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ABSTRACT
We investigate the spin dynamics of a millisecond pulsar (MSP) in a tightly bounded
orbit around a massive black hole. These binaries are progenitors of the extreme-mass-ratio
inspiral (EMRI) and intermediate-mass-ratio inspiral (IMRI) gravitational wave events. The
Mathisson–Papapetrou–Dixon (MPD) formulation is used to determine the orbital motion
and spin modulation and evolution. We show that the MSP will not be confined in a planar
Keplerian orbit and its spin will exhibit precession and nutation induced by spin–orbit coupling
and spin–curvature interaction. These spin and orbital behaviours will manifest observationally
in the temporal variations in the MSP’s pulsed emission and, with certain geometries, in the
self-occultation of the pulsar’s emitting poles. Radio pulsar timing observations will be able to
detect such signatures. These extreme-mass-ratio binary (EMRB) and intermediate-mass-ratio
binary (IMRB) are also strong gravitational wave sources. Combining radio pulsar timing and
gravitational wave observations will allow us to determine the dynamics of these systems in
high precision and hence the subtle behaviours of spinning masses in strong gravity.

Key words: black hole physics – gravitation – relativistic processes – celestial mechanics –
pulsars general.

1 IN T RO D U C T I O N

The gravitational wave events, e.g. GW150914 (Abbott et al. 2016)
and GW170608 (Abbott et al. 2017b), etc, detected by Laser
Interferometer Gravitational-Wave Observatory (LIGO) provide
strong support for Einstein’s theory of gravity, i.e. general relativity
(GR) and evidence for astrophysical black holes. Although GR has
passed a variety of tests in the weak-field and strong-field regimes,
there are still issues within it that require further clarification
(see e.g. Beiglböck 1967; Costa & Natário 2014). Among them
is the dynamics of spinning objects, in particular, regarding how
spin interacts with curved space–time (Plyatsko 1998; Iorio 2012;
Plyatsko & Fenyk 2016) and what the corresponding observable
signatures are.

Binary systems containing a millisecond pulsar (MSP) orbit-
ing around a massive black hole (MBH) (of 103–106 M�) are
particularly useful for the study of spin–curvature interaction in
GR. With the large mass ratio between the black hole and the
MSP, the neutron star can be treated as a point test particle. The
space–time is practically stationary, provided solely by the black

� E-mail: kaye.li@link.cuhk.edu.hk (KJL); kinwah.wu@ucl.ac.uk (KW);
dinesh.singh@uregina.ca (DS)

hole. These allow us to construct models that are simple enough
to be mathematically tractable yet sufficient for capturing the
essences of the physics and its subtle complexity. Depending on
the mass of the black hole, the binary systems can be split explicitly
into extreme-mass-ratio binary (EMRB) (for black holes in the
range 105–106 M�) and intermediate-mass-ratio binary (IMRB)
(for black holes in the range103–104 M�), which correspond to
different astrophysical systems. EMRB/IMRB are progenitors of
the extreme-mass-ratio inspirals (EMRIs)/intermediate-mass-ratio
inspirals (IMRIs) systems. They are major classes of gravitational
wave sources expected to be detected by Laser Interferometric
Space Antenna (LISA) (see e.g. Amaro-Seoane et al. 2007). The
presence of an MSP guarantees the electromagnetic counterparts of
these EMRB/IMRB and the subsequent EMRI/IMRI gravitational
wave events. With high-precision radio timing observations the spin
and orbital dynamics of the MSP can be investigated independently,
complimentary to the direct gravitational wave observations.

EMRB and IMRB systems are astronomically important in their
own right. How EMRB were formed and how their progenitors
had evolved to such configuration are interesting questions to be
answered. A possibility is that compact MSP–black hole binaries
were formed in very dense stellar environments (Merritt et al. 2011;
Clausen, Sigurdsson & Chernoff 2014), e.g. the central region of a
large stellar spheroid, such as the core of a compact spheroidal
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galaxy, through sequences of stellar interactions. Another
possibility is that they were produced at the centre of a small
elliptical or a Milky Way-like spiral galaxy when an MSP is captured
by the nuclear black hole. IMRB systems could also be formed in
dense environments where an intermediate-mass black hole capture
an MSP. Globular clusters are known to host a large population of
pulsars, in particular, MSPs (see e.g. Lorimer 2008). Neutron stars
are the more massive stars in the globular clusters and they would
sink to the core of their host globular clusters due to dynamical
friction. If the globular cluster has an intermediate-mass nuclear
black hole, an IMRB system would therefore be formed. We will
discuss the possibility of these events further in Section 4.2.

Spinning neutron stars or spinning neutron-star binaries revolving
around an MBH had been investigated in various astrophysical
contexts (e.g. Remmen & Wu 2013; Singh, Wu & Sarty 2014;
Rosa 2015; Saxton, Younsi & Wu 2016). Most of these studies put
focus on the orbital dynamics of the neutron star or the neutron-star
binaries. This work will extend the previous investigations to the
dynamics of the neutron star’s spin when orbiting around an MBH
in the presence of spin–orbit and spin–curvature couplings. We
determine on the observational signatures as diagnosis and discuss
their astrophysical and physical implications. The paper is organized
as follows: in Section 2, we present the formulation for the equation,
and in Section 3 we show the results for systems with parameters
relevant to astrophysics and to future pulsar timing observations
and gravitational wave experiment. Discussions on the astrophysics
and physics implications will be in Section 4 and a summary in
Section 5.

2 EQUAT I O N S O F M OT I O N

We adopt a [ − + + + ] signature for the metric and a natural unit
system, in which the gravitational constant G and the speed of light c
are unity (G = c = 1). The MSP, a neutron star with mass m (= Mns)
and radius Rns, orbits around a black hole of mass M (= Mbh). The
black hole has a Schwarzschild radius Rsch = 2M , and its rotation
is specified by the spin parameter a, with a/M = 1 corresponding to
a maximally rotating Kerr black hole and a/M = 0 corresponding to
a non-rotating (Schwarzschild) black hole. The orbital separation
between the MSP and the black hole, r, is sufficiently large such
that r > M � Rns > m. The space–time is stationary, determined by
the black hole’s gravity and rotation, i.e. a Kerr space–time.

The space–time interval, in the Boyer–Lindquist coordinates, is
therefore given by

− dτ 2 = −
(

1 − 2Mr

�

)
dt2 − 4aMr sin2 θ

�
dt dφ

+ �

�
dr2 + � dθ2 +

(
r2 + a2 + 2a2Mr sin2 θ

�

)

× sin2 θ dφ2 , (1)

where � = r2 + a2cos 2θ , � = r2 − 2Mr + a2, and (r, θ , φ)
represents the spatial three-vector in the (pseudo-)spherical polar
coordinates with the black hole centre as the origin. The motion of
the MSP, in the approximation as a particle-like object, is determined
by the continuity equation

T μν
;μ = 0 , (2)

where the covariant derivative is taken with respect to the back-
ground space–time. For a spinning particle with four-momentum
pμ and spin–tensor sμν , the continuity equation can be simplified to

the Mathisson–Papapetrou–Dixon (MPD) equations:

Dpμ

dτ
= −1

2
Rμ

ναβuνsαβ ; (3)

Dsμν

dτ
= pμuν − pνuμ (4)

(see Mashhoon & Singh 2006; Plyatsko, Stefanyshyn & Fenyk
2011), where uμ = dxμ/dτ is the four-velocity of the centre of mass.
We have omitted the Dixon forceF μ in the momentum evolutionary
equation and the Dixon torque T μν in the spin evolutionary equation
(cf. Singh et al. 2014). They are arisen from the interaction of the
quadrupole and higher order mass moments of the spinning object
with the gravitational field and therefore absent in the point-mass
approximation that we have adopted for the MSP.

To close the MPD equation, a spin supplementary condition is
required. We consider the Tulczyjew–Dixon (TD) condition (see
Tulczyjew 1959; Deriglazov & Ramı́rez 2017), where

sμνpν = 0 . (5)

This, together with the point-mass approximation, ensures that the
mass of the MSP, given by

m = √−pμpμ , (6)

is a constant of motion. The spin vector sμ of the MSP is obtained
by the contraction of the spin tensor sμν :

sμ = − 1

2m
εμναβpνsαβ ; (7)

sμν = 1

m
εμναβpαsβ (8)

with Levi-Civita tensor εμναβ = √− g σμναβ adopting the σ 0123 =
+1 permutation. Contraction of the spin vector gives the scalar

s2 = sμsμ = 1

2
sμνsμν (9)

which is a constant of motion.
In the regime where the Møller radius of the MSP (i.e. a neutron

star)

rM = s

m
� r (10)

the dipole–dipole interaction and the higher order multipole inter-
actions, which are much weaker than the pole–dipole interaction,
can be ignored. Thus,(

pμ

m
− uμ

)
∼ M rM

2

r3
� 1 (11)

and the approximation scheme proposed by Chicone, Mashhoon &
Punsly (2005) is applicable. With pμ ≈ muμ, the MPD equations
are reduced to

Duμ

dτ
= − 1

2m
Rμ

ναβuνsαβ ; (12)

Dsμν

dτ
≈ 0 (13)

and the closure condition becomes

sμνuν ≈ 0 (14)

(Chicone et al. 2005; Mashhoon & Singh 2006). This is essentially
the Frenkel–Mathisson–Pirani condition (Frenkel 1926; Mathisson
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1937; Costa & Natário 2014; Costa, Lukes-Gerakopoulos & Se-
merák 2018).1

To investigate the difference between the cases with and without
consideration of spin–curvature coupling, we introduce a parameter
switch λ into the MPD equations as in Singh et al. (2014) (see also
Singh 2005):

dpα

dτ
= −�α

μνp
μuν + λ

(
1

2m
Rα

βρσ εβσ
μνs

μpνuβ

)
; (15)

dsα

dτ
= −�α

μνs
μuν + λ

(
1

2m3
Rγβρσ εβσ

μνs
μpνsγ uβ

)
pα ; (16)

dxα

dτ
= uα = −pδuδ

m2

(
pα + 1

2

λ(sαβRβγμνp
γ sμν)

m2 + λ(Rμνρσ sμνsβσ /4)

)
. (17)

Spin–curvature coupling is included when λ = 1, and excluded
when λ = 0. In this formula, the spin four-vector is Fermi–Walker
transported along the worldline of the centre of motion of the MSP.

3 SP I N A N D O R B I T M O D U L AT I O N O F TH E
MILLISEC OND PULSAR

We adopt a neutron-star mass m = 1.5 M�. The MSP spin period
Ps is taken to be 1 ms (with spin s = 0.3787 m2 2 throughout this
paper), for the extremely fast-rotating MSP3 [see Papitto et al.
(2014) and Özel & Freire (2016), for the period distributions of
MSP]. The MBH is taken to have mass M = 103, 104, and 105 M�,
and the spin parameter a/M = 0, ±0.5, and ±0.99. The orbit of
the MSP around the black hole is bounded, with ‘+’ and ‘−’
signs in a/M corresponding to the black hole in a prograde and
a retrograde rotation with respect to the orbital motion of the MSP.
The semimajor axis r of the orbit of MSP, defined as the mean
of minimum and maximum distances between the MSP and black
hole, is chosen to be 20, 50, and 100 M . The eccentricity e of the
orbit is calculated using the method described in Appendix A. It
has values ranging between 0 and 0.6.4 The initial orientation of
the MSP’s spin axis is set to be 0◦, 45◦, and 90◦ with respect to the

1It has been pointed out that the motion of a particle under different spin
supplementary conditions are equivalent to dipole order (Costa & Natário
2014). Such equivalences were not shown for the evolution of spin. We look
forward to future work about this issue.
2The spin angular momentum of the MSP depends on the internal structure
of the MSP, which is model-dependent. Here we assume that the MSP is a
uniform solid sphere with radius Rns = 10 km. Under such an approxima-
tion, the MSP has a spin s = (2/5)mR2

ns(2π/Ps) ≈ 0.3787 m2.
3A comprehensive catalogue of pulsars in Galactic globular clusters com-
plied by P. Freire can be found in www.naic.edu/pfreire/GCpsr.html.
4It worth noticing that, depending on the formation channels, some EM-
RIs/IMRIs may possess zero eccentricity (see e.g. Miller et al. 2005). Other
mechanisms, for example compact stars driven by gravitational radiation
(i.e. gravitational bremsstrahlung) (Quinlan & Shapiro 1989) or stars on
orbits near the loss cone (Hopman & Alexander 2005) could possess large
eccentricities. The evolution of such highly eccentric EMRB and IMRB are
driven by gravitational radiation, and the interaction with other stars can be
ignored (Konstantinidis, Amaro-Seoane & Kokkotas 2013). These studies
presented distribution of initial orbital eccentricity of EMRB and IMRB
when they enter the LISA bandwidth (i.e. when their orbital periods are
about 104 sec, as defined in Hopman & Alexander 2005, hereafter ‘initial
eccentricity’ and ‘initial semimajor axis’ refer to this criteria). When they
enter the relativistic regime that we are interested in, the orbits are greatly
circularized by the emission of Gravitational Wave (GW). For example,
using the two-body radiation formula in Peters (1964), for an IMRI with

Figure 1. The geometry of the system. The orbital angles φorb and θorb are
defined with respect to the (pseudo-)spherical polar coordinate with respect
to the centre of the black hole. The spin angles φspin and θ spin are defined
on a Cartesian coordinate in the MSP’s local tetrad frame.

initial Newtonian orbital angular momentum. The system geometry
is shown in Fig. 1.

3.1 Results

In the MPD formulation, the MSP’s orbital motion and spin
evolution are interdependent (see equation 17). Fig. 2 shows the
rate of the periastron advancement as a function of the orbital
eccentricity (e) expected for geodesic motion (top panel) and the
correction to the rate when spin–orbit and spin–curvature couplings
are considered (bottom panel). The precession rate of the MSP’s
orbit is generally faster for a/M < 0 than for a/M > 0. The precession
is determined by several mechanisms, among them the strongest is
due to geodesic motion, similar to that in Mercury when it revolves
around the Sun. Another one is due to the Lense–Thirring effect,
arisen from the black hole’s rotation. This effect is clearly visible
when comparing the rates for non-zero a/M with that for a/M = 0.
The precession is also contributed by the interaction between the
MSP’s spin with the MSP’s orbit motion and with the space–time
curvature induced by the black hole’s gravity. Note that for the
system parameters considered in this work, the advancement of the
orbital precession is comparable (see top panel, Fig. 2) to the angular
velocity of the MSP’s orbital motion, which is about ∼2 rad s−1 (for
M = 103 M�). Perturbation methods, in particular those assuming
a quasi-circular orbit, are therefore not always applicable when
determining the MSP’s orbital dynamics for systems with non-zero
eccentricities.

In a classical eccentric binary system, orbital precession is
usually caused by tidal interactions between the components and/or
the presence of quadrupole and/or higher order multipole mass
moments in the components. Here we have demonstrated the

103 M�, and initial semimajor axis 2.25 × 10−7pc, eccentricity 0.998
(adapted from fig. 5 of Hopman & Alexander 2005, notice that this is not
necessarily a reliable result, as pointed out in their paper), the eccentricity is
reduced to ∼0.6 when semimajor axis is reduced to 20 M (M = 103 M�).
In general, for 103, 104, and 105 M� central black holes, the eccentricity of
the compact stars orbiting around the black hole will be smaller than 0.6 if
their initial eccentricities are smaller than 0.998, 0.99, and 0.96, respectively.
Therefore, we would like to restrict the eccentricity to be between 0 and 0.6.
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Figure 2. The upper panel shows the rate of periastron advance as a function
of eccentricity e in the pure geodesic case. The lower panel shows the
corrections to the rate of periastron advance due to spin–orbit and spin–
curvature couplings, for an MSP with period 1 ms. The semimajor axis of
the orbit of the MSP is set to be r = 20 M , and the mass of the central black
hole 103 M�. The blue, black, and red lines correspond to the cases of the
black hole spin a/M = −0.99 (retrograde with respect to the MSP orbit), 0,
and 0.99 (prograde with respect to the MSP orbit), respectively. The spin of
the MSP is parallel to the orbital angular momentum initially. The rate of
geodetic periastron advance in the upper panel is decreased by 10 and 102

times for central black holes with 104 M� and 105 M�, respectively, while
the correction to the rate due to the MSP’s spin is decreased by 102 and 104

times, respectively. Notice that the y-axis of the lower panel is in log scale,
which shows that the effects of spin–orbit and spin–curvature couplings are
greatly enhanced in the highly eccentric cases.

presence of the well-known orbital precession due to general
relativistic effects, such effects have been studied extensively in
literature (see e.g. Kidder 1995; Ruangsri, Vigeland & Hughes
2016). One of the consequence is that the orbital precession is
enhanced. This additional acceleration can be illustrated in terms
of a 1PN (first-order post-Newtonian) correction for a parametrized
Keplerian binary system (Damour & Deruelle 1985, 1986).

The strength of spin–orbit interaction in the system may be
characterized in terms of an effective interaction

χeff = 1

(M + m)

(
s
m

+ SMBH

M

)
· L̂ , (18)

where s and SMBH are the spin vectors of the MSP and the MBH,
respectively, and L̂ is the unit directional vector of the MSP’s orbital

Figure 3. The time-like component of MSP’s four-velocity u0 = dt/dτ

of four-velocity of the MSP, and the corrections due to MSP’s spin–orbit
and spin–curvature coupling. The upper panel shows the geodesics dt/dτ

of circular and quasi-circular orbit. The middle panel shows the corrections
due to spin–orbit and spin–curvature coupling for circular and quasi-circular
orbits. The lower panel demonstrates the corrections in dt/dτ due to spin–
orbit coupling for elliptical orbits. Note that the scale of y-axis are different
for all three panels. The initial spin is θ spin = π /4, leaning in the direction
towards black hole. All other parameters are the same as in Fig. 2.

angular momentum L. Here, SMBH is related to the spin parameter
by SMBH = aM ŜMBH. (Hereafter, unless otherwise stated, x̂ denotes
that the unit directional vector of a vector x.) For a black hole and an
MSP that have the same value of dimensionless spin a/M and s/m2,
the effects of MSP’s spin on the orbital dynamics and spin dynamics
are scaled with the factor m/M. The value of dimensionless spin of
MSP depends on its rotational period and inner structure. From the
observational perspective, the pulsed signals allow us to determine
the rotational period of the MSP, while the strength of spin–orbit
couplings depends on the dimensionless spin of the MSP. Therefore,
by measuring such a binary system, we can not only probe the
space–time structure of the MBH, but also achieve two independent
measurements of the MSP’s rotation period and moment of inertia,
which potentially provide us clues about the inner structure of the
MSP.

Fig. 3 shows the corresponding difference of u0, the ratio of
the coordinate time dt and the proper time dτ of the MSP. The
MSP serves as an accurate clock.5 Therefore, dt/dτ can be directly
measured if we know the intrinsic rotational period of the MSP.

We consider a quasi-circular orbit approximation and determine
the different effects on u0 by expanding the analytic formula of u0

5The gravitation effects on clocks associated with a spinning object in a
circular orbit around a gravitating mass were studied by Bini et al. (2005).
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Table 1. The correction to the time component of MSP’s four-velocity (i.e.
u0), which is the ratio of coordinate time dt and proper time dτ , by different
factors for circular and quasi-circular orbits. The formula are calculated
in Appendix B, and only leading orders are shown in the table for order
estimation. Here we take m = 1.5 M�, M = 103 M�, semimajor axis
r = 20M , e = 0.02, a/M = ±0.99, and s = 0.4 m2 for an example. For the
effect of eccentricity, dt/dτ is evaluated at either periastron or apastron, and
is compared to circular orbit with the same semimajor axis. For the effect
of MBH’s spin, dt/dτ is evaluated for circular orbit around spinning MBH,
and compared to circular orbit with the same radius around non-spinning
MBH. When we include the MSP’s spin, the eccentricity is perturbed by
δe ∼ 2 × 10−5, while the semimajor axis is perturbed by δr = 3 × 10−4M ,
leading to a perturbation of about 3.12 ns. The method used in the table
is only valid for circular and quasi-circular orbits, and the estimated order
is consistent with upper and middle panels of Fig. 3. The effect of MSP’s
spin would be greatly underestimated for highly eccentric orbits using the
method here, compared with the exact numerical results of MPD equations,
as shown in lower panel of Fig. 3.

Effect Scale � dt
dτ

� dt
dτ

/Torb

GR 3
2

M
r

0.075 ms 2.7 × 10−5

Eccentricity 2e M
r

2μs 7.2 × 10−7

MBH’s spin 3 a
M

( M
r

)5/2 1.66μs 6.0 × 10−7

MSP’s spin 2δe M
r

+ 3
2

M
r

δr
r

3.12 ns 1.1 × 10−9

for geodesic orbits with respect to the eccentricity e and the Post-
Newtonian (PN) factor M/r. As no assumption is made for the spins
of the black hole and the MSP, the expression that we obtain is
valid for the extremely rotating black hole (with a/M = ±0.99) and
fast-spinning MSP.

The details of the calculations are shown in Appendix B. The
estimated values of �u0 due to each factor are shown in Table. 1.
These results are consistent with those shown in the upper and
middle panels of Fig. 3.

For an MSP with a highly eccentric orbit, only the corrections
due to the coupling of MSP’s spin to orbital angular momentum are
shown in Fig. 3 (lower panel). The corrections are much greater than
the results estimated using the linear approximation in Appendix B,
mainly due to the breaking down of Taylor expansion of u0 with
respect to the eccentricity e. In general, a correction of about ∼20 ns
arises within a duration of ∼10–1000 s, for black hole with masses
in the range 103–105 M�.

When the axis of the spin is not aligned with the angular momen-
tum, the spinning axis, as well as the orbital angular momentum
undergoes precession. This effect was investigated previously, either
based on a one-graviton interaction analogue (e.g. Barker, Gupta &
Haracz 1966; Barker & O’Connell 1979), or by approaches similar
to this work (e.g. Bini et al. 2005). As the orbital angular momentum,
as well as the spin, precesses around the total angular momentum,
when such in-plane spin is present, the orbital angular momentum is
no longer constant, in either magnitude or direction. The precession
of the orbital plane, as a consequence, is usually referred to as
out-of-plane motion (Singh et al. 2014).

The focus of this work is on the spin dynamics, and we will
present the numerical results and the observables in the following
text. Typically, there are three different motions related to the spin:
precession, nutation, and rotation, corresponding to three Euler
angles, respectively. The choice of Euler angles is subject to the
choice of the observer and reference frame. Here we choose the
first Euler angle (which describes the precession) to be φspin, and
the second Euler angle (which describes the nutation) to be θ spin.
The third Euler angle would be of interest for modelling the motion

Figure 4. The upper panel shows the precession in φspin for circular and
quasi-circular geodetic orbits. The semimajor axis of the orbit of the MSP
is r = 20 M (dashed lines), r = 50 M (dotted line), and r = 100 M (solid
line). The black, red, and blue lines correspond to the black hole spin a/M =
−0.99 (i.e. retrograde MSP orbit), 0, and 0.99 (i.e. prograde MSP orbit). The
eccentricity of the MSP orbit is approximately 0, and the central black hole
is of mass 103 M�. The initial spin of the neutron star is inclined at an angle
θ spin = π /4, and leaning in the direction towards the black hole (i.e. φspin =
π ). The other parameters are the same as those in Fig. 2; the lower panel
shows the correction for the precession φspin in the presence of spin–orbit
coupling, and the orbital parameters are the same as the corresponding ones
in the upper panels.

of the magnetic field axis with respect to the spin axis. As the time-
scale of rotation of magnetic field axis is Ps = 1 ms, which is much
smaller than the time-scale of precession and nutation, we will not
include its effect until Section 4.1.

The precession of the spinning axis of MSP is shown in the upper
panel of Fig. 4. Despite that, in this figure, the mass of the MBH is
103 M�, the upper panel is valid for BHs with larger masses. The
reason is that on the Newtonian order the spin s of the MSP evolves
as

ṡ = 1

r3

(
3M

2m
(L × s) − SMBH × s + 3(n̂ · SMBH)(n̂ × s)

)
(19)

(see Barker & O’Connell 1979; Thorne & Hartle 1985; Kidder
1995), where L is the orbital angular momentum, the leading
order of which is the Newtonian orbital angular momentum LN =
mr × v. The precession frequency due to the Newtonian angular
momentum is

ωLN = 1

r3

3M

2m
|LN| ∝ M

r2
v . (20)
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The orbital frequency is however ωorb ∝ v/r, which differs from the
above precession frequency by a factor of M/r. Therefore, the ratios
of spin’s precession velocities and orbital velocities remain the same
for different black hole masses M with the same r/M. As shown in
the upper panel of Fig. 4, the precession rates descend, ∝ M/r, with
increasing radius r for all the cases.

The differences in the precession velocity for the spinning black
holes with respect to that of the Schwarzschild black hole, as
shown in the upper panel of Fig. 4 are due to the second term
of equation (19). The precession frequency caused by SMBH is

ωSMBH = 1

r3
|SMBH| ∝ a

M

M2

r3
∝ a

M

√
M

r
ωLN . (21)

The relation is consistent with that resulted from the MPD equation,
which is shown in the upper panel of Fig. 4, despite that the
derivations of the two are not based on identical assumptions.

The lower panels of Fig. 4 demonstrate the combined effect of
the spin–orbit and spin–spin couplings on the spin precession rate
of the MSP. The effect is non-linear and is not easily seen from the
equation (19). However, we can estimate the order of magnitude of it
on the spin precession rate in terms of an effective spin (equation 18),
which may be expressed as

ωs ∼ 1

r3

M

m
|s| ∝ s

m2

m

M

M2

r3
∝ s

m2

m

M
ωLN . (22)

As there is an m/M dependence, this spin coupling cannot be
ignored especially for systems that consist of intermediate-mass-
ratio binaries.

The nutation of the MSP’s spinning axis is caused by the
combination of the geodesics effect (which only involve the space–
time around the black hole), and the coupling of MSP’s spin to the
orbital angular momentum and to the MBH’s spin. The nutation
due to the geodesic effect and the corrections due to MSP’s spin
are shown in Fig. 5. For Schwarzschild black holes (upper panel,
Fig. 5), the total angular momentum

J = L + s = LN + LPN + LSO + L2PN + s (23)

(Kidder 1995) is conserved at 2PN order. When the angular
momentum LN wobbles, the orbital plane of the MSP will tilt
accordingly, and the MSP spin axis will also wobble around,
changing the direction and magnitude of the spin three-vector s
of the MSP.

The MSP orbital angular momentum is an external angular
momentum. It is conserved when there is a rotational symmetry.
This symmetry is however broken in the presence of the MSP spin.
The situation is slightly different for the MSP spin, as it is an
intrinsic feature of the MSP.

The change of the magnitude of MSP spin’s three-vector is a
unique phenomenon, revealed in the MPD equations, while it would
remain constant in the usual PN formulations (Barker & O’Connell
1979; Thorne & Hartle 1985; Kidder 1995). Although these two
descriptions of the evolution of spin seem to be contradictory, they
are, in fact, consistent with each other. In the PN formulations,
the evolution equation of a particle’s spin is usually written as an
outer product of an external angular momentum vector with the
particle’s spin vector (e.g. equation 19), which directly implies the
conservation of the spin’s magnitude. This, however, is written in
the comoving frame of the particle, and it has been shown to be
equivalent to Fermi–Walker transport equation (see Pastor Lambare
2017). By contrast, the MPD formulation is written in the distant

Figure 5. The nutation of θ spin for the cases with a/M = 0 (upper panel),
0.99 (left side, middle panel), and −0.99 (lower panel), corresponding,
respectively, to the red, blue, and black curves in Fig. 4, respectively. The
small amplitude nutations contributed by the spin–spin interaction are shown
correspondingly on the right side of each panel. In this figure, the cases with
r = 20 M , r = 50 M , and r = 100 M are represented by blue, red, and blue,
respectively. The initial spin of the MSP is inclined at an angle θ spin = π /2
and leaning in the direction towards the black hole (i.e. φspin = π ). The
other parameters are the same as those in Fig. 4. The horizontal straight line
at θ spin = 0 in each panel is the reference of no nutation, the geodesic case.

observer’s frame.6 It seems that the different choices of reference
frame can account for the difference between MPD formulation
and PN formulations. But there is still ambiguity in the definition of

6Sometimes the MPD formula is converted into comoving frame to avoid
the ambiguity in the definitions of the time component of the MSP spin’s
four-vector (see Damour, Jaranowski & Schäfer 2008).
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Spin dynamics of a ms pulsar around a BH 1059

Figure 6. Nutation of spin axis due to geodesics (blues lines, first and third
panels from above), and the corrections to nutation due to the coupling of
MSP’s spin. In the upper two panels, the eccentricity of the MSP’s orbit is
e = 0, in the lower two panels, e = 0.2. The MBH’s spin is a/M = 0, and
the semimajor axis of the orbit of MSP are r = 20 M . Other parameters are
the same as those used in Fig. 4.

spin four-vector, and the physical meaning of the time component
s0 is not well understood. Using the analogy between spin and
relativistic angular momentum, it can be shown that s0 is related to
the dynamic mass moment,7 i.e. the offset of centre of mass and
centre of momentum, measured by the comoving observer.

Recall the closure condition equation (14), which can also be
written as pαsα = 0 (Costa & Natário 2014) and hence

uαsα = 0 . (24)

Dividing both sides by u0, the four-velocity is converted into
velocity with respect to the coordinate time:

s0 = −
(

s1
dr

dt
+ s2

dθ

dt
+ s3

dφ

dt

)
, (25)

where sμ are the components of dual vector, defined as sμ = gμνsν .
Equation (25) describes the projection of spin three-vector on to the
velocity measured by a local static observer. Besides, the factor u0

describes the time dilation effect therefore s0 is also related to the
relativistic light aberration as described in Rafikov & Lai (2006).

Figs 5 and 6 show the nutation of spin axis of the MSP due to
the spin–orbit coupling. In Fig. 5, we selected the special cases
θ spin = π /2, where MSP’s spin is within the orbital plane, for an
example. When λ = 0, the spin rotates around the orbital angular
momentum and the spinning angular momentum of the MBH

7Dynamic mass moment is defined as N = mx − t p, (see e.g. Penrose
2004).

therefore there is only change in the first Euler angle φspin. This
explains why in all three panels, when λ = 0, there is no nutation.
Nevertheless, when we include spin–orbit coupling, a small nutation
occurs. Such a nutation cannot be explained by equation (19), nor
the first-order correction to it by replacing L wth LN + LPN, as
both of them would lead to vanishing projection of ṡ on to the LN

direction. Thus we need higher order corrections, which, naturally,
explains why the order of nutation due to the spin–orbit coupling is
smaller than the precession due to spin–orbit coupling by an order.

In fact, most of the orbital components of total angular momen-
tum in equation (23) are parallel to LN, and the only one that could
account for such nutation is LSO. From Kidder (1995), we have

LSO = m

M

{
M

r
n̂ × [n̂ × (3(s + SMBH) + (m − M)

×
(

SMBH

M
− s

m

))]
− 1

2
v × [v × (s + SMBH

+ (m − M)

(
SMBH

M
− s

m

))]}
. (26)

The scale of it is:

|LSO| ∝ s

m2
m2 M

r
� s

m2
m
M

√(
M
r

)3 |LN| . (27)

Therefore the frequency of nutation due to LSO is

ωLSO = 1

r3

3M

2m
|LSO| ∝ s

m2

m

M

M3

r4
∝ s

m2

m

M

√(
M

r

)3

ωLN . (28)

In equation (26), when we set SMBH to be zero, the only part that
contributes to the nutation is

LSO � m

M

{
M

r

M

m
n̂ × [n̂ × s] − 1

2

M

m
v × [v × s]

}

� M

r

{
n̂ [n̂ · s] − 1

2
v̂ [v̂ · s]

}
+ terms that are parallel to s.

(29)

The time dependencies of n̂(n̂ · s) and v̂(v̂ · s) are the same for
circular orbits. Take n̂(n̂ · s) for an example. Assuming the orbital
angular frequency to be ω, the angular frequency of the spin’s
precession to be �, we have � � ω. The value of n̂(n̂ · s) averaged
over an orbital period is

〈n̂(n̂ · ŝ)x̂〉 =
∫

dt

T
cos(tω)

[
sin(tω) sin(t�) + cos(tω) cos(t�)

]

∼ sin(t(2ω − �))

2(2ω − �)
+ sin(t�)

2�
+ constants . (30)

The nutation therefore has two frequencies, with the dominant
one having the same frequency as the precession of the spin axis
(as shown in the upper panel of Fig. 5). The other frequency is
not apparent in the Fig. 5, as the precession velocity � varies
with frequency 2(ω − �), which cancels out the first term of
equation (30).

We have not considered the black hole spin explicitly in the above
discussion. When we include the MBH’s spin, the situation is much
more complicated. Here we present only the numerical results for
the case with an initial spin orientation θ spin = π /2, in Fig. 5.
There are also small amplitude nutation resulting from spin–spin
corrections, besides the corrections to the period of spin’s nutation
with respect to spin’s precession, and they are shown in the small
figures in the right side of each panel.
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1060 K. J. Li, K. Wu and D. Singh

The nutation due to spin–orbit coupling for a general case, with
θ spin = π /4, is shown in Fig. 6. It demonstrates that the spinning axis
of the MSP undergoes nutation even without spin–orbit coupling.
This nutation comes from Thomas precession (or equivalently
equation 19 in the distant observer’s frame). As shown in Fig. 6
(upper panel), the geodesic nutation is affected by the alignment of
the MSP’s velocity and its spinning axis in the distant observer’s
frame, and it has a angular frequency roughly of 2(ω − �). The
amplitude is approximated by a Lorentz transformation from the
comoving frame to the local static frame, and has value

�θspin � tan−1

(
2(γ − 1) sin2

(
θspin

)
(γ − 1) sin

(
2θspin

) + 2

)
, (31)

where γ = (1 − M/r)−1/2 is the Lorentz factor, θ spin is the initial
angle of spin. As shown in the upper panel of Fig. 6, for θ spin =
π /4 and r/M = 20, �θspin � 0.004 π , a value that is consistent
with that obtained by solving the MPD equation directly. When
the spin-couplings are included in the MPD equation (i.e. λ =
1 in equations 15, 16, 17), the corrections have two frequencies.
The lower frequency is similar to the one shown in Fig. 5 and
equation (30), while the higher frequency is due to the shift of
the precession velocity, and therefore roughly has a frequency of
2 (ω − �). The modulations of the �θ spin amplitude shown in the
lower two panels of Fig. 6 are the consequences of the variations of
γ over the orbital cycle.

4 D ISCUSSION

4.1 Observational prospects

The results presented have several observational prospects. The
waveform of gravitational wave emitted by a eccentric binary
system has been a heated topic in both equal and extreme mass ratio
systems (Favata 2014; Kavanagh et al. 2017; Moore et al. 2018).
EMRIs/IMRIs are expected to possess large orbital eccentricities
when they enter the LISA frequency band (see Amaro-Seoane
et al. 2007; Amaro-Seoane 2018). Ignoring the orbital eccentricity
may lead to systematic biases in parameter estimation of compact
binary gravitational wave sources (Favata 2014) and also to loss
in the source detection (Moore et al. 2018). LISA is expected to
be more sensitive to the orbital eccentricity of the binary systems
than LIGO, and the problem would therefore be severe. Despite
the technical difficulties, modelling the waveforms of the eccentric
binary systems is essential, as EMRIs/IMRIs with high eccentricity
are favourable target systems of LISA – the high eccentricity leads
to stronger signal and hence an enhancement of detectable events
(Barack & Cutler 2004; Amaro-Seoane et al. 2015). Constructing
waveform templates with high accuracy is therefore a very crucial
objective in the preparation of future LISA observations, as well as
in full exploitation of the LIGO capability.

In this calculation, energy dissipation is not considered, and hence
its effect on the eccentricity evolution is not included. The time-
scale of eccentricity evolution is however comparable to the time-
scale of orbital decay (see Peters 1964). It therefore justifies our
approximation that the eccentricity does not vary on the time-scale
of spin precession and nutation. Note that the spin–orbit coupling
will introduce a shift in the phase of the gravitational wave emitted,
and the accumulative effect of spin on the phase of gravitational
wave of the circular system was studied by Burko & Khanna (2015),
Warburton, Osburn & Evans (2017), and Fujita (2018).

Figure 7. Geometry of the MSP’s emission. Ŝ denotes the spin axis of the
MSP, M̂ is the magnetic axis and is rotating around Ŝ. The circles on the
sphere surrounding the magnetic axis denotes the upper and lower boundary
of the radiation beam of MSP, integrated in time. The precession of the spin
axis is achieved by moving the observer Ô on the red circle in the x

′
–y

′

plane, while fixing the direction of the spin’s axis. Note that the nutation of
spin axis is not included and demonstrated in the figure, and can be achieved
by perturbing the observer’s circular trajectory in z

′
direction. The observer

receives the pulses when the unit vector is in between the two circles of
radiation beam, as shown by equation (33). The x

′
–y

′
plane is inclined at an

angle ι with respect to the original x–y plane. This angle can be transformed
into the inclination angle of the MSP orbit using equation (32).

Besides gravitational wave, the spin–orbit coupling effect can
be observed in pulsar timing observation. The correction to orbital
precession would introduce extra shift of pulses received by a distant
observer, and the spin precession and nutation could lead to the
variation of pulse profiles, the detection of which has been shown
to be possible (Kerr 2015). To estimate the effect of spin’s precession
and nutation, we adopt a toy model, using the light house model of
pulsar here, as shown in Fig. 7. In Fig. 7, we do not use the Euler
angles defined above. Instead, we fix the spin vector, while moving
the observer relative to the centre of MSP, in a way that could mimic
both precession and nutation. The spin axis Ŝ is fixed in the x–z

plane, such that the magnetic field line M̂ is initially aligned with
the x-axis, and rotate around the spin axis with period Ps = 1 ms.
The angle between M̂ and Ŝ is χ . When the spin axis precesses
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around the angular momentum L̂ = − ẑ′, we move the observer on
the x

′
–y

′
plane (around z

′
) to mimic the precession. When the spin

axis nutates slightly in −L̂ = ẑ′ direction, we move the observer in
−z

′
direction to mimic nutation. Here the x

′
–y

′
plane is inclined at

an angle ι with respect to the original x–y. All the vectors used here,
including Ŝ, M̂, and Ô are unit vectors.

In order to simplify our model, we use a non-rotating MBH in the
following discussion. Suppose that the precession has an angular
frequency �, from the results in equation (30), the dominate angular
frequency of nutation is also 2(ω − �), and the dominate correction
to nutation is of frequency �, as shown in Figs 5 and 6. We write
the nutation as ν(�, t, ω). The location of the observer at time t is

xOB = cos(t�) cos(ν(�, t, ω)) ;

yOB = sin(�t) cos(ν(�, t, ω)) cos ι + sin(ν(�, t, ω)) sin ι ;

zOB = sin(�t) cos(ν(�, t, ω)) sin ι − sin(ν(�, t, ω)) cos ι . (32)

As the time-scale of the precession is much larger than the rotation
time-scale, we can first ignore the rotation, and assume that
whenever the unit vector of the observer (i.e. the line of sight)
is inside the rings wrapping the magnetic field axis, the observer
would receive pulses, with width equivalent to the arc length. The
emission cone is assumed to have a half open angle θ cone. The width
of the pulse is therefore:

w = 2 sin θcone

√
1 − tan2 θMO

tan2 θcone
when θMO ≤ θcone , (33)

where θMO is the angle between unit vectors Ô and M̂, where M̂ is
rotated such that it’s in the same plane as Ŝ and Ô. The angle θMO

can therefore be determined by

θMO = | cos−1(Ŝ · Ô) − χ | . (34)

When we include the rotation of the MSP, as shown by the upper
panel of Fig. 7, as the observer moves from Ô to Ô ′, the emission
it receives is triggered by magnetic field M̂ ′. Therefore, there is a
shift of emission time, either delayed or advanced by

�t = 1

π

∣∣∣∣ sin−1

(
sin(θMM ′/2)

sin χ

) ∣∣∣∣ Ps , (35)

where θMM ′ is the angle between M̂ and M̂ ′. The angle θMM ′ can
be calculated using

sin

(
θMM ′

2

)
=

√
1 − cos θMM ′

2
=

√
1 − M̂ · M̂ ′

2
;

M̂ ′ = sin(θw + χ )

sin θw

Ŝ + sin χ

sin θSO

(Ô − Ŝ) (36)

where θw = (π − θSO)/2 and θSO = cos−1(Ŝ · Ô).
Take θ cone = 10◦, and χ = 45◦ for an example. We used the

data (r = 20 M,a = 0) from Fig. 6. We consider only the leading
order precession and nutation due to geodesics, and the leading
order correction due to the coupling of the MSP’s spin. We write
the nutation as

ν(�, t, ω) = θgeo [1 − cos 2(ω − �)t] + θcor [cos(�t) − 1] , (37)

where θgeo is the scale of nutation for geodesics motion, θ cor is the
scale of nutation, and both are positive number. The values of ω, �,
θgeo, and θ cor for geodesics motion and the leading order corrections
are given in Table. 2. The variation in pulse width, and time shift
are shown in Fig. 8.

Table 2. The values of recession speed and nutation scale for data (r =
20 M , a = 0, θ spin = π /4, φspin = π ) in Fig. 6. Only leading order precession
and nutation are considered in order to demonstrate the effect of MSP’s spin
on the width and time shift of pulses. The corresponding results are shown
in Fig. 8.

Geodesics Corrections

ω 2.2739 rad sec−1 δω − 7.4411 × 10−5 rad sec−1

� 0.17747 rad sec−1 δ� 1.2599 × 10−5 rad sec−1

θgeo 7.1780 × 10−3 rad δθgeo 0
θ cor 0 δθ cor 8.5512 × 10−5 rad

Figure 8. The first and third panels show the relative width of each
pulse w (compared with the maximum possible width 2sin θ cone) and the
shift of emission time �t (compared with MSP’s intrinsic spinning period
Ps) received by a distant observer moving inside x′−y′ plane. The plane
is inclined at different angle ι with respect to the x−y plane. ι = 90◦
was replaced by 89◦ to avoid the coordinate singularity. Only geodesics
precession and nutation effects are included in the first and third panels.
The second upper panel is the variation in width when including the effect
of MSP’s spin, and the dashed lines corresponds to the solid lines with the
same colour in the first panel. The fourth panel shows the corresponding
corrections to the shift of emission time in the third panel due to MSP’s spin.
The corrections due to MSP’s spin is shown in the Table. 3.
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Table 3. The variation in the disappearing and appearing time of the pulses.
Here t1, 2, 3, 4 correspond to the instants, when the pulse signal (1) first leaves
the emission cone for the first time, (2) re-enter the emission cone for the first
time, (3) re-leave the emission cone for the second time, (4) and re-enter the
emission cone for the second time within one precession period (i.e. within
0 < �t < 2π ). Note that for ι = 0, 15, 30, the observer’s line of sight does
not re-enter the emission cone until the end of a precession period therefore
we will skip t2, t3, and label the first re-entering time as t4.

ι δt1(ns) δt2(ns) δt3(ns) δt4(ns)

0 − 38.72 – – − 3613.66
15 − 32.88 – – − 2887.72
30 − 141.64 – – − 2113.76
45 − 185.35 23.34 − 224.91 − 1987.59
60 − 77.88 − 242.83 − 368.60 − 2246.72
75 − 70.66 − 391.80 − 539.21 − 2397.76
89 − 69.65 − 541.13 − 685.78 − 2441.96

Besides changing the width and time shift of the pulse, the
coupling of spin also results in the shift of pulse disappearing and
appearing times, i.e. the times when w = 0 in the upper panel of
Fig. 8. The disappearing and appearing time, denoted by ti are the
ith solutions to tan 2θMO = tan 2θ cone, which is equivalent to:

f (t, �, ω, θgeo, θcor) ≡ Ŝ · Ô = cos(χ ± θcone) (38)

where we adopt the geodesics values of (�, ω, θgeo, θ cor) as
in Table. 2. The variations of ti can be found by solving the
equation (38) with ω → ω + δω, � → � + δ�, θgeo → θgeo

+ δθgeo, and θ cor → θ cor + δθ cor. The variations δti are shown in
Table. 3. Such a shift is possible to be detected with the instrumental
precision of pulsar timing8 that we can achieve in the near future.

The time shift in Table. 3 is valid for MBH in the range
103–106 M�, and accumulates with about ∼−2.5μs every
spin’s precession period T = 2π /�, regardless of the mass of
MBH.

4.2 Pulsars orbiting around a massive black hole

Large population of pulsars are believed to reside in the central
region of our Galaxy (Pfahl & Loeb 2004; Wharton et al. 2012;
Zhang, Lu & Yu 2014), and pulsar population is believed to be
dominated by MSPs, the species that existing pulsar searches are
not sensitive to (Macquart & Kanekar 2015). Several indirect pieces
of evidence have been supporting this prediction, for example
excessive gamma-ray emission (Brandt & Kocsis 2015) (although
dark matter could as well account for such gamma-ray detections),
the detection of rare magnetar (Eatough et al. 2013; Mori et al.
2013; Rea et al. 2013), and the dense stellar environment in the
Galactic Centre. Very few pulsars have been found until now,
and it is believed that the strong scattering of the radio wave by
interstellar medium and severe dispersion along the line of sight
reduce the chance for pulsars to be detected (Cordes & Lazio 1997;
Lazio & Cordes 1998). Especially, for MSPs, the temporal smearing

8Currently the upper limit of the pulsar timing precision of The Square
Kilometer Array (SKA) is expected to be about ∼10–100 ns (see e.g.
Stappers et al. 2018) and the Five hundred meter Apeture Spherical
Telescope (FAST) ∼100 ns, over 10-min time integration (see e.g. Hobbs
et al. 2014). Note that the precision is limited by the timing technique
and it will improve accordingly with the further advancements of timing
techniques and system modelling (see Hobbs, Edwards & Manchester 2006;
Osłowski et al. 2011; Hobbs et al. 2014).

at low frequencies is severe (Macquart et al. 2010), and current
detectors are not sensitive enough to detect MSPs as they are of low
luminosity at high frequency (Bower et al. 2018). Despite the null
detection, prediction of the pulsar population in the central region of
our Galaxy has been made with different models and assumptions.
Constraints from gamma-ray and radio observations predicted ≤103

MSP inside 1 pc (Wharton et al. 2012), and up to 104 MSPs inside
1 pc (depending on the scattering and absorption, see Rajwade,
Lorimer & Anderson 2017, for details). Simulations by Zhang
et al. (2014) predicted ∼10 pulsars inside ≤ 1000 au, where they
assumed that massive stars were captured by central black hole by
tidal disruption of stellar binaries. However, these studies on pulsar
in the Galactic Centre are focused on the non-relativistic regime,
where the effect of the pulsar’s spin is not important. Indeed, the
event rate of discovering a pulsar in the close vicinity of our Galactic
nuclear black hole is quite low. The complicated environment in the
Galactic Centre makes pulsars difficult to be detected, even if they
exist.

Pulsars on orbits with an intermediate-mass black hole (i.e.
IMRB) are potentially more promising sources. Observations have
shown that large galaxies contain a massive nuclear black hole and
some may have two, e.g. M83 (Thatte, Tecza & Genzel 2000). The
masses of these nuclear black holes are found to correlate with the
dynamical properties, and hence the mass, of spheroid components
of the host galaxies (Magorrian et al. 1998; Ferrarese & Merritt
2000; Gebhardt et al. 2000). Although the empirical correlations
may deviate at the low-mass end where the small galaxies are located
(see Graham & Scott 2015), it does not exclude that ultracompact
dwarf galaxies, globular clusters, or million solar-mass stellar
spheroids would contain a black hole at the centre (see Perera et al.
2017). The masses of the black holes residing in these spheroids
are expected to be ∼102–104 M� (Lützgendorf et al. 2013; Mieske
et al. 2013), distinguishing them from the stellar-mass black holes
in X-ray binaries, e.g. GRO J1655–40 (see Soria et al. 1998;
Shahbaz et al. 1999) LMC X-3 (see Orosz et al. 2014) in the nearby
Universe. It is still unclear how and whether a massive nuclear black
hole would be formed at the central region of ultracompact dwarf
galaxies or globular clusters. A black hole can grow by accreting
gas or capturing stars. In dense stellar environments such as the
central region of an ultracompact dwarf galaxy or the core of a
globular cluster, a nuclear black hole, if it is present, could gain mass
by coalescing with another black hole, if it is also present, or by
capturing stars in its neighbourhood. The recent LIGO observations
have confirmed that a more massive black hole can be formed by
the coalescence of two smaller mass black holes (e.g. Abbott et al.
2016, 2017b) and a black hole can be produced by merging two
neutron stars (Abbott et al. 2017a). Naturally, we can generalize
that a more massive black hole can also be formed by merging
with a neutron star or a black hole, though such events have not
been observed yet. Some studies (e.g. Fragione, Ginsburg & Kocsis
2018) indicated that merging of two black holes in a globular cluster
would likely cause the remnant system to be ejected. It is therefore
a concern whether a nuclear black hole would grow to 103 M�
through a sequence of black hole–black hole merging process. Ob-
servational studies, however, have shown support for the presence
of intermediate-mass black holes (see e.g. Feng & Soria 2011) in a
number of external galaxies. There were also claims (Perera et al.
2017) that intermediate-mass black holes were found in globular
clusters. However, these pieces of evidence are not conclusive.
Whether or not globular clusters can retain a nuclear intermediate-
mass black hole and hence a location of IMRIs would be better
resolved by future multimessenger studies, using instruments such
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as SKA (see Wrobel et al. 2018) and LISA (see e.g. Kimpson,
Wu & Zane 2019a, b).

MSPs are fast-spinning neutron stars on a period of a few to
about 10 ms (see e.g. Bhattacharya & van den Heuvel 1991; Papitto
et al. 2014). Some newly born neutron stars have a spin period of as
short as a few tens of milliseconds, e.g. the Crab pulsar with a spin
period of 33 ms (see Manchester et al. 2005). MSPs are however
old neutron stars, found in globular clusters and the galactic bulges.
They are believed to have a binary progenitor, and the neutron
star was spun up through accreting matter from a companions star
(Radhakrishnan & Srinivasan 1982; Bhattacharya & van den Heuvel
1991; Ergma & Sarna 1996; Tauris, van den Heuvel & Savonije
2000). Many globular clusters are rich in MSP – 25 have been
identified in 47 Tucanae (see Manchester et al. 1991; Pan et al. 2016)
and 33 in Terzan 5 (see Ransom et al. 2005; Hui, Cheng & Taam
2010). With the abundant MSP populations, IMRB comprising an
MSP and a black hole could be formed in the core of a globular
cluster (Devecchi et al. 2007; Clausen et al. 2014; Verbunt & Freire
2014). An estimate of ∼1–10 these MSP–black hole binaries in the
Galactic globular clusters (see Clausen et al. 2014) would imply
that a few tens of such binaries could reside in the globular clusters
in the Local Group galaxies, and the pulse emission from the MSP
could be detected by large ground-based radio telescopes such as
the The Square Kilometer Array (SKA) (Keane et al. 2015) and Five
hundred meter Apeture Spherical Telescope (FAST) (Nan 2006).

Although the gravitational radiative loss would have insignificant
effects on the spin and orbital dynamics of the MSP in the
EMRB/IMRB considered in this work (see Singh et al. 2014),
the power of the gravitational waves emitted from these systems
is not negligible. For a system with a black hole with a mass
M = 103 M�, a spin parameter a = 0, and an MSP–black hole
orbital separation r = 20 M , the gravitational wave power could
reach ∼1.6 × 1048 erg s−1 assuming a circular orbit. The corre-
sponding gravitational wave strain h is 3.5 × 10−18, if the system
is located at the core of a globular cluster at a distance of 5 kpc
from the Sun, similar to that of 47 Tucanae (Carretta et al. 2000).
These systems, which are persistent gravitational wave sources, will
eventually evolve to become EMRI/IMRB burst gravitational wave
sources, when the MSP spirals in and coalesces with the black hole.
They are expected to be detectable within the LISA band in the
EMRI/IMRI stage and also in the EMRB/IMRB stage.

The significance of these EMRB/IMRB sources in the context
of gravitational wave and multimessenger astrophysics are of two
folds. First of all, the statistics of the EMRI/IMRI events arisen from
these systems and the detection of them in the EMRB/IMRB phase
will provide us a mean to determine the abundances of these systems
and their populations in various galactic environment. This in turn
will constrain their formation channels in dense stellar systems
with a resident black hole. Secondly, knowing the population of
MSP–black holes binaries in globular clusters or other dense stellar
spheroids would provide an estimate of the number detectable
individual persistent gravitational wave sources, and hence their
contribution to the stochastic gravitational wave background. It
will serve as a reference when we build models to compute the
EMRI/IMRI events arisen from neutron star–black hole binaries
in the less understood dense stellar environment in the distant
Universe.

4.3 Additional remarks

In this work, we assume that the MSP is a point pole-dipole, moving
in the static Kerr space–time. However, in realistic situation, the

MSP will also curve the space–time around it and the background
space–time will be the consequence of non-linear combination of
the MSP’s gravity with the black hole’s gravity. The trajectory of
the MSP will be the geodesics (if we ignore spin–orbit and spin–
curvature couplings) of such complicated and evolving space–time.
Therefore, it’s necessary for us to verify the effect of the MSP’s
own gravity (so-called self-force) on the orbital dynamics and spin
dynamics.

The investigation into the effects of the self-force and its com-
parison with the spin–orbit coupling force has been carried out
extensively (e.g. Burko 2004; Bini & Damour 2014, 2015; Burko &
Khanna 2015; Barack & Pound 2018) in different contexts. The
magnitude of the first-order self-force (in terms of mass ratio m/M)
is similar to that of the spin–orbit couplings (van de Meent 2018)
(also as shown by comparing results in Barack & Sago 2011, with
Fig. 2). The leading term of the correction to the rate of the spin’s
precession due to the conservative part of the first-order self-force is
[adapted from equation (10) or equivalently equation (5.4) of Dolan
et al. (2014) and Bini & Damour (2014), respectively]

ωfirst ∝ m

M

M

r
ωLN , (39)

which is smaller than that due to MSP’s spin (i.e. equation 22) by
a factor of M/r. This self-force correction could be important if we
integrate the pulsed signal over a substantial duration.

The leading order of the dissipative self-force is also called
radiation reaction, and it introduces the loss of energy and angular
momentum in the EMRI/IMRI system (Barack & Pound 2018).
The energy flux and angular momentum flux have been calculated
by Drasco & Hughes (2006), Fujita, Hikida & Tagoshi (2009),
Fujita (2012), Shah (2014), and van de Meent (2018) for differ-
ent orbital configurations. Contribution to the dephasing of GW
waveform from dissipative self-force is in general greater than that
from conservative self-force and spin–orbit couplings (Burko &
Khanna 2015). To the lowest order, the dissipative self-force can be
calculated by solving the energy and angular momentum balance
equations (Barack & Sago 2007; Burko & Khanna 2013), and we
could estimate its effects using the radiative loss formula in Peters
(1964)9.

From the spin precession angular frequency in equation (20), we
may define a spin precession period:

Psp ≈ 2π

〈ωLN〉 = 4π

3

r5/2

M2

√
m + M

(
1 − e2

)
, (40)

where 〈ωLN 〉 denotes the average value of ωLN over an orbital period,
under the approximation that the MSP follows a Newtonian eccen-
tric orbit. The time-scale for the change in the spin’s precession
period due to gravitational radiation is

τgw ∼
[

r4

32 mM(m + M)

]
g(e)−1 (41)

9It worth noticing that the energy loss rate calculated by Peters (1964) is
based on the assumption that the binary follows a non-precessing Newtonian
eccentric orbit, and energy flux is integrated over an infinite distant sphere
enclosing the binary. However, for EMRI systems the energy is calculated
by solving black hole’s perturbation equation and energy flux into the black
hole’s horizon is also considered (which is substantially smaller than the
energy flux to infinity (Barack & Sago 2007)). These two schemes are
equivalent only to the Newtonian order and lowest order of mass ratio
(i.e. ∝ (m/M)2).
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(see Peters 1964), where r is the semimajor axis, and g(e) is a
function of orbital eccentricity:

g(e) = (1 − e2)−7/2

(
1 + 71

40
e2 − 19

160
e4

)
. (42)

Setting r = ζM, we have

τgw

Psp
∼ 3

128π

ζ 3/2

g(e)
(
1 − e2

) (
M

m

) (
M

m + M

)3/2

. (43)

For the systems considered here, 103M� ≤ M ≤ 105 M� and
20 ≤ ζ ≤ 100, implying that M/m > 6 × 102. Moreover, the
orbital eccentricity e ≤ 0.4. This gives g(e)(1 − e2) ∼ (1–2), and
τ gw/Psp ∼ (2 × 102−5 × 105) � 1. The application of the MPD
formulation is therefore justified.

We would like to emphasize that the formula above are only valid
for orbits with moderate eccentricities. For highly eccentric orbits,
ignoring the effects of self-force would lead to substantial errors in
modelling the orbital dynamics of the MSP. In both cases, including
the effects of the self-force will be necessary for modelling secular
evolution and the orbital dynamics of MSP in an EMRB/IMRB with
high temporal resolutions.

Besides the time shift and width variation of the pulses due to the
precession and nutation of the spin, as that shown in Section 4.1,
and the orbital deviation from geodesic motion (studied in Singh
et al. 2014), the bending of light (i.e. gravitational lensing) due
to the black hole’s gravity can be non-negligible. To achieve the
scientific goals described in this work, we need high temporal and
spatial accuracies in the covariant photon transport calculations. A
self-consistent calculation as such is computationally challenging
and it also requires advanced numerical techniques, and hence it is
beyond the scope of the semi-analytic approach adopted this work.
We leave such calculations to future studies.

5 SU M M A RY A N D C O N C L U S I O N

We investigate the spin dynamics of an MSP around an MBH using
the MPD formulation. The extreme mass ratio of the system allows
us to consider that the MSP is a spinning test mass in a space–time
provided by the black hole. The orbital motion can be described as
quasi-geodesics with corrections due to spin–orbit, spin–spin, and
spin–curvature couplings. These spin couplings lead to precession
and nutation of the MSP’s spin, besides perturbing the MSP’s
orbital motion. Such modulations will be detectable in the future
gravitational wave experiments, such as LISA, and in pulsar timing
observations, with instruments such as SKA and FAST. We have
also shown that the spin–orbit and spin–spin couplings will lead to
timing variations between the reference frame of the MSP and the
observer at a long distance. The timing variation will manifest as
variations in the pulsed periods of the pulsar’s emission received
by the observer. These results obtained from MPD equations are
consistent in order with the weak field approximation.
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APPENDI X A : ECCENTRI CI TY

The eccentricity of the MSP’s orbit is set by solving the set of
equations:

E2ga
00 − 2ga

30ELz + ga
33L2

z = −1

E2gb
00 − 2gb

30ELz + gb
33L2

z = −1 (A1)

with ga
μν evaluated at ra = r(1 − e) and gb

μν at rb = r(1 + e), where
r is the semimajor axis, and e is the orbit eccentricity.

The expressions for the solutions are complicated. We therefore
include only the leading order of η = M/r and e, so as to demonstrate
the leading order effect of the eccentricity and black hole’s spin.
We use α = a/M, which is a dimensionless factor of the black hole
spin. For prograde motion, the two integration constants, E and Lz,
associated with the geodesics are:

E = 1 − η

2
+ 3η2

8
− αη5/2 + O

(
η5/2, e2

)

Lz = M√
η

+ O
(
η−1/2, e2

)
(A2)

and for retrograde motion,

E = 1 − η

2
+ 3η2

8
+ 5αη5/2 + 12eαη5/2 + O

(
η5/2, e2

)

Lz = M√
η

+ O
(
η−1/2, e2

)
. (A3)

By setting the initial E and Lz, the eccentricity is accurate for pure
geodesic calculations (i.e. setting λ = 0 in equations 15, 16, 17). In
such a situation, the four-momentum and four-velocity are parallel
to each other. For the MPD equation (equations 15, 16, and 17 with
λ = 1), the eccentricity is slightly different from the expected values
by δe ∼ 2 × 10−5, which can be estimated by the comparison of the
spin–orbit coupling force with the Newtonian gravitational force:

Fso

FNew
∼

(
M

r

)3/2 ( m

M

) S

m2
. (A4)
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APPENDIX B: PRO PER TIME

In order to investigate the effect of GR, eccentricity, and black hole’s
spin on the ratio of the coordinate time over proper time dt/dτ , we
calculate the approximate u0 for quasi-circular orbits, using the E
and Lz derived in Appendix A.

For prograde motion, the time component of the four-velocity at
r1, 2 = r(1∓e) is:

u0 = −g00E − g03ELz

= 1 +
(

3

2
± 2e

)
η +

(
27

8
± 7e

)
η2 − αη5/2(3 ± 6e)

+O
(
η3, e2

)
, (B1)

where the upper signs denote r1 and lower signs denote r2. For
retrograde motion, the u0 is equivalent to changing α into −α, as
we can expect.

This equation does not include the effect of MSP’s spin on the
orbital u0. Such effect can be estimated by means of the formula of
spin–orbit coupling force as in Appendix A. As the eccentricity is
shifted by δe ∼ 2 × 10−5, the shift of u0 is about

�u0 ∼ 2δeη. (B2)
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