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Synopsis 

This retrospective chart review of 57 subjects with RDH12-associated retinal degeneration provides a 

comprehensive description of the timeline of vision loss and highlights a unique fundus signature that 

strongly suggests the genetic diagnosis. 

 

Abstract 

Background.  Defects in retinol dehydrogenase 12 (RDH12) account for 3.4-10.5% of Leber congenital 

amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) and are a potential target for gene 

therapy. Clinical trials in inherited retinal diseases have unique challenges, and natural history studies 

are critical to successful trial design. The purpose of this study was to characterise the natural history of 

RDH12-associated retinal degeneration.  

Methods.  A retrospective chart review was performed of individuals with retinal degeneration and 2 

likely disease-causing variants in RDH12.   

Results.  Fifty-seven subjects were enrolled from 9 countries.  Thirty-three subjects had clinical records 

available from childhood.  The data revealed a severe early-onset retinal degeneration, with average age 

of onset of 4.1 years.  Macular atrophy was a universal clinical finding in all subjects, as young as 2 years 

of age.  Scotopic and photopic electroretinography (ERG) responses were markedly reduced in all 

subjects, and a non-recordable ERG was documented as young as 1 year of age.  Assessment of visual 

acuity, visual field, and optical coherence tomography revealed severe loss of function and structure in 

the majority of subjects after the age of 10.  Widefield imaging in 23 subjects revealed a unique, 

variegated watercolor-like pattern of atrophy in 13 subjects, and sparing of the peri-papillary area in 18 

subjects.   

Conclusions.  This study includes the largest collection of phenotypic data from children with RDH12-

associated EOSRD and provides a comprehensive description of the timeline of vision loss in this severe, 

early onset condition.  These findings will help identify patients with RDH12-associated retinal 

degeneration and will inform future design of therapeutic trials.  
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Introduction 

Inherited retinal degenerations (IRDs) encompass a diverse group of blinding disorders, for nearly all of 

which there are no treatments.  The relative accessibility of the retina compared to other tissues has 

made IRDs an early target of gene therapy.  Leber congenital amaurosis (LCA) is the most severe form of 

IRD with 25 causative genes identified to date, and LCA2 caused by defects in RPE65  is the first genetic 

disorder to be treated with an FDA-approved gene therapy1-12.  LCA13 due to recessive mutations in 

RDH12 accounts for approximately 3.4-10.5% of LCA and early onset severe retinal dystrophy (EOSRD) 

and is particularly devastating due to early macular atrophy13-17.  RDH12 encodes retinol dehydrogenase 

12, an enzyme expressed in photoreceptors that reduces all-trans-retinal to all-trans-retinol18.  Following 

the success in gene supplementation therapy for another visual cycle enzyme, RPE65, RDH12-associated 

retinal degeneration is now also a potential target for gene therapy.  Although the conversion of all-

trans-retinal to all-trans-retinol is a critical step in the visual cycle, a number of studies have shown that 

this step is largely performed by RDH8 in photoreceptor outer segments, while RDH12 is located in the 

inner segment and reduces excess all-trans and 11-cis retinaldehydes that leak into the inner segment 

during periods of high photo-stimulation19-22.  Thus RDH12 is proposed to protect the photoreceptor 

inner segment from toxic buildup of multiple damaging aldehydes.  Loss of this critical function is 

particularly detrimental to the macula early in life23.  The natural history of RDH12-associated retinal 

degeneration requires detailed definition to aid the effective design and testing of treatment strategies. 

 

Many genetic etiologies have overlapping or even identical phenotypes, and any unique or 

pathognomonic features that can distinguish between etiologies is helpful in directing genetic testing 

strategies, especially in areas where genetic testing is not widely available.   After genotyping, one of the 

biggest challenges for developing therapies for IRDs is appropriate clinical trial design and determining 

optimal outcome measures, which may be different for distinct genotypes24.  This retrospective natural 

history study reports unique phenotypic features that strongly suggest a genetic diagnosis of RDH12-

associated retinal degeneration, and moreover, defines milestones in disease progression early in life 

when the retina may be most amenable to treatment.   
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Methods 

Subject ascertainment and genetic testing 

Subjects with retinal degeneration and either a homozygous or 2 compound heterozygous likely disease-

causing variants in RDH12 were evaluated at the University of Michigan Kellogg Eye Center (2 subjects; 1 

adult, 1 child), Moorfields Eye Hospital (27 subjects; 21 adults, 6 children), the Oregon Health Science 

University (OHSU) Casey Eye Institute (9 subjects; 8 adults, 1 child), and a recruitment letter sent 

through other clinicians (6 subjects; 1 adult, 5 children) and the RDH12 Fund for Sight (12 subjects; all 

children).  Two additional subjects (1 adult, 1 child) contacted us after learning of our work on RDH12 by 

word of mouth or online.  Variants were considered likely disease-causing if they were nonsense, 

frameshift, or canonical splice site variants, or if they were missense variants with either in vitro data 

showing reduced function or in silico analysis predicting reduced function in 2 out of 3 tools (Polyphen, 

Provean, and SIFT)25-27.  Genetic testing was performed using a variety of strategies, including single-

gene sequencing and next generation sequencing gene panels.  This study was performed in accordance 

with the Declaration of Helsinki.  The research was approved by the Institutional Ethics Committee at 

Moorfields Eye Hospital, and the Institutional Review Boards at the University of Michigan and OHSU. 

Clinical Data 

Clinical records were requested including: notes, genetic testing reports, and imaging, including visual 

fields, optical coherence tomography (OCT), color fundus photography, and fundus autofluorescence.  

Snellen visual acuity (VA) was converted to LogMAR.  For these purposes, count finger vision was 

converted to a LogMAR of 2, hand motions vision was converted to a LogMAR of 3, light perception 

vision was converted to a LogMAR of 4, and no light perception vision was converted to a LogMAR of 528.  

The earliest recorded VA for each eye, for each subject, was used for the visual acuity scatter plot in 

Figure 1.  Available Goldmann visual field (GVF) images were scanned, and the area of each isopter was 

measured using Adobe photoshop, subtracting the area of any included scotomas.  For Octopus visual 

fields, the area of each isopter was automatically calculated by the Octopus software.  Fundus photos, 

autofluorescence images, and OCT images were collected when available.   Available images varied 

widely between subjects and were obtained with Zeiss, Heidelberg, and Optos cameras.  Due to the 

heterogeneity of image files, quantitative analysis was not possible and analysis was descriptive. 

RT-PCR 
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RNA was extracted from peripheral blood using PAXgene Blood RNA Kits (PreAnalytix).  Coding DNA was 

made with 250 ng total RNA using SuperScript II reverse transcriptase (RT) (Invitrogen), and multiplexed 

RT-coupled polymerase chain reaction (PCR) was run the same day in triplicate using Taqman probes 

with conjugated FAM for RDH12 amplification and conjugated VIC for PGK1 amplification (Applied 

Biosystems).  Taqman probes were designed by Thermo Fisher Scientific, assay ID Hs00288401_m1 using 

Refseq NM_152443.2 for RDH12 and assay ID Hs00943178_g1 using NM_000291.3 for PGK1.  PCR 

reactions were run in the Biorad iCycler.  Relative RDH12 transcript levels were normalized to PGK1. 

Results 

Subjects 

Fifty-seven subjects from 50 families with retinal degeneration and two likely disease-causing variants in 

RDH12 were enrolled, including 26 from the United States, and 31 from other countries (Great Britain, 

India, Pakistan, Saudi Arabia, Bangladesh, Cyprus, China, and Spain).  The number of visits ranged from 1 

to 21, with an average of 5.2.  For all visits, subject ages ranged from 2 to 70 years.  For 32 out of 57 

subjects (56%), clinical data from childhood (before age 18) was available, with age at first visit ranging 

from 2 to 16 years (average 6.0).  Subject- or parent-reported age of onset ranged from infant (3 

months) to 22 years (average 4.1 years, median 3 years), with the 22 year-old being an outlier.  Thirty-

three subjects had documentation of subject- or family-reported presenting signs.  The most commonly 

reported presenting signs were nystagmus in 8 subjects (24%), uncorrectable central vision loss in 7 

subjects (21%), not reaching or difficulty finding dropped objects in 6 subjects (18%), and nyctalopia in 5 

subjects (15%).  Other presentations included toddlers who were overly cautious when learning to walk 

or seemed clumsy, who didn’t look at faces or make eye contact, and strabismus.  

Sequence Variants 

A total of 42 likely disease-causing sequence variants were identified in the cohort, including 30 

missense variants, 6 nonsense variants, 5 frameshift variants, and 1 splice site variant (Table 1).  Twenty-

eight of the mutations have been previously reported.  The most common mutation was a 5-bp deletion 

at codon 269.  Eight of the variants had in vitro functional data to support pathogenicity16,29-32.  A 

summary of genotype and phenotype for each subject is available in the supplemental material (Table 

S1). 
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Visual Acuity 

Visual acuity ranged from 20/30 to no perception of light (NPL).  Visual acuity was variable in early 

childhood, with vision of 20/200 occurring as early as 2 years of age in one subject, and count fingers 

(CF) vision occurring as early as 3 years of age, while other young children retained excellent VA (Figure 

1).  Seven out of 25 subjects aged 10 years and under (28%) had a vision of 20/200 or worse in the 

better seeing eye.  The variability in early childhood was likely due in part to differences in disease 

severity but also possibly due to suboptimal cooperation, a common confounder in young children.  This 

was demonstrated by longitudinal data in subject 1, who showed marked improvement in measured VA 

in each eye between the ages of 3 and 8 (Figure 1).  After the age of 10, progressive VA decline was 

common. However, out of 38 individuals older than 10 years, 6 subjects (16%) had documented 20/60 

(LogMAR 0.5) or better vision in at least one eye, including 3 out of 31 subjects past the age of 20 (10%), 

with one mildly affected outlier retaining 20/100 vision at age 68.   

Longitudinal data from 8 subjects that included assessments during adolescence confirmed that there 

was significant VA decline between the ages of 10 and 20 (Figure 1).  The exceptions were subject 2, 

who already had CF vision in each eye by age 10, and subject 3, who maintained relatively stable VA 

until the age of 15, which is the latest data point.  In subjects 1 and 4, VA was relatively stable until after 

age 12.  Subjects 5, 6, 7, and 8 have no clinical data from early childhood but showed rapid VA decline 

between the ages of 10 and 20.   

Refraction data was available for 14 subjects.  Using the most recent refraction for each subject, there 

were 6 subjects with mild hyperopia, ranging in age from 2 to 8 years, 6 subjects with moderate 

hyperopia, ranging in age from 7 to 11 years, and 2 subjects with high hyperopia, ages 3 and 5. 

Visual Field and Electroretinography 

Visual field (VF) constriction was a universal finding, and central or paracentral scotomas were also seen 

in some subjects.  Visual field images were available for 16 subjects, ranging in age from 6 to 68, 

including 12 Goldmann visual fields and 4 Octopus visual fields, which have been shown to give 

comparable results33.  As seen in Figure 2, for the smallest and dimmest isopter (I4e), VF area was 

variable in subjects before the age of 10, and was severely diminished in subjects 10 and older, other 

than 2 outliers, ages 31 and 68.  The trend disappeared with increasing target size, as the larger isopters 

had better VF preservation in most subjects.  Of note, the 68-year-old with well-preserved VF for 

isopters I4e and III4e, is the previously discussed mildly affected outlier with 20/100 VA (Figure 2).  
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Furthermore, the other subjects with relative preservation of visual field after the age of 20 in Figure 2 

also had relative preservation of visual acuity in Figure 1, ranging from LogMAR 0.3 to 0.7.   

Full-field Electroretinography (ERG) data was available in 27 subjects and revealed markedly reduced rod 

and cone responses.  A non-recordable ERG was reported in a subject as young as 1 year of age, and the 

oldest subject with recordable responses was 29 years old. This individual had exceptionally mild ERG 

changes and presentation, with age of onset at 22 years.  

Retinal Findings and Imaging 

Macular atrophy was a universal finding documented on examination in all subjects, even as young as 2 

years of age.  With disease progression, the area of atrophy extended peripherally in a unique 

variegated watercolor-like pattern, which in most cases corresponded to the retinal vasculature.  This 

pattern was visualized both clinically and on color fundus photography, and was further emphasized on 

fundus autofluorescence (FAF) (Figure 3C and 3D).  In a 3-year-old subject with early disease the atrophy 

was confined to the macula, and mild perivascular hyperautofluorescence was seen along the arcades 

on FAF (Figure 3A and 3B).  In a 13-year-old subject with more advanced disease the watercolor pattern 

extended into the periphery, with some areas of atrophy extending along the retinal vasculature (Figure 

3C and 3D).  In a 41-year-old with end-stage disease, there was widespread atrophy with variegated 

edges in the far periphery, demonstrating how the watercolor fundus progresses from the posterior 

pole outward (Figure 3E and 3F).   

Out of 23 subjects with available FAF images, the watercolor pattern was seen in 13 individuals in at 

least some areas (Figure S1).  In addition, 18 out of 23 had peri-papillary sparing on FAF (Figure 3D).  

These features were less evident in end-stage disease with widespread atrophy, but common in all 

subjects with earlier disease and remaining areas of preserved retina.   

OCT imaging demonstrated that the variegated watercolor pattern demarcated the borders of outer 

retinal atrophy (Figure 3G and 3H).  The area of yellow atrophy seen in color fundus images 

corresponded with loss of ONL, ellipsoid zone, and disruption of the retinal pigment epithelium (RPE) as 

revealed by OCT imaging; while the darker border corresponded to thinning of ONL and attenuation of 

the ellipsoid zone on OCT. 

OCT images with horizontal cuts through the fovea were available from 36 subjects (67 eyes).  Age at the 

time of OCT ranged from 3 to 58 years (average 28).  Out of 36 subjects (67 eyes), 7 subjects (12 eyes) 

had partially preserved ellipsoid zone in the macula (ages 3-22), and 3 subjects (6 eyes) had ellipsoid 
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zone at the fovea (ages 3-15). Twenty-four subjects (42 eyes) had partial preservation of ONL in the 

macula (ages 3-44), and 8 subjects (14 eyes) had preservation of ONL at the fovea (ages 3-15).  There 

was no one over the age of 15 with preservation of either ellipsoid zone or ONL at the fovea, consistent 

with the VA findings that adolescence is a period of significant disease progression.  In addition, 

advanced disease was associated with the development of posterior staphyloma.  Out of 36 subjects (67 

eyes), 16 subjects (31 eyes) demonstrated posterior staphyloma on OCT, ranging in age from 21 to 58.   

RDH12 transcript levels can link genotype with phenotype 

One subject presented at the age of 2 with mild nystagmus, but remained visually asymptomatic until 

the age of 5 or 6, when he began having mild night blindness and reduced peripheral vision.  Genetic 

testing at the age of 6 revealed homozygous early nonsense mutations in RDH12 (Ser13X).  His VA has 

remained relatively well preserved to date (20/40 in each eye at 8 years of age).  Because RDH12 is 

expressed in peripheral blood, blood samples were collected and RNA isolated to assess RDH12 

transcript levels.  The Ser13X variant is classified as likely pathogenic and expected to result in nonsense 

mediated decay and a null phenotype.  Although RDH12 expression in blood was variable in normal 

controls, the affected subject had consistently detectable RDH12 transcript over 45% compared to 

controls.   A downstream methionine at position 17 with codon ATG may serve as an alternative 

translation start site and account for the relatively mild phenotype in this individual. 

 

Discussion 

This study includes the largest well-characterised cohort of subjects, and moreover the largest cohort of 

children, with RDH12-associated retinal degeneration, and therefore provides the most comprehensive 

description to date of the timeline of vision loss in this severe, early onset condition.  In early childhood 

there is variable VA, which typically declines after the age of 10 years.  Longitudinal VA data for several 

subjects confirmed that adolescence is a period of significant visual decline.  OCT also demonstrated 

universal loss of the ellipsoid zone and ONL in the fovea during adolescence.  Possibly not surprisingly, 

visual field loss was more variable, but also showed a decline after age 10 for the smallest isopter.  The 

data suggest that although some individuals have severe vision loss in early childhood (28% based on 

visual acuity) others who retain useful vision until adolescence are at risk for significant progression 

before adulthood.   Furthermore, there appeared to be a small subset of individuals (10%) who retained 

useful vision well into adulthood, thus increasing the potential therapeutic window.  The youngest 
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subject in our cohort with fundus imaging was 3 years old and showed macular atrophy with sparing of 

the fovea.  Additional OCT studies in early childhood are needed to determine whether this is a common 

early phenotype, which would potentially allow early intervention to salvage the fovea.  The strengths of 

these data include the large number of children and the availability of longitudinal data for some 

subjects.  It is retrospective in nature, and thus the heterogeneity of available clinical data between 

subjects limits our ability to perform quantitative analyses.   

As many inherited retinal diseases have significant overlap in phenotype, distinct fundus findings that 

point to a particular genetic diagnosis can be clinically useful.  This study highlights a unique fundus 

signature in RDH12-associated retinal degeneration, namely a watercolor-like appearance that is not 

found in other IRDs.  The watercolor fundus pattern outlines the border between preserved and 

degenerated retina, expands with progression of the disease, and is less apparent in end-stage disease.  

In the majority of cases the atrophy corresponded to retinal vasculature.  Peri-papillary sparing was best 

visualized on fundus autofluorescence and was common until late in disease, which has been previously 

described in RDH12-associated retinal degeneration and was first described in Stargardt disease 34-36.  

This distinct appearance may help to identify individuals with this condition.  The most common 

phenotypic features of RDH12-associated retinal degeneration are summarized in Table 2. 

The most mildly affected subject in our cohort initially presented at age 11 with uncorrectable reduced 

visual acuity, and she was most recently seen at age 70 with VA of 20/125 in each eye and mild to 

moderate visual field constriction.  Of note, her genotype is c.701 G>A (p. Arg234His) and 

c.806_810delCCCTG (p. Ala269Glyfs*2).  While the latter variant results in a frameshift and is expected 

to act as a null allele, the Arg234His variant is predicted benign by Polyphen-2 and has previously been 

tested in vitro and retained 44% of normal enzyme activity32.  The Arg234His variant was also previously 

reported in compound heterozygous form with N125K (which demonstrates <10% normal activity in 

vitro) in a 21-year-old subject with a relatively mild phenotype32.  Thus Arg234His likely acts as a 

hypomorphic allele and explains our subject’s preserved visual function even in late adulthood.  This 

also suggests that restoration of less than 50% RDH12 function may benefit patients.  Other genotype-

phenotype correlations may require the use of RT-PCR to evaluate transcript levels of RDH12, which is 

expressed in peripheral blood leukocytes.  We have demonstrated this in a subject with a relatively mild 

phenotype and only mildly reduced transcript levels despite a homozygous early nonsense variant 

(p.Ser13X).     
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This study contributes to the current understanding of the natural history of RDH12-associated retinal 

degeneration and has identified a unique fundus signature that is strongly suggestive of the genetic 

diagnosis.   These data highlight the window of opportunity and the need to target future therapeutic 

strategies towards young children in order to potentially preserve vision.  It also demonstrates that 

adolescence may be a period of relatively rapid progression for many patients, which may allow 

demonstration of therapeutic efficacy over a relatively short time period in the setting of a clinical trial.   
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Variant Alleles Subjects 
Poly- 
phen 

Pro- 
vean 

SIFT Functional Studies 

 

Missense 

c. 133 A>G p. Thr45Ala 1 1 Prob D Del Dam  

c.139 G>A32 p.Ala47Thr 1 1 Prob D Del Dam <10% normal reductase activity32 

c. 146 C>T16,29,37-40 p. Thr49Met 4 4 Prob D Del Dam Reduced affinity for NADPH and 
increased proteosomal 
degredation29,30,32 

c. 146 C>A p. Thr49Lys 1 1 Poss D Del Dam  

c.178G>A41 p.Ala60Thr 1 1 Prob D Del Dam  

c. 185 G>T p. Arg62Leu 1 1 Prob D Del Tol  

c. 209 G>A13 p. Cys70Tyr 1 1 Prob D Del Dam  

c. 226 G>A42 p. Gly76Arg 1 1 Prob D Del Dam  

c. 295 C>A13,14,17,23,34,38,43-45 p. Leu99Ile 7 4 Prob D Del Dam <10% normal reductase activity32 

c. 302 A>G  p. Asp101Gly 2 2 Prob D Neu Dam  

c. 325 G>C  p. Ala109Pro 1 1 Prob D Neu Dam  

c. 377 C>T46,47 p. Ala126Val 2 2 Prob D Del Dam  

c. 377 C>A p. Ala126Glu 2 2 Prob D Del Dam  

c. 383 T>G p. Val128Gly 1 1 Prob D Del Dam  

c. 400 T>C p. Ser134Pro 1 1 Prob D Del Tol  

c. 451 C>G 13,17,48 p. His151Asp 1 1 Prob D Del Dam <10% normal reductase activity32 

c. 454 T>A13 p. Phe152Ile 2 1 Prob D Del Dam  

c. 464 C>T14,32,43,48 p. Thr155Ile 2 1 Prob D Del Dam <10% normal reductase activity32 

c. 481 C>T13,38 p. Arg161Trp 2 2 Prob D Del Dam  

c. 506 G>A13 p. Arg169Gln 3 2 Prob D Del Dam  

c. 601 T>C13,31 p. Cys201Arg 10 5 Poss D Del Tol 30% expression and <10% 
normal reductase activity16,31 

c. 609 C>A13 p. Ser203Arg 7 4 Prob D Del Dam  

c. 619 A>G13 p. Asn207Asp 5 3 Poss D Del Dam  

c. 671 C>T  p. Thr224Ile 1 1 Prob D Del Dam  

c. 677 A>G17,48 p. Tyr226Cys 1 1 Prob D Del Dam  

c. 697 G>C13 p. Val233Leu 1 1 Prob D Del Dam  

c. 698 T>A p. Val233Asp 2 2 Prob D Del Dam  

c. 701 G>A14,32,43,49 p. Arg234His 1 1 B Neu Tol 44% normal reductase activity32 

c. 715 C>T13,38 p. Arg239Trp 1 1 Prob D Del Dam <20% normal reductase activity32 

c. 910 T>C p. Trp304Arg 1 1 Prob D Del Dam  

Nonsense 

c. 38 C>A  p. Ser13X 2 1     

c. 184 C>T13,16,17,40,45 p. Arg62X 3 3     

c. 193 C>T13,48 p. Arg65X 2 1     

c. 316 C>T13 p. Arg106X 1 1     

c. 379 G>T13,17,48 p. Gly127X 2 1     

c. 883 C>T13,34,45,48 p.Arg295X 5 5     

Frameshift 

c. 57_60delTCCA45 p. Ala19Alafs 4 3     

c. 680_684delinsT 
p. Ala2  
27Valfs*50 

1 1    
 

c. 698insGT13 p.Val233Valfs*46 1 1     

c. 714_715insC13,45 p. Arg239Argfs 3 2     

c.806_810delCCCTG13,17,48 p.Ala269Glyfs*2 22 18    <5% normal reductase activity31 

Splice 

c. 448+1 G>A13  1 1     
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Table 1. Cohort RDH12 variants.  Alleles shows number of alleles in the cohort (out of 114).  Subjects 
shows number of subjects in the cohort (out of 57).  Variants were analyzed in Polyphen (Prob D= 
probably damaging, Poss D= possibly damaging, B= benign), Provean (Del=deleterious, Neu= neutral), 
and SIFT (Dam= damaging, Tol= tolerated). 
 
 
 
 

Category Most common findings Percent of Subjects 

Presenting sign Nystagmus 
Uncorrectable central vision 
Difficulty finding objects 

(8/33) 24% 
(7/33) 21% 
(6/33) 18% 

OCT Outer retinal atrophy in macula (35/35) 100% 

Fundus Photo Macular atrophy (including 
staphyloma in late stages) 
Variegated watercolor fundus 

(24/24) 100% 
 
(15/22) 68% 

Fundus Autofluorescence Macular atrophy 
Watercolor fundus 
Peri-papillary sparing 

(23/23) 100% 
(13/23) 57% 
(18/23) 78% 

 Table 2. Most common phenotypic features of RDH12-associated retinal degeneration.  The most 

common findings in each category are listed, along with the prevalence of the finding in our cohort 

(number of subjects with finding/ number of subjects with available data). 

 
 


