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Breaking the cycle
Reversal of flux in the tricarboxylic acid cycle by dimethyl fumarate
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Abstract
Objective
To infer molecular effectors of therapeutic effects and adverse events for dimethyl fumarate
(DMF) in patients with relapsing-remittingMS (RRMS) using untargeted plasmametabolomics.

Methods
Plasma from 27 patients with RRMS was collected at baseline and 6 weeks after initiating DMF.
Patients were separated into discovery (n = 15) and validation cohorts (n = 12). Ten healthy
controls were also recruited. Metabolomic profiling using ultra-high-performance liquid
chromatography mass spectrometry (UPLC-MS) was performed on the discovery cohort and
healthy controls at Metabolon Inc (Durham, NC). UPLC-MS was performed on the validation
cohort at the National Phenome Centre (London, UK). Plasma neurofilament concentration
(pNfL) was assayed using the Simoa platform (Quanterix, Lexington, MA). Time course and
cross-sectional analyses were performed to identify pharmacodynamic changes in the metab-
olome secondary to DMF and relate these to adverse events.

Results
In the discovery cohort, tricarboxylic acid (TCA) cycle intermediates fumarate and succinate,
and TCA cycle metabolites succinyl-carnitine and methyl succinyl-carnitine increased 6 weeks
following treatment (q < 0.05). Methyl succinyl-carnitine increased in the validation cohort (q
< 0.05). These changes were not observed in the control population. Increased succinyl-
carnitine and methyl succinyl-carnitine were associated with adverse events from DMF
(flushing and abdominal symptoms). pNfL concentration was higher in patients with RRMS
than in controls and reduced over 15 months of treatment.

Conclusion
TCA cycle intermediates and metabolites are increased in patients with RRMS treated with
DMF. The results suggest reversal of flux through the succinate dehydrogenase complex. The
contribution of succinyl-carnitine ester agonism at hydroxycarboxylic acid receptor 2 to both
therapeutic effects and adverse events requires investigation.
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Dimethyl fumarate (DMF) (BG-12; Tecfidera) is a fumaric acid
ester licensed as a disease-modifying treatment for relapsing-
remitting MS (RRMS).

However, DMF is best considered as a prodrug. After oral
administration, it is rapidly hydrolyzed by esterases in the
small intestine to monomethyl fumarate (MMF).1 MMF is
highly bioavailable, has a half-life of 12 hours, and reaches
peak concentrations of approximately 20 μM. MMF itself is
hydrolyzed inside cells to fumaric acid, which initiates sec-
ondary metabolism of the drug through the tricarboxylic acid
cycle (TCA).2,3

Common adverse events including flushing and gas-
trointestinal symptoms (abdominal pain and diarrhea)
limit the tolerability of DMF by some people with
RRMS.4 Metabolites of DMF including MMF are believed
to be responsible for the primary therapeutic effects
through activation of the transcription factor nuclear fac-
tor (erythroid-derived 2)-like 2 (Nrf2),5,6 inhibition
of nuclear factor κB,7 and/or agonism of the hydroxycarboxylic
acid receptor 2 (HCA2, GPR109A).8 Additional metabo-
lites also could mediate these and other effects.
Although flushing, diarrhea, and nausea all could arise
from HCA2 agonism, the specific mechanism responsible
for adverse events associated with DMF has not been
defined.

We have sought to better characterize the specific molecular
effectors of therapeutic effects and adverse responses after
DMF administration through untargeted metabolomics.
This approach can help characterize drug metabolism9–11 or
identify biomarkers relevant to drug effects12 through mul-
tivariate correlation of metabolic features and clinical
measures.13 These data enable generation of new hypotheses
concerning therapeutic benefits of drugs or associated ad-
verse events.11

Here, we have used separate small groups of people with
RRMS who were newly initiating treatment with DMF to
characterize short-term (6 week) metabolomic pharmaco-
dynamic effects to infer possible major molecular effectors
of therapeutic responses and relate these to adverse events.
We used a first group for discovery and then tested these
outcomes in a separate validation group. We also related
the results to a biomarker for axonal injury in MS, plasma
neurofilament light (NfL).

Methods
Standard protocol approvals, registrations,
and patient consents
Our research study was reviewed and approved by the
NREC Committee of London Camden and Islington
(NREC 14/LO/1896). All patients provided written in-
formed consent.

Study design
This study included a previously described cohort of patients
with RRMS14,15 separated into an initial discovery cohort and
a validation cohort to test for the generalizability of results.
Patients diagnosed with RRMS by the McDonald criteria16

were recruited from the Imperial College Healthcare NHS
Trust and consented for participation in the study. Patients
recruited were aged between 18 and 65 years and treatment-
free (disease-modifying treatments [DMTs] and steroids) for
at least 3 months. Previous work had demonstrated that
metabolome effects of this drug are large,17 so the sizes of the
discovery and validation cohorts could be small. Ten age- and
sex-matched healthy volunteers were recruited as controls by
local advertising and did not receive any treatment.

The discovery cohort included 15 patients with RRMS
(median Expanded Disability Status Scale [EDSS] score
1.5, range 1–6.5; additional clinical information provided in
table e-1 links.lww.com/NXI/A106). The validation co-
hort included 12 patients with RRMS (median EDSS score
3.0, range 1–7). The patients and healthy volunteer con-
trols both attended the study center for 2 visits. For the
patient cohort, this was at baseline, before onset of treat-
ment, and 6 weeks after commencement of treatment with
DMF. For the healthy volunteer cohort, there were also 2
study visits at 6-week intervals, but no drug was taken. The
EDSS score was assessed on all the patients at each of their
visits by a single, trained physician (A.R.G.). Detailed in-
formation on adverse events was taken from direct ques-
tioning and clinical histories obtained by a single, trained
physician (A.R.G.).

Sample collection
Nonfasting venous blood samples were collected at study
visits in ethylenmdiamine tetraacetic acid tubes and centri-
fuged at 1,400g for 10 minutes within 3 hours of sample
collection. Plasma was separated immediately into aliquots of
1 mL and stored at −80°C.

Glossary
BBB = blood-brain barrier; DFM = dimethyl fumarate; DMT = disease-modifying treatment; EDSS = Expanded Disability
Status Scale; ESI = electrospray ionization; HCA2 = hydroxycarboxylic acid receptor 2; MDA = mean decrease in accuracy;
MMF = monomethyl fumarate; MS/MS = tandem mass spectrometry; NfL = neurofilament light; Nrf2 = nuclear factor
(erythroid-derived 2)-like 2; RRMS = relapsing-remitting MS; TCA = tricarboxylic acid; UPLC-MS = ultra-high-performance
liquid chromatography mass spectrometry.
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Ultra-high-performance liquid
chromatography mass spectrometry

Discovery cohort
Samples were sent to Metabolon Inc (Durham, NC) for
untargeted metabolomic analysis. Samples were precipitated
with methanol, followed by centrifugation before addition of
several control samples to aid chromatographic alignment. This
included pooled matrix samples, technical replicates (derived
from a pool of well-characterized human plasma), process
blanks, and within-sample spiking of endogenous compounds.
Experimental samples were randomized across the platform
and run with the control samples described above.

All methods used aWaters ACQUITY ultra-performance liquid
chromatography (UPLC) and a Thermo Scientific Q-Exactive
high-resolution/accurate mass spectrometer interfaced with a
heated electrospray ionization-II) source and Orbitrap mass
analyzer operated at 35,000 mass resolution. Samples were
analyzed using 3 UPLC-tandem mass spectrometry (MS/MS)
assays: acidic positive ion conditions (optimized both for hy-
drophilic and hydrophobic compounds), basic negative ion
conditions, and a negative ionization following elution from
a hydrophilic interaction liquid chromatography (HILIC)
column. The scan range covered 70–1,000 m/z.

Raw data were extracted and peaks identified using the
Metabolon library. Biochemical identifications are based on
3 criteria: retention index within a narrow retention index
window of the proposed identification, accurate mass match
to the library ±10 ppm, and the MS/MS forward and reverse
scores between the experimental data and authentic stand-
ards. Peaks were quantified using area under the curve.

Validation cohort
To determine whether findings seen in the discovery cohort
could be replicated, UPLC-MS assays were performed in
a validation cohort analyzed by the National Phenome Centre
(Imperial College, UK). Samples were prepared as previously
described.18 A single HILIC UPLC-MS analysis was performed
on an Acquity UPLC instrument coupled to a Xevo G2-S
oaTOFmass spectrometer (Waters Corp,Manchester, UK) via
a Z-spray electrospray ionization (ESI) source operating in the
positive ion mode. Details of the UPLC-MS system configu-
ration and HILIC analytical method used for profiling have
been reported previously.19 Feature extraction and data pro-
cessing were performed using Progenesis QI 2.1 software
(Waters Corp,) as previously described.19 Metabolites of in-
terest from the discovery cohort analysis were located either by
retention time and accurate mass match to an authentic refer-
ence standard or by accurate mass and interpretation of the
MS/MS fragmentation pattern (specifically formethyl succinyl-
carnitine, as no reference standard was commercially available).

Targeted quantitative analysis of MMF
Targeted analysis for the absolute quantification of MMF
concentrations was performed for all samples. Briefly, samples

were prepared by dilution with 3 volumes of acetonitrile +
0.1% formic acid containing 100 mg/mL heavy labeled MMF
(mono-methyl-13C,d3 fumarate, Sigma-Aldrich). The samples
were mixed and centrifuged as described above before solid-
phase extraction using OSTRO sample preparation plates
(Waters Corp, Milford, MA) operated by vacuum manifold
for 2 minutes. The product sample was dried overnight under
a continuous flow of nitrogen gas and reconstituted using an
amount of ultra-pure water equal to the original volume of
plasma used (150 μL).

Sample analysis was performed using an Acquity UPLC in-
strument coupled to a Xevo TQ-S tandem quadrupole mass
spectrometer (Waters Corp, Manchester, UK) via a Z-spray
ESI source operating in the negative ion mode. MMF was
identified using the National Phenome Centre reference li-
brary as being well retained by the reversed-phase chro-
matographic method described previously19 and that method
was therefore validated with the following parameters: limit of
detection = 0.5 ng/mL; limit of quantification = 5 ng/mL;
linear range = 0.5–100 ng/mL; dynamic range = 0.5–2000
ng/mL; sensitivity = 0.99 ± 0.023. Within-run precision was
measured by 7 repeated analyses of samples at the low, me-
dium, and high range of the method (%relative standard de-
viation = 3.3, 1.6, and 2.4, respectively. Matrix effects and
absolute recovery covered a chosen low, medium, and high
range within the dynamic range (40, 400, and 800 ng/mL).
Matrix effects indicated negligible ion suppression with values
above 95% with no ion enhancement. Absolute recovery was
within acceptable range of 77%–118% in accordance with
stated GLP and good maufacturing practice bioanalytical
method validation guidelines. Peak integration and calcula-
tion of the final MMF concentration were performed using
TargetLynx software (Waters Corp).

Plasma NfL
Plasma NfL concentration was measured using a commer-
cially available digital ELISA on a Single Molecule Array in-
strument as described by the kit manufacturer (Quanterix,
Lexington, MA). The measurements were performed in 1
round of experiments using 1 batch of reagents. Intra-assay
coefficients of variation were <10%.

Statistical analyses
Descriptive statistics were used to summarize MS patient and
healthy control demographics (table 1). The significance of
changes in specific metabolites pre- and post-treatment were
estimated relative to comparisons with data from the healthy
volunteer controls acquired over the same period using 1-way
analysis of variance. All changes were corrected for multiple
comparisons using the false discovery rate. Statistical signifi-
cance was set at a q value of <0.05. Correlation between
discriminant variables of interest and concentrations of MMF
was performed using the Pearson correlation coefficient.
Comparison of absolute NfL concentrations at different time
points was analyzed using the paired Student’s t test.
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Comparisons of NfL between patients with MS and healthy
controls was performed using an unpaired, 2-tailed Student
t test.

To discover the most discriminatory variables from the data set
pre- and post-treatment in the first of our 2 patient cohorts, we
used the Random Forest method.20 We used 1,000 trees and
5-fold cross-validation to build the model. A variable impor-
tance measure was computed based on the mean decrease
accuracy metric. All statistics were performed in R.

Data availability statement
Anonymized data will be shared by request from any qualified
investigator.

Results
Patient demographics and clinical information are provided in
table 1, with their detailed medical history in table e-1 links.
lww.com/NXI/A106. Ten patients with RRMS were initiat-
ing treatment with DMF after a minimum period of 3 months
since treatment with any previous DMT. Seventeen patients
were treatment naive to previous DMT. None of the healthy
volunteer controls reported comorbid disease or current
medical treatments.

Concentrations of TCA cycle intermediates and
their metabolites are increased after
administration of DMF
Concentrations of both fumarate and succinate were increased
in the samples obtained from patients in the discovery cohort
6 weeks after the start of treatment (q < 0.05). Concentrations
of succinyl-carnitine and methyl succinyl-carnitine, which
are synthesized from succinyl-Coenzyme A (CoA), also
were increased (q < 0.05) (table 2, figure, A–D). Significant
changes in concentrations of these metabolites were not
seen in a contrast of baseline and 6-week plasma samples
from the untreated healthy control population.

We then performed a Random Forest analysis to discover
those metabolites whose changes in concentrations best dis-
criminate patients after treatment relative to their DMF-naive
states. Concentration changes in methyl succinyl-carnitine,
fumarate, and succinyl-carnitine best discriminated patient
samples 6 weeks after the start of treatment from those at
baseline. The mean decrease in accuracy (MDA) with their
individual contributions was derived by excluding each me-
tabolite in turn from the model with separate calculations for
the decrease in accuracy of the classification. For methyl
succinyl-carnitine, fumarate, and succinyl-carnitine, the MDA
was 10.2, 8.6, and 6.0, respectively (table 3).

We sought to confirm the association of DMF treatment with
increased concentrations of TCA cycle intermediates and their
metabolites in a separate validation cohort. Themost significantly
increased metabolite in the validation cohort also was methyl
succinyl-carnitine (retention time_mass/charge ratio 4.71_
276.1448), which changed by 145-fold (p < 0.005). Succinyl-
carnitine, fumarate, and succinate were not observed in the single
UPLC-MS method used to analyze the validation data set.

We measured concentrations of MMF, the major primary
metabolite of DMF, in plasma samples. We found plasma

Table 1 Patient and healthy volunteer demographic data

Patients with MS

ControlsDiscovery Validation

Sex 8 men, 7 women (n = 15) 5 men, 7 women (n = 12) 4 men, 6 women (n = 10)

Mean age (y) 37.3 ± 11.3 45.3 ± 13.4 38.3 ± 9.7

Average disease duration from diagnosis (y) 5 ± 4 5 ± 4 N/A

Average disease duration from first symptom (y) 7 ± 6 11 ± 7 N/A

EDSS score (median, range) 1.5 (1–6.5) 3.0 (1–7.0) N/A

Treatment-naive patients 8 9 N/A

Current smoker 0 3 1

Abbreviation: EDSS = Expanded Disability Status Scale.
Values quoted as mean ± SD if not indicated otherwise.

Table 2 TCA metabolites significantly increased in
patients with MS after treatment with dimethyl
fumarate with the fold changes and q values
(corrected using the false discovery rate)
provided

Metabolite Fold change q Value

Fumarate 1.58 0.00500

Succinate 1.18 0.04060

Succinyl-carnitine 1.74 0.02670

Methyl succinyl-carnitine 39.24 0.00001
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concentrations in the patients clustered into 2 distinct
groups: patients had either very low (<20 ng/mL) or high
(range 95–592 ng/mL) concentrations of MMF. The Pear-
son correlation showed a strong relationship between plasma
concentrations of methyl succinyl-carnitine and MMF (r =
0.66). Levels of MMF did not correlate with patient-reported
timing of the last dose (r = −0.19).

Association between common adverse events
and concentrations of succinyl-carnitine and
methyl succinyl-carnitine
Gastrointestinal symptoms (abdominal pain, diarrhea, and
nausea) and flushing were common adverse events (21/27 in
the total cohort). We contrasted the annotated metabolites in
the baseline and 6-week samples in the discovery cohort from
those who experienced these adverse events with those who
did not. In patients experiencing flushing after DMF admin-
istration (8/15) (table e-1, links.lww.com/NXI/A106), there
was a significant increase in methyl succinyl-carnitine after
DMF (fold change 42.60 ± 44.33, p < 0.05) and a trend

toward a significant change in succinyl-carnitine at 6 weeks
(fold change 1.92 ± 1.07, p = 0.06). These changes in the
6-week relative to baseline samples were not found in those
not experiencing flushing (p = 0.08 and p = 0.17, respectively).

In those experiencing abdominal symptoms (6/15) (table e-1,
links.lww.com/NXI/A106), a significant change was found for
bothmethyl succinyl-carnitine (fold change 180.49 ± 206.83, p<
0.05) and succinyl-carnitine (fold change 3.81 ± 1.52, p < 0.05)
plasma concentrations at 6 weeks. In those not experiencing
these symptoms, there was a smaller change in methyl succinyl-
carnitine concentration (fold change 27.53 ± 33.78, p < 0.05)
and no change in succinyl-carnitine (p = 0.12).

Association between DMF treatment and
plasma NfL concentration
We investigated the effects of DMF treatment on plasma
NfL concentrations at short- (6 weeks) and medium-term
(15 months) treatment periods relative to untreated pre-
treatment levels. Mean plasma NfL concentrations were

Figure (A–D). Boxplots of metabolites best discriminating effects of treatment (A, succinyl-carnitine; B, methyl succinyl-
carnitine; C, fumarate; D, succinate) at baseline before treatmentwith dimethyl fumarate and 6weeks after starting
treatment in patients from the discovery cohort (treated) relative to the untreated healthy volunteer controls
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similar in the pretreatment (13.2 ± 18.56 pg/mL) and 6-week
posttreatment (14.1 ± 22.25 pg/mL) samples. These mean
values were more than twice the mean concentrations in the
healthy volunteers sampled according to the same schedule
(5.94 ± 1.92 pg/mL, baseline, and 5.83 ± 2.51 pg/mL, 6
weeks), although the differences were not statistically signif-
icant between groups. There was an approximately 40%mean
reduction in the NfL concentration (7.83 ± 3.94 pg/mL) in
the patients 15 months after initiation of treatment. No
meaningful changes in plasma NfL were observed in the un-
treated healthy volunteer control group at 15 months (6.88 ±
3.67 pg/mL) relative to the earlier time points.

Discussion
DMF is metabolized to MMF and is believed to exert its ther-
apeutic effects through antioxidant and anti-inflammatory
pathways. These in turn may modulate both innate and adap-
tive immune processes independently of Nrf2.21 However, the
precise molecular mechanisms are not well understood. Here,
we used global metabolomics profiling of blood plasma to better
define the metabolism of DMF. Using mass spectrometry, the
greatest changes observed were seen in TCA cycle inter-
mediates fumarate and succinate and in the secondary TCA
cycle metabolites succinyl-carnitine and methyl succinyl-
carnitine. The potential anti-inflammatory properties of these
metabolites (and their association with adverse effects) suggest
that reversal of TCA cycle flux through succinate dehydrogenase
may be crucial to the pharmacodynamic properties of DMF.

One previous study investigating the acute effects (24 and 72
hours) of DMF on a human oligodendrocyte cell line also
reported increases in succinate and fumarate with treatment.22

Furthermore, others have confirmed that administration of
DMF in vitro causes a rise in the concentration of succinate.23,24

To our knowledge, ours is the first study of its metabolic effects
in patients with MS. Our results confirmed an increase in the
concentrations of these TCA cycle intermediates in plasma
after initiation of treatment with DMF. We also found signifi-
cant increases in succinate esters (succinyl-carnitine andmethyl
succinyl-carnitine) with treatment.

Carnitine esters, found in high concentrations, previously have
been shown to have a variety of potentially beneficial effects and
may be important mediators of therapeutic responses. L-carni-
tine and acetyl-L-carnitine have both been demonstrated to ac-
tivate antioxidant pathwaysmediated byNrf2.25–27 Furthermore,
in a rat model of interstitial nephropathy, reduction in 2 acyl-
carnitines resulted in impaired Nrf2 pathways and activation
of NF-κB, suggesting that acyl-carnitines may exert their
effects independently of Nrf2.28 Carnitine esters can readily
cross the blood-brain barrier (BBB)29 and are known to have
neuroprotective30 and anti-inflammatory properties.31 Carnitine
esters also increase concentrations of beta-hydroxybutyrate,32–34

an agonist of theHCA2 receptor (GPR109A), through activation
of the urea cycle. GPR109A has been suggested as the potential
mediator of both the therapeutic35,36 and adverse effects of DMF
through its effects in peripheral immune cells.37–39 In this study,
we found an association between flushing and increases in the
concentration of succinyl-carnitine providing indirect evidence
that carnitine esters may be responsible for this common adverse
event associated with DMF.

The observation of an increase in succinate without increases
in intermediates involved early in the forward direction of the
cycle (malate, citrate, and α-ketoglutarate) suggests that fu-
marate generated from metabolism of DMF is reduced to
succinate by reversal of flux through succinate dehydrogenase.
Reversal of succinate dehydrogenase arises as a consequence
of high concentrations of intracellular succinate, which can
occur during ischemia.40 Furthermore, patients with muta-
tions in succinate-CoA ligase, which normally catalyzes con-
version of succinyl-CoA to succinate, characteristically show
increased concentrations of both succinyl-CoA and succinyl-
carnitine, for example.41–44 It remains to be determined
whether the secondary succinylation of carnitines45,46 may be
mediating the therapeutic or adverse effects of DMF; succi-
nate itself is a potent anti-inflammatory molecule.47

We sought to determine whether DMF could alter plasma
NfL concentration, given emerging evidence that it may be
a useful marker of therapeutic response to other DMTs.48,49

To our knowledge, there are no published data addressing the
impact of DMF on plasma NfL concentrations. Here, we have
demonstrated a clear trend toward reductions in DMF over
a 15-month period that was not found in healthy volunteers of
a similar age. Although changes in plasma NfL were not sta-
tistically significant, there was a large variation in concen-
trations found in the MS cohort, and many did not have
substantially increased concentrations at baseline.

Table 3 Variable importance table for Random Forest
classification displaying the 10 variables best
discriminating patients based on plasma
metabolites measured after treatment with
dimethyl fumarate relative to those assessed
before the onset of treatment and
corresponding mean decrease accuracy values

Metabolite Mean decrease accuracy

Methyl succinyl-carnitine 10.20

Fumarate 8.63

Succinyl-carnitine 6.04

Triacylglycerol 54:5-FA20:3 4.79

L-Cysteine-L-Glycine 4.41

Sphingosine-1-phosphate 4.26

Triacylglycerol 54:6-FA20:3 3.82

Triacylglycerol 54:5-FA16:1 3.49

N-acetylglutamate 3.12

Glycerophosphoserine 3.07
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A limitation of this study was the small sample size and
consequent uncertainty regarding the potential to generalize
from our results, given the heterogeneity in the disease and
therapeutic responses. However, the primary metabolic
effects of the drug, for which the study was powered, were
large as expected,17 and we were able to replicate our most
significant finding in a second validation cohort, even using
a different mass spectrometry platform. A practical limitation
of this and other similar biomarker research was that sampling
was limited to plasma rather than also from the CNSCNS. In
animal models of MS, DMF has been shown to upregulate
Nrf25 in the CNS specifically and also to protect neural
progenitor cells from oxidative stress.50 However, given that
DMF is rapidly hydrolyzed to MMF, it is controversial
whether these effects occur in vivo. In support of the relevance
of plasma measures, evidence suggests that peripheral im-
mune cells are most likely to be the effectors of the therapeutic
actions of DMF.51 To confront the primary limitation of the
sample size, future work could study a larger treatment pop-
ulation with more active disease.

In conclusion, we have shown that concentrations of some
TCA cycle intermediates and their metabolites are significantly
increased in the plasma of patients with MS treated with DMF.
The discovery of elevated succinyl-carnitine esters, which are
secondary metabolites of DMF, highlights the possibility that
these species may be responsible both for the therapeutic
effects and adverse events associated with the administration of
DMF. However, this hypothesis requires formal testing. This
could be tested in vitro by application of succinyl-carnitine and
methyl succinyl-carnitine to cell subsets such as dendritic cells
or lymphocytes and measuring expression of genes or proteins
known to be modulated by Nrf2 and NF-κB, for example. A
further outstanding question is whether carnitine esters exert
their effects in the periphery, the CNS, or both, given that there
is evidence they can freely cross the BBB exerting antioxidant
and neuroprotective effects.33 Further understanding of their
pharmacokinetic properties and species-specific tissue dis-
tributions will assist in exploring their potential role in the
therapeutic effects of DMF.
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