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Abstract These notes were written as support for a 9 hours course at the Institut
Henri Poincaré in September 2016. The course was divided in three parts. In the first
part, which is not included herein, the aim was to first recall some basic aspects of
stabilised finite element methods for convection–diffusion problems. We focus en-
tirely on the second and third parts which were dedicated to ill-posed problems and
their approximation using stabilised finite element methods. First we introduce the
concept of conditional well-posedness and conditional stability. Then we consider
the elliptic Cauchy-problem and a data assimilation problem in a unified setting and
show how stabilised finite element methods may be used to derive error estimates
that are consistent with the stability properties of the problem and the approximation
properties of the finite element space. In the third part we extend the result to a data
assimilation problem subject to the heat equation.

1 Introduction

In these notes we will give an overview of some recent work on finite element meth-
ods for ill-posed problems. For well-posed problems it is known that in the presence
of non-symmetric operators approximation using Galerkin finite element methods
may have poor accuracy, due to the lack of H1-coercivity. A popular remedy is then
to add some stabilising terms that should be balanced in such a way that they cure
the stability issue, but vanish quickly enough under mesh-refinement so that optimal
error estimates can be obtained. For ill-posed problems on the other hand the state
of the art is to add some regularising terms on the continuous level to obtain a well-
posed continuous problem that can then typically be discretised using standard finite
element methods. Here our aim is to attempt to make the ideas from the former class
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of problems carry over to the ill-posed case, using weakly consistent regularisation
that is defined on the discrete level. Indeed prior to discretisation no regularisation is
applied, instead the ill-posed problem and associated data are discretised in the form
of a minimisation problem, where some suitable distance between the discrete solu-
tion and the measured data is minimised under the constraint of the discrete form of
the partial differential equation. Regularisation terms may then be devised that are in
some sense the minimal choice necessary to achieve a well-posed discrete system.
To analyse the resulting approximation we rely on conditional stability estimates for
the continuous problem typically obtained through Carleman estimates.

Compared to the state of the art methods such as the quasireversibility method by
Lions’ ants Lattes (and the recent improvements on this technique by Bourgeois and
Darde [3, 4]) or the penalty method by Kohn and Vogelius the present framework
has some interesting features. Since no regularised continuous problem is involved
the only (nontrivial) regularisation parameter present is the mesh-size. This is not
the case for more traditional methods where the discretisation parameter and the
regularisation parameter must be matched carefully, or as is usually assumed, the
mesh size is chosen substantially smaller than then regularisation parameter. Maybe
more importantly in the present framework the regularisation is independent of the
stability of the underlying physical problem. The method can have optimal con-
vergence order with respect to the computational mesh-size and the stability of the
physical problem. If regularisation and discretisation errors are to be balanced in the
framework of conventional Tikhonov regularisation this appears to inevitably lead
to a nontrivial relation between the regularisation, the mesh size and the specific
form of the stability of the quantity of which one wishes to control the errors.

With the recent increased understanding of the stability properties of ill-posed
problems we believe that these considerations are important. For instance problems
with Hölder, or even Lipschitz stability will have that precise order reproduced for
the convergence order of the approximation error. This means in particular that ill-
posed problem allowing for Lipschitz stability estimates for some quantity may al-
low for the same error estimates, for this quantity, as in the case where the solution of
a well-posed problem is approximated. This is a very pleasing result and although
it may seem expected, to the best of our knowledge there exists no results in the
literature reporting on such estimates.

The paper consists of two main chapters. In the first we consider stationary ill-
posed elliptic problems, such as the elliptic Cauchy problem and the so-called data
assimilation problem, where measured data is available in some subdomain of the
bulk, but not on the boundary. For these problems interior estimates with Hölder
stability are known to hold and we show how to make these estimates translate into
error estimates for the computational method. In the second chapter we consider the
extension of these ideas to a data assimilation problem subject to the heat equation.
In this case a Lipschitz-continuous stability estimate holds for the reconstruction of
the solution away from the (unknown) initial datum. Also in this case we show, in
a space semi-discretised framework, error estimates that reflect the stability of the
physical problem. In this second case the estimates obtained are optimal compared
to the approximation order of the finite element space.
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2 Preliminary technical results

In this section we will introduce the geometrical setting of the problems that we
will consider, the associated finite element spaces and some technical results, in-
cluding useful inequalitites and approximation results. We will stay in the simplest
of settings, considering only piecewise affine finite element spaces.

Let Ω ⊂ Rd , d = 2,3 be a convex polygonal (polyhedral) domain, with bound-
ary ∂Ω and outward pointing normal n. By T = {T} we denote a quasi-uniform
decomposition of Ω in simplices T such that the intersection of two simplices in
T is either the empty set, a shared vertex, a shared face or a shared edge. We also
introduce the mesh parameter associated to T , hT = diam(T ) where the diame-
ter of T is defined as the diameter of the smallest ball circumscribing T . Setting
h = maxT∈T hT we consider the family of tesselations {T }h indexed by h. The
simplices are shape regular in the sense that the ratio between the smallest circum-
scribed ball and the largest inscribed ball of any T ∈T is bounded uniformly, with
a constant independent of h. The boundary of T will be denoted ∂T with outward
pointing normal nT . We denote the set of element boundary faces by F and let Fi
and Fb denote the set of interior or boundary faces respectively and to each inte-
rior face we associate a normal nF that is fixed, but with arbitrary orientation. The
normal on faces on the boundary will be chosen pointing outwards.

We will consider different subsets of H1(Ω) for the weak formulations. First let
V := H1(Ω) and V 0 := H1

0 (Ω) then if Γ ⊂ ∂Ω is a connected subset of ∂Ω we
denote

VΓ := {v ∈ H1(Ω) : v|Γ = 0}.

To introduce the discrete spaces we assume that Γ consists of a subset of boundary
faces FΓ := {F ∈Fb : F ∩Γ = F}. We define the finite dimensional spaces

Vh = {vh ∈V : v|T ∈ P1(T );∀T ∈T },

with P1(T ) the set of polynomials of degree less than or equal to 1,

V 0
h :=Vh∩V 0

and
VΓ

h :=Vh∩VΓ .

We will also need the space of element wise affine or constant functions, that are
not continuous over element boundaries

Xk
h := {vh ∈ L2(Ω) : vh|T ∈ Pk(T )}, k = 0,1.

We will denote the L2 scalar product over a set Ξ by

(v,w)Ξ :=
∫

Ξ

xy dΞ , ∀v,w ∈ L2(Ω)
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and the associated norm by

‖x‖Ξ := (x,x)
1
2
Ξ
,

the subscript will be dropped whenever Ξ ≡ Ω . The H1(Ω)-norm will be denoted
by

‖v‖V := ‖v‖+‖∇v‖.

For the Sobolev spaces consisting of functions with square integrable derivatives
of order less than or equal to s = 1,2, over X ⊂ Ω we use the standard notation
Hs(X) with associated norm ‖ · ‖Hs(X), and for the set of functions that are in L∞

with gradient in [L∞]d we use the notation W 1,∞(Ω) with associated norm ‖ · ‖1,∞.

2.1 Inequalities

We will need a few auxiliary results on how diffrent norms or semi norms are re-
lated. In particular we will need the following so-called inverse inequality and trace
inequalities (see for instance [16])

‖∇vh‖T ≤Cih−1‖vh‖T ∀vh ∈ Pk(T ), k ≥ 0 (1)

‖v‖∂T ≤Cth
−1/2
T (‖vh‖T +hT‖∇v‖T ), ∀v ∈ H1(T ) (2)

‖vh‖∂T ≤Cth
−1/2
T ‖vh‖T , ∀vh ∈ Pk(T ), k ≥ 0. (3)

We also define the broken norm

‖v‖h :=

(
∑

K∈T
‖v‖2

K

) 1
2

.

2.2 Interpolants and approximation

We will use an interpolant ih : H1(Ω) 7→Vh, that preserves homogoneous boundary
conditions and satisfies the following estimates [24]

‖u− ihu‖+h‖∇(u− ihu)‖ ≤ hs‖u‖Hs(Ω), s = 1,2. (4)

Combining (4) and (2) allows us to prove the estimates

‖h−
1
2 (u− ihuh)‖F +‖h

1
2 ∇(u−uh)‖F ≤ hs−1‖u‖Hs(Ω), s = 1,2. (5)

We will also make use of the L2-projection, πh : L2(Ω) 7→V 0
h defined by
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(πhu,vh) = (u,vh) ∀vh ∈V 0
h (6)

and the H1-projection Πh : H1
0 (Ω) 7→V 0

h defined by

(∇Πhu,∇vh) = (∇u,∇vh), ∀vh ∈V 0
h . (7)

We note that under the assumption of quasi uniformity (for the L2-projection) and
convexity of the domain (for the H1-projection) both these approximations satisfy
(4) and (5).

3 Ill-posed problems

It is well known that instabilities may cause suboptimality for approximations of
convection–diffusion equations when the standard Galerkin method is applied. Ex-
amples of how stabilised methods can improve on the situation include the Galerkin
Least Squares method [20, 6], subgrid viscosity [19] or the continuous interior
penalty method [11]. This is an example of a problem that is well-posed on the
continuous level, but where the discrete system may be ill-conditioned and pro-
duce poor quality approximations, unless all the scales of the problem have been
resolved, something which may be difficult to achieve in practice. The arguments
to analyse such methods use the positivity of the bilinear operator a(·, ·) defining
the problem. In many cases in practic however the problem is indefinite, such as
for Helmholtz equation or for non-coercive convection–diffusion. Then the bilinear
form does not satisfy such a positivity property and the inf-sup condition that un-
derpins well-posedness on the continuous level can be difficult to reproduce on the
discrete level. This led us to develop a method which does not rely on coercivity or
inf-sup stability for its analysis [7]. In that work we observed that this method, since
it does not rely on the well-posedness structure for its design it can also be applied
to ill-posed problems and this case was then analysed in [8] and applied to a series
of different ill-posed problems in [9, 12, 14, 13].

In this section we will discuss how to apply stabilised finite elements to the ap-
proximation of ill-posed problems. Of course the class of ill-posed problems is very
large and most of these problems are not tractable to the type of high resolution
methods that we wish to apply here, so first we will discuss what type of ill-posed
problems we are interested in and give some examples. The introduction to the field
given below is by necessity rudimentary. For readers interested in delving deeper
into the theory of inverse and ill-posed problems and their regularisation, we refer
to [22, 25, 2, 17, 21].

To define ill-posed problems it is customary to start by the definition of well-
posedness due to Hadamard. To this end we introduce the abstract problem

L u = f (8)

where L : V 7→V ′, f ∈V ′.
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Definition 1. (Well-posed problem)
The problem (8) is well-posed if

1. for every f ∈ V ′ there exists u ∈ V satisfying (8). This means that V ′ is in the
range of L .

2. The solution u is unique in V . That is, L −1 exists.
3. u depends continuously on data.

‖u‖V ≤C‖ f‖V ′ .

Definition 2. (Ill-posed problem)
The problem (8) is said to be ill-posed if at least one of the three points defining a
well-posed problem in definition (8) fails.

Of course it does not make sense to attempt to approximate any ill-posed prob-
lem. However it was recognised by Tikhonov that some ill-posed problems were
better behaved than others and we will therefore characterise what we will call con-
ditionally well-posed problems. Here we consider the extended operator

K : V 7→ (V ′,M)

where M is some dataset. The ill-posed problem that we want to solve can then be
cast as, find u, such that

L u = f , |u−uM|M = 0

where | · |M is a semi-norm to be specified measuring the data.
This definition differs slightly from the definition given in [21]. First we will

introduce subsets of V , V ′

U := {v ∈V : ∃l ∈V ′,uM ∈M such that L v = l, |v−uM|M = 0}.

K (U) := {(l,uM) ∈ (V ′,M) : ∃v ∈U such that L v = l, |v−uM|M = 0}.

Definition 3. (Conditionally well-posed problem)
The problem (8) is said to be conditionally well-posed on U if

1. ( f ,uM) ∈K (U);
2. a solution u to (8) with ( f ,uM) ∈K (U) is unique;
3. Assume that ‖ f‖V ′ < ε and |u|M ≤ η . For some (semi)-norms ‖ ·‖S, ‖ ·‖C, there

holds
‖u‖S ≤CEΦ(ε +η),

where CE depends on ‖u‖C, Φ(x) is a continuous monotone growing function
that vanishes for x = 0.

Observe that this definition says that if the solution exists it must have some
partial stability properties. The stability is also conditional on an upper bound
‖u‖C ≤ E. The problems that we will consider in this course are on the form (8)
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and such that for a neighbourhood of ( f ,uM), with diameter δ , Nδ ( f ,uM) there
holds Nδ ( f ,uM)∩K (U) 6= /0. Observe that this means that we do not assume that
the data of our problem damits a unique solution. We only assume that in a neigh-
bourhood of the data the solution exists. This allows for perturbed data to be used.
Below we will let ( f ,uM) denote the unperturbed data that is in K (U), but unavail-
able and denote the perturbed available data by ( f̃ , ũM).

We will now proceed to give to different examples of problems that are condi-
tionally well-posed in the above sense.

Example 1. (The elliptic Cauchy problem, continuous dependence)
Assume that L := −∆ +σ where σ ∈ R and assume that the boundary of Ω is
consists of two simply connected parts Γ and Γ ′. Consider the problem of finding
u ∈ H1(Ω) such that

L u = f in Ω (9)
u = g on Γ (10)

∇u ·n = ψ on Γ . (11)

For this problem
|uM|M := ‖g‖

H
1
2 (Γ )

+‖ψ‖H− 1
2 (Γ ). (12)

Let us now exemplify the failure of continuous dependence for this problem. Let
Ω := {(x,y) ∈ R2 : x > 0} and Γ = {(x,y) ∈ R2 : x = 0}, σ = 0, f = 0, g = 0 and

ψ(y) =
1
n

sin(ny).

It is easy to verify that the solution in that case is

u(x,y) =
1

2n2 sin(ny)(enx− e−nx).

Clearly as n becomes large ‖ψ‖L∞(Γ ) goes to zero, but supy∈R |u(x,y)| blows up for
any x > 0, showing the failure of continuous dependence.

Example 2. (The elliptic data assimilation problem, uniqueness)
Assume that L := −∆ and that measurements uM of u are available in some open
connected subset of Ω , ω ⊂Ω , then we can formulate the data assimilation problem
as

L u = f in Ω (13)
u = uM in ω. (14)

Here
|uM|M := ‖uM‖ω . (15)

Assume that uM, f are such that there exists a solution u ∈ H1(Ω) to (13) and
(14). Then this solution is unique. The proof is an elementary consequence of the
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properties of harmonic functions. Assume that there exists two solutions and let
ν = u1−u2. Then

L ν = 0 in Ω (16)
ν = 0 in ω. (17)

This means that ν is a harmonic function in Ω and hence analytic. By equation (14)
ν vanishes in ω with non-zero measure and hence since it is analytic, ν ≡ 0 in Ω .

Remark 1. Using the compatibility condition L uM = f in ω one may show that
(13)-(14) is equivalent to the Cauchy problem

L u = f in Ω \ω (18)
u = uM on ∂ω (19)

∇u ·n = ∇uM ·n on ∂ω. (20)

The conditional stability for these problems can be derived from the analysis in [1].
This uses the weak formulation of the problem and we will therefore propose weak
formulations for the model problems proposed in the examples. This will then also
serve in the formulation of the associated finite element methods.

3.1 Weak formulations of the model problems

Let us first consider the Cauchy-problem and introduce the spaces

VΓ := {v ∈ H1(Ω) : v|Γ = 0}

and
WΓ := {v ∈ H1(Ω) : v|Γ ′ = 0}(=VΓ ′).

Now observe that the solution of (9) can be sought in VΓ and multiply (9) by some
v ∈WΓ and integrate by parts to obtain

(L u,v) = (∇u,∇v)+(σu,v)−
∫

Γ

∇u ·n︸ ︷︷ ︸
=−ψ

v ds−
∫

Γ ′
∇u ·n v︸︷︷︸

=0

ds

By defining
a(u,v) := (∇u,∇v)+(σu,v)

we arrive at the weak formulation:find u ∈VΓ such that

a(u,v) = ( f ,v)+(ψ,v)Γ , ∀v ∈WΓ . (21)

This weak formulation looks deceptively much as the weak formulation for the Pois-
son problem, but observe that the choice v = u is not allowed since u 6∈WΓ .
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Turning now to the data assimilation problem we obtain recalling the spaces V 0

and V from the introduction and observe that for problem (13) we may multiply
with v ∈V 0 to obtain

(L u,v) = (∇u,∇v)−
∫

∂Ω

∇u ·n v︸︷︷︸
=0

ds.

This time we define
a(u,v) := (∇u,∇v).

It follows that we formally write problem (13)-(14), find u ∈V such that u|ω = uM
and

a(u,v) = ( f ,v) ∀v ∈V 0. (22)

For this solution to exist it is of course required that the compatibility L uM|ω = f |ω
is satisfied. Once again it is not allowed to take v = u due to the different choices of
spaces.

To simplify the discussion below we will use V for the primal space and W for
the test space.

3.2 Conditional stability

Conditional stability for the two model problems can be deduced from [1]. Typi-
cally these estimates depend on a data term and the size of the right hand side. We
introduce a semi norm measuring the measured data

| · |M

and the dual norm measuring the data in the pde (observe that they are not necessar-
ily independent, c.f. the Cauchy problem),

‖l‖W ′ = sup
w∈W

|l(w)|
‖w‖W

.

Example 3. In the case of the Cauchy problem the measurements are given by ψ

and we measure the H−1/2(Γ ) norm of the normal gradient

|u|M := ‖∇u ·n‖H−1/2(Γ ).

In the case of the data assimilation problem the M -norm is given by the L2-norm
over the subset ω .

|u|M := ‖u‖ω .

We can then state the following result that is valid for both cases. Here we state
the conditions on ω ′ in slightly simplified form, for a precise definition of ω ′ see [1,
Theorem 1.7]) (9)
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Theorem 1. Let u ∈V be such that, with l ∈W ′,

a(u,v) = l(v).

let | · |M be defined by (12) for the Cauchy problem (9) and by (15) for the data
assimilation problem (13) and |u− uM|M = 0. Then if |uM|M ≤ η and ‖l‖W ′ ≤ ε

then for every open simply connected ω ′ ⊂ Ω such that dist(∂ω ′,∂Ω) > 0 there
holds

‖u‖ω ′ ≤C‖u‖1−τ(η + ε)τ for some τ ∈ (0,1)

Proof. For a proof of this result with full detail on involved constants see [1, The-
orem 1.7] for the Cauchy problem and [1, Theorem 4.4] for the data assimilation
case.

Remark 2. A similar result for global stability of u on the form

‖u‖Ω ≤C(‖u‖V )| log(η + ε)|−τ , τ ∈ (0,1)

is also derived in [1] and may be used to derive global error estimates using the
techniques below.

Remark 3. Conditional stability has been used before to tune the reguarisation pa-
rameters for Tikhonov regularisation methods see for instance [15]. What is new in
the approach that we advocate is that the conditional stability is used to drive the
design of the regularisation terms on the discrete level in order to obtain the best
possible accuracy with respect to approximation and stability.

4 Finite element approximation of ill-posed problems

The aim of the present section is to draw on our experience of stabilised FEM from
the previous section to design methods that perturb the original problem as little as
possible, while still remaining stable. The ideas that are presented below are mainly
taken from [9, 13].

Assume that we wish to attempt to discretise ill-posed problem on the form, find
u ∈V such that

a(u,v) = l(w), ∀w ∈W (23)

and
|u−uM|M = 0. (24)

We assume that the data uM is such that a solution u ∈ V , to (23) exists, satisfying
(24).

Consider the case of the Cauchy problem, where the measurements are built into
the weak formulation and we only need to consider (23). Define the finite element
spaces (assuming here that the mesh is fitted to the subsets of the boundary Γ and
Γ ′,
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VΓ
h :=Vh∩VΓ

and
WΓ

h :=Vh∩WΓ .

We then have the discrete formulation: find uh ∈VΓ
h such that

a(uh,wh) = ( f ,wh)+(ψ,wh)Γ , ∀wh ∈WΓ
h (25)

observe that the corresponding linear system can not be invertible in the general
case, because there is no reason that the system matrix is square. Indeed this only
holds in the special case when the number of vertices in Γ is the same as the num-
ber of vertices in Γ ′. Similarly the matrix corresponding to a naive finite element
discretisation of (22) (using Vh and Wh :=V 0

h and assuming that the mesh is fitted to
the domain ω) is not square and in general the system is singular even if we impose
uh|ω = 0.

The idea is then to combine the satisfaction of (24) and (23) on the discrete level,
by minimising (24) under the constraint (23). In practice | · |M may not be practical
to use for minimisation purposes and may then often be replaced by another form
that is equivalent on discrete spaces | · |Mh . One must then in an additional step show
that the minimisation of the error in | · |Mh indeed leads to a bound of the error in
| · |M . Below we will assume that this is true and that the discrete semi-norm | · |M
is defined by a scalar product

|v|M := (v,v)
1
2
Mh

and that for u ∈ H2(Ω),

|u− ihu|Mh ≤Ch|u|H2(Ω).

To handle both model problems in the same abstract framework we will denote the
trial spaces Vh and the test spaces Wh in both cases.

We form the tentative Lagrangian

Ł(uh,zh) :=
1
2

γM|uh− ũM|2Mh
+a(uh,zh)− l̃(zh),

where ũM = uM + δu is the perturbed data available for the reconstruction and
l̃(zh) = l(zh)+δ l(zh) is a perturbed right hand side.

Example 4. For the case of the Cauchy problem we take

|uh− ũM|2Mh
:=
∫

Γ

h(∂nuh− ψ̃)2 ds. (26)

For the data assimilation problem we immediately have

|uh− ũM|2Mh
:= |uh− ũM|2M =

∫
ω

(uh− ũM)2 dx. (27)
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Observe that if u is a solution to (23) and (24) then it will minimise the Lagrangian
(if δu = δ l = 0) with the associated multiplier z = 0. Unfortunately the associated
minimisation problem may not be well-posed on the discrete level due to the ill-
posedness of a(·, ·), even if the data of the continuous problem is in K (U) and
there is a unique solution in U . It follows that we need some regularisation.

4.1 Regularisation – stabilisation

The classical way of obtaining a well-posed optimisation problem is through Tikhonov
regularisation. In this case the natural choice would be to add regularising terms in
the H1-semi norm for both the primal and the dual variable to obtain

Ł(uh,zh) :=
1
2

γM|uh− ũM|2Mh
+ γ1‖∇uh‖2− γ2‖∇zh‖2 +a(uh,zh)− l̃(zh).

If we compute the Euler-Lagrange equations for this Lagrangian we obtain the sys-
tem: find (uh,zh) ∈Vh×Wh such that

a(uh,wh)− γ2(∇zh,∇wh) = l̃(wh) ∀wh ∈Wh (28)
a(vh,zh)+ γ1(∇uh,∇vh)+ γM(uh,vh)Mh = γM(ũM,vh)Mh (29)

∀vh ∈Vh.

Here the form (uh− ũM,vh)Mh is obtained by deriving the forms suggested in ex-
ample 4.

Remark 4. This system bears a strong ressemblance to the quasi reversibility method
[22] on mixed form for the Cauchy problem proposed for the continuous problem
in [3]. Therein it was proven that if the exact solution exists, and the data are unper-
turbed, then if γ1→ 0 for bounded γ2 (that may tend to zero, but at a lower rate than
γ1) then the regularised solution converges to the exact solution.

Drawing on our experience from stabilised finite element methods we would like to
modify the regularisation terms, so that they vanish at an optimal rate when if uh→
u∈H2(Ω), zh→ 0, while keeping the regularisation parameters fixed. We therefore
introduce the abstract regularisation operators s : Vh×Vh 7→R and s∗ : Wh×Wh 7→R
in the Lagrangian

Ł(uh,zh) :=
1
2

γM|uh− ũM|2Mh
+

1
2

s(uh,uh)−
1
2

s∗(zh,zh)+a(uh,zh)− l̃(zh). (30)

The corresponding Euler-Lagrange equations then reads

a(uh,wh)− s∗(zh,wh) = l̃(wh) (31)
a(vh,zh)+ s(uh,vh)+ γM(uh,vh)Mh = γM(ũM,vh)Mh . (32)

The primal stabilisation operator should be weakly consistent,
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s(ihu, ihu)
1
2 ≤Ch|u|H2(Ω), (33)

and be bounded, s(vh,vh) ≤C‖vh‖2
V . The dual stabilisation on the other hand must

be equivalent with the W norm c1‖wh‖2
W ≤ s∗(wh,wh) ≤ c2‖wh‖2

W , but the lower
bound is not necessarily uniform in h.

Anticipating the results of the next section we propose the following examples
of stabilisation operators,

s(vh,vh) := γ1‖hσuh‖2 + γ1 ∑
F∈Fi

(hFJ∇vhK,J∇vhK)F =: γ1|vh|2V (34)

and
s∗(vh,vh) = γ2(∇vh,∇vh)Ω =: γ2‖vh‖2

W . (35)

Observe that for u∈H2(Ω) in this case there holds s(u,vh) = γ1(h2σ2u,vh)Ω for all
vh ∈Vh, since the jump term vanishes when applied to sufficently smooth functions.
The remaining L2-term, is weakly consistent to the right order for piecewise affine
elements. For higher order polynomial approximation of order k, the primal stabil-
isation operator in the Lagrangian (30) must be replaced by a strongly consistent
residual based stabilisation of the form

s(vh,vh) := ‖hk
∇uh‖2

Ω + γ1‖h( f +∆uh−σuh)‖2
h + γ1 ∑

F∈Fi

(hFJ∇vhK,J∇vhK)F ,

(36)
for details see the discussion in [9]. Recall that z = 0 is the solution to the un-
perturbed problem where data are such that a unique u ∈ V exists and it follows
that the stabilization (35) is also consistent. Observe that s defines a semi-norm on
Vh +H2(Ω) but that s∗ defines a norm on W .

We then introduce the mesh dependent norm

|‖(uh,zh)‖|2 := γM|uh|2Mh
+ γ1|uh|2V + γ2‖zh‖2

W +min(γ1,γM)h2‖uh‖2
H1(Ω) (37)

and observe that using (4) and (5) it is straightforward to prove the interpolation
inequality

|‖(u− ihu,0)‖| ≤Ch|u|h2(Ω). (38)

To include the last term in the definition (37) we can apply a discrete Poincaré
inequality.

Lemma 1. (discrete Poincaré inequality) There exists cp > 0 such that for all vh ∈Vh
there holds

cPh‖uh‖H1(Ω) ≤ |uh|Mh + |uh|V .

Proof. In the case of the Cauchy problem where | · |Mh is defined by (26) and
uh|Γ = 0 this is a consequence of the Poincaré inequalities of [5] and for the data
assimilation case where | · |Mh is defined by (50) the result was proved in [13].

The stabilisation parameters γ1,γ2 are real numbers and will not change during
computation.
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The system (31)-(32) can be cast on the compact form, find (uh,zh) ∈ Vh×Wh
such that

Ah[(uh,zh),(vh,wh)] = l̃(wh)+ γM(ũM,vh)Mh , ∀(vh,wh) ∈Vh×Wh, (39)

where

Ah[(uh,zh),(vh,wh)] := a(uh,wh)− s∗(zh,wh)+a(vh,zh)+ s(uh,vh)+ γM(uh,vh)Mh

Proposition 1. The system (39) admits a unique unique solution (uh,zh) ∈Vh×Wh.

Proof. By construction, for all (vh,wh)

γM|vh|2Mh
+ γ1|vh|2V + γ2‖wh‖2

W = Ah[(vh,wh),(vh,−wh)]

and therefore by Lemma 1 there exists α > 0 such that

α|‖(vh,wh)‖|2 ≤ Ah[(vh,wh),(vh,−wh)] (40)

since the linear system is square it follows and by the above positivity there can exist
no zero eigenvalues we conclude that the matrix is invertible.

Comparing with the exact problem (23)-(24) and assuming that u ∈ H2(Ω), we see
that the formulation (39) satisfies the following consistency relation

Ah[(uh−u,zh),(vh,wh)] = δ l(wh)+ γM(δu,vh)Mh , ∀(vh,wh) ∈Vh×Wh. (41)

Remark 5. Observe that the analysis may also be carried out using s∗ = s, that is the
form (34), but will lead to higher sensibility with respect to perturbations in data.

4.2 Error analysis using conditional stability

First we will introduce some continuity properties of the bilinear form using the
stabilisations. Assume that u ∈ H2(Ω), then there holds

a(u− ihu,vh)≤Ch|u|H2(Ω)‖vh‖W (42)

and for all uh ∈Vh and all w ∈W , ihw ∈Wh

a(uh,w− ihw)≤ (C(u)h+ |‖(u−uh,0‖|)‖w‖W , (43)

where the constants may depend on the parameters γ1, γ2 and γM .

Example 5. For the data assimilation problem the equation (42) follows by an appli-
cation of the Cauchy-Schwarz inequality and (4) and (43) follows by the integation
by parts followed by (4) and (5) leading to
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a(uh,w− ihw)≤ |(σuh,w− ihw)|+ ∑
F∈Fi

∫
F
|h

1
2 J∇uhK|h−

1
2 |w− ihw| ds

≤Cγ
− 1

2
1 (|u−uh|V +‖σhu‖)‖w‖W

The results for the Cauchy problem are obtained in a similar fashion and left as an
exercise.

We are now ready to prove a first error estimate that holds independently of the
stability properties of the continuous model.

Proposition 2. If (uh,zh) is the solution of (39) and u ∈ H2(Ω) is the solution of
(23)-(24) then there holds

|‖(u−uh,zh)‖| ≤Cγ h|u|H2(Ω)+δγ (44)

where the perturbation is defined by δγ := γ
−1/2
2 ‖δ l‖W ′ + γ

1/2
M |δu|Mh and Cγ :=

C(γ
1
2

1 + γ
− 1

2
2 ).

Proof. To prove (44) we observe that by (38) and the triangle inequality it is enough
to consider the discrete error ξh = ihu−uh. By (40) we have

α|‖(ξh,zh)‖|2 ≤ Ah[(ξh,zh),(ξh,−zh)].

Using the Galerkin orthogonality (41) we may write

Ah[(ξh,zh),(ξh,−zh)] = Ah[(ihu−u,0),(ξh,−zh)]−δ l(zh)+ γM(δu,ξh)Mh .

Recalling that, by the continuity (42) there holds

Ah[(ihu−u,0),(ξh,−zh)] = a(u− ihu,zh)+ s(ihu−u,ξh)+ γM(ihu−u,ξh)Mh

≤Chγ
− 1

2
2 |u|H2(Ω)γ

1
2

2 ‖zh‖W + |ihu−u|V︸ ︷︷ ︸
≤Chγ

1
2

1 |u|H2(Ω)

γ
1
2

1 |ξh|V + γM|ihu−u|Mh |ξh|Mh .

Bounding also the perturbation terms

δ l(wh)≤ γ
− 1

2
2 ‖δ l‖W ′γ

1
2

2 ‖zh‖W

and
(δu,ξh)Mh ≤ |δu|Mh |ξh|Mh

we arrive at

Ah[(ξh,zh),(−ξh,zh)]≤Ch|u|H2(Ω |‖(ξh,zh)‖|+δγ |‖(ξh,zh)‖|.

We conclude by dividing by |‖(ξh,zh)‖|.
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This proof is insufficient to show error estimates. However for unperturbed data
and u ∈ H2(Ω), it may be used to show that uh → u as h→ 0, by a compactness
argument.

To prove error estimates we must rely on the stability of Theorem 1. The idea
behind the argument is to consider the error e = u− uh and observe that this error
satisfies

a(e,w) = l(w)−a(uh,w) =: r(w), ∀w ∈W, (45)

for the data value |e|M . We must then use the result of Proposition 2 to show that
‖r‖W ′ ≤ ε and |e|M ≤ η in order to be able to apply Theorem 1.

In the data assimilation case we have |e|M = |e|Mh = ‖e‖ω so this quantity is
immediately bounded by (44). For the Cauchy problem the continuous and discrete
data matching terms are not the same, but one can prove that a suitable bound can be
obtained for a perturbed error ẽ by adding a small perturbation to uh in the interface
zone such that

|ẽ|M ≤ |‖e,0‖|. (46)

The error analysis then uses the arguments below together with a perturbation argu-
ment for ẽ, for details see [10]. We will not consider that case here, instead focussing
on the data assimilation case.

Theorem 2. Let u be the exact solution to (23)-(24), with l(w) := ( f ,w), f ∈ L2(Ω),
and where | · |M = ‖ · ‖ω . Let uh be the solution of (31)-(32) with the stabilisation
operators (34)-(35). Then, for all ω ′ ⊂Ω satisfying the assumptions (1) there holds

‖u−uh‖ω ′ ≤C(‖ f‖+ |u|H2(Ω)+h−1
δ )(1−τ)(h(‖ f‖+ |u|H2(Ω))+δγ +‖δ l‖W ′)τ

where the constant depends on the mesh geometry and negative and positive powers
of γ1, γ2 and γM .

Proof. The estimate is shown by applying Theorem (1) to the problem satisfied by
the error.

We now that e is a solution to (23) with l(w) = r(w) as per equation (45). By
Proposition 2 the following bounds hold

|e|Mh = ‖e‖ω ≤Cγ h|u|H2(Ω)+δγ (47)

and
‖e‖V ≤Cγ |u|H2(Ω)+h−1

δγ . (48)

Now observe that using the equation (31) we have

r(w) = r(w)− r(ihw)+ r(ihw) = l(w− ihw)−a(uh,w− ihw)− s(zh, ihw)−δ l(ihw).

We estimate the terms of the right hand side, assunming that ‖w‖W = 1

l(w− ihw) = ( f ,w− ihw)≤ ‖ f‖‖w− ihw‖ ≤Ch‖ f‖,

and using the relation (43)
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a(uh,w− ihw)≤ (Ch+ |‖(u−uh,0‖|)‖w‖W .

Then applying Proposition 2 we obtain the bound

a(uh,w− ihw)≤ γ
− 1

2
1 (Cγ h‖u‖H2(Ω)+δγ)

The two remaining terms are handled using the Cauchy-Schwarz inequality in the
first case and the duality pairing H−1/H1 in the second, followed by the stability of
the interpolant ih in the W -norm,

s(zh, ihw)≤ γ2‖zh‖W‖w‖W ≤ γ
1
2

2 (Cγ h|u|H2(Ω)+δγ)

δ l(ihw)≤C‖δ l‖W ′

Collecting the terms above we have for all w ∈W with ‖w‖W = 1,

r(w)≤Ch‖ f‖+(γ
− 1

2
1 + γ

1
2 )(Cγ h|u|H2(Ω)+δγ)+C‖δ l‖W ′ .

But then

‖r‖W ′ = sup
w∈W :‖w‖W=1

〈r,w〉(W ′,W ) = sup
w∈W :‖w‖W=1

r(w)

≤Ch‖ f‖+(γ
− 1

2
1 + γ

1
2 )(Cγ h|u|H2(Ω)+δγ)+‖δ l‖W ′ . (49)

We conclude that e satisfies the assumptions of Theorem 1 by (48) with η =
Ch|u|H2(Ω)+δγ , c.f. equation (47) and ε =C(h‖ f‖+h|u|H2(Ω)+δγ +‖δ l‖W ′), c.f
(49). In the last step we dropped the dependence on constants of γ , but it can be
traced in the proof.

Remark 6. We detailed Theorem 2 only in the case of the data assimilation problem,
but the same arguments also leads to an analysis for the Cauchy problem, under the
assumption (46)

Remark 7. One may prove Theorem 2 for the data assimilation problem if s∗ is de-
fined by (34). In this case an additional factor h−1 multiplies the term measuring
perturbations in data.

4.3 A numerical example

We consider the problem in Example 1 on the unit square Ω . The exact solution is
u = 30.0 ∗ x ∗ (1− x) ∗ y ∗ (1− y), with f = L u, and the data domain ω is defined
by

ω := {(x,y) ∈Ω : |x−0.5|< 0.25; |y−0.5|< 0.25}.
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We use the formulation (31)-(32) with s(·, ·) given by (34) for piecewise affine ap-
proximation and (36) for piecewise quadratic approximation. The adjoint stabiliser
s∗(·, ·) was defined by (35), and the norm | · |Mh by (50) with α = 0 or−2. (Observe
that if α = 0 then γM must have the unit of the square of an inverse length for the
equations to be dimensionally correct.)

We chose γ2 = γM = 1 and γ1 = 10−3 for all computations. The latter value is
similar to that used for computations in the well-posed case. We meshed the domain
using structured meshes that were made to fit the boundary of ω . We performed
computations on a sequence of meshes with nele= 40,80,160,320, elements on
each side of the square, using piecewise affine and piecewise quadratic elements. In
Figure 1, left graphic, we show a computational mesh and on the right graphic we
illustrate the domains ω (the inner square) and ω ′ (the middle square). In Figure
2, left plot, we show the contourlines of an approximate solution and in the right
plot the contour lines of the computational error. Observe that the error has a form
that is similar to Hadamard’s counter-example discussed in Example 1, but growing
exponentially in the radial direction and oscillating in the direction tangential to the
boundary of ω .

Fig. 1 Left: computational mesh, nele=40. Right: the different subdomains ω and ω ′.

Fig. 2 Left: contour lines of approximate solution, nele=40. Right: contour lines of the compu-
tational error.
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In the tables below we report the error in the normalised global L2-error, the
normalised local error for the subset

ω
′ := {(x,y) ∈ R2 : |x−0.5|< 0.375; |y−0.5|< 0.375},

the data assimilation term, |u−uh|ω , and the size of the weakly consistent regulari-
sation

|(u−uh,z)|s :=
√

s(u−uh,u−uh)+ s∗(zh,zh). (50)

The experimental convergence rates are given in parenthesis, where appropriate.
We report the results for unperturbed data and α = 0 in tables 1 and 5 and for
α = −2 in tables 2 and 6. In all cases we observe the expexted O(hk) convergence
of the stabilising terms (??), with k = 1 for piecewise affine approximation and
k = 2 in the quadratic case. We also observe that consistently with theory we have
‖u−uh‖ω = O(hk−α/2). The convergence of the data term is more even for α =−2.
For the global and local L2-norms we see that the error is a factor 5−10 larger when
α = 0 compared with the case where α =−2. Most likely this is due to the fact that
the missing length-scale present for α = 0 is not well represented when γM = 1.0.
Indeed the weak penalty does not impose the data sufficiently well compared to
the other terms, when α = −2 on the other hand the data penalty term is so strong
that the data error is very small already on coarse meshes leading to improved local
and global errors. We observe convergence compatible with Hölder stability for all
quantities, indicating that possibly we are not yet in the asymptotic regime on these
scales. Only on the finest meshes in table 6 we see clearly the decreasing orders
characteristic for logarithmic convergence in the global error.

We then make the same sequence of computations but adding a perturbation of
2.5% to the data in ω in the piecewise affine case and 1% in the quadratic case. The
results are reported for affine approximation in tables 3 (α = 0) and 4 (α = −2).
We observe that although the data assimilation term stagnates, the local and global
errors decrease under refinement for α = 0. In this case the stabilisation norm also
converges to optimal order in spite of the perturbation. When α =−2 only the error
in the stabilisation semi-norm show any decrease under refinement. On the finest
scale we see that both the global error and the error in the stabilisation semi-norm
has started to grow. For piecewise affine approximation it appears that the choice
α =−2 is superior both for perturbed and unperturbed data (at least for the choice
γM = 1).

For quadratic approximation the results are reported in tables 7 (α = 0) and 8
(α = −2). Here the effect of the perturbation is present already on the coarsest
mesh and the amplification of the error clearly much stronger for α = −2. Indeed
whereas for α = 0 all error quantities still decrease under mesh refinement, the
errors for α =−2 all stagnate or increase. For the stabilisation norm we cleary see
that the error doubles under mesh refinement on finer meshes, which is consistent
with theory. In this case it appears that for resolutions where the mesh-size is of
similar order as the perturbation it is advantageous to take α = 0, also in accordance
with theory.
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nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
40 0.211594 (–) 0.050922 (–) 0.00816074 (–) 0.0289235 (–)
80 0.175512 (0.3) 0.0407488 (0.3) 0.00618422 (0.4) 0.0147585 (1.0)
160 0.113346 (0.6) 0.0235298 (0.8) 0.00337103 (0.9) 0.00791309 (0.9)
320 0.0672893 (0.75) 0.0102456 (1.2) 0.00119201 (1.5) 0.0042852 (0.9)
640 0.0510429 (0.4) 0.00529074 (1.0) 0.000342379 (1.8) 0.00221974 (0.9)

Table 1 Computed quantities for the data assimilation problem using piecewise affine approxima-
tion, α = 0 and unperturbed data.

nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
40 0.0476335 (–) 0.00481282 (–) 0.000333429 (–) 0.0352793 (–)
80 0.0403148 (0.2) 0.00312934 (0.6) 8.0272e-05 (2.0) 0.0179655 (1.0)
160 0.0304957 (0.4) 0.00188862 (0.7) 1.998e-05 (2.0) 0.00911884 (1.0)
320 0.0227619 (0.4) 0.0009549 (1.0) 4.71016e-06 (2.1) 0.00464924 (1.0)
640 0.0200062 (0.2) 0.000642748 (0.6) 1.15698e-06 (2.0) 0.00234456 (1.0)

Table 2 Computed quantities for the data assimilation problem using piecewise affine approxima-
tion, α =−2 and unperturbed data.

nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
40 0.206909 0.0490942 0.0148287 0.0289287 (–)
80 0.176546 0.0409112 0.013946 0.0146984 (1.0)
160 0.119693 0.0267951 0.0131763 0.0077906 (0.9)
320 0.0793605 0.0180773 0.0125264 0.00416117 (0.9)
640 0.0640708 0.0158747 0.0124993 0.00214582 (1.0)

Table 3 Computed quantities for the data assimilation problem using piecewise affine approxima-
tion, α = 0 and 2.5% perturbation in data.

nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
40 0.0520752 0.0145883 0.0124714 0.03529
80 0.0507222 0.014398 0.0125092 0.0186372
160 0.0502568 0.0143645 0.0127194 0.0142032
320 0.0537505 0.0143083 0.0125169 0.0224315
640 0.0427351 0.0138826 0.0125888 0.0434341

Table 4 Computed quantities for the data assimilation problem using piecewise affine approxima-
tion, α =−2 and 2.5% perturbation in data.

nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
20 0.0113854 (–) 0.0020353 (–) 0.000272026 (–) 0.00263335 (–)
40 0.00701791 (0.7) 0.000668735 (1.6) 4.36798e-05 (2.6) 0.00067804 (2.0)
80 0.00630128 (0.16) 0.000458704 (0.54) 1.0293e-05 (2.1) 0.000171095 (2.0)
160 0.00457823 (0.5) 0.000278068 (0.72) 5.50828e-06 (1.0) 4.33632e-05 (2.0)
320 0.00275223 (0.7) 9.14176e-05 (1.6) 7.11806e-07 (2.8) 1.10465e-05 (2.0)

Table 5 Computed quantities for the data assimilation problem using piecewise quadratic approx-
imation, α = 0 and unperturbed data.
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nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
20 0.00594613 (–) 0.000454428 (–) 1.92029e-05 (–) 0.00269387 (–)
40 0.00364274 (0.7) 0.000194766 (1.2) 3.21386e-06 (-2.6) 0.00069238 (–)
80 0.0023773 (0.6) 6.52831e-05 (1.6) 2.95005e-07 (3.4) 0.000176426 (2.0)
160 0.00159176 (0.6) 2.93421e-05 (1.2) 3.91486e-08 (2.9) 4.45628e-05 (2.0)
320 0.00118008 (0.4) 1.27615e-05 (1.2) 4.3179e-09 (3.2) 1.12277e-05 (2.0)

Table 6 Computed quantities for the data assimilation problem using piecewise quadratic approx-
imation, α =−2 and unperturbed data.

nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
20 0.0146381 0.00619699 0.00510402 0.00260206
40 0.0137215 0.00593519 0.00492976 0.00066236 (2.0)
80 0.0135235 0.00594218 0.00498009 0.000167333 (2.0)
160 0.0110434 0.00593666 0.00497521 4.82896e-05 (1.8)
320 0.00982659 0.0058722 0.00497389 1.23888e-05 (2.0)

Table 7 Computed quantities for the data assimilation problem using piecewise quadratic approx-
imation, α = 0 and 1% perturbation in data.

nele ‖u−uh‖ ‖u−uh‖ω ′ ‖u−uh‖ω |(u−uh,z)|s
20 0.0177247 0.00638777 0.00513258 0.00275637
40 0.026475 0.00628408 0.00495361 0.00164336
80 0.0503314 0.00644259 0.00500485 0.002676516
160 0.159728 0.0079909 0.0050097 0.00510579
320 0.335852 0.00962178 0.0050035 0.0101055

Table 8 Computed quantities for the data assimilation problem using piecewise quadratic approx-
imation, α =−2 and 1% perturbation in data.

5 Time dependent problems – data assimilation

In what follows, we use the shorthand notations H(k,m) = Hk(0,T ;Hm(Ω)),

‖u‖(k,m) = ‖u‖Hk(0,T ;Hm(Ω)), k,m ∈ R,

and H(k,m)
0 = H(k,m) ∩L2(0,T ;H1

0 (Ω)). We recall also that ‖u‖ = ‖u‖(0,0) and that
‖u‖ω is the norm of L2((0,T )×ω). In this section we consider the extension of the
methods in the previous section to the time dependent case, where several interest-
ing new features appear. In particular we can here consider a problem which has
Lipschitz stability and prove that our method can exploit this in the form of error
estimates that are optimal compared to approximation. We consider a data assimila-
tion problem for the heat equation

∂tu−∆u = f , in (0,T )×Ω , (51)

with homogeneous Dirichlet conditions and where T > 0 and Ω ⊂ Rn is an open
convex polyhedral domain. Let ω ⊂ Ω be open and let 0 < T1 < T2 ≤ T . The data
assimilation problems is of the following form: determine the restriction u|(T1,T2)×Ω
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of a solution to the heat equation (51) given f and the restriction u|(0,T )×ω . For this
case the following stability estimate holds [23, 26, 14]

Theorem 3. Let ω ⊂ Ω be open and non-empty, and let 0 < T1 < T . Then there is
C > 0 such that for all u in the space

H1(0,T ;H−1(Ω))∩L2(0,T ;H1
0 (Ω)), (52)

it holds that

‖u‖C(T1,T ;L2(Ω))+‖u‖L2(T1,T ;H1(Ω))+‖u‖H1(T1,T ;H−1(Ω))

≤C(‖u‖L2((0,T )×ω)+‖Lu‖(0,−1)),

where L= ∂t−∆ and ‖·‖(0,−1) = ‖·‖L2(0,T ;H−1(Ω)). The data of the data assimilation
problem is given by

q = u|(0,T )×ω , f = Lu. (53)

We will use the shorthand notation

a(u,z) = (∇u,∇z), G f (u,z) = (∂tu,z)+a(u,z)−〈 f ,z〉 , G = G0,

where (·, ·) is the inner product of L2((0,T )×Ω) and 〈·, ·〉 is the dual pairing
between L2(0,T ;H−1(Ω)) and L2(0,T ;H1

0 (Ω)). Note that for u ∈ H1((0,T )×Ω),
the equations

G f (u,z) = 0, z ∈ L2(0,T ;H1
0 (Ω)), (54)

give the weak formulation of ∂tu−∆u = f .

5.1 Optimisation based finite element space discretisation

We consider only the problem semi-discretised in space, and show that the time con-
tinuous dynamical system is well-posed for every fixed h. This section summarizes
part of the analysis from [14], where also a problem with weaker stability, similar
to that of the data assimilation problem in the previous section was considered. The
analysis carries over to the fully discrete case, but the stabilisation operators are
not the same. In particular in the fully discrete case, the adjoint stabilisation can be
omitted.

Since the problem is time depedent we introduce the space-time spaces Vh and
Wh,

Vh = H1(0,T ;V 0
h ), Wh = L2(0,T ;V 0

h ).

Observe that contrary to the developments in the previous section both spaces are
equipped with Dirichlet conditions in space. The difference between the two spaces
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here is the regularity in time. Following the development in the previous sections
our approach to solve the data assimilation problem is based on minimizing the
Lagrangian functional

Łq, f (u,z) =
1
2
‖u−q‖2

ω +
1
2

s(u,u)− 1
2

s∗(z,z),+G f (u,z), (55)

where the data q and f are fixed. Here ‖·‖ω is the norm of L2((0,T )×ω), and s and
s∗ are the primal and dual stabilizers, respectively. Note that minimizing Łq, f can be
seen as fitting u|(0,T )×ω to the data q under the constraint (54), z can be interpreted
as a Lagrange multiplier, and s/2 and s∗/2 as regularizing penalty terms.

Let q ∈ L2((0,T )×ω) and f ∈ H(0,−1). The Lagrangian Łq, f , defined by (55),
satisfies

DuŁq, f v = (u−q,v)ω + s(u,v)+G(v,z),

DzŁq, f w =−s∗(z,w)+G(u,w)−〈 f ,w〉 ,

and therefore the critical points (u,z) ∈ Vh×Wh of Łq, f satisfy

A[(u,z),(v,w)] = (q,v)ω + 〈 f ,w〉 , (v,w) ∈ Vh×Wh, (56)

where A is the symmetric bilinear form

A[(u,z),(v,w)] =(u,v)ω + s(u,v)+G(v,z)− s∗(z,w)+G(u,w). (57)

Note that
A[(u,z),(u,−z)] = s(u,u)+‖u‖2

ω + s∗(z,z),

Herein we consider only semi-discretisations, that is, we minimize Łq, f on a
scale of spaces that are discrete in the spatial variable but not in the time variable.
As before the spatial mesh size h > 0 will be the only parameter controlling the
convergence of the approximation, and we use piecewise affine finite elements. For
simplicity we set all regularisation parameters to one and we consider only the case
of unperturbed data.

5.2 A framework for stabilisation

Before proceeding to the analysis of the data assimilation problem, we introduce an
abstract stabilisation framework.

Let s and s∗ be bilinear forms on the spaces Vh and Wh, respectively. Let | · |V
be a semi-norm on Vh and let ‖ · ‖W be a norm on Wh. We relax (34) and (35) by
requiring only that s and s∗ are continuous with respect to | · |V and ‖ · ‖W , that is,

s(u,u)≤C|u|2V , s∗(z,z)≤C‖z‖2
W , u ∈ Vh, z ∈Wh, h > 0. (58)
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Let ‖ ·‖∗ be the norm of a continuously embedded subspace H∗ of the energy space
(52). The space H∗ encodes the apriori smoothness. We assume that the stabiliza-
tions and norms introduced are such that the following continuities hold

G(u,z−πhz)≤C|u|V ‖z‖(0,1), u ∈ Vh, z ∈ H(0,1)
0 , (59)

G(u−πhu,z)≤Ch‖z‖W ‖u‖∗, u ∈ H∗, z ∈Wh, (60)

where πh is an interpolator satisfying the properties bounds

πh : H1
0 (Ω)→Wh, h > 0. (61)

‖πhu‖H1(Ω) ≤C‖u‖H1(Ω), u ∈ H1(Ω), h > 0, (62)

‖u−πhu‖Hm(Ω) ≤Chk−m‖u‖Hk(Ω), u ∈ Hk(Ω), h > 0, (63)

where k = 1,2 and m = 0,k−1. We assume that the following upper bound holds

|πhu|V ≤Ch‖u‖∗, u ∈ H∗, (64)

and require that analoguously to the stationary case

‖πhz‖W ≤C‖z‖(0,1), z ∈ H(0,1)
0 , (65)

and, for the semi-norm | · |V only, the Poincaré type inequality

‖u‖ ≤Ch−1(|u|V +‖u‖ω), u ∈ Vh. (66)

Observe that, by the lower bound (66),

|‖(u,z)‖|= |u|V +‖u‖ω +‖z‖W ,

is a norm on Vh×Wh. Finally, in the abstract setting, we assume that the s and s∗

are sufficiently strong so that the following weak coercivity holds where A and |‖ ·‖|
are defined as above.

|‖(u,z)‖| ≤C sup
(v,w)∈Vh×Wh

A[(u,z),(v,w)]
|‖(v,w)‖|

, (u,z) ∈ Vh×Wh (67)

and for all (v,w) ∈ Vh×Wh,

sup
(x,y))∈Vh×Wh

|A[(x,y),(v,w)]|> 0. (68)

The Babuska-Lax-Milgram theorem implies that the equation (56) has a unique so-
lution in Vh×Wh. As we shall see below, these design criteria are sufficient to derive
optimal error estimates in the transient case, provided the problem has a conditional
stability property.
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5.3 The data assimilation problem

We will now proceed to a specific case.
We choose the stabilizers and semi-norms as follows,

s(u,u) = ‖h∇u(0, ·)‖2
L2(Ω), s∗ = a, (69)

|u|V = s(u,u)1/2 +‖h∂tu‖, ‖z‖W = s∗(z,z)1/2, (70)

and we define H∗ = H(1,1)
0 . To counter the lack of primal stabilisation on most of the

cylinder (0,T )×Ω , we choose πh to be the orthogonal projection πh : H1
0 (Ω)→Wh

with respect to the inner product (∇u,∇v)L2(Ω). That is, πh is defined by

(∇πhu,∇v)L2(Ω) = (∇u,∇v)L2(Ω), u ∈ H1
0 (Ω), v ∈Wh. (71)

As Ω is a convex polyhedron, it is well known that this choice satisfies (61)-(63),
see e.g. [18, Th. 3.12-18].

Lemma 2. The choices (69)-(71) satisfy the properties (58)-(64), (65) and (67).
Moreover, |‖ · ‖| is a norm on Vh×Wh.

Proof. It is clear that the continuities (58) hold. We begin with the lower bound
(59). By the orthogonality (71),

G(u,z−πhz) = (∂tu,z−πhz)≤ ‖h∂tu‖h−1‖z−πhz‖ ≤C‖h∂tu‖‖z‖(0,1).

Towards the lower bound (60), we use the orthogonality (71) as above,

G(u−πhu,z) = (∂tu−πh∂tu,z)≤Ch‖u‖(1,1)‖z‖.

The bound (60) follows from the Poincaré inequality of Lemma 1.
The bound (64) follows from the continuity of the trace

‖∇u(0, ·)‖L2(Ω) ≤ ‖u‖(1,1), (72)

and the continuity of the projection πh. The bound (65) follows immediately from
the continuity of πh.

We turn to the weak coercivity (67). The essential difference between the time
dependent case and the stationary case is that in the latter case, the choice w = u is
prohibited. In this case it is allowed, but due to the time-derivative and the lack of
initial condition it does not lead to stability. Instead we observe that ∂tu ∈Wh when
u ∈ Vh so that this can be used as a test function w = ∂tu to obtain

A[(u,z),(0,∂tu)] =−s∗(z,∂tu)+G(u,∂tu) = ‖∂tu‖2 +a(u,∂tu)−a(z,∂tu),

and thus using bilinearity of A,



26 Erik Burman and Lauri Oksanen

A[(u,z),(u,αh2
∂tu− z)] = s(u,u)+α‖h∂tu‖2 +‖u‖2

ω + s∗(z,z) (73)

+αh2a(u,∂tu)−αh2a(z,∂tu),

where α > 0. We will establish (67) by showing that there is α ∈ (0,1) such that

|‖(u,w− z)‖| ≤C|‖(u,z)‖|, (74)

|‖(u,z)‖|2 ≤CA[(u,z),(u,w− z)], (75)

where w = αh2∂tu.
Towards (74) we observe that

|‖(u,w− z)‖|2 = |‖(u,z)‖|2−2s∗(z,w)+ s∗(w,w)≤ 2|‖(u,z)‖|2 +2s∗(w,w).

We use the discrete inverse inequality (1) to bound the second term

s∗(w,w) = α
2h4‖∂t∇u‖2 ≤Cα

2h2‖∂tu‖2 ≤Cα
2|‖(u,z)‖|2, α > 0.

It remains to show (75). Towards bounding the first cross term in (73) we observe
that

2a(u,∂tu) =
∫ T

0
∂t‖∇u(t, ·)‖2

L2(Ω)dt = ‖∇u(T, ·)‖2
L2(Ω)−‖∇u(0, ·)‖2

L2(Ω).

Hence αh2a(u,∂tu)≥−αs(u,u)/2. We use the arithmetic-geometric inequality,

ab≤ (4ε)−1a2 + εb2, a,b ∈ R, ε > 0,

and the discrete inverse inequality (1) to bound the second cross term in (73),

αh2a(z,∂tu)≤ α(4ε)−1a(z,z)+αεh4‖∂t∇u‖2 ≤ α(4ε)−1a(z,z)+Cαε‖h∂tu‖2.

Choosing ε = 1/(2C) we obtain

A[(u,z),(u,w− z)]≥ (1−α/2)s(u,u)+α‖h∂tu‖2/2+‖u‖2
ω +(1−Cα/2)s∗(z,z),

and therefore (75) holds with small enough α > 0.
The second condition(68) follows similarly using the symmetry of A. Fix (v,w)∈

V ×W and take x = v, y = −w+αh2∂tv for α sufficiently small and proceed as
in the proof of (75). Finally, using the Poincaré inequality of Lemma 1, we see that
|‖(u,z)‖| = 0 implies z = 0 and u(0, ·) = 0. As also ∂tu = 0, we have u = 0, and
therefore |‖ · ‖| is a norm.

5.4 Error estimates

We are now in a situation to prove an error estimate using the abstract theory.
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Theorem 4. Let ω ⊂ Ω be open and non-empty and let 0 < T1 < T . Suppose that
(A2) holds. Let u∈H∗ and define f = ∂tu−∆u and q= u|ω . Suppose that the primal
and dual stabilizers satisfy (58)-(64), (65) and (67). Then (56) has a unique solution
(uh,zh) ∈ Vh×Wh, and there exists C > 0 such that for all h ∈ (0,1)

‖uh−u‖C(T1,T ;L2(Ω))+‖uh−u‖L2(T1,T ;H1(Ω))+‖uh−u‖H1(T1,T ;H−1(Ω))

≤Ch(‖u‖∗+‖ f‖).

Proof. We begin again by showing the estimate

|‖(uh−πhu,zh)‖| ≤Ch‖u‖∗. (76)

The equations ∂tu−∆u = f and u|ω = q are equivalent with

G(u,w) = 〈 f ,w〉 , w ∈ L2(0,T ;H1
0 (Ω)), (77)

(q−u,v)ω = 0, v ∈ L2((0,T )×ω),

and the equations (56) and (77) imply for all v ∈ Vh and w ∈Wh that

A[(uh−πhu,zh),(v,w)] = (u−πhu,v)ω +G(u−πhu,w)− s(πhu,v). (78)

The weak coercivity (67) implies that in order to show (76) it is enough bound the
three terms on the right hand side of (78). For the first of them, that is, (u−πhu,v)ω ,
we use (63). The lower bound (60) applies to the second term G(u−πhu,w), and
for the third one we use the continuity (58) and the upper bound (64),

s(πhu,v)≤C|πhu|V |v|V ≤Ch‖u‖∗|v|V .

We define the residual r as follows. By taking v = 0 in (56) we get G(uh,w) =
〈 f ,w〉+ s∗(zh,w), w ∈Wh, and therefore

〈r,w〉= G(uh,w)−〈 f ,w〉−G(uh,πhw)+G(uh,πhw) (79)

= G(uh,w−πhw)−〈 f ,w−πhw〉+ s∗(zh,πhw), w ∈ H(0,1)
0 .

We now wish to arrive to the estimate

‖r‖(0,−1) ≤C(|uh|V +‖zh‖W +h‖ f‖). (80)

To show that (80) holds, it is enough to bound the three terms on the right hand
side of (79). The lower bound (59) applies to the first term G(uh,w−πhw), for the
second term ( f ,w−πhw) we use (63), for the third term we use the continuity (58)
and the upper bound (65)

s∗(zh,πhw)≤C‖zh‖W ‖πhw‖W ≤C‖zh‖W ‖w‖(0,1).

The inequalities (80), (76) and (64) imply



28 Erik Burman and Lauri Oksanen

‖r‖(0,−1) ≤C(|uh−πhu|V + |πhu|V +‖zh‖W +h‖ f‖)≤Ch(‖u‖∗+‖ f‖).

Finally using the above bound on r, Theorem 3 implies that

‖uh−u‖C(T1,T ;L2(Ω))+‖uh−u‖L2(T1,T ;H1(Ω))+‖uh−u‖H1(T1,T ;H−1(Ω))

≤C‖uh−u‖ω +Ch(‖u‖∗+‖ f‖).

The claim follows by using (76) and (63),

‖uh−u‖ω ≤ ‖uh−πhu‖ω +‖πhu−u‖ω ≤Ch‖u‖∗.

Here we used also the assumption that H∗ is a continuously embedded subspace
of the energy space (52), namely, this implies that the embedding H∗ ⊂ H(0,1) is
continuous.

Remark 8. If the data q, f is perturbed in this time-dependent case, the data assimi-
lation problem behaves like a typical well posed problem, that is, a term

δ (q̃, f̃ ) := ‖δq‖L2(0,T ;L2(ω))+‖δ f‖(0,−1)

needs to be added on the right-hand side of the estimate in Theorem 6, but this time
without any negative power of h. The proof is similar as in the stationary case and
left as an exercise.

6 Conclusion

We have shown on some model problems how weakly consistent regularisation may
be applied in the context of finite element approximation of ill-posed problems as a
means to obtain approximations to the exact solution that are optimal with respect
the approximation order of the finite element space and the (conditional) stability
of the physical problem. We have only considered piecewise affine approximation
here but the extension to high order polynomial approximation (and with associated
enhanced accuracy for smooth solutions) is possible using the ideas from [9]. On-
going work focuses on problems where the stability depends on the parameters of
the physical problem in a more intricate way such as for the convection–diffusion
equation or the Helmholtz equation. Further work will also address the extension to
systems such as the linearised Navier-Stokes’ equations.
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