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Abstract— Impedance loading is a common technique 

traditionally used in the RF to enhance the performance of an 

antenna, but its application in the optical regime is not as 

rigorously studied. This is mainly due to a lack of exact analytical 

expressions that can be used to rapidly predict the radiation 

properties of loaded nanoantennas. This paper will derive a set of 

useful analytical expressions for the far-field radiation properties 

of loop antennas loaded with an arbitrary number of lumped 

impedances that are valid from the RF to optical regimes. The 

analytical expressions will be validated with full-wave solvers and 

can be evaluated more than 100x faster. The ability to perform 

such rapid evaluations enables, for the first time, large-scale 

single- and multi-objective optimizations. A series of optimizations 

reveal that electrically small super-directive antennas can be 

achieved at a variety of far field angles through capacitive loading, 

paving the way for a pattern reconfigurable antenna. In addition, 

gains of greater than 3 dB can be achieved for electrically small 

antennas over a fractional bandwidth of 28%. Finally, it is shown 

that impedance loading can be used to achieve circularly polarized 

radiation from a single loop.  

 
Index Terms— Antenna theory, Loop antennas, Optimization, 

Nanotechnology, Submillimeter wave technology. 

I. INTRODUCTION 

HE antenna operating in the RF and optical regimes is an 

enabling component in a wide variety of applications, 

including radar systems and solar energy harvesting [1, 2]. 

Loading an antenna with multiple impedances can alter its 

operating characteristics to suit a particular application [3]. The 

ability to tune these impedances leads to reconfigurable 

antennas which can adapt based on changing system 

requirements or the environment [4]. Exact analytical 

expressions for the radiation properties of impedance-loaded 

antennas would allow insight into the underlying physical 

behavior of these structures and also enable extremely fast 

parameter sweeps and even global optimizations. 

 The method of moments was generalized by Harrington in 

1967 to include the effects of impedance loading for straight-
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wire antennas [5].  Analytic expressions for the current 

distribution, input impedance and radiation properties of 

impedance-loaded dipoles were later derived, giving better 

insight into the effects of impedance loading [6]. These loading 

techniques were then used to greatly improve the performance 

of conventional dipoles, including enhancing the efficiency of 

a short dipole [7] and achieving a traveling-wave condition [8]. 

Through the use of PIN diodes, varactor diodes and MEMS 

devices, dipole antennas were made reconfigurable in terms of 

the frequency range of operation [9] and the radiation pattern 

[10]. 

 In addition to the RF regime, the design of nanoantennas for 

use anywhere from the optical to terahertz regimes is of 

increasing interest [11]. At these frequencies, metals start to 

exhibit dispersion and loss, which can have a dramatic effect on 

the radiation properties of such nanoantennas [2]. There is a 

large amount of literature available on the analysis of linear 

dipole nanowire antennas [12, 13]. In analogy with RF 

antennas, nanoscale circuit elements would allow improved 

performance and reconfigurability in the optical regime. While 

lumped circuit elements at these frequencies are not readily 

available, they can approximately be realized through positive 

permittivity nanoparticles for capacitive loading and negative 

permittivity nanoparticles for inductive loading [14, 15]. 

Alternately, core-shell nanoparticles could be employed as a 

tunable nanocircuit element which can be treated analytically 

[16]. These structures can be used to tune the input impedance 

and radiation properties of optical nanodipoles [17]. 

 While a large amount of literature exists on the theory, 

analysis and design of impedance loaded dipoles in the RF and 

optical regimes, much less work exists on the loop antenna 

despite its simplicity, versatility and utility [1]. Initial analytical 

work on impedance loaded loops focused on positive and 

negative resistive loads implemented by Esaki diodes. [18]. It 

has been shown through full-wave simulation that impedance 

loading can be used to achieve a uniform traveling-wave current 

distribution [19] or an omni-directional left-handed circularly 
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polarized radiation pattern [20]. Optical nanoloops are 

extremely promising with a wide variety of applications 

including sensing [21] and light-trapping in solar cells [22]. 

Due to the complexity of the integrals that must be solved, fully 

analytical expressions for the radiation properties of 

impedance-loaded loops valid from the RF to optical regimes 

have not been developed. This paper will remedy that by 

providing simple and efficient analytical expressions for the 

far-zone fields, the directivity and the gain. 

 Section II will show the derivation of exact analytical 

expressions for the radiation properties of impedance-loaded 

loop antennas. Section III validates these results by comparing 

the analytical theory implemented in MATLAB [23] with the 

full-wave solvers FEKO [24] and HFSS [25]. The MATLAB 

code is at least 100x faster while only requiring 1.5% of the 

peak memory required by FEKO. Then, the utility of these 

expressions will be demonstrated in Section IV through a 

variety of parametric sweeps and optimizations. First, 

capacitive loading will be employed to achieve electrically 

small superdirective radiation over a prescribed set of far field 

angles. Several of these solutions will be studied in detail to 

understand the physical effects of impedance loading. Then it 

will be shown that reactive loading can be used to convert a 

linearly polarized loop to one which is circularly polarized. For 

a particular optimization, more than five days would be 

required if the full-wave solver FEKO is employed, while only 

80 minutes are needed when the analytical representation 

derived in this paper is used. 

II. THEORETICAL FORMULATION 

Fig. 1 (a) shows the geometry of a circular loop with wire 

radius a and loop radius b which satisfies the thin-wire 

approximation � � . The parameter 

 will be adopted as a useful measure to characterize 

the wire thickness. In addition, a unit-less quantity � ���
�  

which is related to the electrical circumference of the loop, will 

be utilized throughout the derivation. An infinitesimal voltage 

source with voltage � is placed at . The resulting current 

distribution can be expressed as a Fourier series with modal 

coefficients ��  where the prime is used to signify this 

expression is valid for lossy materials:  
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This expression can be rewritten in terms of modal admittances 

��  such that: 

� ��



���

��	  

�� � � 
 ��
�� � � 
 �� 

(2) 

 

where � is the characteristic impedance of free space, � are 

coefficients explicitly defined in [26], and 
 is the 

characteristic impedance of the metallic wire [27] Given the 

modal current coefficients ��  the far-zone electric field 

components can be expressed in spherical coordinates  as 

[28]: 
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where � , � ��
� , � is a Bessel function of the first 

kind, and ��  is the derivative of the Bessel function with respect 

to its argument. Note that this expression makes the assumption 

that the current is symmetric and therefore �� ��� . 

 Fig. 1 (b) illustrates the geometry of a loop with multiple 

loads placed at � for . Each load has an 

associated Thevenin equivalent voltage � and impedance �. 

The derivation of the total current will follow that of [29] but 

will employ standard matrix notation instead of Einstein 

summation notation, making the formulation much easier to 

implement in MATLAB. Note that a tilde will be used to 

differentiate quantities which include the effect of impedance 

loads. The total current is given by: 
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If the current at each port �  is known, the total current at 

any location can be computed. To calculate � , a matrix 

equation will be obtained by first considering �  for p

: 
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 (5) 

 

To formulate the matrix equation,  will be defined as an  

current vector where � �  and  is the  voltage 

vector with components equal to the voltage at each port �. Let 

 
 

Fig. 1. (a) Geometry of the circular loop with wire radius  and loop radius 

 where a delta-gap voltage source with voltage � is placed at = 0. (b) 

Geometry of the circular loop with  voltage sources where the ’th source 

with voltage � placed at �. 
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 be an  admittance matrix with components: 

 

�� �� ���	��	�� (6) 

 

Also, let  be an  impedance matrix whose off-diagonal 

components are zero and diagonal components given by the 

impedance at port �� �. Finally, we define  to the  

identity matrix. Using these definitions, (5) can be formulated 

as a matrix equation in terms of the unknown : 

 

 (7) 

 

The current vector can then be calculated as: 

 �� ��  (8) 

 

where the auxiliary matrix  is defined as . Finally, the 

current at any point given by (4) can be written in matrix 

notation as: 

 ��  (9) 

 

where  is a  row vector whose components are: 
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If we define �� , then we obtain: 

 

 (11) 

 

Since the far-field quantities given in (3) are expressed in terms 

of the modal current components �� , it is necessary to derive 

the corresponding components for the loaded case represented 

by �. Expressed in terms of these modal contributions, the 

current when considering impedance loads is given by: 
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Setting (11) equal to (12) and expressing each component of  

using (10), we arrive at: 
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Multiplying both sides by 
�

�� ��(	 and integrating from  to 

 we obtain: 
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(14) 

 

Using the orthogonality of the complex exponential functions 

we arrive at our final expression for �: 

 

� �� ���	% ���	'  (15) 

In this case the current may no longer by symmetric and � and 

�� may not be the same. Hence, the far-zone fields may be 

expressed as: 
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���
! � ����� � � � � ��	 −� ���	 ��




���

 (16) 

 

The radiated power can be found by integrating the fields given 

in (16), resulting in: 
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where �($�&
 are the Q-type integrals defined in [30] and 

� � �. The radiation intensity at  is given in terms 

of normalized far-zone electric fields 8� �=0> 8, !��=0> !, as: 
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where, from (16): 
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 (20) 

 

The directivity is given by: 

 

>  (21) 

 

Where an exact expression can be obtained by substituting (17)-

(20) into (21). In order to calculate the gain, the loss resistance 

and input radiation resistance must be determined. The loss 

resistance is expressed as: 
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Plugging (12) into (22) and using the modal admittances results 

in a more convenient form for the loss resistance: 

 

ST

 
 V( � � � � �� �


���
 (23) 

 

The input radiation resistance is given by:  

 

�WX,V( � �
V( � � � V( �

� �  (24) 

 

Substituting (17) into (24) results in: 

 

ZJ  (25) 

 

Finally, the gain may be obtained from: 

 �
>[1,ZJ

>[1,ZJ \]UU  (26) 

III. VALIDATION 

In order to validate the derivations, the solutions represented 

by (4)-(26) were implemented in MATLAB and compared to 

the full-wave solver FEKO. Efficiency tests were performed on 

a Dual Intel Xeon Processor with 10 cores. FEKO was run in 

parallel mode utilizing all 10 cores, while the MATLAB code 

used only a single core. As a simple example, a 3000 nm 

circumference nanoloop comprised of gold with  was 

evaluated at 51 frequency points in the range � . 

The material prescription given in [29] was used to represent 

the refractive index of gold. A capacitive load placed at ^
 was modeled in MATLAB as a lumped impedance and in 

FEKO as a dielectric slab using the approach described in [14]. 

Table I provides a summary of the computational resources 

required for each method. As can be seen, the full-wave 

simulation method took more than an hour to complete, while 

the analytical method performed in MATLAB took 

approximately 42 seconds. Note that if FEKO were run in serial 

mode (i.e. using only one core), the solution time would be 

more than 12 hours. The long simulation times required by 

FEKO make large parameter sweeps and optimizations 

intractable while, on the other hand, the extremely rapid 

evaluations in MATLAB enable such studies to be performed 

for the first time.  There is also a savings in memory usage. 

FEKO requires 1.8 GB while the MATLAB code only requires 

26 MB of memory. In summary, the analytical method is over 

100x faster while only requiring 1.5% of the memory. 

 

 

 
To simplify discussion of the results for PEC loops, unit-less 

parameters _, and ` for the resistance, capacitance and 

inductance, respectively, will be used to describe a load 

impedance [29]: 

^ � � ` � _  (27) 

 

Fig. 2 shows a comparison between the theory and the results 

from FEKO for the magnitude of the current at the voltage 

source corresponding to a thin-wire PEC loop with  at 

the first resonance � . Fig. 2 (a) shows the results for 

the unloaded loop, while results for a loaded loop with a load 

placed at  are shown for (b) , (c) `  and (d) 

_ . As can be seen, there is excellent agreement between 

the theory and FEKO. Fig. 3 shows a comparison of the 

TABLE I 

COMPARISON OF REQUIRED COMPUTATIONAL RESOURCES 

Method Time Memory 

Full-wave 1.26 hours 1.83 GB 

Analytical 42 seconds 26 MB 

 

 
Fig. 2. Comparison between the theory and FEKO for the 

magnitude of the current on (a) an unloaded PEC loop and a 

loaded PEC loop with (b) , (c) `  and (d) _ . 

 
Fig. 3. Comparison between the theory and FEKO for the 

directivity corresponding to (a) an unloaded PEC loop and a 

loaded PEC loop with (b) , (c) `  and (d) _ . 
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directivity versus  where  for these same cases; again, 

the agreement is excellent. Note that a thin-wire approximation 

is employed in FEKO to model the PEC loop antenna for which 

a load with an explicitly defined complex impedance can be 

specified. 

Next, similar comparisons will be performed for a gold 

nanoloop. In this case most commercial solvers do not support 

the use of  a thin-wire model nor can a lumped load be explicitly 

defined. In order to model a lumped capacitance and 

inductance, slabs with the material properties �  and 

�  respectively, can be utilized [14]. To model a 

lumped resistance, a material with either or �  

can be used. In order to validate the derived expressions, slabs 

with the material properties � , �  and  are 

used to model a lumped capacitance, inductance and resistance, 

respectively. While these materials may not be feasible in 

practice, they are useful for validation purposes. In the 

analytical code the lumped impedances are calculated by: 

 

^ �X
a_�_b�Wc  for reactive load 

(28) 

^ � for resistive load 

 

where the thickness  is given by 
d

ef�  for a slab of 

angular width . Moreover, a lossy dielectric can be modeled 

by a capacitance and conductance in parallel [31]. We note that 

FEKO cannot handle materials with a negative permittivity, so 

Ansys HFSS will be used for these comparisons. It has been 

found from experience that a thin slab of  provides a 

good approximation to a lumped impedance. Thicker loops (i.e. 

smaller ) tend to work better as the effect of fringing in this 

case can be ignored [31]. The example considered for validation 

will be a gold loop with circumference 3000 nm and  

having identical lumped impedances placed at  and 

. The results will be plotted in terms of � over the 

range . 

 Fig. 4 shows a comparison between the theory and HFSS for 

the magnitude of the current at the voltage source for an 

unloaded loop in (a) as well as a loop loaded with a capacitance, 

inductance and resistance in (b), (c) and (d) respectively. As can 

be seen, the results are nearly identical. The capacitive and 

inductive loads have the most noticeable effect for lower 

frequencies, as expected from the analytical expressions. 

Interestingly, the capacitive loads induce a large current around 

�  while the inductive load suppresses the current 

around this frequency. In the case of a resistive load, however, 

a large current is induced around � . Fig. 5 shows a 

comparison between the theory and HFSS for the directivity at 

four angles of interest for the unloaded loop in (a), as well as 

the loop loaded with a capacitance, inductance and resistance in 

(b), (c) and (d) respectively. The unloaded case has a nearly 

omnidirectional pattern in the xy-plane at � . As � 

increases to 1, the pattern gradually becomes nearly 

omnidirectional in the xz-plane. The capacitively loaded loop 

exhibits a bidirectional pattern along  and 

 at � . The pattern is nearly 

omnidirectional in the xy-plane with extremely deep nulls in the 

broadside direction at � , the same frequency where the 

current exhibits a peak. Above this frequency, the capacitively 

loaded loop behaves similarly to the unloaded case. In contrast, 

the inductively loaded loop is never omnidirectional in the xy-

plane. The loop with the resistive load has extremely sharp nulls 

in the broadside directions at � , the same frequency 

where the current exhibits a peak. Interestingly, the pattern is 

nearly unidirectional with a large directivity along 

 at around � .  

IV. OPTIMIZATION EXAMPLES 

Due to the extremely fast function evaluations enabled by the 

analytical theory, large-scale parameter sweeps and global 

optimizations can be performed very rapidly. A variety of 

optimizations will be carried out here to highlight the utility of 

the analytical expressions. CMA-ES [32] has been found to be 

extremely effective in single-objective optimizations for 

electromagnetics problems [33-34]. In real-world engineering 

problems, there are often multiple conflicting objectives, with a 

classical example being size versus performance. A multi-

objective optimizer (MOO) allows the engineer to view the 

 
Fig. 4. Comparison between the theory and HFSS for the magnitude of 

the current on (a) an unloaded gold loop and a loaded gold loop with (b) 

� , (c) �  and (d) . 
 

 
Fig. 5. Comparison between the theory and HFSS for the directivity 

corresponding to (a) an unloaded gold loop and a loaded gold loop with 

(b) � , (c) �  and (d) . 
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trade-offs between these objectives by providing a set of 

solutions called the Pareto Set (in design parameter space) or 

the Pareto Front (in objective space) [35]. BORG [36] has been 

found to be an effective MOO for problems in electromagnetics 

[37]. Even though BORG is very efficient, MOOs require more 

function evaluations to converge compared to single-objective 

optimizers. The extremely fast function evaluations which 

result from the analytical theory enables these MOOs to be 

performed efficiently. 

First, a set of optimizations will be performed exploring the 

trade-off between directivity and the size, a subject which has 

received much recent theoretical attention [38].  Wheeler [39] 

defines an electrically small antenna (ESA) as one that fits 

within a volume smaller than a sphere defined by � ���
�

. Chu [40] studied the tradeoffs between directivity and 

antenna size, but according to his equations the limit for 

superdirectivity approaches zero as � approaches zero. Geyi 

[41] re-formulated these expressions to be more suitable when 

describing ESAs. In his expressions the superdirective limit 

approaches the directivity of a Huygen’s source as � 

approaches zero. It has recently been discovered theoretically 

that superdirectivity can be achieved by electrically small gold 

nanoloops [42-43]. A series of multi-objective studies revealed 

the trade-offs between directivity, gain and � for unloaded 

gold nanoloops [44]. This paper will extend these results by 

considering loaded nanoloops. Note that nanoloops can also be 

employed in a Yagi-Uda configuration to enhance directivity, 

resulting in a different set of tradeoffs [45-46]. 

 
Fig. 6 shows one of the main results of [42-43], namely that 

a gold nanoloop with  exhibits high directivity 

along  over an extremely broad 

bandwidth, which is below the plasma frequency. As can be 

seen, a thin (  loop exhibits superdirective performance 

according to the Geyi and Harrington limit at � . 

Unfortunately, the gain at this frequency is very low due to an 

extremely poor efficiency. A thicker loop shifts the frequency 

range of high directivity to around �  where the efficiency 

is remarkably high. Unfortunately for larger � the 

superdirective limit increases and this loop is no longer 

considered to be superdirective. Multi-objective studies have 

shown that a gold nanoloop could achieve superdirectivity 

below �  in terms of directivity but could never achieve 

supergain according to the Geyi limit [44]. A multi-objective 

study will be performed here using BORG with the goals of 

minimizing the electrical size � and maximizing the directivity 

as well as gain along various specified angles. The locations and 

capacitances of lumped impedance loads will be optimized, 

along with the radius of the loop  and the thickness measure  

in the frequency range dictated by �  for directivity 

and �  for gain. The parameters will be constrained 

as follows: , ^
, . The loop radius and thickness 

measure limits were determined based on previous studies and 

are the same as those reported in [44]. The load can be placed 

anywhere around the loop, and the angular width of the silicon 

slab is allowed to vary over a large range. Note that the angular 

width is simply used to calculate the capacitance of a lumped 

load placed at ^ based on (24); to implement such a load in 

practice the angular width can be scaled down and � scaled up 

by the same factor. 

 

 
Fig. 7 (a) shows the results of an optimization when one and 

two capacitive loads are considered with the following costs: 

 

�
 (29) 

 

 
Fig. 6. Comparison of directivity and gain along 

 of a thin  and thick (  circumference 

loop along with the Harrington and Geyi superdirective limits. 

 
Fig. 7. Pareto fronts of an unloaded gold nanoloop and a gold nanoloop 

loaded with one or two capacitors. The objectives are minimizing � 

and maximizing directivity along (a) , (b) 

, (c)  and (d) . 
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As can be seen, the unloaded case cannot exceed the Geyi 

limit. Adding one capacitor greatly improves the directivity. 

While superdirectivity cannot quite be achieved at � , it 

can be surpassed above this frequency. Adding two capacitors, 

however, allows the additional design freedom to exceed the 

Geyi limit over the entire frequency range of interest. It is 

instructive to examine the set of �  solutions in more 

detail. 

 
As shown in Table II, the optimized solution for the unloaded 

case and the case with one load is an extremely thin nanoloop 

(  with a loop radius of about 400-500 nm. However, 

the optimized solution for the case of two loads is a thick 

nanoloop with a loop radius of 72.5 nm. The optimized current 

magnitudes are shown in Fig. 8 (a). As expected, for maximum 

radiation along , the currents are symmetric 

in all cases.  Fig. 8 (b), (c) and (d) shows the magnitudes of the 

modal currents for the optimized solutions with no loads, one 

load and two loads respectively. Both the unloaded solution and 

the single load solution have modal current magnitudes which 

decrease as the mode index increases. However, the solution 

with two loads shows a large contribution from the 2nd mode. 

This is impossible to achieve at this frequency with only a 

single load without breaking the symmetry of the current 

distribution. 

 

 
Fig. 7 (b) and (d) show the results of the optimization when 

considering the directions  and 

, respectively. Note that the Pareto fronts are the 

same for both directions. For the unloaded case, the directivity 

is bidirectional. For the loaded configuration, the locations of 

the capacitors can be mirrored about the y-axis to swap between 

high directivity along  or 

. As can be seen, the unloaded case has very small 

directivities while the two capacitor loaded case can surpass the 

Geyi limit for electrically small antennas in the range �
. Moreover, a single capacitor does not result in a large 

increase in directivity. In order to study the physics governing 

the observed loading effects, the two load solution at �  

will be considered in more detail. For this solution, 

^  and . 

The unloaded configuration for these same loop dimensions 

will be considered as a basis for comparison. Fig. 9 shows a 

comparison of the real and imaginary components of the current 

and the magnitude of the modal admittances. 

 
Fig. 9 (a) and (b) shows the asymmetry in the current induced 

by the asymmetric capacitive loading. Fig. 9 (c) and (d) shows 

that the  mode is enhanced by the loading resulting in 

the highly directive pattern at . Mirroring 

the capacitors about the y-axis, i.e. placing them at ^
 results in an enhancement of the  mode 

and a highly directive pattern at , while 

removing both capacitors leads to a bidirectional pattern along 

 and . Interestingly, this 

suggests that a pattern reconfigurable antenna could potentially 

be realized with this nanoloop using materials that changed 

permittivity based on some external stimulus, such as 

temperature or applied voltage [47]. The input impedance for 

this antenna is approximately V( . Varying the 

gap for the load eliminates the imaginary part of the input 

impedance. Simulations performed in FEKO show that this has 

negligible impact on the far-field radiation properties. 

Finally, Fig. 7 (c) shows the Pareto front corresponding to 

the direction . In this case, even though the 

unloaded case has extremely high directivity, adding loads can 

increase this value even further. Most of the optimized solutions 

TABLE II 

RESULTS OF OPTIMIZATION FOR  

Number 

of Loads 

 

(nm) 
 ^  

(deg) 

 

(deg) 
^  

(deg) 

 

(deg) 

0 506 11.5     

1 406 11.8 180 0.131   

2 72.5 8.8 60 10.65 300 10.65 

 

 
Fig. 8. Optimized results for maximum directivity along 

 at � . (a) Current distributions for the optimized 

unloaded and loaded gold nanoloops. (b), (c) and (d) show the modal 

current magnitudes for the unloaded, loaded with one capacitor and 

loaded with two capacitor cases, respectively. 

 
Fig. 9. Comparison of a loaded and unloaded gold nanoloop optimized 

for maximum directivity along  at � . (a) 

Real and (b) imaginary components of the current. (c) and (d) show 

the modal current magnitudes for the unloaded and loaded cases, 

respectively. 
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along all directions of interest resulted in fairly thin loops with 

 except for when � is very small, less than 

approximately 0.5. While these solutions have very high 

directivity, they unfortunately suffer from poor efficiency and 

therefore low gain. Therefore, a second set of optimizations 

were run with the following costs: 

 

�
� �  (30) 

 

Only the case of two capacitive loads was considered. The 

results are shown in Fig. 10. Fig. 10 (a) and (c) show moderate 

and small improvement with the addition of loads, respectively, 

while Fig. 10 (b) and (d) show significant improvement for 

� . The loaded solutions approach the Harrington limit but 

cannot quite reach the Geyi limit. The solution at �  is 

explored in more detail in Fig. 11. For this solution, 

^  and . 

In practice, this loading configuration could be implemented by 

placing air gaps with  at ^ , which 

was validated in FEKO. The loaded currents shown in Fig. 11 

look similar to those of Fig. 9. However, the efficiency in this 

case is nearly 80% while the efficiency for the optimized 

solution of Fig. 9 is only 10%. This is partly due to the fact that 

a thicker loop tends to result in higher efficiencies. However, 

simply making the loop of Fig. 9 thicker does not result in an 

appreciable increase in gain, suggesting the current distribution 

of Fig. 11 is finely tuned for high gain. The loads produce an 

extremely asymmetric current distribution, resulting in the 

radiation pattern changing from a bidirectional broadside to a 

unidirectional endfire pattern as shown in Fig. 12. 

The final example will involve optimizing the polarization 

properties of a gold nanoloop. The electric field can be 

decomposed into left-hand circular polarization (LHP) and 

right-hand circular polarization (RHP) by the following 

equations [1]: 

 

@^gh = 1
√2 �@� − �@j�

@kgh = 1
√2 �@� + �@j� (31) 

 

where � and j are given in (3) for the unloaded case and (16) 

for the loaded case. The circularly polarized axial ratio is given 

by: 

 

lmnh = |@^gh| + |@kgh||@^gh| − |@kgh| (32) 

 

This quantity is often expressed using dB, where 0 dB 

corresponds to perfect circular polarization.  An unloaded loop 

has theoretically perfect linear polarization nh  in the 

broadside  and  directions. Fig. 13 (a) and (b) 

show the directivity and CP axial ratio in dB, respectively, for 

an unloaded loop with parameters  and = 12 

evaluated at � . As can be seen, the pattern is 

omnidirectional in the  plane and is linearly polarized 

in every direction where the directivity is greater than 0 dB. An 

optimization was performed using CMA-ES with the goal of 

obtaining circular polarization in the broadside direction, i.e. 

minimizing (32) in dB, similar to the study done in [48] for PEC 

loops. The optimal solution placed two loads at ^  and 

 
Fig. 10. Pareto fronts of an unloaded gold nanoloop and a gold 

nanoloop loaded with two capacitors. The objectives are minimizing � 

and maximizing gain along (a) , (b) 

, (c)  and (d) . 

 
Fig. 11. Comparison of a loaded and unloaded gold nanoloop optimized 

for maximum gain along  at � . (a) Real 

and (b) imaginary component of the current. (c) and (d) show the modal 

current magnitudes for the unloaded and loaded cases, respectively. 
 

 
Fig. 12. Comparison of loaded and unloaded gold nanoloop optimized for 

maximum gain along  at � . (a) Gain in dB of 

unloaded loop. (b) Gain in dB of loaded loop. 
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^  with angular widths  and  and 

permittivities of �  and � , respectively. As 

shown in Fig. 13 (c) and (d), the pattern is now slightly more 

bidirectional and circularly polarized in the two broadside 

directions.  

 

V. CONCLUSIONS  

This paper presented exact, analytical expressions for the far-

field radiation properties of circular loops with an arbitrary 

number of impedance loads valid from the RF to the optical 

regime. The expressions were implemented in MATLAB and 

validated against FEKO and HFSS for resistive, inductive and 

capacitive loads for both a PEC loop operating in the RF 

spectrum and a gold nanoloop operating in the optical regime. 

The analytical expressions, when implemented in MATLAB, 

can be evaluated over 100x faster than FEKO, enabling large-

scale global single- and multi-objective optimizations. This was 

demonstrated through a series of optimization examples with 

the goal of achieving desirable radiation properties in the 

optical regime for particular applications. It was shown that two 

capacitive loads can result in a superdirective antenna along 

several targeted angles of interest. Moreover, gains of greater 

than 3 dB could be achieved for electrically small antennas over 

a fractional bandwidth of 28%. Finally, a combination of 

capacitive and inductive loading was shown to result in 

circularly polarized radiation in the broadside direction. 
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