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Abstract
Quantumsystems interactingwith anunknownenvironment arenotoriouslydifficult tomodel, especially
inpresenceofnon-Markovianandnon-perturbative effects.Herewe introduce aneural networkbased
approach,whichhas themathematical simplicityof theGorini–Kossakowski–Sudarshan–Lindbladmaster
equation, but is able tomodelnon-Markovian effects indifferent regimes.This is achievedbyusing
recurrentneural networks (RNNs) fordefiningLindbladoperators that cankeep trackofmemory effects.
Buildingupon this framework,we also introduce aneural network architecture that is able to reproduce the
entire quantumevolution, given an initial state.As anapplicationwe studyhow to train thesemodels for
quantumprocess tomography, showing thatRNNsare accurate overdifferent times and regimes.

1. Introduction

Traditionally, in the physical sciences, the study ofmathematical problems forwhich no analytic solution is
available involvesmodellingmethods leveraging a combination of approximation techniques (such as
perturbation theory or semiclassical approaches) and the use of symmetries to reduce the complexity of the
problem. Recently, advances inmachine learning [1, 2], have caused a surge in popularity of data-driven
approaches, which instead rely on computational techniques that exploit statistical correlations. Applications
range from chaos theory [3] to high energy physics [4], eventually showingmany applications and new
perspectives in the quantumdomain [5–8]. In particular, artificial neural networks (a class of learningmethods
inspired by the functioning of the brain) have been utilized in quantummany-body physics for ground state
estimation [9], quantum state tomography [10, 11], classification of phases ofmatter [12], entanglement
estimation [13], and to identify phase transitions [14]. Although the theoretical understanding of the
effectiveness of thesemodels is currently limited, some recent papers have established connections between
neural networks andmore standard frameworks such as renormalization group [15], tensor networks [16–18],
and complexity theoretic tools [19].Moreover, classical optimization techniques borrowed from supervised
machine learning have been employed to optimize the dynamics ofmany-body systems [20–24] and parametric
quantum circuits [25–31].

Open quantum systems [32, 33] present further challenges. Here, anymodelling effortmust take into
account that the system interacts with a surrounding environment, whosemicroscopic details are usually
unknown. The resulting effects can only be treated phenomenologically and significantly increase the
complexity of themodel, especially in the non-Markovian regime. In this regime, exact non-perturbativemaster
equations [34] or quantummaps [35] operate by entangling the systemwith ancillary degrees of freedomwhose
dimension growswith time. Thismakes exact simulations extremely challenging even for low dimensional
Hilbert spaces. Therefore, in larger systems, non-Markovian effects can only bemodelled in an approximate
fashion, e.g. by neglecting quantum correlations or by assumingweak couplings between system and
environment.When these approximations are justified, phenomenological models with a reduced number of
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parameters are normally accurate.However, these approximations are often violated, e.g. in quantumbiology
[34], so it is important to study alternativemathematical structures.

Machine learningmethods offer new ideas formodelling non-Markovian effects when standard
assumptions do not hold. The intuition behind these approaches is that, if there exists an efficient description of
the system, this can be learnt fromdatawithout using explicitmodelling assumptions. In particular, neural
networks based learning techniques have shown that it is possible to learn complex functional dependencies in
time series directly from the data, without trying tomake theoretical assumptions thatmay be unjustified (such
as theweak coupling limit) or hard to derive fromphenomenological observations. In order for thesemethods to
succeed, it is crucial to define the correct neural network structure that can quickly learn the underlying rule to
reproduce the unknown functional formdisplayed in the data.

Here we investigate the ability of neural networks tomodel the non-Markovian evolution of open quantum
systems, using afixed number of parameters that does not growwith the number of time steps.We focus on
RecurrentNeural Networks (RNNs), a type of artificial neural network specifically designed tomodel dynamical
systemswith possibly long range temporal correlations. In the quantum setting, RNNs have been previously
employed for quantum control [36, 37].We consider twomain applications. In thefirst one, we define amaster
equationwhich has themathematical simplicity of theGorini–Kossakowski–Sudarshan–Lindblad (GKSL)
master equation [38, 39], but is nonetheless able tomodel non-Markovian effects via thememory cells included
in RNNs. In the second application, we define anRNNable to reproduce the entire quantum evolution given an
initial state, without introducing anymaster equation.Our RNN-based frameworks share some similarity with
collisionalmodels [40–46] or ò-machines [47], where explicitmemory effects are introduced by using ancillary
quantum systems.However, there are notable differences. One of the advantages of RNNs is in their ability to
learn directly fromdata how to compress complex time series with a few constant parameters.Moreover, there
are different RNNarchitectures and it is possible to select themost appropriate one tomodel the expected long-
rangememory in the time evolution.

Wewill show that RNNs provide a convenientmathematical framework to define the so-calledmemory
kernel [32], such that the resulting time-localmaster equation has a completely positive solution. The
reconstruction of thememory kernel fromquantum state sequences, namely fromquantumprocess
tomography, has been the subject of different studies in recent years [35, 48–52].Most approaches considered in
the literature start with some assumptions on themicroscopicmodel, and thenfits the free parameters given the
experimental data. These assumptions are required to avoid having an exponentially growing number of free
parameters for increasing number of time steps.However, these assumptions are normally uncontrollable,
especially when the details of themicroscopicmodel are unknown.Ourmain result is to show that RNN-based
quantumprocesses andmaster equations are able to learn efficient representations of non-Markovian quantum
evolutions directly fromdata sequences andwithoutmaking any assumption on the underlying physicalmodel.
Indeed, even theHamiltonian of the system can be learnt during this process. Note that, while theHamiltonian
can be learnt with alternativemethods, e.g. Bayesian inference [53], thememory kernel ismuchmore difficult, as
its functional form, beyond the perturbative regime, is unknown. Themain use of RNNs is therefore as a
‘compression’method, to effectivelymodel complex quantum correlations between system and environment
with a constant andfixed number of parameters. As a relevant application for our technique, we consider
quantumprocess tomography and show that RNNs are able tomodel the physical evolution of quantum systems
over different regimes.

The paper is structured as follows. In section 2we present relevant technical background. Specifically, in
section 2.1we introduce non-Markovian quantumprocesses and commonmaster equations to describe them.
In section 2.2we introduce the RNNarchitecture employed in this paper. Themain ideas are presented in
section 3, wherewe introduce our RNN-basedmaster equation (section 3.1) andRNN-based quantumprocess
(section 3.2), with applications for process tomography (section 3.3). Numerical experiments are presented in
section 4 and conclusions are drawn in section 5.

2. Background

2.1.Non-Markovian processes
Quantum systems, even the purest ones, are inevitably in contact with an environment. Because of this normally
unknown interaction, quantum evolution deviates from the predictions of the Schrödinger equation, and
different extensions have been proposed [32, 54].When the interactions inside the environment happen on
timescalesmuch shorter than the internal timescales of the system, then aMarkovian approximation is usually
appropriate, and the evolution can bemodelled via theGKSLmaster equation [38, 39]
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whereH is theHamiltonian, whichmodels the noise-free case, and Lμ are called Lindblad operators. The
superoperator  is called Liouvillian.Mathematical properties of the above equation arewell understood [33].
For any choice ofH and Lμ the solution of themaster equation  = et

t defines a completely positive trace
preserving linearmap, and is thus amathematically well-posedmapping between states to states.With properly
chosen Lindblad operators, the abovemaster equationmodels themost generalMarkovian evolution [38, 39].
However, theMarkovian approximation is not accurate inmany situations, for instancewhen the interactions
inside the environment have comparable strengths to the interactions inside the system [34, 55]. In that case the
master equation has to bemodified to take into account non-Markovian effects. One of the first andmost
accurate descriptions of non-Markovian evolution is theNakajima–Zwanzig (NZ)master equation [32]
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wheret
NZ is a superoperator, the so-calledmemory kernel, whichdescribes the interactionwith the environment,

while ( )t is due to the initial correlations between systemand environment. If systemand environment are
initially uncorrelated, then  =( )t 0 for all t. It is clear that the above equation describes non-Markovian
processes, because the state at time t+dtdependsnot only onρ(t)but also on the statesρ(s) for s<t. TheNZ
equation is at the basis of powerfulGreen functionmethods to study the spectral properties of the system [55–58],
since the convolution disappears in the frequencydomain.On the other hand, in the time domain the above
equation is not easy to solve numerically. To avoid this problem, a different but equally accuratemaster equation
has been proposed, the so-called time-convolutionless (TCL)master equation [32], which reads
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Themain formal difference between equations (3) and (2) is that thewhole history of states is fed into theNZ
master equation, while in the TCL case themaster equation explicitly depends on ρ(t) only, and all non-
Markovian effects are included into thememory kernel. As such, the non-Markovian nature of the process
resulting from equation (3) is less obvious, but it is known that bothNZ andTCLmaster equations can describe
the same processes. Indeed, there are formalmappings between NZ and TCL such that both equations (3) and
(2) produce the same physical evolution [32, 59].

Although TCLmaster equations are relatively easy to solve numerically, themain problem is that the
interactionwith the environment is normally unknown. In other terms, whileH is typically well characterized
experimentally, thememory kernel depends on environmental quantities such as the temperature, but also on
the spectral properties of the environment which are normally unknown.Nonlinear spectroscopy can be used to
find the spectral density [56], but the latter does not completely characterizes thememory kernel, without
introducing further assumptions. Themost commonly employed approximation is the assumption of aweak
coupling between system and environment, such that thememory kernel can be formally obtained using
perturbation theory.However, there are cases where these approximations are not justified, e.g. in quantum
biology [34], where the strength of the interactionwith the environment is comparable with the internal
interactions inside the system. To go beyond perturbation theory, we introduce then aRNN-based non-
Markovian quantumprocess, wherememory effects can be learnt directly fromdata.

2.2. Recurrent neural networks
RNNs are a class of neural networks designed tomodel data sequences like time series [60]. To understand their
functioning, it is helpful to compare themwithmore standard feedforward networks. In feedfordward neural
networks the input data s0 propagates throughoutmany intermediate (hidden) layers before reaching the final
output layer.Here ‘propagate’means that, step by step, the state sℓ+1 of the (ℓ+1)th layer is updated, given the
state ofℓth layer, as = ++ ( )ℓ ℓ ℓ ℓs f W s w1 whereWℓ is a weightmatrix,wℓ aweight vector and f is some
nonlinear function. The state at the final layer of the network (output layer) depends on all theweightmatrices
and vectors. Training is performed by updating thoseweights such that the neural network learns some desired
input–output relationship hidden in the data.

In case of temporal data, each input has also an explicit time dependence s0t . Although, in principle, one
could still use a giant feedforward networkwith these data, this is rarely the optimal choice, because the
number of free parameters quickly increases with the number of time steps. RNNs solve this issuewith amore
advanced architecture which is tailored for temporal data. In RNNs, the update rule for the hidden layers at time
tnot only depends on the states sℓt , but also on the states at previous times. In other terms, the update rule is

= ++
-
+( )ℓ ℓ ℓ ℓ ℓs f W s w s,t t t

1
1

1 , where s0t is the input temporal sequence. The free parametersWℓ andw ℓ do not
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depend on t, andmemory of the past is taken into account by the function f, which compresses and saves relevant
informations of previous sequences intomemory cells. This architecture allows RNNs to learn temporal
sequences using a relatively small number of parameters, evenwhen the temporal data has long-rangememory
effects. Themapping between ℓst and +ℓst

1defines a RNNcell.
In this workwe use a variant of RNNcalledGated RecurrentUnit (GRU), whose basic cell is shown in

figure 1 and discussed in the appendix. GRUs use a gatingmechanism that allows them to bettermodel long-
termdependencies thanmore simple RNNs [61]. GRUs are based on a type of RNNcell called Long Short-Term
Memory (LSTM), but can bemore efficient than LSTMs for comparable performance [62, 63]. GRU and LSTM
are commonly used and achieve state of the art performance for sequencemodelling acrossmultiple domains,
includingmachine translation, image captioning and forecasting [64].

TheGRU state st is a linear interpolation of the previous state st−1 and a candidate state s̃t , which depends on
the auxiliary input xt. The input x

j
t for a depth j cell at time t is the state from the cell in the previous layer -st

j 1.
GRU cells can be stacked to form a deepGRUnetwork.More details can be found in the appendix.

3.Main idea

In this sectionwe present the threemain contributions of this paper which all leverage on themodelling
capabilities of RNNs to describe non-Markovian dynamics of open quantum systems. First, we describe amaster
equation approach. Second, we use RNNs to predict the time evolution of quantum state under a non-
Markovian quantumprocess. Third, we showhow these two techniques can be utilized to performquantum
process tomography.

3.1. RNNquantummaster equation
Wepostulate a quantum evolution similar to equation (1), namely


r

r
¶
¶

=
( ) [ ( )] ( )t

t
t , 4t

where the notation�t refers to a superoperator that not only depends on t, but also on the entire history before
time t, as in the TCLmaster equation (3). A convenient choice is then that of theGKSL form
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whereHLS is a ‘Lamb-shift’ term, namely a correction to theHamiltonian inducedby the environment,while Lμ

are Lindblad operators. The reason for this choice is that for small enoughΔt the time evolution is simply given by
r r+ D » D( ) [ ( )]t tet

t t , and since t is in theGKSL form, De t t is a completely positive trace preserving
quantumchannel,mapping states to states. IfHLS andLμ are simply time-dependent functions, namely they only
dependon t andnot onprevious times, then the dynamics generatedby abovemaster equation is alwaysMarkovian
[59]. Themain idea of thiswork is to use aRNNtodefine each Lindblad operator 

mL t and the correction

Hamiltonian H t
LS

j
, seefigure 2(a). In order to ensure theHermiticity of the H t

LS operator,we construct it as

Figure 1.Network diagramof theGRU cell. The output st and input st−1 represent the state at times t and t−1, respectively, while xt is
an auxiliary input that depends on the previous times, before t−1. Rectangles represent neural network layers. Circles represent
entry-wise operations. Bifurcations represent copy operations and joined lines represent concatenation. Details are presented in the
appendix.

4

New J. Phys. 20 (2018) 123030 LBanchi et al



 = +( ) ( )†H A t A tt j j
LS , whereA(tj) is the output of thenetwork and ( )†A tj its conjugate transpose. Since inRNNs

thepredicted output at time tdepends on the entire history at previous times, this parametrization is expected to
accurately reproduce genuinely non-Markovian effects, evenwithpossible long-range dynamical correlations. The
master equation then resembles a TCLmaster equation (3), butwhere the complicatedmemory superoperator is
expressed via a simplerGKSL formwithRNNs.We call our equation (5) theQuantumRecurrentNeural (QRN)
Master equation. Similarly, we call the operators 

mL t recurrent Lindblad operators. A schematics of the resulting
neural network is shown infigure 2(a).

3.2. RNNquantumprocesses
For any initial time t0 themapping between the initial state ρ(t0) and the state at time t, namely

r r=( ) ( )[ ( )] ( )t t t t, , 60 0

defines a completely positivemap, assuming no initial correlationwith the environment. For any intermediate
times t0<τ<t themapping  t( )t, 0 is always completely positive.When also   t t¢ -( ) ≔ ( ) ( )t t t t, , ,0 0

1 is
completely positive, then themapping is called divisible [65]. Divisibility is anotherway of characterising
Markovianity, as quantumprocesses obtained from theGKSLmaster equation are always divisible

with   ò¢ =
¢( )( )t t s, exp d

t

t
s .

In the previous sectionwe have introduced theQRNmaster equation and shown that it canmodel non-
Markovian effects, evenwhen the evolution between intermediate steps is completely positive. This is possible
because the RNNkeeps a compressed record of the previous evolution. Using the formalism of the previous
sectionwe can indeedwrite

  =
¬¾

+ D + D-( ) ( ) ( ) ( )t t t t, , , 7
j

j t j t0
QRN 2

where¬¾¾ Xj j is the ordered productX X X3 2 1.Moreover,

 + D = D( ) ( )t t, e 8j t j
QRN t tj

is completely positive, being the operator exponential of a Liouvillian, but depends on the previous evolution,
via the recurrent Lindblad operators. As such, the totalmap (7) is not divisible.

Based on this analogy, we can nowdrop themaster equation and define a non-Markovian process as

 =
¬¾

+( ) ( ) ( )t t t t, , , 9
j

t j j0
RNN

1j

where  +( )t t,t j j
RNN

1j
is completely positive, but depends on the entire history before tj. Each  +( )t t,t j j

RNN
1j

, being
completely positive, outputs a valid quantum state at intermediate times ρ(tj) and, being a RNN, then updates its

Figure 2.RNNarchitectures for open quantum systems: schematic of a one-to-many deepRNNused to approximate themaster
equation and tomodel the non-Markovian dynamics. Both networks take as input ρ(t0) (green cell) and comprise of twoGRU layers
and a fully connected (FC) layer (blue cells). The yellow cells show the initial network outputA(tj) before the post-processing that
makes Ht

LS
j
Hermitian and ρ(tj+1) a valid density operator. Panel (a) Shows the output for theQMLmaster equation, i.e. the predicted

value ofHLS
t and mLt at intervalsDt (red cells). Panel (b) Shows the output for a RNNmodelling the time evolution of a quantum state

undergoing a non-Markovian quantumprocess, i.e. the predicted value of ρ(t) at intervalsΔt (red cells).
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internalmemory. Complete positivity can be ensured by using theKraus decomposition or the environmental
representation.

For better comparisonwith theQRNmaster equation, in thisworkweuse the simpler strategy shown in
figure 2(b), whereweuse theoutputA(tj)of the network to define a density operator via r =+( ) ( ) ( )†t A t A tj j j1

[ ( ) ( ) ]†A t A tTr j j . This ensures that the statesρ(tj) are valid density operators, throughout the entire evolution.

3.3. Application: quantumprocess tomography
In this workwe apply ourQRNmaster equations andRNNquantumprocesses for quantumprocess
tomography.We consider the following setup.We assume that the quantum system can be initialized in
different initial states ρα(0)where a = ¼ N1, , I, for somenumber NI. For each initialization, we assume that it
is possible to perform full-quantum tomography at some time steps 0�tj�T for = ¼j N1, , T and some NT.
After this procedure we are able to reconstruct the time evolutions ρα(tj) for different times and initializations.
Herewe consider uniformly separated timeswhere tj=jΔT andD = T NT T, though it is straightforward to
generalize this procedure to non-uniform sequences. Each state tomography requires( )d2 measurements,
where d is the dimension of the system’sHilbert space, so the total cost of reconstructing these sequences is
( )d N N2

T I . Once these sequences are obtained, we use them to train the neural network.
We consider two cases. In the first onewe train a RNN to learn the quantum state evolution, as shown in

figure 2(b). Herewe assume no knowledge about the system’sHamiltonian or interactionwith the environment.
Training is then performed byminimising a cost function

å å r r= -
a

a a
= =

 ( ) ˜ ( ) ( )J
N N

t t
1

, 10p

N

j

N

j j
I T 1 1

I T

where ρα(tj) are the training data, rã ( )tj are the states outputted by the RNN, and · is any operator norm.

In the second applicationwe aim at reconstructing H t
LS and the recurrent Liouvillian operators 

mL t entering
in theQRNmaster equation, where, on the other hand, we assume that theHamiltonianH is known. The latter
assumption can always be relaxed, asHamiltonian evolution can be fully included into the correction
HamiltonianHLS, which is learnt from the data. In theQRNmaster equation, the operators H t

LS and 
mL t are

obtained from the output of the RNN, as shown infigure 2(b). To train the RNNs to predictHLS and mL given a
starting state ρα(t=0)we propose the use of the differential equation (4) to define a cost function. For classical
time series, a similar approach [66] has been employed for extracting natural laws from experimental data.

To explain our idea, let usfirst consider the opposite scenario, where the differential equation (4), with all of
its operators, is already known,while the states r ( )tj are not. In this common case, the states ρ(tj) at different
times are evaluated from the numerical integration of themaster equation. The latter can be obtainedwith an
n-order Runge–Kutta integrator [67]which, in general, can be formally written as

r r r= + Da a a+( ) ( ) [ ( )] ( )t t t , 11j j T t
n

j1
RK,

j

where t
nRK, is nth order Runge–Kutta integration step, which can be explicitly obtained for any n (see e.g. [67]).

For instance, to thefirst order t
RK,1 is simply t . To summarize, when H t

LS and 
mL t are known,we can use a

Runge–Kutta integrator to obtain the time evolution ρ(tj).
We now consider the opposite problem, namelywheremany time sequences ρα(tj) are already known,while

the operators H t
LS and 

mL t in theQRNmaster equation are not. This is like assuming that the solutions of a
differential equation are known and from themwewant to reconstruct the differential equation itself. Based on
the analogywith numerical integration via Runge–Kutta, we propose to use the following cost function:

å å r r r= - - D
a

a a a
= =

+ ( ) ( ) [ ( )] ( )J
N N

t t t
1

, 12
N

j

N

j j T t
n

j
I T 1 1

1
RK,

F
2

j

I T

where · F is the Frobenius norm. The intuitive idea behind the above cost function is that ofmaking the
measured data sequences as close as possible to those coming from the numerical solution of amaster equation.
Minimizing the cost function is then equivalent tofinding the best QRNmaster equation compatible with the
measured sequences ρα(tj). It is expected that a higher order integrator (large n) performs better, especially for
largerΔT, but requires heavier numerical computations.

4.Numerical experiments

4.1. Learning quantum state sequences
Wemimic experimental data by numerically generating sequences of states, which are then used to train the
neural network. To generate the training data, we consider a simple yet importantmodel of spontaneous decay
of a two-level system [54, 68], described by themaster equation
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of oscillations around the z axis. The parameter
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cosh 2 sinh 2
. 140

is the decay ratewith h l g l= - 22
0 .Whenλ>2γ0 the function γ(t) is always positive, so equation (13)

takes theGKSL form (1) and, as such, defines aMarkovian evolution. On the other hand, forλ<2γ0 the
function γ(t) can be negative and the dynamics displays non-Markovian effects [54, 69, 70]. The above two level
system can alsomodel a excitation energy transfer in biological dimers [71].

We use the abovemodel to obtain training data for the RNNarchitecture shown infigure 2(b). Each training
sequence ρα(tj), for a = ¼ N1, , I, has been obtained by first choosing a random initial state ρα(0) and then
solving themaster equation equation (13) to get the states ρα(tj) at subsequent times, up to amaximal time tmax.
These data sequences were then used to train aGRUneural network, byminimising the cost function (10). After
training, we test the accuracy of the neural network by generating a new sequence of states ρβ(tj), and the RNN
prediction rb˜ ( )tj , for b = ¼ N1, , P. As before, ρβ(tj) is obtained by selecting a random initial state ρβ(0) and
solving equation (13), possibly for longer times than tmax.On the other hand, the predicted evolution rb˜ ( )tj is
obtained by feeding the initial state ρβ(0) to the RNN to get the entire temporal sequence. The two evolutions are
comparedwith the trace distance r r r r= -( ˜ ) ∣ ˜∣D , Tr1

2
. In particular, we study the average trace distance

r r r r= åb b b( ( ) ˜( )) ( ( ) ˜ ( ))T t t D t t, ,
N

1

P
as a function of time.

Infigure 3we show a numerical solution of this numerical experiment (EXP1), wherewe can see that, once
trained, the RNN is able to predict the evolution of a known starting state, up to themaximal training time tmax.
On the other hand, and as expected, the accuracy of the RNNprediction rapidly deteriorates for t>tmax.

4.2. Learning themaster equation: a simple case
Infigure 4we show the solution of a second numerical experiment (EXP2) obtainedwith the same training set of
thefirst experiment (EXP1), discussed in figure 3.While EXP1 uses a RNN tomodel the entire quantum
evolution, EXP2uses the RNN to define aQRNmaster equation, following section 3.3. Training is then
performed byminimising theQRNcost function (12), where for simplicity we assume afirst-order Runge–
Kutta integrator (n= 1) and a single recurrent Lindblad operator (μ≡1). In EXP2we have chosen aMarkovian
regime so that the entire evolution can bemodelled via aGKSLmaster equation (1). In this regime, the RNN
Lindblad operators can be approximated as a simple time-dependent function, so theminimization of the cost
function (12) is equivalent to learning standard Lindblad operators. Infigure 4we compare the predicted
recurrent Lindblad operators Lμ as a function of time, with respect to the real ones defined in equation (13). In

Figure 3. (EXP1) Learning the evolution of a noisy two level system: themean trace distance r r r r= åb b b( ( ) ˜( )) ( ( ) ˜ ( ))T t t D t t, ,
N

1

P

between true states ρβ(tj) and predicted states rb˜ ( )tj as a function of time. The time tmax is themaximum time used during training. All
the experiments runwith the following parametersω=1 for equation (13) andλ=2, γ0=0.5 for equation (14), and a discretization
interval ofΔt=0.01. The simulations run over 3000 training examples and predictionswere tested over 1000 test examples. All the
evolutions run for a time of tmax=0.7.
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the systemunder study all entries of the Lindblad operators are zero (hence theflat lines in the figure) apart from
one value. Aswe can see, the prediction is remarkably accurate at all times, even beyond the training time
t>tmax. The error in the prediction is shown infigure 5, by plotting the cost function (12) for different times.
EXP2 shows that the RNNwas able to learn the evolution of the Lindblad operator Lt for t=0.1 to tmax=0.7.
In addition, the RNNwas able to predict Lt for t>tmax whichwas the last time step used during training.

4.3. Learning themaster equation: non-Markovian case
In this sectionwe focus on the non-Markovian regime, where there are non-trivialmemory effects that the RNN
has to learn and reproduce. As in section 4.1, we consider state sequences generated numerically by solving a
master equation.However, unlike our previous treatment, herewe consider amore complicated non-
Markovianmodel of the environment, which includes back-scattering effects. Back-scattering can refer, for
instance, to a photon emitted to the environment that comes back at later times. As such, the information
transferred to the environment is not completely lost. Tomodel these non-Markovian effects we consider two
qubits evolvingwith the followingmaster equation

Figure 4. (EXP2) Learning the Lindblad operator describing theMarkovian evolution of a two level system: the learned and known

entries of åa a
mºL1 1 are compared for theMarkovian evolution of a two-level system.We plot the time evolution of every entry of the

matrix. Real and complex entries are plotted separately. All the experiments runwith the following parameters w = 1 for equation (13)
andλ=2, γ0=0.5 for equation (14), and a discretization interval ofΔt=0.01. The simulations run over 1500 training examples
and predictions were tested over 2500 test examples. All the evolutions run for a time of tmax=0.7. The Frobenius norm squaredwas
used as distance between thematrices.

Figure 5. (EXP2)Average cost function value (12) for different times. The parameters are the same offigure (4).
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where g ( )ti has the same functional formof equation (14) (butwe add a superscript (i) to the parameters g( )i
0
and

λ( i) that refers to qubit index) and the two-qubitHamiltonian is

w s s s s s s s= Ä + Ä + Ä + Ä ( )H I c c c , 16z x x y y z z12 1 2 3

where =c 0.32421 , c2=0.6723, and c3=0.1353.Wenumerically solve equation (15) to get the data sequence
ra ( )tj12 , where a = ¼ N1, , I indexes the different solutions obtainedwith different initial states. From these two
qubit solutions we define then the state sequences as r r=a

a( ) [ ( )]t tTrj 2 12 . In other terms, qubit 1 is the principal
system,while qubit 2 is an ancillary system. Because of the coherent interactionH12 between qubit 1 and qubit 2,
with this approachwe canmimic the back-action of the environment onto the system.

We divide our numerical results into different experiments. In EXP3, shown infigure 6, we train a RNN to
fully reproduce the entire quantum evolution, following the discussion of section 3.2.We see that in spite of
non-Markovian effects, the resulting error is comparable to that of theMarkovian case (EXP1) shown infigure 3.

Infigure 7we use the same training data of EXP3 to run a new experiment (EXP4)wherewe train aQRN
master equation, byminimising the cost function (12).We consider two cases: in the first one the RNNoutputs a
single recurrent Lindblad operator Lμ≡1. In the second one, the RNNoutputs bothmodel both a recurrent
Lindblad operator Lμ≡1, and the renormalizedHamiltonian, namely the Lamb-shift termHLS.We note that,
with a single recurrent Lindblad operator, the error is slightly larger than that of theMarkovian case, shown in
figure 4.However, the resulting error is very lowwhenwe include also the correctionHamiltonianHLS.

Figure 6. (EXP3) Learning the evolution of a noisy two level non-Markovian system: themean trace distance r r =( ( ) ˜( ))T t t,
r råb b b( ( ) ˜ ( ))D t t,

N

1

P
between true states ρβ(tj) and prediction states rb˜ ( )tj as a function of time. The time tmax is themaximum time

used during training. The experiments runwith the following parametersλ(1)=2, g =( ) 0.50
1 andλ(2)=1, g =( ) 0.20

2 for
equation (15),ω=1 for equation (16), and a discretization interval ofΔt=0.01. The simulations run over 3000 training examples
and predictions were tested over 1000 test examples. All the evolutions run for a time of tmax=0.7.

Figure 7. (EXP4) Learning a non-Markovianmemory kernel: average value of the cost function á ñJ on unseen examples as a function
of time for a learnedmemory kernel with only the LindbladOperator 

mL t andwith both the LindbladOperator and the Lamb-shift
Hamiltonian H t

LS. The parameters are the same of figure 6. The Frobenius norm squaredwas used as distance between thematrices.
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Comparing figure 7with theMarkovian case, figure 4, one can see that the error grows faster in the non-
Markovian regime after the training time tmax.Overall, infigure 7we see that the RNNwhich learned both the
recurrent Lindblad operator and the Lamb-shift Hamiltonian performed best, andwas better able to predict the
memory kernel at times greater than those seen during training.

Finally, infigure 8we run a different numerical experiment (EXP5). In EXP5 the training set is composed by
data sequenceswhere the qubit frequencyω in equation (16) is notfixed, but rather uniformly sampled from0.5
to 1.5. The sampled frequency is used as an extra input to the RNN. This corresponds to the experimentally
relevant case where the qubit frequency can be externally tuned to a known value. Uncertainty about this
frequency can be estimated from the correctionHamiltonianHLS, which is learned from the data. Infigure 8we
see that the error in EXP5 is remarkably low. Based on the success of this numerical experiment, we propose the
following general strategy to introduce prior knowledge about the system.We can define aRNNwhere the
knownproperties of the system, e.g. itsHamiltonian, are added as an extra input. Training is performed using
datasets of quantum state sequences and their respectiveHamiltonian, where the latter is sampled from the
space of experimentally relevantHamiltonians. The remarkable accuracy shown figure 8 suggests that this
procedure forces the RNNs to better explore themanifold of quantum state sequences, to produce amore
accurate and robust prediction.

5. Conclusions and perspectives

Wehave studied quantum state evolution using RNNs.We have shown that evenwhen the system is interacting
with a complicated surrounding environment, RNNs offer an accurate and robust tool formodelling and
reconstructing the quantum evolution, both in theMarkovian and non-Markovian regime, and evenwhen there
are back-scattering effects from the environment.

We have introduced two approaches formodelling open quantum systemswith RNNs. In the first one, a
deepRNN is trained to learn the entire quantum evolution, namely to reproduce the time sequence ρ(tj) given an
initial state ρ(0). In the second approach, we use a deepRNN to define a non-Markovianmaster equationwhere
thememory kernel takes a convenientmathematical form, namely that of theGKSL equation. In ourmaster
equation the non-Markovianmemory effects are taken into account by the structure of the RNNcells. The
observed success of our approaches stems from the ability of RNNs to learn temporal sequences, where the
future depends on the entire past. Our RNN-basedmaster equation can be used as a convenientmathematical
framework towrite non-Markovianmemory kernels without resorting to perturbative treatments, and to learn
their unknown parameters directly from the data.

Many extensions of ourwork are possible.Many-body systemswith exponentially largeHilbert spaces could
be considered by using RNNswhich output a compressed representation of the state, such as tensor networks
[72, 73], restricted Boltzmannmachines [10] or variational autoencoders [19]. The predictions after the training
time can be improved by considering higher order Runge–Kutta integrators and bymodifying the structure of
the RNNcell to have afixed point in the infinite time limit, as expected fromphysical principles. AlthoughRNNs

Figure 8. (EXP5) Learning a non-Markovianmaster equationwith differentω values: average value of the cost function á ñJ on unseen
examples as a function of time for a learnedmemory kernel with both the Lindblad operator 

mL t whereμ=2 and the Lamb-shift
Hamiltonian H t

LS. tmax specifies themaximum time in the range of times used for training. All the experiments runwith the following
parametersλ(1)=2, g =( ) 0.50

1 andλ(2)=1, g =( ) 0.20
2 for equation (15),ω uniformly sampled in the interval [0.5, 1.5] for

equation (16), and a discretization interval ofΔt=0.01. The simulations run over 3000 training examples and predictions were
tested over 1000 test examples. All the evolutions run for a time of tmax=0.7. The Frobenius norm squaredwas used as distance
between thematrices.
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proved to be a powerful tool formodelling open quantum systems, themachine learning literature offers a
number of othermethods, such asKalman Filters ormodels withGaussian Process transitions, that appear
particularly promising. For example, Gaussian Process State SpaceModels [74] allowone tomodel prior
information on the system and return Bayesian estimates of the uncertainties. Both these features are desirable in
a quantum context: prior knowledge on the system, such as the formof the noise-freeHamiltonian,may be used
to further reduce the complexity of themodel, while approximate values for the uncertaintiesmight enable
better control of experimental inaccuracies. It would be interesting to define quantummaster equations based
on these tools and to check their performances against ourQRNmaster equation.

Finally, inmore physical terms, it would be interesting to studywhat happenswhen partial information
about the system is available. An experimentally relevant case is when the initial state ρ(0) is known, but one has
access to a limited set of expectation values á ñr ( )Ak tj

, where the observablesAk are not enough to tomographically
reconstruct the states ρ(tj). This possibilitymay be considered, using our framework, by introducing a cost
function between expectation values, rather than between density operators. A further challenge is then to
model the disturbance of themeasurement onto the system, namely thewave function collapse. This can be
done using the process tensor formalism [35], which provides an avenue for generalising our approach in the
presence of feedback. It would be interesting to study the performance of RNNs tomodel these experimentally
relevant quantum evolutions.
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Appendix. Gated recurrent unit

TheGRU state st is a linear interpolation of the previous state st−1 and a candidate state s̃t . The candidate state is a
function of the cell input xt and the previous state given by:

s
s

= + +
= + +
= + +
= - +

-

-

-

-

( )
( )

˜ ( ( ◦ ) )
( ) ◦ ◦ ˜ ( )

z W x U s b

r W x U s b
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s z s z s

,

,

tanh ,
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t z t z t z

t r t r t r

t t t t

t t t t t

1

1

1

1

where ◦ denotes the entry-wise (Hadamard) product,σ denotes the sigmoid function, xt is the input to the cell
andW,U and b are trainable parameters, which do not explicitly depend on t. GRU cells can be stacked to form a
deepGRUnetwork. The input x jt for a depth j cell at time t is the state from the cell in the previous layer -st

j 1.
TheGRU state st can be thought of as amixture of the previous state st−1 and the candidate state s̃t . The

weighting of themixture is controlled by ztwhich is known as the update gate.We can see that if the entries of zt
are zero then the candidate state is ignored and the previous state becomes the new state.

The candidate state s̃t is a function of the previous state st−1 and the current input xt. The relative
contribution of the previous state to the candidate state is controlled by rtwhich is known as the reset gate.

Amore detailed discussion ofGRU cells can be found in [61].
Note that the output of the network is a real vector. In order to encode complexmatrices into the RNNwe

use the following procedure. Assume that wewant to encode amatrix Î ´M m m.M can be decomposed into a
real and imaginary part = +M M MiRe Im.We require the output of the RNN to be a vector Îo m2 2

such that
thefirstm2 elements encode in row-major order the entries ofMRe and the secondm

2 elements encode in row-
major order the entries ofMIm.

All GRUnetworks used in this work consisted of 2GRU layers with output dimension=40, followed by 1
fully connected layer. TheAdamoptimizer was used for trainingwith initial learning rate 0.01 [75] and batches
of 32 examples. Trainingwas stopped after each examplewas seen 60 times. In EXP2 the fully connectedweights
were regularized usingweight decay [76], with the L2 penalty factor set to 0.001. The networks were
implemented using theKeras 2.2.0 andTensorflow 1.8 frameworks [77, 78]. Networkweights were initialized
using theKeras defaults.
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