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Abstract
Adversarial learning is one of themost successful approaches tomodeling high-dimensional
probability distributions fromdata. The quantumcomputing community has recently begun to
generalize this idea and to look for potential applications. In this work, we derive an adversarial
algorithm for the problemof approximating an unknown quantumpure state. Although this could be
done on universal quantum computers, the adversarial formulation enables us to execute the
algorithmonnear-termquantum computers. Two parametrized circuits are optimized in tandem:
one tries to approximate the target state, the other tries to distinguish between target and
approximated state. Supported by numerical simulations, we show that resilient backpropagation
algorithms perform remarkably well in optimizing the two circuits.We use the bipartite entanglement
entropy to design an efficient heuristic for the stopping criterion. Our approachmayfind application
in quantum state tomography.

1. Introduction

In February 1988Richard Feynmanwrote on his blackboard: ‘What I cannot create, I do not understand’ [1].
Since then this powerful dictumhas been reused and reinterpreted in the context ofmany fields throughout
science. In the context ofmachine learning, it is often used to describe generativemodels, algorithms that can
generate realistic synthetic examples of their environment and therefore are likely to ‘understand’ such an
environment.

Generativemodels are algorithms trained to approximate the joint probability distribution of a set of
variables, given a dataset of observations. Conceptually, the quantum generalization is straightforward;
Quantumgenerativemodels are algorithms trained to approximate thewave function of a set of qubits, given a
dataset of quantum states. This process of approximately reconstructing a quantum state is already known to
physicists under the name of quantum state tomography. Indeed, there already exist proposals of generative
models for tomography such as the quantumprincipal component analysis [2] and the quantumBoltzmann
machine [3, 4]. Othermachine learning approaches for tomography have been formulated using the different
framework of probably approximately correct learning [5, 6]. Hence,machine learning could provide a new set
of tools to physicists. Going the otherway, quantummechanics could provide a new set of tools tomachine
learning practitioners for tackling classical tasks. As an example, Bornmachines [7, 8] use the probabilistic
interpretation of the quantumwave function to reproduce the statistics observed in classical data. Identifying
classical datasets that can bemodeled better via quantum correlations is an interesting open question in itself [9].

One of themost successful approaches to generativemodels is that of adversarial algorithms inwhich a
discriminator is trained to distinguish between real and generated samples, and a generator is trained to confuse
the discriminator [10]. The intuition is that if a generator is able to confuse a perfect discriminator, then itmeans
it can generate realistic synthetic examples. Recently, researchers have begun to generalize this idea to the
quantum computing paradigm [11, 12]where the discriminator is trained to distinguish between two sources of
quantum states. The discrimination of quantum states is so important that it was among thefirst problems ever
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considered in thefield of quantum information theory [13]. The novelty of adversarial algorithms is in using the
discriminator’s performance to provide a learning signal for the generator.

But how do generativemodels standwith respect to state-of-the-art algorithms already in use on quantum
hardware? Thework on the variational quantum eigensolver [14] shows that parametrized quantum circuits can
be used to extract properties of quantum systems, e.g. the electronic energy ofmolecules. Similarly, thework on
quantumapproximate optimization [15] shows that parametrized quantum circuits can be used to obtain good
approximate solutions to hard combinatorial problems, e.g. themax-cut. All these problems consist offinding
the ground state of awell-defined, task-specific,Hamiltonian. However, in generativemodels the problem is
somehow inverted.We ask the question: what is theHamiltonian that could have generated the statistics
observed in the dataset? Although somework has been done in this direction [8, 16], much effort is required to
scale thesemodels to a relevant size.Moreover, it would be preferable formodels tomake no unnecessary
assumption about the data. These are the aspects wherewe expect adversarial quantum circuit learning to
stand out.

Notably, adversarial quantum circuits do not performquantum state tomography in the strict sense, since
the entries of the target densitymatrix are never read out explicitly. Instead, they perform an implicit state
tomography by learning the parameters of the generator circuit, i.e. an implicit description of the resulting state.
This approach does hence not suffer from the exponential cost incurred by the long sequence of adaptive
measurements required in standard state tomography. This is because, as wewill see, only one qubit needs to be
measured in order to train and adapt the circuit. The subtlety here is that an exponential cost could occur
through a non-converging training process. However, we did not observe this in practice. Our results also allow
for a range of potential applications, whichwe detail below.

As a first example of interest to physicists, one can use the approach tofind aTensorNetwork representation
of a complex target state. In this scenario, the structure of the generator circuit is set up as a TensorNetwork and
themethod learns its parameters. The only assumption here is that the target state can be loaded to the quantum
computer via a physical interface with the external world. As a second example of interest to computer scientists,
one can use the approach to ‘compile’ a known sequence of gates to a different or simpler sequence. In this
scenario, the target is the state generated by the known sequence of gates, and the generator is the ‘compiled’
circuit. This could have concrete applications such as the translation of circuits from superconducting to ion
trap gate sets.

In thismanuscript, we start from information theoretic arguments and derive an adversarial algorithm that
learns to generate approximations to a target pure quantum state.We parametrize generator and discriminator
circuits similarly to other variational approaches, and analyze their performance with numerical simulations.
Our approach is designed tomake use of near-term quantumhardware to its fullest extent, including for the
estimation of the gradients necessary to learn the circuits. Optimization is performed using an adaptive gradient
descentmethod known as resilient backpropagation(Rprop) [17], which performswell when the error surface
is characterized by large plateaus with small gradient, and only requires that the sign of the gradient can be
ascertained.We provide a heuristicmethod to assess the learning, which can in turn be used to design a stopping
criterion. Although our simulations are carried out in the context of noisy intermediate-scale quantum
computers(NISQ) [18], we discuss long-term realizations of the adversarial algorithmonuniversal quantum
computers.

2.Method

Consider the problemof generating a pure state ρg close to an unknown pure target state ρt, where closeness is
measuredwith respect to some distancemetric to be chosen.Herebywe use subscripts g and t to label ‘generated’
and ‘target’ states, respectively. The unknown target state is provided afinite number of times by a channel. If we
were able to learn the state preparation procedure, thenwe could generate asmany ‘copies’ aswewant and use
these in a subsequent application.Wenowdescribe a game between two players whose outcome is an
approximate state preparation for the target state.

Borrowing language from the literature of adversarialmachine learning, the two players are called the
generator and the discriminator. The task of the generator is to prepare a quantum state and fool the other player
into thinking that it is the true target state. Thus, the generator is a unitary transformationG applied to some
known initial state, say ñ∣0 , so that r = ñá∣ ∣ †G G0 0g .Wewill discuss the generator’s strategy later.

The discriminator has the task of distinguishing between the target state and the generated state. It is
presentedwith themixture r r r= +( ) ( )P t P gt gmix , where P(t) andP(g) are prior probabilities summing to
one.Note that in practice the discriminator sees one input at a time rather than themixture of densitymatrices,
butwe can treat the uncertainty in the input state using this picture. The discriminator performs a positive
operator-valuedmeasurement(POVM) { }Eb on the input, so thatå =E Ib b . According to Born’s rule,
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measurement outcome b is observedwith probability r=( ) [ ]P b Etr b mix . The outcome is then fed to a decision
rule, a function that estimates which of the two states was provided in input.

A straightforward application of Bayes’ theorem suggests that the decision rule should select the label for
which the posterior probability ismaximal, i.e. Î ( ∣ ){ }P x bargmaxx g t, . This rule is called the Bayes’ decision

function and is optimal in the sense that, given an optimal POVM, any other decision function has a larger
probability of error [19]. Recalling that Î ( ∣ ){ }P x bmaxx g t, is the probability of the correct decision using the
Bayes decision function, we can formulate the probability of error as

å

å

å

å

å r

= -

=

=

=

=

Î

Î

Î

Î

Î

({ }) ( )( ( ∣ ))

( ) ( ∣ )

( ∣ ) ( )

( ∣ ) ( )

[ ] ( ) ( )

{ }

{ }

{ }

{ }

{ }

P E P b P x b

P b P x b

P x b P b

P b x P x

E P x

1 max

min

min

min

min tr . 1

b
b x g t

b x g t

b x g t

b x g t

b x g t
b x

err
,

,

,

,

,

Weobserve that the choice of POVMplays a key role here; the discriminator should consider finding the best
possible one. Therefore, we canwrite the objective function for the discriminator in variational form as

* = ({ }) ( )
{ }

P P Emin , 2
E

berr err
b

where theminimization is over all possible POVMelements, and the number of POVMelements is
unconstrained.

It wasHelstromwho carefully designed a POVMachieving the smallest probability of error when a single
sample of ρmix is provided [13]. He showed that the optimal discriminator comprises two elements, E0 andE1,
which are diagonal in a basis that diagonalizes r rG = -( ) ( )P t P gt g .When the outcome 0 is observed, the state
is labeled as ‘target’, when the outcome 1 is observed the state is labeled as ‘generated’. This is the discriminator’s
optimal strategy as itminimizes the probability of error in equation (2). Unfortunately, designing such a
measurement would require knowledge of the target state beforehand, contradicting the purpose of the game at
hand. Yet we nowknow that the optimal POVMcomprises only two elements. Using this information, and
plugging equations (1) in (2), we obtain [19]
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wherewe used = -E I E1 0 from the definition of POVM.Wenow return to the generator and outline its
strategy. Assuming the discriminator be optimal, the generator achieves success bymaximizing the probability
of error *Perr with respect to the generated state ρg. The result is a zero-sumgame similar to that of generative
adversarial networks [10] and described by
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wherewe dropped the constant termsNow suppose that the game is carried out in turns. On the one side, the
discriminator is after an unknownHelstrommeasurement which changes over time as the generator plays.On
the other side, the generator tries to imitate an unknown target state exploiting the signal provided by the
discriminator.

Note that when = =( ) ( )P t P g 1

2
, the probability of error in equation (2) is related to the trace distance

between quantum states [20]
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This is clearer from the variational definition in the second line.Hence, by playing theminimax game above
with equal prior probabilities, we are implicitlyminimizing the trace distance between target and generated
state.Wewill use the trace distance to analyze the learning progress in our simulations. In practice though, one
does not have access to the optimal POVM in equation (5), because that would require, once again, theHelstrom
measurement.We discuss this ideal scenario in section 2.4wherewe require the availability of a universal
quantum computer.We shall now consider the case of implementation inNISQ computers where, due to the
infeasibility of computing equation (5), we need to design a heuristic for the stopping criterion.

Finally, we note that this game, based on the Bayesian probability of error, assumes the availability of one
copy of ρmix at each turn. Amore generalminimax game could be designed based on the quantumChernoff
bound assuming the availability ofmultiple copies at each turn [19, 21].

2.1. Near-term implementation onNISQ computers
Wenowdiscuss how the game could be played in practice using noisy quantum computers and no error
correction. First, we assume the ability to efficiently provide the unknown target state as an input. In realistic
scenarios, the target state would come from an external channel andwould be loaded in the quantum
computer’s register with no significant overhead. For example, the sourcemay be the output of another
quantum computer, while the channelmay be a quantum internet.

Second, the generator’s unitary transformation shall be implemented by a parametrized quantum circuit
applied to a known initial state. Note that target and generated states have the same number of qubits and they
are never input together, but rather as amixture with probabilities P(t) andP(g), respectively, i.e. randomly
selectedwith a certain prior probability. Hence they can be prepared in the same quantum register.

Third, resorting toNeumark’s dilation theorem [22], the discriminator’s POVMshall be realized as a unitary
transformation followed by a projectivemeasurement on an extended system. Such extended system consists of
the quantum register shared by the target and generated states, plus an ancilla register initialized to a known
state. Notice that the number of basis states for the ancillary systemneeds tomatch the number of POVM
elements. Because herewe specifically require two POVMelements, the ancillary system consists of just one
ancilla qubit. The unitary transformation on this extended system is also implemented by a parametrized
quantum circuit. Themeasurement is described by projectors on the state space of the ancilla and the two
possible outcomes, 0 and 1, are respectively associatedwith labels ‘target’ and ‘generated’.

Depending on the characteristics of the circuits, such as type of gates, depth, and connectivity, wewill be able
to explore regions of theHilbert space with the generator, and explore regions of the cone of positive operators
with the discriminator.

As a concrete example, assume that the unknown n-qubit target state r y y= ñá∣ ∣t t t is prepared in themain
register.We construct a generator circuit = G G GL 1where each gate is either fixed, e.g. a CNOT, or
parametrized. Parametrized gates are often of the form q q= -( ) ( )G Hexp i 2l l l l where θl is a real valued
parameters and Î Ä{ }H X Y Z I, , ,l

n is a tensor product of nPaulimatrices. The generator acts on the initial
state ñÄ∣0 n and prepares r = ñá∣ ∣ †G G0 0g in themain register.We then similarly construct a discriminator

circuit = D D DK 1 acting non-trivially on bothmain register and ancilla qubit. Each gates is either
fixed or parametrized as f f= -( ) ( )D Hexp i 2k k k k , wherefk is real valued andHk is a tensor product of n+1
Paulimatrices.Wemeasure the ancilla qubit using projectors = Ä ñáÄ ∣ ∣E I b bb

n with Î { }b 0, 1 . Collecting
parameters for generator and discriminator into vectors q andf, respectively, theminimax game in
equation (4) can bewritten as q fq f ( )Vmin max , with value function

q f y y= ñá Ä ñá - ñá Ä ñá( ) [ (∣ ∣ ∣ ∣) ] ( ) [ ( ∣ ∣ ∣ ∣) ] ( ) ( )† † †V E D D P t E D G G D P g, tr 0 0 tr 0 0 0 0 . 6t t0 0

Each player optimizes the value function in turn. This optimization can in principle be done via different
approaches (e.g. gradient-free, first-, second-ordermethods, etc.) depending on the computational resources
available.Here we discuss a simplemethod of alternated optimization by gradient descent/ascent starting from
randomly initialized parameters q( )0 andf( )0 . That is, we perform iterations of the form
q q f= q

+ ( )( ) ( )Vargmin ,t t1 andf q f= f
+ +( )( ) ( )Vargmax ,t t1 1 .

To start with, we need to compute the gradient of the value functionwith respect to the parameters. The
favorable properties of the tensor products of Paulimatrices appearing in our gate definitions allow
computation of the analytical gradient using themethod proposed in [23]. For the generator, the partial
derivatives read

q
¶
¶

= - ñá Ä ñá - ñá Ä ñá+ + - -
( )

{ [ ( ∣ ∣ ∣ ∣) ] [ ( ∣ ∣ ∣ ∣) ]} ( )† † † †V P g
E D G G D E D G G D

2
tr 0 0 0 0 tr 0 0 0 0 , 7

l
l l l l0 0
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where

q p=  + - ( ) ( )G G G G G G2 . 8l L l l l l1 1 1

Note thatGl± can be interpreted as two new circuits, each one differing fromG by an offset of p
2
to

parameter θl. Hence, for each parameter l, we are required to execute the circuit compositions +DGl and -DGl

on initial state ñÄ +∣0 n 1 andmeasure the ancilla qubit. Because these auxiliary circuits have depth similar to that of
the original circuit, estimation of the gradient is efficient. Interestingly, up to a scale factor of p

2
, the analytical

gradient is equal to the centralfinite difference approximation carried out atπ.
Similarly, the analytical partial derivatives for the discriminator read
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In this case, for each parameter kwe are required to execute four auxiliary circuit compositions: +Dk and

-Dk on target state y ñ Ä ñ∣ ∣0t , while +D Gk and -D Gk on initial state ñÄ +∣0 n 1.
Finally, all parameters are updated by gradient descent/ascent
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where ò and η are hyperparameters determining the step sizes. Herewe rely on the fine-tuning of these, as
opposed toNewton’smethodwhichmakes use of theHessianmatrix to determine step sizes for all parameters.
Other researchers [11] designed circuits to estimate the analytical gradient and theHessianmatrix. Such
approach requires the ability to execute complex controlled operations and is expected to require error
correction.Our approach and others’ [23, 24] requiremuch simpler circuits, which is desirable for
implementation onNISQ computers.

Aswe discuss next, accelerated gradient techniques developed by the deep learning community can further
improve ourmethod.

2.2.Optimization by resilient backpropagation
If we couldminimize the trace distance in equation (5) directly over the set of densitymatrices, then the problem
would be convex [20]. However, in this paper we deal with a potentially non-convex problemdue to the
optimization of exponentiated parameters and hence the introduction of sine and cosine functions.

A recent paper [25] suggested that the error surface of circuit learning problems is challenging for gradient-
basedmethods due to the existence of barren plateaus. In particular, the regionwhere the gradient is close to zero
does not correspond to localminima of interest, but rather to an exponentially large plateau of states that have
exponentially small deviations in the objective value from that of the totallymixed state.While the derivation of
the above statement is for a class of random circuits, in practice we prefer to deal with highly structured circuits
[26, 27].Moreover, here we argue that the existence of plateaus does not necessarily pose a problem for the
learning of quantum circuits, provided that the sign of the gradient can be resolved. To validate this claimwe
refer to the classical literature and argue that similar problems have traditionally occurred also in classical neural
network training and allow for efficient solutions.

Typical gradient-basedmethods update the parameters with steps of the form

= -
¶
¶

+ ( )( ) ( ) ( )w w
w

E , 12i
t

i
t

i

t1

where ( )wi
t is the ith parameter at time t, ò is the step size, E( t) is the error function to beminimized and its

superscript indicates evaluation at = ( )w w t . If the step size is too small, the derivatives are also scaled to be too
small resulting in a long time to convergence. If the step size is too large, this can lead to oscillatory behavior of
the updates or even to divergence. One of the early approaches to counter this behavior was the introduction of a
momentum term,which takes into account the previous steps when calculating the current update. The gradient
descent withmomentum (GDM) reads
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whereμ is amomentumhyperparameter.Momentummethods produce some resilience to plateaus in the error
surface, but they lose this resilience when the plateaus are characterized by having very small or zero gradient.

A family of optimizers known as resilient backpropagation algorithms (Rprop) [17] is particularly well suited
for problemswhere the error surface is characterized by large plateauswith small gradient. Rprop algorithms
adapt the step size for each parameter based on the agreement between the sign of its current and previous partial
derivatives. If the signs of the two derivatives agree, then the step size for that parameter is increased
multiplicatively. This allows the optimizer to traverse large areas of small gradient with an increasingly high
speed. If the signs disagree, itmeans that the last update for that parameter was large enough to jumpover a local
minima. Tofix this, the parameter is reverted to its previous value and the step size is decreasedmultiplicatively.
Rprop is therefore resilient to gradients with very smallmagnitude as long as the sign of the partial derivatives
can be determined.

We use a variant known as iRprop− [28]which does not revert a parameter to its previous valueswhen the
signs of the partial derivatives disagree. Instead, it sets the current partial derivative to zero so that the parameter
is not updated, but its step size is still reduced. The hyperparameters and pseudocode for iRprop− are described
in algorithm1.

Algorithm1. iRprop− [28]

Input:Error functionE, initial parameters ( )wi
0 , initial step sizeDinit, minimumallowed step sizeDmin , maximumallowed step size Dmax,

step size decrease factor η−, and step size increase factor η+

Initialize D D- ≔( )
i

1
init and

¶
¶
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1
i
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w
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i i
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t 1

10: - D+ ¶
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t
i

t
w

t
i
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i
11:until convergence

Despite the resilience of Rprop, if themagnitude of the gradient in a given direction is so small that the sign
cannot be determined, then the algorithmwill not take a step in that direction. Furthermore, the noise coming
from thefinite number of samples could cause the sign toflip at each iteration. This would quicklymake the step
size very small and the optimizer could get stuck on a barren plateau.

One possiblemodification is an explorative version of Rprop that explores areas with zero or very small
gradient at the beginning of training, but still converges at the end of training. First, any zero or small gradient at
the very beginning of training could be replaced by a positive gradient to ensure an initial direction is always
defined. Second, one could use large step size factors and decrease themduring training to allow for convergence
to aminima. Finally, an explorative Rprop could remember the sign of the last suitably large gradient and take a
step in that directionwhenever the current gradient is zero. This way, when the optimizer encounters a plateau,
it would traverse the plateau from the same direction it entered.We leave investigation of an explorative Rprop
algorithm to futurework.

2.3.Heuristic for the stopping criterion
Evaluating the performance of generativemodels is often intractable and can be done only via application-
dependent heuristics [29, 30]. This is also the case for ourmodel as the value function in equation (6) does not
provide information about the generator’s performance, unless the discriminator is optimal. Unfortunately, we
do not always have access to an optimal discriminator (more on this in section 2.4).We nowdescribe an efficient
method that can be used to assess the learning in the quantum setting. In turn, this can be used to define a
stopping criterion for the adversarial game.

We begin recalling that the discriminatormakes use of projectivemeasurements on an ancilla register to
effectively implement a POVM. Should the ancilla register bemaximally entangledwith themain register, its
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reduced densitymatrix would correspond to that of amaximallymixed state. Performing projective
measurements on themaximallymixed statewould then result in uniform randomoutcomes and decisions.

Ideally, the discriminator would encode all relevant information in the ancilla register and then remove all its
correlationswith themain register, obtaining a product state  r r r= Äd d d . Herebywe use subscript d to
indicate the state output by the discriminator circuit. This scenario is similar in spirit to the uncomputation
technique used inmany quantum algorithms [31].

The bipartite entanglement entropy (BEE) is ameasure that can be used to quantify howmuch entanglement
there is between two partitions

     r r r r r r= - = - =( ) [ ] [ ] ( ) ( )S Str ln tr ln , 14d d d d d d

where 
r r= [ ]trd d and 

r r= [ ]trd d are reduced densitymatrices obtained by tracing out one of the
partitions, i.e. by ignoring one of the registers. The BEE is intractable in general, but herewe can exploit its
symmetry and compute it on the smallest partition, i.e. the ancilla register. Because this register consists of a
single qubit, BEE reduces to

r = -
+ +

-
- -       ⎛
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⎞
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1

2

1
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2
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where Îr IR3 is the Bloch vector such that  sr = +( · )rId
1

2
,  r 1, and s s s s= ( ), ,x y z . The three

components of the Bloch vector can be estimated using tomography techniques for a single qubit, for whichwe
refer to the excellent review in [32].

There exist a wide range ofmethods that can be used depending on the desired accuracy, the prior
knowledge, and the available computational resources. In this workwe consider the scaled direct inversion (SDI)
[32]method, where each entry of the Bloch vector is estimated independently bymeasuring the corresponding
Pauli operator. This ismotivated by the fact that s s rá ñ = =[ ] e rtri i d i where ei is the Cartesian unit vector in
the idirection and Î { }i x y z, , . Thesemeasurements can be done in all existing gate-based quantum
computers we are aware of by applying a suitable rotation followed by ameasurement in the computational
basis.

We canwrite a temporary Bloch vector s s s= á ñ á ñ á ñ  ( )r , ,x y z0 where all expectations are estimated from
samples. Due tofinite sampling error, there is non-zero probability that the vector lies outside the unite sphere,
although inside the unit cube. These cases correspond to non-physical states and SDI corrects themby finding
the valid statewithminimumdistance over all Schatten p-distances. It turns out, this is simply the rescaled
vector [32]


=

 
 


 
 

⎧⎨⎩ ( )r
r r

r r

if 1

otherwise.
16

0 0

0 0

The procedure discussed so far allows us to efficiently estimate the BEE in equation (15). Equippedwith this
information, we can nowdesign an heuristic for the stopping criterion.

The reasoning is as follows. Provided that the discriminator circuit has enough connectivity, random
initialization of its parameters will likely generate entanglement betweenmain and ancilla registers. In other
words, r( )S d is expected to be large at the beginning. As the learning algorithm iterates, the discriminator gets
more accurate at distinguishing states. As discussed above, this requires the ancilla qubit to depart from the
totallymixed state and r( )S d to decrease. This is when the learning signal for the generator is stronger, allowing
the generated state to get closer to the target. As the two become less and less distinguishable with enough
iterations, the discriminator needs to increase correlations between ancilla’s bases and relevant factors in the
main register. That is, we expect to observe an increase of entanglement between the two registers, hence an
increase in r( )S d . The performance of the discriminator would then saturate as r( )S d converges to its upper
bound of ( )ln 2 .We propose to detect this convergence and use it as a stopping criterion. In the section 3we
analyze the behavior of BEE via numerical simulations.

2.4. Long-term implementation onuniversal quantum computers
Let us briefly recall the adversarial circuit learning task.We have two circuits, the generator and the
discriminator, and a target state. The target state ρt is preparedwith probability P(t), while the generated state ρg
is preparedwith probability P(g). The discriminator has to successfully distinguish each state or, in otherwords,
hemust find themeasurement thatminimizes the probability of labeling error.

As described earlier, Helstrom [13] observed that the optimal POVM that distinguishes two states has the
following particular form; LetE0 andE1 be the POVMelements attaining theminimum in
* r r= +[ ] ( ) [ ] ( ){ }P E P t E P gmin tr trE E t gerr , 1 00 1

, then both elements are diagonal in a basis that also diagonalizes
theHermitian operator
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r rG = -( ) ( ) ( )P t P g . 17t g

As pointed out in [19], in this basis one can construct E0 by specifying its diagonal elements lj according to
the rule


l g
l g

= <
= ( )

1 when 0

0 when 0, 18

j j

j j

where γj are the diagonal elements ofΓ. The operatorE1 is then obtained via the relationship -I E0. Hencewe
can construct the optimalmeasurement operator if we have access to the operatorΓ, and provided that we can
diagonalize it.

Using the above insight, with r y y= ñá∣ ∣t t t and r y y= ñá∣ ∣g g g , we can observe that

r y yG = á ñ -[ ] ( )∣ ∣ ∣ ( )P t P gtr g g t
2 and r y yG = - á ñ[ ] ( ) ( )∣ ∣ ∣P t P gtr t g t

2. Under the assumption of equal prior
probabilities of 1/2, the above isminimized for amaximumoverlap of the two states. Since the prior
probabilities are hyperparameters, we can set them to 1/2 and use the swap test [33] to compute the overlap. This
procedure effectively implements an optimal discriminator and provides a strong learning signal to the
generator.

Note, however, that the swap test bears several disadvantages. In order to perform the swap test, we need to
access both ρt and ρg simultaneously. This also requires the use of two registers for a total 2n+1 qubits, which is
significantlymore than the n+1 qubits required in the near-term approach. Finally, the swap test requires the
ability to performnon-trivial controlled gates and error correction.

A potential solution is tofind an efficient low-depth circuit implementing the swap test. In [34] the authors
implemented such via a variationally trained circuit. As pointed out in their work, this requires (a) an order of
22n training examples for states of n qubits, and (b) each training example be given by the actual overlap between
two states, requiring a circuit which gives the answer to the problemwe are trying to solve.We hence hold the
belief that this approach is not suitable for our task.However, other approaches forfinding a low-depth circuit
for computing the swap testmightwell be possible.

One could alternatively consider the possibility of implementing a discriminator via distancemeasurements
based on randomprojections, i.e. Johnson–Lindenstrauss transformations [35]. This would require a reduced
amount of resources and could be adapted for the adversarial learning task. As an example, we could apply a
quantum channel to coherently reduce the dimensionality of the input state and then apply the state
discrimination procedure in the lower dimensional space.However, in [36] the authors proved that such an
operation cannot be performed by a quantum channel. Oneway to think about this is that the Johnson–
Lindenstrauss transformation is a projection onto a small random subspace and therefore a projective
measurement. As the subspace is exponentially smaller than the initial Hilbert space, the probability that this
projection preserves the distances is very small.

3. Results

We show that adversarial quantum circuit learning can be used to approximate entangled target states. In
realistic scenarios, the target state would come from an external channel andwould be loaded in the quantum
computer’s register with no significant overhead. For the simulationswemock this scenario using circuits to
prepare the target states. That is, we have r = ñá∣ ∣ †T T0 0t whereT is an unknown circuit.We setup a generator
circuitG and a discriminator circuitD, and the composition of these circuits is shown infigure 1, left panel.We
shall stress that neither the generator nor the discriminator are allowed to ‘see’ the inner workings ofT at
any time.

We are interested in studying the performance of the algorithm aswe change the complexity of the circuits.
The complexity of our circuits is determined by the number of layers of gates.We denote such a number as c(·) so
that, for example, a generator circuitGmade of 2 layers has complexity c(G)=2. Figure 1, right panel, shows the
layer that we used for our circuits. It hasm−1 general two-qubit gates wherem is the number of qubits. Note
that a general two-qubit gate can be efficiently implementedwith three CNOTgates and 15 parametrized single-
qubit rotations as shown in [37].

All parameters were initialized uniformly at random in [−π,+π].We chose = =( ) ( )P t P g 1

2
so that the

discriminator is given target and generated states with equal probability. All expected values required to
compute gradients were estimated from100measurements on the ancilla qubit. Unless stated otherwise,
optimizationwas performed using iRprop−.We used an initial step size pD = ´ -1.5 10init

3, aminimum
allowed step size pD = ´ -10min

6, and amaximumallowed step size pD = ´ -6 10max
3. Figure 2 shows

learning curves for simulations on four qubits. The green downward triangles representmean and one standard
deviation of the trace distance between target and generated state, computed on 10 repetitions. In the left panel,
the number of layers are = =( ) ( )c T c G 2 and c(D)=1.We observe that the complexity of the discriminator is
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not sufficient to provide a learning signal for the generator, and thefinal approximation is indeed not
satisfactory. In the central panel,c(T)=c(D)=2 and c(G)=1. The generator is less complex than the target
state, but itmanages to produce ameaningful approximation in average. In the right panel,

= = =( ) ( ) ( )c T c G c D 2. The complexity of all circuits is optimal, and the generator learns an
indistinguishable approximation of the target state.

The trace distance reported here could have been approximately computed using the swap test. However,
sincewe assumed a near-term implementation, we cannot reliably execute the swap test. In section 2.3we
designed an efficient heuristic to keep track of learning and suggested to use it as a stopping criterion. To test the
idea, we performed additional 100measurements on the ancilla qubit for each observableσx,σy, andσz. The
outcomeswere used to estimate the BEE using the SDImethod. Infigure 2 the blue upwards triangles represent
mean and one standard deviation of the BEE, computed on 10 repetitions. The left panel shows thatwhen the
discriminator circuit is too shallow, BEEoscillates with no clear pattern. The central and right panels show that,
when using a favorable setting, the initial BEE drops significantly towards zero. This is when the generator begins
to learn the target state. Note that, as the algorithm iterates, the ancilla qubit tends towards themaximallymixed

state where r = »( ) ( )S ln 2 0.69d (gray horizontal line). In this regime, the discriminator predicts the labels

with probability equal to the prior = =( ) ( )P t P g 1

2
.

Figure 1. Left panel: Representation of the adversarial quantum circuits. In our simulations the target state is prepared by a random
circuitT. The generator circuitG learns to approximate the target. The discriminator circuitD takes in input unknown n-qubit states
and learns to label them as ‘target’ or ‘generated’. This is done via the binary outcome of a projectivemeasurement on a single ancilla
qubit. Neither the generator nor the discriminator are allowed to ‘see’ the inner workings ofT at any time.Hence, the learning signal
for the generator comes solely from the probability of error of the discriminator. Right panel: Layout used as a building block for all the
circuits. For anm-qubit circuit the layer hasm−1 general two-qubit unitaries. General two-qubit unitaries of this kind can be
efficiently implementedwith three CNOTgates and 15 parametrized single-qubit rotations as in [37].

Figure 2. Learning curves and stopping criterion for simulations on four-qubit target states. The performance is shown in terms of the
trace distance between the target and generated states (green downward triangles), with zero indicating optimal approximation. All
lines representmean and one standard deviation computed on 10 repetitions. Titles indicate the complexities of target c(T), generator
c(G), and discriminator c(D) circuits (seemain text for details). In the left panel, the discriminator is too simple to provide a learning
signal for the generator. In the central panel, the generator is simple, but it can still produce ameaningful approximation of the target
state. In the right panel, all circuits are complex enough to learn an indistinguishable approximation of the target state. The trace
distance cannot be computed in near-term implementations. The bipartite entanglement entropy (BEE) of the ancilla qubit (blue
upward triangles) can be used as an efficient proxy to assess the learning progress. After the initial drop in BEE, the learning signal for
the generator is strong and the trace distance decreases sharply. As learning progresses, the ancilla qubit gets closer to themixed state
where r = »( ) ( )S ln 2 0.69d (gray horizontal line). Detecting the convergence of BEE can be used as a stopping criterion for training.
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Detecting convergence of BEE can be used as a stopping criterion for training. For example, the central and
right panels infigure 2 show that BEE converged after approximately 150 iterations. Stopping the simulation at
that point we obtained excellent results in average.We now show tomographic reconstructions for two cases.
First, we examine the case where the generator is under-parametrized. Figure 3, right panel, shows the absolute
value of the entries of the densitymatrix for a four-qubit target state. The randomly initialized generator
produced the state shown in the left panel which is at 0.991 trace distance from the target. By stopping the
adversarial algorithm after 150 iterations, we generated the state shown in the central panel whose trace distance
is 0.6. The generatormanaged to capture themainmode of the densitymatrix, that is, the sharp peak visible on
the right. Second, we examine the case where the generator is sufficiently parametrized. Figure 4, right panel,
shows the absolute value of the entries of the densitymatrix for the target state. The generator initially produced
the state shown in the left panel which is at trace distance 0.951 from the target. By stopping the adversarial
algorithm after 150 iterations, we generated the state shown in the central panel whose trace distance is 0.121.
Visually, the target and final states are indistinguishable.

But how do the complexities of generator and discriminator affect the outcome? To verify this, we run the
adversarial learning on six-qubit target states of c(T)=3 layers, and varied the number of layers of generator
and discriminator. After 600 training iterations, we computed themean trace distance across five repetitions. As
illustrated infigure 5, increasing the complexity always resulted in a better approximation to the target state.

In ourfinal test, we compared optimization algorithms on six-qubit target states.We ranGDMand iRprop−

for 600 iterations. Figure 6 showsmean and one standard deviation across five repetitions. iRprop− (blue
downward triangles) outperformedGDMbothwith step size ò=0.01 (green circles) and ò=0.001 (red
upward triangles). This is because despite the smallmagnitude of the gradients when considering targets of six

Figure 3.Absolute value of tomographic reconstructions for a four-qubit target state. The target state is prepared by a randomcircuit
of c(T)=2 layers (seemain text for details), and the absolute value of its densitymatrix is shown in the right panel. The two players of
the adversarial game are a generatorwith c(G)=1 and a discriminator with c(D)=2. The generator is too simple to learn the target
exactly, but can still find a reasonable approximation. The initial generated state shown in the left panel is at trace distance 0.991 from
the target. Using our heuristic we stopped the adversarial learning at iteration 150where BEE converged. The final state, shown in the
central panel, is at trace distance 0.6 from the target. The generatormanaged to capture themainmode of the densitymatrix, that is,
the sharp peak visible on the right.

Figure 4.Absolute values of tomographic reconstructions for a four-qubit target state. The setting is similar to that of figure 3, but this
time the generator is a circuit with c(G)=2 layers, just like the random circuit that prepared the target. The randomly initialized
generator produces the state shown in the left panel, which is at trace distance 0.951 from the target. Using our heuristic we stopped
the adversarial learning at iteration 150where BEE converged. The final state, shown in the central panel, is at trace distance 0.121
from the target. Visually, the target and final states are indistinguishable.
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qubits, wewere still able to estimate their sign and take relevant steps in the correct direction. This is a significant
advantage of resilient backpropagation algorithms.

Wenowbriefly discuss the advantages of ourmethod compared to other quantummachine learning
approaches for state approximation. These approaches require quantum resources that go far beyond those
currently available. For example, the quantumprincipal component analysis [2] requires universal fault-tolerant
hardware in order to implement the necessary SWAPoperations. As another example, the quantumBoltzmann
machine [3, 4] requires the preparation of highly non-trivial thermal states.Moreover, those approaches provide
limited control over the level of approximation. In contrast, the adversarialmethod proposed here is an heuristic
schemewithfine control over the level of approximation; this is done byfixing the depth of the circuit, thereby
limiting the complexity of the optimization problem. In this way, ourmethod is expected to scale to large input
dimensions, although thismay require introducing an approximation error. As shown infigures 2 and 5, the
error is an increasing function of the target’s complexity, and a decreasing function of the generator’s
complexity. This feature allows the adversarial approach to be implementedwith any available circuit depth on
anyNISQdevice. A circuit-based demonstration of adversarial learningwas given in [38] after ourwork. Clearly,
a thorough numerical benchmark is needed to compare the scalability of differentmethods, whichwe leave for
futurework.

Figure 5.Quality of the approximation against complexity of circuits for simulations on six-qubit target states. The heat-map shows
mean trace distance offive repetitions of adversarial learning computed at iteration 600. All standard deviations were< 0.1 (not
shown). The targets were produced by random circuits of c(T)=3 layers. Increasing the complexity of discriminator

Î( ) { }c D 2, 3, 4 and generator Î( ) { }c G 2, 3, 4 resulted in better approximations to the target state in all cases.

Figure 6. Learning curves for different optimizers in simulations on six-qubit target states. The lines representmean and one standard
deviation of the trace distance computed onfive repetitions. All circuits had the samenumber of layers, = = =( ) ( ) ( )c T c G c D 3.
iRprop− resulted in better performance than gradient descentwithmomentum (GDM)when using two different step sizes. Increasing
the step size further inGDMresulted in unstable performance (not shown).
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4.Discussion and conclusions

In this workwe proposed an adversarial algorithm and applied it to learn quantum circuits that can
approximately generate and discriminate pure quantum states.We used information theoretic arguments to
formalize the problem as aminimax game. The discriminator circuitmaximizes the value function in order to
better distinguish between the target and generated states. This can be thought of as learning to perform the
Helstrommeasurement [13]. In turn, the generator circuitminimizes the value function in order to deceive the
discriminator. This can be thought of asminimizing the trace distance of the generated state to the target state.
The desired outcome of this game is to obtain the best approximation to the target state for a given generator
circuit layout.

We demonstrated how to perform such aminimax game in near-term quantumdevices, i.e. NISQ
computers [18], andwe discussed long-term implementations on universal quantum computers. The near-term
implementation has the advantage that it requires less qubits and avoids the swap test. The long-term
implementation has the advantage that it canmake use of the actualHelstrommeasurement, with the potential
of speeding up the learning process.

Previous work on quantum circuit learning raised the concern of barren plateaus in the error surface [25].
We showed numerically that a class of optimizers called resilient backpropagation [17] achieves high
performance for the problem at hand, while gradient descent withmomentumperforms relatively poorly. These
resilient optimizers require only the temporal behavior of the sign of the gradient, and not themagnitude, to
perform an update step. In our simulations of up to seven qubits wewere able to correctly ascertain the sign of
the gradient frequently enough for the optimizer to converge to a good solution. For regions of the error surface
where the sign of the gradient cannot be reliably determined, we suggested an alternative optimizationmethod
that could traverse such regions.Wewill explore this idea in futurework.

In general it is not clear how to assess themodel quality in generative adversarial learning, nor how tofind a
stopping criterion for the optimization algorithm. For example, in the classical setting of computer vision, it is
often the case that generated samples are visually evaluated by humans, i.e. the Turing test, or by a proxy artificial
neural network, e.g. the Inception Score [30]. The quantum setting does not allow for these approaches in a
straightforwardmanner.We therefore designed an efficient heuristic based on an estimate of the entanglement
entropy of a single qubit, and numerically showed that convergence of this quantity indicates saturation of the
adversarial algorithm.We therefore propose this approach as a stopping criterion for the optimization process.
We conjecture that similar ideas could be used for regularization in quantum circuit learning for classification
and regression.

We tested the quality of the approximations as a function of the complexity of the generator and
discriminator circuits for simulations of up to seven qubits. Our results indicate that investingmore resources in
the generator and discriminator circuits leads to noticeable improvements. Indeed, an interesting avenue for
futurework is the study of circuit layouts, i.e. type of gates, and parameter initializations. If prior information
about the target state is available, or can be efficiently extracted, we can encode it by using a suitable layout for the
generator circuit. For example, in [24] the authors use theChow–Liu tree to displace CNOT gates such that they
capturemost of themutual information among variables. Similarly, structured layouts could be used for the
discriminator circuit such as hierarchical [26] and universal topologies [27]. These choices could reduce the
number of parameters to learn and simplify the error surface.

An adversarial learning framework capable of handlingmixed states has been recently put forward [2, 11],
but no implementation compatible with near-term computers was provided. In comparison, our framework
workswell for approximating pure target states and can find application in quantum state tomography onNISQ
computers.

In this workwe relied on the variational definition of Bayesian probability of error, which assumes the
availability of a single copy of the quantum state to discriminate. By assuming the availability ofmultiple copies,
which is in practice the case, one can derivemore general adversarial games based on complex information
theoretical quantities. These could be variational definitions of the quantumChernoff bound [21], theUmegaki
relative information, and othermeasures of distinguishability [19].
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