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INTRODUCTION

Elevational gradients are important systems to
investigate patterns of species richness and func-
tional diversity, as they provide heterogeneous habi-
tats and climatic conditions along short distances
(Körner, 2000; Sanders and Rahbek, 2012). The
variation in elevation influences the abundance and
distribution of mammal species, but species may 
respond differently to this gradient (Dias and
Peracchi, 2008). In this context, two patterns are
often observed when assessing the effect of eleva-
tion on mammals. The first consists of a linear de-
crease in species richness and abundance with an 

increase in elevation (Stevens, 1992; Patterson et
al., 1996, 1998; Kañuch and Kristin, 2006), usually
observed in temperate climates (Graham, 1983;
McCain, 2007b). The second pattern, defined by its
hump-shaped effect, shows that in tropical regions
intermediate elevations may have greater species
richness and abundance (Rahbek, 1995, 2005;
Goodman et al., 1996; Heaney, 2001; McCain,
2007b; Bordignon and França, 2009; Williams et al.,
2012; Piksa et al., 2013).

Several studies have reported that elevation in-
fluences the local bat community (Juste and Perez,
1995; Patterson et al., 1998; Heaney, 2001; Jaberg
and Guisan, 2001; Curran et al., 2012), and both 
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Bats are an excellent taxonomic group for research on elevational gradients and functional diversity, as they present a large number
of species and functional traits. In general, elevation has a negative influence on bat diversity, but the effect is not necessarily linear.
Often the effect of elevation on diversity may have a hump-shaped pattern, in which diversity metrics peak in intermediate elevations
before decreasing at the highest parts of the elevational gradient. In this study, we investigated the effect of elevation on bat species
richness, abundance, and functional diversity in Rio Preto State Park (RPSP), a protected area located in the Espinhaço mountain
range, a region globally recognized for its high rates of biodiversity. We found that RPSP harbours 22 bat species, which represent
69% of the species occurring in the Espinhaço range and include species of conservation concern. Bat species richness and 
abundance was linearly and inversely correlated to elevation, whereas functional diversity had a hump-shaped pattern, with higher
values found in the intermediate portion of the elevational gradient. Our findings agree with other studies showing the overall 
negative effect of elevation on bat diversity and contribute to the still sparse knowledge about the effect of elevation on bats in Brazil
and in the Espinhaço range. Furthermore, our results suggest that natural environments in lower and intermediate elevations (< 1,100
m a.s.l.) in this mountain range may have high biodiversity value for bats, and actions aiming at their protection would complement
the conservation efforts focusing on endemic species associated with higher habitats in the Espinhaço.
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patterns of elevational effect have been observed
(hump-shaped and linear decrease). Heaney et al.
(1989) in the Philippines, Linden et al. (2014) in
South Africa, and Martins et al. (2015) in Brazil,
found a linear and negative relationship between bat
species richness and elevation, whereas greater spe -
cies richness in intermediate elevations has been re-
ported in Brazil, Colombia and Poland (Bejarano-B.
et al., 2007; Stevens, 2013; and Piksa et al., 2013,
respectively). Mc Cain (2007b) found evidence of
greater species richness in intermediate elevations
when mountains have dry and arid bases, but in
mountains with wet and warm bases the linear de-
crease pattern typically prevails.

The decrease in species richness along eleva-
tional gradients may result in decreased function-
al diversity and ecosystem services associated 
with bats (Dehling et al., 2014). Functional diversity
is a biodiversity component representing the varia-
tion of species’ features that influences commu- 
nity functioning (Tilman, 2001) and is an emerging
property that explains the effects of biodiversity
(Díaz et al., 2006). Analysis of functional diversity
along environmental gradients is a complemen- 
tary approach to traditional species richness stud-
ies and can help elucidate causes and consequen-
ces of general phenomena related to biodiversity
variation (Stevens et al., 2003). Among verte-
brates, bats are an excellent model group for re-
search on functional diversity because they con-
tribute to several ecosystem services (Kunz et al.,
2011).

There are few studies in Brazil assessing bat 
diversity at different elevations (e.g., Geraldes,
1999; Esbérard, 2004; Dias and Peracchi, 2008;
Moras et al., 2013; Martins et al., 2015), and even
fewer of these incorporate functional diversity 
metrics. Further more, although some studies have
investigated the effect of elevation on biodiversity in
the Espinhaço range (e.g., Vasconcelos and Mello,
2001; Carneiro et al., 2005, 2009; Costa et al. 2015;
Coutinho et al., 2015; Nunes et al., 2016; Pinho et
al., 2017), there is very little information about its
influence on bat communities in this mountain
range. To start filling this gap in knowledge, we as-
sessed the effect of elevation on bat species richness,
abundance, and functional diversity at Rio Preto
State Park, a protected area in the central portion of
Espinhaço range. We tested the hypothesis that ele-
vation has a hump-shaped effect on bat diversity,
with metrics reaching their highest values in inter-
mediate elevations and then decreasing at higher
sampling sites. 

MATERIALS AND METHODS

Study Area

The Espinhaço mountain range extends for about 1,200 km
North to South, encompassing the Brazilian states of Minas
Gerais and Bahia, with elevation varying between 650 and
2,000 m a.s.l. (Vitta, 2002). This mountain range is globally rec-
ognized for its high rates of endemism and for its rare and
threatened species (Eterovick et al., 2005; Rodrigues, 2005;
Rapini et al., 2008; Costa, et al., 2015; Silveira et al., 2015;
Barata et al., 2016; Hopper et al., 2016).

This study was carried out at Rio Preto State Park (RPSP),
located in the central portion of the Espinhaço range, at the bor-
der between two major Brazilian ecosystems — Cerrado and
Atlantic Rainforest (Fig. 1). The park was established in 1994 in
order to safeguard water sources and protect local biodiversity.
RPSP covers an area of 12,185 hectares and has an elevation-
al gradient of roughly 1,200 m, with its lowest point at approx-
imately 700 m a.s.l. and its highest point at 1,822 m a.s.l. Within
RPSP limits, the main vegetation physiognomies are savan na
(cerrado sensu stricto), grasslands with rock outcrops (campo
rupestre), riparian forests, as well as scattered high-elevation
forests (capão de mata). In general, the study area region has 
a seasonal climate with a dry season between April–Septem ber
and a wet season between October-March; the average annual
rainfall is 1,350 mm (IEF-MG, 2004). During our study the
mean temperature at RPSP was 21.2°C (range: 4.3–38.3°C; data
from a weather station located at 850 m a.s.l. in the study area). 

Data collection

We surveyed bats at 12 sampling sites within RPSP between
August 2014 and September 2015, selecting sites as far apart as
possible, while still fully representing the elevational gradient,
as well as the protected area (Fig. 1). Selection of sampling sites
was constrained by our sampling design (distance of at least 
three km among sites) and characteristics of the terrain, as cliffs
and large rock outcrops made some portions of the study area
virtually inaccessible. The shortest distance between two neigh-
bouring sampling sites ranged from 3–4.5 km and the mean ver-
tical distance between adjacent sampling sites was 91.8 m
(range: 18–173 m). The lowest sampling site (P1) was located at
approximately 750 m a.s.l., while the highest (P12; ca. 1,760 m
a.s.l.) was at the Dois Irmãos peak. Elevation was determined in
the field, using a GPS unit (Garmin Map60CSx) and Kestrel
3500 Delta T, both equipped with barometric altimeter.

To capture bats, we set 10 (2.5 × 12 m, 16 mm mesh) at each
sampling site in potential flight routes, such as natural open
trails. Surveys started at 06:00 pm and finished at midnight,
with the nets being inspected for animals every 30 minutes dur-
ing this period. Bats were identified with the assistance of Gard -
ner’s identification key (2008) and standard biometric measures
were taken [forearm measure, weight, sex, age (juvenile, adult),
reproductive status (lactating, pregnant)]. Bats captured were
also fitted with metal flanged bands and released at the same
site. A small number of voucher specimens were collected and
deposited in the Mammals Collection of ICB-UFMG (SISBIO
permit 40471-1 and CEUA permit 135/2012). We conducted
seven data collection expeditions, each one with 12 nights in
length (one night per sampling site), totaling 84 sampling nights
and a sampling effort of 5,040 net-hours (number of nets × num-
ber of nights × sampling hours per night). 
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Since other factors can also influence the bat community,
we measured two variables that we deemed to be important in
our study area: weather and vegetation. We used the Kestrel
3500 Delta device to collect data on relative humidity, tempera-
ture, and wind speed. These measurements were made at the 
beginning and end of each sampling night; we used the average
value of each night in the analysis. To account for variation 
in vegetation, we used the normalized difference vegetation
index (NDVI), obtained from Landsat 8 satellite images taken
approximately in the middle of our study period. NDVI is re-
lated to vegetation productivity (Pettorelli et al., 2005) and 
is well correlated to landscape green cover in the Brazilian
Cerrado (Ferreira et al., 2003). NDVI values were calculated 
by averaging the values of each pixel of a 250 m buffer 
zone produced around each sampling site, using the software
ArcGIS 10.

Data analysis 

To estimate bat species richness in RPSP, we used the non-
parametric richness estimator Jackknife1 (Colwell and Cod -
ding ton, 1994), one of the most effective tools to estimate this
parameter (Palmer, 1990; Walther and Moore, 2005). Consider -
ing each night as a sampling occasion, we constructed species

accumulation curves with 999 randomizations for observed and
estimated species richness. 

To obtain functional diversity metrics, we combined an
abundance matrix with a trait matrix. Data on the following
traits were extracted from the literature (Norberg and Rayner,
1987; Eisenberg and Redford, 1989; Gannon et al., 1989;
Bianconi et al., 1996, 1998; Emmons and Feer, 1997; Norberg,
1998; Bernard and Fenton, 2003; Meyer et al., 2008; Reis,
2013) and used for all species: weight, feeding guild, aspect
ratio (ratio between wing span and width) and type of shelter
used (Supplementary Table S1). Rao’s quadratic entropy is a
measure of ecological community diversity (Rao, 1982) and is
based on the proportion of the abundance of species present in
a community and a measure of dissimilarity among them. The
dissimilarity ranges from 0 to 1 and is based on a set of specified
functional traits. For trait data, the function calculates the square
root of the one-complement of Gower’s similarity index, in
order to obtain a dissimilarity matrix with Euclidean metric
properties. Gower’s index ranges from 0 to 1 and can handle
traits measured at different scales (Botta-Dukát, 2005). When
species are completely different in terms of their traits, Rao’s
quadratic entropy is equivalent to the Gini-Simpson index.
Functional redundancy is defined simply as the difference 
between species diversity and Rao’s quadratic entropy based on
their functional dissimilarity (Bello et al., 2007), and can be 
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FIG. 1. Location of sampling sites (white circles) along the elevational gradient at Rio Preto State Park (A); and study area (white 
square) location in Minas Gerais state (B) and in South America (C)



understood as the overlap of species’ functional characteristics
(traits) that affect ecosystem functioning (Loreau, 2004).

In order to test the effect of environmental variables on the
bat community, we constructed generalized linear models
(GLMs). We used observed species richness, abundance of bats
(total number of individuals captured), Gini-Simpson diver-
sity index, Rao’s quadratic entropy and functional redundancy
as response variables. For each response variable a multiple 
regression model was constructed adding all environmental 
factors together (explanatory variables) with no interactions: 
y ~ NDVI + Wind Speed + Relative Humidity +Temperature +
Elevation + Elevation². Checking for collinearity among eleva-
tion and the other explanatory variables, we found that it was
only correlated to NDVI (r = -0.70). However, we decided to
keep NDVI in our full model because it could be useful to 
distinguish between sampling sites at similar elevation but 
with contrasting vegetation structure. All models followed
Gaussian distribution errors and minimal adequate models were
obtained by removing non-significant explanatory variables 
(P > 0.05) from the full model. Models were submitted to resid-
ual analyses (Supplementary Fig. S1), in order to assess ade-
quacy of error distribution (Crawley, 2012). Before conducting
our analysis, we performed the Moran’s I test to check for 
spatial (horizontal distance) and elevational (vertical distance)
autocorrelation among sampling sites. Results of the test indi-
cated no evidence of autocorrela-tion for sampling sites close to
each other, both horizontally (P > 0.05; shortest distance: three
km) and vertically (P > 0.05; smallest difference in elevation:
20 m).

All analyses were performed in software R ver. 3.3.0 (R Core
Team, 2016), using the package ‘vegan’ (Oksanen et al., 2016)
to build species accumulation curves and the package SYNCSA
(Debastiani and Pillar, 2012), using the function ‘rao.diversity’,
to obtain metrics of functional diversity. For all analyses, we
grouped species of the Lonchophylla genus as Lonchophylla
spp. because three species of this genus potentially occur in our
study area and identification to species level could not be
achiev ed in the field for all individuals captured. 

RESULTS

We captured 408 individuals, belonging to 22
species and three families of bats (Table 1). Estimat -
ed species richness at RPSP was 27 (Jackknife 1 es-
timator), five species greater than the observed
value (Fig. 2). Observed species richness per sam-
pling site ranged between five and 16, while total
abundance varied from 8 to 67 individual bats per
site (Table 2). Lonchophylla spp. was the most fre-
quently captured species representing 17% of all
captures, followed by Glossophaga soricina (14%),
and Platyrrhynus lineatus (11%). Conversely, Chi -
ro derma doriae, Glyphonycteris behnii, Uroderma
magnirostrum, Molossops temminckii, and Eumops
perotis were captured only once and at elevations
lower than 1,190 m a.s.l.; while Lonchophylla spp.,
Artibeus obscurus, P. lineatus were captured in 11
out of 12 sampling sites along the elevational gradi-
ent (Table 1 and Supplementary Fig. S2). 

Elevation had a significant effect on species rich-
ness, abundance and functional diversity (Table 3,
Fig. 3, and Supplementary Fig. S3), but not on Gini-
Simpson diversity index, which did not vary much
and was relatively high throughout the study area
(Table 2). There was a suggestion that elevation and
NDVI might have some influence on functional re-
dundancy, but the model for this metric did not con-
verge adequately and we prefer not make any infer-
ences. All other explanatory variables (wind speed,
relative humidity and temperature) did not signifi-
cantly affect any of the parameters assessed. 
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FIG. 2. Accumulation curves for observed (Sobs) and estimated (Jackknife 1 Mean) bat species richness at Rio Preto State Park, 
southeastern Brazil
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Contrary to our prediction, but still agreeing with
our general hypothesis, bat richness and abundance
was linearly and inversely correlated to elevation
(Fig. 3A–B). The negative slope was much stronger
for abundance, as species richness maintained high
values overall until around 1,200 m a.s.l. In fact, 
for species richness it seems to exist some uncer-
tainty on whether the linear or the hump-shaped
model has a better fit to our data (Supplemen-
tary Fig. S2), although the minimal adequate model
approach favours the form er. As predicted, varia-
tion in functional diversity along the elevational 
gradient was better explained by the quadratic 
function (representing the hump-shaped pattern — 
Table 3 and Supplementary Fig. S2). In itially, func-
tional diversity increased with elevation, reaching
its maximum value around 1,200 m a.s.l.; from this 
elevation upwards the relationship chang ed and 
it began to decrease with an increase in elevation
(Fig. 3C). 

DISCUSSION

Observed species richness represented 81% of
the species estimated to occur in the study area, in-
dicating that total bat richness at RPSP is likely to
reach approximately 30 species. However, the num-
ber of species recorded in this study is highly re-
presentative; as it corresponds to 69% of the bats
known to occur in the Espinhaço range (Tavares et
al., 2008) and almost 20% of all bat species in the
Brazilian Cerrado (Aguiar et al., 2016). Besides the
large number of species, bats of conservation con-
cern also occur at RPSP, such as Lonchophylla bok-
ermanni, Histiotus velatus and Glyphonycteris
behnii — the last species is included in the Brazilian
Red List as Vulnerable (MMA, 2014) and all of
them are classified as Data Deficient by IUCN
(2015).

Our results show that elevation has a negative 
effect on important diversity metrics of the bat 
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TABLE 2. Summary of bat diversity metrics obtained in 12 sampling sites at Rio Preto State Park, southeastern Brazil

Sampling Elevation Observed species
Total abundance

Rao’s quadratic Gini-Simpson
Functional redundancy

site ID (m a.s.l.) richness entropy index diversity

1 750 11 48 0.62 0.87 0.25
2 904 14 67 0.50 0.75 0.25
3 977 9 23 0.57 0.83 0.25
4 995 12 39 0.62 0.87 0.24
5 1,095 14 52 0.66 0.89 0.23
6 1,185 16 46 0.64 0.85 0.21
7 1,263 10 27 0.60 0.86 0.25
8 1,387 10 28 0.63 0.79 0.16
9 1,452 10 37 0.52 0.71 0.18
10 1,551 12 20 0.61 0.88 0.26
11 1,587 6 13 0.51 0.71 0.19
12 1,760 5 8 0.41 0.75 0.33

Response variable Terms d.f. Mean square F-value P-value R2*

Richness 0.33
(~Elevation) Elevation 1 38.089 5.14 0.047

Residual 10 74.161

Abundance 0.58
(~Elevation) Elevation 1 1919.00 13.84 0.004

Residual 10 1387.00

Functional diversity 0.55
(~Elevation+Elevation2) Elevation 1 0.014 4.82 0.056

Elevation2 1 0.020 6.55 0.031
Residual 9 0.027

d.f. — degrees of freedom; *R2 — values refer to the minimal adequate model for each parameter investigated. Variables in parentheses are the ones
retained in the minimal adequate model

TABLE 3. Analyses of variance of the minimal adequate models showing the effect of elevation on species richness, abundance and
functional diversity of bats at Rio Preto State Park, southeastern Brazil



on bats in elevational gradients (e.g., Liden et al.,
2014; Martins et al., 2015), but contradicts our pre-
dictions of a hump-shaped effect and the results
from Bejarano-B. et al. (2007), Piksa et al. (2013)
and Stevens (2013). Abundance declined sharply
with elevation, but we still found a high number of
species in some of the intermediate elevation sites, 
a possible reason for the uncertainty about which
model better explains the relationship between 
richness and elevation in the study area. An initial
plateau in species richness was also observed by
Curran et al. (2012) in Malawi, where the number of
bat species remained relatively high up to mid-ele-
vations. On the other hand, functional diversity at
RPSP peaked in intermediate elevations before de-
creasing in higher elevations, showing that the
hump-shaped pattern may be valid for at least some
metrics of the bat community in the Espinhaço. 

It is likely that local context will influence the 
diversity-elevation relationship, with both linear de-
crease and hump-shaped pattern being possible out-
comes in tropical regions. For instance, variation in
climate (McCain, 2007a) and anthropogenic pres-
sure (Marini et al., 2011) may cause similar commu-
nities to respond in different ways to the elevational
gradient. Furthermore, the shape of the relationship
is likely to be taxonomic-dependent due to distinct
ecological requirements and physiological process
among unrelated species. In the Espinhaço range,
the effect of elevation on biodiversity has been
tested for distinct taxonomic groups, such as mycor-
rhizal fungi (Coutinho et al., 2015), gall inducing in-
sects (Carneiro et al., 2005, 2009), dung bettles
(Nunes et al., 2016) and ants (Costa et al., 2016),
and both patterns (hump-shaped and linear) have
been observed.

According to Cianciaruso et al. (2009), func-
tional diversity is usually correlated to species rich-
ness, as we observed at RPSP, where high values for
both metrics were found in the same sampling sites
(r = 0.67, t = 2.82, d.f. = 10, P = 0.018). The link be-
tween them can be partially explained by the low
values obtained for functional redundancy, suggest-
ing that bat species captured in our study area have
few similar functional traits with little overlap on
their role on ecosystem function. If there is little
functional overlap among the species recorded, sam-
pling sites with more species are also likely to be the
sites with higher functional diversity, due to an ad-
ditive effect. Because bats can provide several
ecosystem services, such as seed dispersal, pollina-
tion and control of insect population (Kunz et al.,
2011), areas of high bat species richness and, thus,
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FIG. 3. Effect of elevation on bat species richness (A),
abundance (B), and functional diversity (C) at Rio Preto State 

Park, southeastern Brazil

community at RPSP. A similar effect has been found
for large mammals in this same protected area,
where species richness and number of records are
greater in lower elevations (Pinho et al., 2017). Our
models indicate that bat species richness and abun-
dance in the study area decreases linearly as eleva-
tion increases. This pattern agrees with some studies
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high functional diversity, are expected to deliver
greater environmental services. Based on our re-
sults, at RPSP, we can expect lower and especially
intermediate elevations to provide more bat-related
environmental benefits than high elevation areas. 

Lower diversity in higher elevations is usually
explained as a function of lower productivity in
these higher areas. Interestingly, NDVI (a surrogate
for vegetation productivity — Pettorelli et al., 2005)
did not influence abundance nor species richness 
or functional diversity in our study. In fact, wind
speed, relative humidity and temperature (the other
variables we thought could affect bats in the study
area) also did not have a significant effect on any of
the biodiversity metrics we measured. However,
there may still be other factors influencing the pat-
terns observed that we did not account for, such as
habitat features, resource availability, historic com-
plexity and abiotic variables (other than wind and
temperature) — all of which have been previously
shown to have an effect on bat diversity along eleva-
tional gradients (Graham, 1990; Patterson et al.,
1996; Willig et al., 2003; Cowell et al., 2004; Mc -
Cain, 2007b). 

Despite the possible influence of other factors,
we show here that elevation has an important effect
on the bat community at RPSP. Our findings suggest
that natural environments in lower and intermediate
elevations (< 1,100 m a.s.l.) in the Espinhaço moun-
tain range have high biodiversity value for bats. The
protection and adequate management of these lower
elevation habitats (including natural vegetation out-
side protected areas) would favour the Espinhaço
mammal fauna and complement the conservation ef-
forts focusing on endemic species associated with
higher elevation habitats.
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