion, we define
an iterative method of converging on the solution for s(n)(τ ).

(i) Set a linearly spaced sLIST ∈ [0, 1] and τLIST ∈ [0, 1]
each with the same number of elements.

(ii) Using the values of s in sLIST, apply F̂−1(τ ) to each
corresponding element in τLIST to generate a new sLIST

(iii) Repeat step (ii), with the new sLIST as input, until it
has converged

The advantage of this iterative method is that, at each itera-
tion, more points in sLIST will concentrate in areas where 1/g2

is larger, for instance, near the dominant avoided crossing. By
using the previously calculated sLIST as a mesh in the current
iteration, the protocol can continuously improve the quality of
the numerical inverse with a fixed number of points in sLIST.
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