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Abstract

Quantum systems interacting with an unknown environment are notoriously difficult to model, especially
in presence of non-Markovian and non-perturbative effects. Here we introduce a neural network based
approach, which has the mathematical simplicity of the Gorini-Kossakowski—Sudarshan—Lindblad master
equation, but is able to model non-Markovian effects in different regimes. This is achieved by using
recurrent neural networks (RNNs) for defining Lindblad operators that can keep track of memory effects.
Building upon this framework, we also introduce a neural network architecture that is able to reproduce the
entire quantum evolution, given an initial state. As an application we study how to train these models for
quantum process tomography, showing that RNNs are accurate over different times and regimes.

1. Introduction

Traditionally, in the physical sciences, the study of mathematical problems for which no analytic solution is
available involves modelling methods leveraging a combination of approximation techniques (such as
perturbation theory or semiclassical approaches) and the use of symmetries to reduce the complexity of the
problem. Recently, advances in machine learning [ 1, 2], have caused a surge in popularity of data-driven
approaches, which instead rely on computational techniques that exploit statistical correlations. Applications
range from chaos theory [3] to high energy physics [4], eventually showing many applications and new
perspectives in the quantum domain [5-8]. In particular, artificial neural networks (a class of learning methods
inspired by the functioning of the brain) have been utilized in quantum many-body physics for ground state
estimation [9], quantum state tomography [10, 11], classification of phases of matter [12], entanglement
estimation [13], and to identify phase transitions [14]. Although the theoretical understanding of the
effectiveness of these models is currently limited, some recent papers have established connections between
neural networks and more standard frameworks such as renormalization group [15], tensor networks [16—18],
and complexity theoretic tools [19]. Moreover, classical optimization techniques borrowed from supervised
machine learning have been employed to optimize the dynamics of many-body systems [20-24] and parametric
quantum circuits [25-31].

Open quantum systems [32, 33] present further challenges. Here, any modelling effort must take into
account that the system interacts with a surrounding environment, whose microscopic details are usually
unknown. The resulting effects can only be treated phenomenologically and significantly increase the
complexity of the model, especially in the non-Markovian regime. In this regime, exact non-perturbative master
equations [34] or quantum maps [35] operate by entangling the system with ancillary degrees of freedom whose
dimension grows with time. This makes exact simulations extremely challenging even for low dimensional
Hilbert spaces. Therefore, in larger systems, non-Markovian effects can only be modelled in an approximate
fashion, e.g. by neglecting quantum correlations or by assuming weak couplings between system and
environment. When these approximations are justified, phenomenological models with a reduced number of
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parameters are normally accurate. However, these approximations are often violated, e.g. in quantum biology
[34], so itis important to study alternative mathematical structures.

Machine learning methods offer new ideas for modelling non-Markovian effects when standard
assumptions do not hold. The intuition behind these approaches is that, if there exists an efficient description of
the system, this can be learnt from data without using explicit modelling assumptions. In particular, neural
networks based learning techniques have shown that it is possible to learn complex functional dependencies in
time series directly from the data, without trying to make theoretical assumptions that may be unjustified (such
as the weak coupling limit) or hard to derive from phenomenological observations. In order for these methods to
succeed, it is crucial to define the correct neural network structure that can quickly learn the underlying rule to
reproduce the unknown functional form displayed in the data.

Here we investigate the ability of neural networks to model the non-Markovian evolution of open quantum
systems, using a fixed number of parameters that does not grow with the number of time steps. We focus on
Recurrent Neural Networks (RNNs), a type of artificial neural network specifically designed to model dynamical
systems with possibly long range temporal correlations. In the quantum setting, RNNs have been previously
employed for quantum control [36, 37]. We consider two main applications. In the first one, we define a master
equation which has the mathematical simplicity of the Gorini-Kossakowski—Sudarshan—Lindblad (GKSL)
master equation [38, 39], but is nonetheless able to model non-Markovian effects via the memory cells included
in RNNss. In the second application, we define an RNN able to reproduce the entire quantum evolution given an
initial state, without introducing any master equation. Our RNN-based frameworks share some similarity with
collisional models [40—46] or e-machines [47], where explicit memory effects are introduced by using ancillary
quantum systems. However, there are notable differences. One of the advantages of RNNs is in their ability to
learn directly from data how to compress complex time series with a few constant parameters. Moreover, there
are different RNN architectures and it is possible to select the most appropriate one to model the expected long-
range memory in the time evolution.

We will show that RNN's provide a convenient mathematical framework to define the so-called memory
kernel [32], such that the resulting time-local master equation has a completely positive solution. The
reconstruction of the memory kernel from quantum state sequences, namely from quantum process
tomography, has been the subject of different studies in recent years [35, 48—52]. Most approaches considered in
the literature start with some assumptions on the microscopic model, and then fits the free parameters given the
experimental data. These assumptions are required to avoid having an exponentially growing number of free
parameters for increasing number of time steps. However, these assumptions are normally uncontrollable,
especially when the details of the microscopic model are unknown. Our main result is to show that RNN-based
quantum processes and master equations are able to learn efficient representations of non-Markovian quantum
evolutions directly from data sequences and without making any assumption on the underlying physical model.
Indeed, even the Hamiltonian of the system can be learnt during this process. Note that, while the Hamiltonian
can be learnt with alternative methods, e.g. Bayesian inference [53], the memory kernel is much more difficult, as
its functional form, beyond the perturbative regime, is unknown. The main use of RNNs is therefore as a
‘compression’ method, to effectively model complex quantum correlations between system and environment
with a constant and fixed number of parameters. As a relevant application for our technique, we consider
quantum process tomography and show that RNNs are able to model the physical evolution of quantum systems
over different regimes.

The paper is structured as follows. In section 2 we present relevant technical background. Specifically, in
section 2.1 we introduce non-Markovian quantum processes and common master equations to describe them.
In section 2.2 we introduce the RNN architecture employed in this paper. The main ideas are presented in
section 3, where we introduce our RNN-based master equation (section 3.1) and RNN-based quantum process
(section 3.2), with applications for process tomography (section 3.3). Numerical experiments are presented in
section 4 and conclusions are drawn in section 5.

2.Background

2.1. Non-Markovian processes

Quantum systems, even the purest ones, are inevitably in contact with an environment. Because of this normally
unknown interaction, quantum evolution deviates from the predictions of the Schrodinger equation, and
different extensions have been proposed [32, 54]. When the interactions inside the environment happen on
timescales much shorter than the internal timescales of the system, then a Markovian approximation is usually
appropriate, and the evolution can be modelled via the GKSL master equation [38, 39]
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where H is the Hamiltonian, which models the noise-free case, and L, are called Lindblad operators. The
superoperator L is called Liouvillian. Mathematical properties of the above equation are well understood [33].
For any choice of Hand L,, the solution of the master equation & = e* defines a completely positive trace
preserving linear map, and is thus a mathematically well-posed mapping between states to states. With properly
chosen Lindblad operators, the above master equation models the most general Markovian evolution [38, 39].
However, the Markovian approximation is not accurate in many situations, for instance when the interactions
inside the environment have comparable strengths to the interactions inside the system [34, 55]. In that case the
master equation has to be modified to take into account non-Markovian effects. One of the first and most
accurate descriptions of non-Markovian evolution is the Nakajima—Zwanzig (NZ) master equation [32]

p() _
ot

where ICFZ is a superoperator, the so-called memory kernel, which describes the interaction with the environment,
while Z(t) is due to the initial correlations between system and environment. If system and environment are
initially uncorrelated, then Z(¢) = 0 forall #. Itis clear that the above equation describes non-Markovian
processes, because the state at time ¢ + dt depends not only on p(#) but also on the states p(s) for s < t. The NZ
equation is at the basis of powerful Green function methods to study the spectral properties of the system [55-58],
since the convolution disappears in the frequency domain. On the other hand, in the time domain the above
equation is not easy to solve numerically. To avoid this problem, a different but equally accurate master equation
has been proposed, the so-called time-convolutionless (TCL) master equation [32], which reads

op() _
ot

The main formal difference between equations (3) and (2) is that the whole history of states is fed into the NZ
master equation, while in the TCL case the master equation explicitly depends on p(#) only, and all non-
Markovian effects are included into the memory kernel. As such, the non-Markovian nature of the process
resulting from equation (3) is less obvious, but it is known that both NZ and TCL master equations can describe
the same processes. Indeed, there are formal mappings between XN? and KTt such that both equations (3) and
(2) produce the same physical evolution [32, 59].

Although TCL master equations are relatively easy to solve numerically, the main problem is that the
interaction with the environment is normally unknown. In other terms, while H is typically well characterized
experimentally, the memory kernel depends on environmental quantities such as the temperature, but also on
the spectral properties of the environment which are normally unknown. Nonlinear spectroscopy can be used to
find the spectral density [56], but the latter does not completely characterizes the memory kernel, without
introducing further assumptions. The most commonly employed approximation is the assumption of a weak
coupling between system and environment, such that the memory kernel can be formally obtained using
perturbation theory. However, there are cases where these approximations are not justified, e.g. in quantum
biology [34], where the strength of the interaction with the environment is comparable with the internal
interactions inside the system. To go beyond perturbation theory, we introduce then a RNN-based non-
Markovian quantum process, where memory effects can be learnt directly from data.

—i[H, p(t)] + fo ds KN4 [p(s)] + (1) ©)

—i[H, p()] + j; ds KT p(0)] + (1) . 3)

2.2. Recurrent neural networks
RNNs are a class of neural networks designed to model data sequences like time series [60]. To understand their
functioning, it is helpful to compare them with more standard feedforward networks. In feedfordward neural
networks the input data s” propagates throughout many intermediate (hidden) layers before reaching the final
output layer. Here ‘propagate’ means that, step by step, the state s“ " of the (# + 1)th layer is updated, given the
state of Zth layer, as s ! = f(W’s’ + w’) where W* is a weight matrix, w’ a weight vector and fis some
nonlinear function. The state at the final layer of the network (output layer) depends on all the weight matrices
and vectors. Training is performed by updating those weights such that the neural network learns some desired
input—output relationship hidden in the data.

In case of temporal data, each input has also an explicit time dependence s;. Although, in principle, one
could still use a giant feedforward network with these data, this is rarely the optimal choice, because the
number of free parameters quickly increases with the number of time steps. RNNs solve this issue with a more
advanced architecture which is tailored for temporal data. In RNNs, the update rule for the hidden layers at time
tnot only depends on the states s, but also on the states at previous times. In other terms, the update rule is
s{H = f(W?sE + we, sE41), where s? is the input temporal sequence. The free parameters W* and w” do not
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Figure 1. Network diagram of the GRU cell. The outputs,and input s,_; represent the state at times tand t — 1, respectively, while x, is
an auxiliary input that depends on the previous times, before t — 1. Rectangles represent neural network layers. Circles represent
entry-wise operations. Bifurcations represent copy operations and joined lines represent concatenation. Details are presented in the
appendix.

depend on ¢, and memory of the past is taken into account by the function f, which compresses and saves relevant
informations of previous sequences into memory cells. This architecture allows RNNs to learn temporal
sequences using a relatively small number of parameters, even when the temporal data has long-range memory
effects. The mapping between s/ and s/ *! defines a RNN cell.

In this work we use a variant of RNN called Gated Recurrent Unit (GRU), whose basic cell is shown in
figure 1 and discussed in the appendix. GRUs use a gating mechanism that allows them to better model long-
term dependencies than more simple RNNs [61]. GRUs are based on a type of RNN cell called Long Short-Term
Memory (LSTM), but can be more efficient than LSTM:s for comparable performance [62, 63]. GRU and LSTM
are commonly used and achieve state of the art performance for sequence modelling across multiple domains,
including machine translation, image captioning and forecasting [64].

The GRU state s, is a linear interpolation of the previous state s;_; and a candidate state $;, which depends on
the auxiliary input x,. The input x/ for a depth j cell at time ¢ is the state from the cell in the previous layer s/~ 1.
GRU cells can be stacked to form a deep GRU network. More details can be found in the appendix.

3.Mainidea

In this section we present the three main contributions of this paper which all leverage on the modelling
capabilities of RNNs to describe non-Markovian dynamics of open quantum systems. First, we describe a master
equation approach. Second, we use RNNss to predict the time evolution of quantum state under a non-
Markovian quantum process. Third, we show how these two techniques can be utilized to perform quantum
process tomography.

3.1. RNN quantum master equation
We postulate a quantum evolution similar to equation (1), namely

dp(t)
ot

where the notation <trefers to a superoperator that not only depends on #, but also on the entire history before
time t, as in the TCL master equation (3). A convenient choice is then that of the GKSL form

= Lalp®], (C))

L<ilpl=—ilH + HE, p)

4 L 1 L L
+ Z[LétPLéj - E{LQL’@ p}] , (5)
I

where H is a ‘Lamb-shift’ term, namely a correction to the Hamiltonian induced by the environment, while L*
are Lindblad operators. The reason for this choice is that for small enough A, the time evolution is simply given by
p(t + Ay = ePE<i[p(t)] ,andsince L, isin the GKSL form, e®“< is a completely positive trace preserving
quantum channel, mapping states to states. If H* and L* are simply time-dependent functions, namely they only
depend on tand not on previous times, then the dynamics generated by above master equation is always Markovian
[59]. The main idea of this work is to use a RNN to define each Lindblad operator L, and the correction

Hamiltonian Hst , see figure 2(a). In order to ensure the Hermiticity of the HL; operator, we construct it as
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Figure 2. RNN architectures for open quantum systems: schematic of a one-to-many deep RNN used to approximate the master
equation and to model the non-Markovian dynamics. Both networks take as input p(t,) (green cell) and comprise of two GRU layers
and a fully connected (FC) layer (blue cells). The yellow cells show the initial network output A(%)) before the post-processing that
makes H[]L,S Hermitian and p(tj;.,) a valid density operator. Panel (a) Shows the output for the QML master equation, i.e. the predicted
value of H*S and L/} atintervals At (red cells). Panel (b) Shows the output for a RNN modelling the time evolution of a quantum state
undergoing a non-Markovian quantum process, i.e. the predicted value of p(f) at intervals At (red cells).

Hg =A() + A (tj)T, where A(%) is the output of the network and A (tj)T its conjugate transpose. Since in RNN's
the predicted output at time t depends on the entire history at previous times, this parametrization is expected to
accurately reproduce genuinely non-Markovian effects, even with possible long-range dynamical correlations. The
master equation then resembles a TCL master equation (3), but where the complicated memory superoperator is
expressed via a simpler GKSL form with RNNs. We call our equation (5) the Quantum Recurrent Neural (QRN)
Master equation. Similarly, we call the operators LY, recurrent Lindblad operators. A schematics of the resulting
neural network is shown in figure 2(a).

3.2. RNN quantum processes
For any initial time #, the mapping between the initial state p(f,) and the state at time ¢, namely

p(t) = &, to)[p(10)] (6)

defines a completely positive map, assuming no initial correlation with the environment. For any intermediate
times ty < T < tthe mapping &£(7, to) is always completely positive. When also &'(t, ) := E(t, to) E(T, to)!is
completely positive, then the mapping is called divisible [65]. Divisibility is another way of characterising
Markovianity, as quantum processes obtained from the GKSL master equation are always divisible

with £(¢/, t) = Texp ( " ds).

In the previous section we have introduced the QRN master equation and shown that it can model non-
Markovian effects, even when the evolution between intermediate steps is completely positive. This is possible
because the RNN keeps a compressed record of the previous evolution. Using the formalism of the previous
section we can indeed write

—

&t tg) = [ ETNE+ A ) + O(A D), (7)

j
where Hj Xjisthe ordered product --- X3 X; X;. Moreover,
ERN(t + A, 1)) = eMibsy 8)

is completely positive, being the operator exponential of a Liouvillian, but depends on the previous evolution,
via the recurrent Lindblad operators. As such, the total map (7) is not divisible.
Based on this analogy, we can now drop the master equation and define a non-Markovian process as

TT oRNN
g(t: tO) - H 5gtj (tj+1’ t]) 5 (9)
j
where EgN(tH 1» tj) is completely positive, but depends on the entire history before #;. Each 52§N(tj+ 1> tj), being

completely positive, outputs a valid quantum state at intermediate times p(t;) and, beinga RNN, then updates its
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internal memory. Complete positivity can be ensured by using the Kraus decomposition or the environmental
representation.

For better comparison with the QRN master equation, in this work we use the simpler strategy shown in
figure 2(b), where we use the output A(t;) of the network to define a density operator via p(¢;41) = A(t)A (tj)"' /
Tr[A(t)A (t]-)T ]. This ensures that the states p(t)) are valid density operators, throughout the entire evolution.

3.3. Application: quantum process tomography
In this work we apply our QRN master equations and RNN quantum processes for quantum process
tomography. We consider the following setup. We assume that the quantum system can be initialized in
different initial states p.,(0) where o = 1, ..., Ny, for some number Nj. For each initialization, we assume that it
is possible to perform full-quantum tomography at some time steps 0 < #; < Tfor j = 1, ..., Ny and some Nr.
After this procedure we are able to reconstruct the time evolutions p,(%;) for different times and initializations.
Here we consider uniformly separated times where t; = j A and Ay = T /Nr, though it is straightforward to
generalize this procedure to non-uniform sequences. Each state tomography requires O(d?) measurements,
where d is the dimension of the system’s Hilbert space, so the total cost of reconstructing these sequences is
O(d*N1 Ny). Once these sequences are obtained, we use them to train the neural network.

We consider two cases. In the first one we train a RNN to learn the quantum state evolution, as shown in
figure 2(b). Here we assume no knowledge about the system’s Hamiltonian or interaction with the environment.
Training is then performed by minimising a cost function

o () — 2D (10)
NINT 21 JZI ! !

P
where p,(t)) are the training data, p, (;) are the states outputted by the RNN, and ||-|| is any operator norm.

In the second application we aim at reconstructing HZ; and the recurrent Liouvillian operators L%, entering
in the QRN master equation, where, on the other hand, we assume that the Hamiltonian H is known. The latter
assumption can always be relaxed, as Hamiltonian evolution can be fully included into the correction
Hamiltonian H**, which is learnt from the data. In the QRN master equation, the operators H:’ and LY, are
obtained from the output of the RNN, as shown in figure 2(b). To train the RNNs to predict H" ™ and L# givena
starting state p,(t = 0) we propose the use of the differential equation (4) to define a cost function. For classical
time series, a similar approach [66] has been employed for extracting natural laws from experimental data.

To explain our idea, let us first consider the opposite scenario, where the differential equation (4), with all of
its operators, is already known, while the states p(¢;) are not. In this common case, the states p(%)) at different
times are evaluated from the numerical integration of the master equation. The latter can be obtained with an
n-order Runge—Kutta integrator [67] which, in general, can be formally written as

Pt = p, (&) + ATEE'Z.’“[pa(tj)] , (11)

ERK "is nth order Runge—Kutta integration step, which can be explicitly obtained for any # (see e.g. [67]).

where
For instance, to the first order £X!is simply £,. To summarize, when H-? and L#, are known, we can use a
Runge-Kutta integrator to obtain the time evolution p(t)).

We now consider the opposite problem, namely where many time sequences p,(%;) are already known, while
the operators H-S and L%, inthe QRN master equation are not. This is like assuming that the solutions of a
differential equation are known and from them we want to reconstruct the differential equation itself. Based on
the analogy with numerical integration via Runge—Kutta, we propose to use the following cost function:

WA RK 2
Y NT > ]21 loa i) = pa(t) = ArLE" o, E)IE (12)

where ||-||r is the Frobenius norm. The intuitive idea behind the above cost function is that of making the
measured data sequences as close as possible to those coming from the numerical solution of a master equation.
Minimizing the cost function is then equivalent to finding the best QRN master equation compatible with the
measured sequences p,(t)). It is expected that a higher order integrator (large n) performs better, especially for
larger A, but requires heavier numerical computations.

4. Numerical experiments

4.1. Learning quantum state sequences

We mimic experimental data by numerically generating sequences of states, which are then used to train the
neural network. To generate the training data, we consider a simple yet important model of spontaneous decay
of atwo-level system [54, 68], described by the master equation

6
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Figure 3. (EXP1) Learning the evolution of a noisy two level system: the mean trace distance T'(p(t), p(t)) = NLPZ’,, D(ps(t), ps(t))
between true states p5(tj) and predicted states p;(#;) as a function of time. The time #;4x is the maximum time used during training. All
the experiments run with the following parameters w = 1 for equation (13) and A = 2,7y, = 0.5 for equation (14), and a discretization

interval of At = 0.01. The simulations run over 3000 training examples and predictions were tested over 1000 test examples. All the
evolutions run for a time of t,,,,, = 0.7.

Qp(t) = —ilwa,, p(1)]
ot

+ W(t)(ff’/)(t)ff+ - %{0*07 P(t)}), (13)

where {x,y} = xy + yx,0“for a = x, y, zare the Pauli matrices, 0¥ = (0% % i0?) /2, wis the Rabi frequency
of oscillations around the z axis. The parameter
270 A sinh(nt/2)

= . 14
) ncosh(nt/2) + Asinh(nt/2) (14

is the decay rate with n = \/ X — 2 X\. When A > 2+, the function ~(#) is always positive, so equation (13)
takes the GKSL form (1) and, as such, defines a Markovian evolution. On the other hand, for A < 2+, the
function ~(#) can be negative and the dynamics displays non-Markovian effects [54, 69, 70]. The above two level
system can also model a excitation energy transfer in biological dimers [71].

We use the above model to obtain training data for the RNN architecture shown in figure 2(b). Each training
sequence p,(t), for & = 1, ..., Nj, has been obtained by first choosing a random initial state p,(0) and then
solving the master equation equation (13) to get the states p,(t;) at subsequent times, up to a maximal time .
These data sequences were then used to train a GRU neural network, by minimising the cost function (10). After
training, we test the accuracy of the neural network by generating a new sequence of states p(tj), and the RNN
prediction py(%)), for 8 = 1, ..., Np. Asbefore, ps(%;) is obtained by selecting a random initial state p(0) and
solving equaﬁon (13), possibly for longer times than f,,,,x. On the other hand, the predicted evolution Ps(t))is
obtained by feeding the initial state p;3(0) to the RNN to get the entire temporal sequence. The two evolutions are
compared with the trace distance D (p, p) = % Tr|p — pl. In particular, we study the average trace distance

T(p(), p(t)) = NLPZ[, D(ps(1), Ps (1)) asa function of time.

In figure 3 we show a numerical solution of this numerical experiment (EXP1), where we can see that, once
trained, the RNN is able to predict the evolution of a known starting state, up to the maximal training time ;.
On the other hand, and as expected, the accuracy of the RNN prediction rapidly deteriorates for ¢ > #,,,x.

4.2. Learning the master equation: a simple case

In figure 4 we show the solution of a second numerical experiment (EXP2) obtained with the same training set of
the first experiment (EXP1), discussed in figure 3. While EXP1 uses a RNN to model the entire quantum
evolution, EXP2 uses the RNN to define a QRN master equation, following section 3.3. Training is then
performed by minimising the QRN cost function (12), where for simplicity we assume a first-order Runge—
Kutta integrator (n = 1) and a single recurrent Lindblad operator (1 = 1). In EXP2 we have chosen a Markovian
regime so that the entire evolution can be modelled via a GKSL master equation (1). In this regime, the RNN
Lindblad operators can be approximated as a simple time-dependent function, so the minimization of the cost
function (12) is equivalent to learning standard Lindblad operators. In figure 4 we compare the predicted
recurrent Lindblad operators L, as a function of time, with respect to the real ones defined in equation (13). In
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Figure 4. (EXP2) Learning the Lindblad operator describing the Markovian evolution of a two level system: the learned and known
entries of iz . L*="are compared for the Markovian evolution of a two-level system. We plot the time evolution of every entry of the
matrix. Real and complex entries are plotted separately. All the experiments run with the following parameters w = 1 for equation (13)
and A = 2,7, = 0.5 for equation (14), and a discretization interval of At = 0.01. The simulations run over 1500 training examples
and predictions were tested over 2500 test examples. All the evolutions run for a time of #,,,,, = 0.7. The Frobenius norm squared was
used as distance between the matrices.
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Figure 5. (EXP2) Average cost function value (12) for different times. The parameters are the same of figure (4).

the system under study all entries of the Lindblad operators are zero (hence the flat lines in the figure) apart from
one value. As we can see, the prediction is remarkably accurate at all times, even beyond the training time

t > tnae Theerror in the prediction is shown in figure 5, by plotting the cost function (12) for different times.
EXP2 shows that the RNN was able to learn the evolution of the Lindblad operator L, for t = 0.1 to t,,,, = 0.7.
In addition, the RNN was able to predict L, for t > t,,.x which was the last time step used during training.

4.3. Learning the master equation: non-Markovian case

In this section we focus on the non-Markovian regime, where there are non-trivial memory effects that the RNN
has tolearn and reproduce. As in section 4.1, we consider state sequences generated numerically by solving a
master equation. However, unlike our previous treatment, here we consider a more complicated non-
Markovian model of the environment, which includes back-scattering effects. Back-scattering can refer, for
instance, to a photon emitted to the environment that comes back at later times. As such, the information
transferred to the environment is not completely lost. To model these non-Markovian effects we consider two
qubits evolving with the following master equation
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Figure 6. (EXP3) Learning the evolution of a noisy two level non-Markovian system: the mean trace distance T (p(t), p(t)) =
NLPZ 3 D(ps(t), py(t)) between true states ps(t;) and prediction states p;(t;) asa function of time. The time t,,, is the maximum time
used during training, The experiments run with the following parameters A"’ = 2, ng) = 05and \? =1, 'yg” = 0.2 for

equation (15),w = 1 for equation (16), and a discretization interval of At = 0.01. The simulations run over 3000 training examples
and predictions were tested over 1000 test examples. All the evolutions run for a time of t,,,,x = 0.7.
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Figure 7. (EXP4) Learning a non-Markovian memory kernel: average value of the cost function (J) on unseen examples as a function
of time for alearned memory kernel with only the Lindblad Operator LZ, and with both the Lindblad Operator and the Lamb-shift
Hamiltonian HE. The parameters are the same of figure 6. The Frobenius norm squared was used as distance between the matrices.
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where ~;(¢) has the same functional form of equation (14) (but we add a superscript () to the parameters yg) and
A\ that refers to qubit index) and the two-qubit Hamiltonian is

I‘IIZZWO'Z®I+C10x®0x+620y®0y+c302®027 (16)

where g = 0.3242,¢, = 0.6723,and ¢; = 0.1353. We numerically solve equation (15) to get the data sequence
P, (), where a = 1, ..., Niindexes the different solutions obtained with different initial states. From these two
qubit solutions we define then the state sequences as p, (t;,) = Tr[p}, (¢)]. In other terms, qubit 1 is the principal
system, while qubit 2 is an ancillary system. Because of the coherent interaction H;, between qubit 1 and qubit 2,
with this approach we can mimic the back-action of the environment onto the system.

We divide our numerical results into different experiments. In EXP3, shown in figure 6, we train a RNN to
fully reproduce the entire quantum evolution, following the discussion of section 3.2. We see that in spite of
non-Markovian effects, the resulting error is comparable to that of the Markovian case (EXP1) shown in figure 3.

In figure 7 we use the same training data of EXP3 to run a new experiment (EXP4) where we train a QRN
master equation, by minimising the cost function (12). We consider two cases: in the first one the RNN outputs a
single recurrent Lindblad operator L*=". In the second one, the RNN outputs both model both a recurrent
Lindblad operator L*= ! and the renormalized Hamiltonian, namely the Lamb-shift term H"S. We note that,
with a single recurrent Lindblad operator, the error is slightly larger than that of the Markovian case, shown in
figure 4. However, the resulting error is very low when we include also the correction Hamiltonian H®.
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Figure 8. (EXP5) Learning a non-Markovian master equation with different w values: average value of the cost function (J) on unseen
examples as a function of time for a learned memory kernel with both the Lindblad operator L%, where y = 2 and the Lamb-shift
Hamiltonian HE. ., specifies the maximum time in the range of times used for training. All the experiments run with the following
parameters AV = 2, 'yg” =0.5and \? =1, 'ygz) = 0.2 for equation (15), wuniformly sampled in the interval [0.5, 1.5] for
equation (16), and a discretization interval of At = 0.01. The simulations run over 3000 training examples and predictions were
tested over 1000 test examples. All the evolutions run for a time of f,,,,, = 0.7. The Frobenius norm squared was used as distance
between the matrices.

Comparing figure 7 with the Markovian case, figure 4, one can see that the error grows faster in the non-
Markovian regime after the training time f,,,,. Overall, in figure 7 we see that the RNN which learned both the
recurrent Lindblad operator and the Lamb-shift Hamiltonian performed best, and was better able to predict the
memory kernel at times greater than those seen during training.

Finally, in figure 8 we run a different numerical experiment (EXP5). In EXP5 the training set is composed by
data sequences where the qubit frequency win equation (16) is not fixed, but rather uniformly sampled from 0.5
to 1.5. The sampled frequency is used as an extra input to the RNN. This corresponds to the experimentally
relevant case where the qubit frequency can be externally tuned to a known value. Uncertainty about this
frequency can be estimated from the correction Hamiltonian H"®, which is learned from the data. In figure 8 we
see that the error in EXP5 is remarkably low. Based on the success of this numerical experiment, we propose the
following general strategy to introduce prior knowledge about the system. We can define a RNN where the
known properties of the system, e.g. its Hamiltonian, are added as an extra input. Training is performed using
datasets of quantum state sequences and their respective Hamiltonian, where the latter is sampled from the
space of experimentally relevant Hamiltonians. The remarkable accuracy shown figure 8 suggests that this
procedure forces the RNNs to better explore the manifold of quantum state sequences, to produce a more
accurate and robust prediction.

5. Conclusions and perspectives

We have studied quantum state evolution using RNNs. We have shown that even when the system is interacting
with a complicated surrounding environment, RNNs offer an accurate and robust tool for modelling and
reconstructing the quantum evolution, both in the Markovian and non-Markovian regime, and even when there
are back-scattering effects from the environment.

We have introduced two approaches for modelling open quantum systems with RNNs. In the first one, a
deep RNN is trained to learn the entire quantum evolution, namely to reproduce the time sequence p(t)) given an
initial state p(0). In the second approach, we use a deep RNN to define a non-Markovian master equation where
the memory kernel takes a convenient mathematical form, namely that of the GKSL equation. In our master
equation the non-Markovian memory effects are taken into account by the structure of the RNN cells. The
observed success of our approaches stems from the ability of RNNs to learn temporal sequences, where the
future depends on the entire past. Our RNN-based master equation can be used as a convenient mathematical
framework to write non-Markovian memory kernels without resorting to perturbative treatments, and to learn
their unknown parameters directly from the data.

Many extensions of our work are possible. Many-body systems with exponentially large Hilbert spaces could
be considered by using RNNs which output a compressed representation of the state, such as tensor networks
[72, 73], restricted Boltzmann machines [10] or variational autoencoders [19]. The predictions after the training
time can be improved by considering higher order Runge—Kutta integrators and by modifying the structure of
the RNN cell to have a fixed point in the infinite time limit, as expected from physical principles. Although RNNs
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proved to be a powerful tool for modelling open quantum systems, the machine learning literature offers a
number of other methods, such as Kalman Filters or models with Gaussian Process transitions, that appear
particularly promising. For example, Gaussian Process State Space Models [74] allow one to model prior
information on the system and return Bayesian estimates of the uncertainties. Both these features are desirable in
aquantum context: prior knowledge on the system, such as the form of the noise-free Hamiltonian, may be used
to further reduce the complexity of the model, while approximate values for the uncertainties might enable
better control of experimental inaccuracies. It would be interesting to define quantum master equations based
on these tools and to check their performances against our QRN master equation.

Finally, in more physical terms, it would be interesting to study what happens when partial information
about the system is available. An experimentally relevant case is when the initial state p(0) is known, but one has
access to a limited set of expectation values (A), (;,, where the observables A are not enough to tomographically
reconstruct the states p(¢;). This possibility may be considered, using our framework, by introducing a cost
function between expectation values, rather than between density operators. A further challenge is then to
model the disturbance of the measurement onto the system, namely the wave function collapse. This can be
done using the process tensor formalism [35], which provides an avenue for generalising our approach in the
presence of feedback. It would be interesting to study the performance of RNNs to model these experimentally
relevant quantum evolutions.
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Appendix. Gated recurrent unit

The GRU state s;is a linear interpolation of the previous state s, _; and a candidate state 3;. The candidate state is a
function of the cell input x, and the previous state given by:

zz=0Wx, + Uys;—1 + b,)

r=0Wux; 4+ Usi—1 + by),

Sy =tanh(Wx; + U(r; 0o s;—1) + b),

ss=(1—2z)os1+2z 05, (AD)

where o denotes the entry-wise (Hadamard) product, o denotes the sigmoid function, x; is the input to the cell
and W, Uand b are trainable parameters, which do not explicitly depend on t. GRU cells can be stacked to form a
deep GRU network. The input x/ for a depth j cell at time tis the state from the cell in the previous layer s/~ .

The GRU state s, can be thought of as a mixture of the previous state s, _; and the candidate state 5;. The
weighting of the mixture is controlled by z, which is known as the update gate. We can see that if the entries of z,
are zero then the candidate state is ignored and the previous state becomes the new state.

The candidate state §, is a function of the previous state s, and the current input x;. The relative
contribution of the previous state to the candidate state is controlled by r, which is known as the reset gate.

A more detailed discussion of GRU cells can be found in [61].

Note that the output of the network is a real vector. In order to encode complex matrices into the RNN we
use the following procedure. Assume that we want to encode a matrix M € C™*™. M can be decomposed into a
real and imaginary part M = Mg, + iMiy,. We require the output of the RNN to be a vector 0 € R*" such that
the first m” elements encode in row-major order the entries of Mg, and the second 1” elements encode in row-
major order the entries of My,.

All GRU networks used in this work consisted of 2 GRU layers with output dimension = 40, followed by 1
fully connected layer. The Adam optimizer was used for training with initial learning rate 0.01 [75] and batches
of 32 examples. Training was stopped after each example was seen 60 times. In EXP2 the fully connected weights
were regularized using weight decay [76], with the L2 penalty factor set to 0.001. The networks were
implemented using the Keras 2.2.0 and Tensorflow 1.8 frameworks [77, 78]. Network weights were initialized
using the Keras defaults.
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