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Abstract

Background: For many infectious conditions, the optimal antibiotic course length remains unclear. The estimation
of course length must consider the important trade-off between maximising short- and long-term efficacy and
minimising antibiotic resistance and toxicity.

Main body: Evidence on optimal treatment durations should come from randomised controlled trials. However,
most antibiotic randomised controlled trials compare two arbitrarily chosen durations. We argue that alternative
trial designs, which allow allocation of patients to multiple different treatment durations, are needed to better
identify optimal antibiotic durations. There are important considerations when deciding which design is most
useful in identifying optimal treatment durations, including the ability to model the duration–response relationship
(or duration–response ‘curve’), the risk of allocation concealment bias, statistical efficiency, the possibility to rapidly
drop arms that are clearly inferior, and the possibility of modelling the trade-off between multiple competing
outcomes.

Conclusion: Multi-arm designs modelling duration–response curves with the possibility to drop inferior arms
during the trial could provide more information about the optimal duration of antibiotic therapies than traditional
head-to-head comparisons of limited numbers of durations, while minimising the probability of assigning trial
participants to an ineffective treatment regimen.
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Background
Bacteria are increasingly able to resist antibiotic treat-
ment, resulting in increased morbidity, deaths and costs
worldwide [1–5]. Antibiotic use is an important driver of
the development and spread of antimicrobial resistance
[6]. Selective pressure can be reduced by minimising
antibiotic prescribing for conditions for which antibiotics
are often unnecessary [7–10]. Moreover, the duration of
antibiotic courses can often be reduced without signifi-
cantly compromising cure rates [11–15]. Shortening
antibiotic duration can have a large impact on reducing
exposure of bacteria to antibiotics, including bacteria

carried asymptomatically [14]. Antibiotics are by far the
most prescribed drugs for children, with more than 60
million systemic antibiotics dispensed annually in the
US outpatient setting alone [16], and are amongst the
most frequently prescribed drugs for adults [17].
An important challenge is that, for many infectious

conditions, the optimal antibiotic course length remains
unclear. Courses should be long enough to treat infec-
tions effectively, yet short enough to reduce the inci-
dence of side effects and the development and spread of
antibiotic resistance. The continued need for antibiotics
can be assessed with daily reviews for inpatients [18];
however, in practice, such reviews are not always per-
formed or acted upon and antibiotics are often contin-
ued in order to complete currently recommended course
durations [19]. Further, in the outpatient or primary care
setting, continued assessment of patients initiated on an-
tibiotics is not feasible [14]. Therefore, it is especially
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important to have strong evidence about optimal treat-
ment durations in these settings.
Because observational studies comparing different

antibiotic durations are potentially confounded by un-
measured patient factors influencing the need for pro-
longed treatment, evidence about the optimal treatment
duration should, where possible, come from randomised
controlled trials (RCTs). However, antibiotic durations
for several infections managed in primary care, such as
prostatitis, are not guided by RCT evidence on optimal
treatment duration [20, 21]. Where treatment durations
have been compared in RCTs, in most cases, two treat-
ment durations were selected for comparison, both of
which lacked a clear scientific rationale [11, 12]. Whilst
RCTs designed in this way can be useful, there are disad-
vantages to this approach.
Herein, we discuss the main issue with conventional two-

arm trial designs, how to assess the ‘optimal’ antibiotic
treatment duration, four alternative trial designs that can
estimate much needed duration–response relationships
(subsequently denoted duration–response curves), and
which of these designs has the most desirable properties.

Issue with conventional designs
Historically, RCTs have an experimental and comparator
arm, or two contrasting experimental arms [22]. An

issue with conventional two-arm trials is that they are
unlikely to identify optimal treatment durations, poten-
tially leading to suboptimal clinical practice. An ap-
proach that is more likely to identify optimal treatment
durations is the modelling of duration–response curves.
In the specific example of prostatitis, we could design a

conventional RCT comparing, for example, treatment du-
rations of 14 versus 28 days. Depending on whether the
trial is designed to show superiority or non-inferiority, the
trial answers the question ‘is 14 days of antibiotic treat-
ment for prostatitis as good as/worse/better than 28 days
of treatment?’ (Fig. 1). However, this does not answer the
more important question of ‘what is the optimal antibiotic
treatment duration for prostatitis?’ The dot-dashed line in
the top panel could occur if there is some non-compliance
with the shorter duration as randomised, because patients
are not cured (e.g. may still have persisting minor symp-
toms, which might then relapse without further antibiotic
treatment) at the end of their assigned duration (and
hence more patients end up receiving the standard dur-
ation (28 days) despite being randomised to a shorter dur-
ation). In practice, not all patients will require the same
duration and, at the population level, the proportion of pa-
tients that are not cured will likely decrease with increas-
ing assigned duration, as will the proportion with non-
compliance, creating the dot-dashed line in the top panel.

Fig. 1 Duration–response curves corresponding to an intention-to-treat analysis. Diamonds show hypothesised event rates for the two
randomised groups as designed. The solid and dot-dashed lines show different hypothesised duration–response curves that are compatible with
those hypothesised event rates. This figure illustrates that conventional randomised controlled trials that compare two different durations do not
provide information about other durations, especially if one duration is clearly superior to the other
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How to estimate the ‘optimal duration’?
Selecting the optimum treatment duration depends on the
outcomes that are deemed important, which are often mea-
sures of cure (treatment effectiveness), either in the short-
term or medium- to long-term such as prevention of re-
lapse/recurrence. Secondary outcomes usually relate to side
effects and, sometimes, to the development of resistance.
The fact that cure rates can generally be hypothesised to
increase with duration until reaching an asymptote creates
a delicate balance between maximising efficacy and mini-
mising adverse consequences.
The Desirability of Outcome Ranking/Response Ad-

justed for Duration of Antibiotic Risk (DOOR/RADAR)
trial design has recently been proposed as a method to
formally combine clinical outcomes and treatment dur-
ation into a single composite outcome [23]. However, in
its ranking, this approach implicitly assumes that the
shorter of two durations is beneficial when other patient
or clinical outcomes are identical [24]. This unverified
strong assumption could lead to demonstration of non-
inferiority using DOOR/RADAR when conventional trial
designs may show that shorter durations are not non-
inferior [24].
In situations where the optimal decision regarding the

best treatment depends on various endpoints, maximis-
ing a utility function (or minimising a loss function), a
decision-theoretic Bayes (or full Bayesian) approach pro-
vides an intuitive solution [25, 26]. A recent Bayesian
response-adaptive randomised trial evaluating the use-
fulness of gepotidacin for the treatment of patients with
Gram-positive acute bacterial skin and skin structure in-
fections used a utility function to determine the optimal
treatment dose [25]. The dose–response-for-cure rate
was modelled using a normal dynamic linear model with
the parameter evolution described by a Gaussian ran-
dom walk, while the dose–response-for-the-discontinu-
ation rate was modelled with a two-parameter logistic
model assuming a monotonic change [25]. The cure rate
component and the treatment discontinuation compo-
nent were combined multiplicatively to yield the final
utility [25]. An advantage of using a utility function is
that the trade-offs between the different components are
made explicit and quantified. This approach provides
the answer we really want to know, namely ‘what is the
optimal treatment duration taking into account the
trade-offs between efficacy and safety and antibiotic re-
sistance development?’ However, given the difficulty in
devising a generally acceptable utility function and the
computational complexities, the decision-theoretic Bayes
approach using a utility function is rarely used [26]. A
problem with applying the decision-theoretic approach
in medicine is that there are many decision-makers at
different stages, including policy-makers, physicians and
patients, who likely have different opinions and utility

functions [27]. For example, different individuals may not
agree that the cure and the discontinuation rates can be
combined multiplicatively, and therefore also question the
validity of the response-adaptive changes in the trial.
Given these and other difficulties with implementing a

decision-theoretic approach [28], it may be more prac-
tical to model separate duration–response curves for ef-
ficacy, antibiotic resistance and toxicity during the trial,
and combine the information from the different dur-
ation–response curves with additional information, such
as costs or estimated longer term influence on resist-
ance, into a decision analytic framework [29]. Optimal
durations can then be assessed for various prior opinions
and utility functions of the different stakeholders.
The optimal treatment duration may differ depending

on host- or pathogen-specific characteristics. Formally,
this can be tested by including different subgroup-
specific interaction terms in models relating duration to
response [29]. This could allow stratified medicine, en-
abling different optimal durations to be identified de-
pending on key patient characteristics.

Main characteristics of alternative RCT designs
Recently, various groups have suggested that fixed or
adaptive trials could be used to assess which treatment
duration should be recommended [29, 30]. Herein, we
discuss multi-arm designs to model the duration–re-
sponse curve, including (1) a Bayesian response-adaptive
randomisation (RAR) design [31]; (2) a play-the-winner
design [30, 32]; (3) a fixed duration design [29]; and (4)
a drop-the-loser design.
All four designs could be used in combination with flex-

ible regression modelling strategies to model the dur-
ation–response curve, such as fractional polynomials, or
in the case of frequent reassessment of the duration–re-
sponse curve, normal dynamic linear models [25, 29, 33].
To account for uncertainty about the structural form of
the duration–response curve generating the data, model
averaging can be used [34, 35].
The main differences between the four alternative de-

signs and the typical two-arm frequentist randomised
trial are listed in Table 1.
The Bayesian RAR design allows allocation of a greater

proportion of future patients to treatment durations that
have performed well at the interim analysis based on pos-
terior predictive probabilities [31]. Unless the posterior
predictive probability is too low (arm should be dropped)
or sufficiently high (the arm may be selected for the next
phase of testing or selected as the optimal treatment), the
updated randomisation probability is typically propor-
tional to the predictive probability of success for the
experimental relative to the control arm [28].
The play-the-winner design includes an option to con-

tinue with the shortest duration that has a posterior
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predictive probability (or a frequentist test statistic)
above a pre-defined threshold compared to the standard
duration, based on the assumption that shorter dura-
tions will be better in terms of risk of antibiotic resist-
ance and toxicity.
The fixed duration design has been recently proposed

by Quartagno et al. [29]. In contrast to the other designs,
this is not an adaptive trial design, but focusses on gain-
ing sufficient information to accurately model the ‘dur-
ation–response’ relationship.
The drop-the-loser design uses stopping boundaries to

determine whether experimental treatments should be
dropped early by comparing each to the standard (as-
sumed maximum duration) treatment. At interim ana-
lysis, it can be decided to drop clearly inferior treatment
arms compared to the standard duration based on
Bayesian posterior predictive probabilities [26], or based
on other predefined stopping criteria using a frequentist
test-statistic [32, 36].

Which design has the most desirable properties?
Important considerations when designing a randomised
trial to identify optimal antibiotic treatment durations
include (1) the ability to accurately estimate the dur-
ation–response curve, (2) the ability to minimise the risk
of bias, (3) the possibility to drop poorly performing
arms, and (4) statistical efficiency.

Estimating duration–response curves
A major benefit of estimating a duration–response curve
is that the effects of durations not included in the trial
can also be estimated provided that there is sufficient
data from neighbouring durations. This applies to all
four alternative RCT designs considered here.
However, a potential issue with adaptive designs that

preferentially assign patients to better performing arms
(RAR and play-the-winner designs) is that this may ham-
per proper evaluation of the complete duration–response

curve due to an insufficient number of patients receiving
different durations. One could prevent this issue by
assigning patients preferentially to informative treatment
durations, i.e. durations that would increase the preci-
sion in an area of the curve, or by setting a threshold
to the maximum imbalance in randomisation prob-
abilities. Nevertheless, in practice, it may be more
feasible to use designs with fixed randomisation prob-
abilities (fixed duration design), potentially with the
option to drop arms that are clearly inferior to the
standard duration (drop-the-loser design).
Subgroup-specific duration–response curves could be ob-

tained by including interaction terms for pre-specified sub-
groups such as immunocompromised patients who may
require longer antibiotic therapy. With RAR (all designs ex-
cept the fixed duration design), changes in allocation ratios
can theoretically be based on the duration–response curve
within subgroups in the presence of a subgroup effect,
making the trial statistically less efficient. However, it is dif-
ficult to identify subgroup effects during a trial given the
lower power to detect them, and these are usually
only assessed at the end of a trial. Therefore, designs
which drop arms or allocate proportionately fewer pa-
tients to some arms on a population level basis (i.e.
using results from the trial as a whole), may end up
without sufficient information to assess whether the
optimal duration varies across important subgroups.

Risk of bias
An important challenge that applies to all alternative
RCT designs comparing multiple antibiotic treatment
durations is the difficulty in blinding clinicians and pa-
tients. Where a perfectly matching placebo is available
and instructions are provided about the order of taking
preparations, blinding is theoretically possible, yet, in
practice, such a placebo is difficult/expensive to make.
Therefore, duration RCTs are often open-label. When
using an open-label design that preferentially allocates

Table 1 Main characteristics of conventional two-arm and alternative multi-arm duration trial designs

Two-arm duration
design

Bayesian multi-arm,
response-adaptive
randomisation design

Multi-arm, play-the-
winner design

Multi-arm, fixed
duration design

Multi-arm, drop-the-
loser duration design

Obtain information
on treatment durations

Only two considered
durations

Can model the entire
duration–response curve,
including estimates for
durations that were not
used

Can model the entire
duration–response curve,
including estimates for
durations that were not
used

Can model the entire
duration–response
curve, including
estimates for durations
that were not used

Can model the entire
duration–response curve,
including estimates for
durations that were not
used

Randomisation
probabilities

Fixed Variable and possibility
to drop arms

Fixed, but with possibility
to select shortest duration
with high probability of
being non-inferior for
comparison with standard
duration

Fixed Fixed, but with
possibility to drop arms

Higher chance for patients
to be randomised to better-
performing treatment arm

No Yes Yes No No, but poor performing
arms can be dropped
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patients to specific durations with better outcomes (RAR
design), clinicians will be able to determine, during the
trial, that these durations are associated with better out-
comes, thereby increasing the risk of allocation conceal-
ment (selection) bias. This knowledge can change which
patients get randomised in the trial and how endpoints
will subsequently be assessed. The other designs all re-
duce the risk of selection bias because clinicians cannot
alter the selection of patients based on observed changes
in allocation probabilities for these designs.
It is often cautioned that calendar time trends – which

are common with infectious diseases – may introduce
bias when using RAR [30, 37]. However, one can take
advantage of the fact that randomisation probabilities
are not constantly changing with most RAR designs. A
calendar time-stratified analysis, with equal randomisa-
tion probabilities within each stratum, eliminates poten-
tial time-trend bias [38]. A larger sample size is needed
with such stratified analyses, but it is important to avoid
trying to gain small improvements in efficiency at the
cost of introducing bias [38]. While the fixed duration
design is not vulnerable to time trends due to its design,
the RAR and play-the-winner design require a less effi-
cient calendar time-stratified analysis to avoid this type
of bias. When considering a drop-the-loser design one
should avoid comparison of patients assigned to the
dropped duration with patients that were randomised to
other arms after dropping the clearly inferior arm to
avoid this bias. However, this may not be problematic
given that there was already enough information to
deem the duration clearly inferior.
An issue encountered with all antibiotic duration trials

is potential non-compliance.Non-compliance can pro-
vide a distorted picture of the efficacy of treatment dura-
tions when performing an intention-to-treat (ITT)
analysis (Fig. 1). In an ITT analysis, patients are analysed
according to their assigned duration, regardless of
whether they actually received that duration. ITT ana-
lyses provide unbiased estimates of effectiveness, i.e. the
real-world impact of the intention to receive one versus
another duration, assuming that the type of non-
compliance that occurred in the trial would generalise
outside the trial. In situations where non-compliance re-
duces the difference in treatment received between two
arms being compared, an ITT analysis is not conserva-
tive for a test of non-inferiority. The effect of non-
compliance, which is likely not completely random, can
be taken into account using instrumental variable ap-
proaches and/or g-methods as described in more detail
by Berry et al. [27] and Hernan et al. [39].

Dropping poorly performing arms
For all designs, including fixed trial designs, continuous
response monitoring for serious and unexpected adverse

events or lack of efficacy of certain durations by an inde-
pendent data monitoring committee can ensure that pa-
tients are protected from being randomised to an unsafe
arm [40]. For adaptive designs, futility stopping criteria
are defined at the planning stage. This can be done for
both frequentist and Bayesian trials and would provide
statistical rules to help the data monitoring committee
decide whether an arm should be dropped [27, 28, 32].
After dropping an arm, follow-up will continue for pa-
tients assigned to this duration. The advantage of having
the option to drop poorly performing arms (drop-the-
loser design) is that it potentially reduces the number of
patients allocated to unfavourable antibiotic durations.
This is not only ethically desirable, but may also con-
vince more patients to participate in a trial.

Statistical efficiency and sample size
In the recent proposal for the fixed duration design [29],
simulations showed that a sample size of 500 patients di-
vided into 5–7 equidistant arms was sufficient to esti-
mate the duration–response curve within a 5% error
margin in 95% of the simulations, suggesting that a trial
using similar methodology is feasible in practice [29].
Similar simulations focusing on the numbers needed
to estimate duration–response curves for the other
designs do not yet exist. In general, using standard
pairwise comparisons, the more arms included, the
greater the sample size, but it is not clear that such
pairwise comparisons are ideal for determining opti-
mal treatment duration.
The main reason for the increasing interest in adaptive

trial designs (all designs, except the fixed duration de-
sign) may be that, under some circumstances, adaptive
designs are statistically more efficient than fixed trial
designs [32, 37, 38, 41, 42]. However, as mentioned earl-
ier, if patients are preferentially allocated to the best per-
forming arms, the precision around other durations of
the duration–response curve will be reduced [29]. In
addition, as discussed above, to prevent bias due to time
trends, stratified analysis is recommended [38], which
requires a larger sample size than the potentially biased
un-stratified analysis, the latter often being used in sim-
ulations comparing response-adaptive and fixed duration
designs [38, 41, 42].

The verdict
Given the considerations laid out above, the fixed dur-
ation and the drop-the-loser duration designs theoretic-
ally have the most potential to identify optimal antibiotic
treatment durations. These designs (1) are less vulner-
able to allocation concealment bias than the RAR de-
sign; (2) are not vulnerable (fixed duration) or are less
vulnerable (drop-the-loser) to time-trend bias com-
pared to the RAR or play-the-winner designs; (3) are
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not associated with the important logistical challenges
often accompanying adaptive trials that allow for changes
in the allocation ratios (play-the-winner and RAR designs)
[32, 43, 44]; and (4) are more likely than the RAR and
play-the-winner designs to have sufficient numbers of pa-
tients in each arm and/or subgroup at the end of the trial
to estimate the complete duration–response curve with
sufficient precision, and hence enable evaluation of the
potential for important differences in the optimal duration
within specific subgroups.
A potential advantage of the drop-the-loser design

over the fixed duration design is that the former can
drop duration arms that are clearly inferior versus the
standard (maximum) duration based on formal statistical
analysis. This may ethically be more acceptable by redu-
cing the number of patients allocated to inferior treat-
ment durations.
Although we have only provided theoretical con-

siderations regarding these four designs, we urge the
research community to consider developing, testing
and applying alternative trial designs that can iden-
tify optimal treatment durations, including sample
size calculations.

Extensions
Whilst we have focussed on antibiotic duration, evi-
dence supporting doses of many commonly used anti-
biotics is similarly scarce, and similar methods could
also be used to optimise dose. In practice, particularly
in primary care, different durations may well be com-
pletely equivalent in terms of acute recovery, yet rare
but important complications may vary with different
durations. Very large numbers would need to be ran-
domised to estimate ‘duration–response curves’ for
these rare outcomes, potentially as co-primary end-
points, or incorporated in a decision analytic frame-
work together with other outcomes [45]. Finally, in
the context of changing patterns of resistance or ac-
cess to care, for example, the optimal duration for any
specific indication today may not be optimal tomor-
row. A platform duration trial, which allows for the
dropping and addition of arms, could be a solution to
providing continuously relevant evidence [46], and
would also enable different durations of different
drugs to be compared.

Conclusion
There is a clear need for more evidence on optimal
antibiotic treatment durations. Multi-arm designs that
estimate duration–response curves have a much
higher probability of finding the optimal duration for
different conditions and patient populations than con-
ventional two-arm RCTs. More research into the prop-
erties of alternative RCT designs that can estimate

duration–response curves are needed, as well as actual
applications of such designs to better identify optimal
antibiotic treatment durations. Strengthening the evidence
on antibiotic treatment duration is critical in guiding
antibiotic stewardship and reducing harm from antibiotic
resistance and adverse drug effects.
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