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Abstract 

Endothelial cells (ECs) form the inner layer of blood vessels and physically separate the 

blood from the surrounding tissue. To support tissues with nutrients and oxygen, the 

endothelial monolayer is semipermeable. When EC permeability is altered, blood vessels 

are not functional and this is associated with disease. A comprehensive knowledge of the 

mechanisms regulating EC permeability is key in developing strategies to target this 

mechanism in pathologies. Here we have used an in vitro model of human umbilical vein 

endothelial cells mimicking the formation of a physiologically permeable vessel and 

performed time-resolved in-depth molecular profiling using SILAC MS-proteomics. 

Autophagy is induced when ECs are assembled into a physiologically permeable monolayer. 

By using siRNA and drug treatment to block autophagy in combination with functional 

assays and MS proteomics, we show that ECs require autophagy flux to maintain 

intracellular reactive oxygen species levels and this is required to maintain the physiological 

permeability of the cells. 
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Introduction 

Endothelial cells (ECs) line the inner wall of blood vessels as a semipermeable monolayer 

that physically separates the blood from the surrounding tissues 1. The maintenance of 

endothelial cell permeability is critical to the physiological function of blood vessels in 

distributing oxygen and nutrients throughout the entire organism. In the mature vasculature, 

the endothelial monolayer is constituted of  quiescent cells 2, which are tightly connected to 

each other through cell-cell adhesion protein complexes called tight junctions and adherens 

junctions 3. The disruption of these junctions results in a leaky vasculature, which is a 

hallmark of diseases, such as cancer 4,5. Several mechanisms regulating EC 

hyperpermeability have already been well characterized. For example, upon binding to their 

receptors, the vascular endothelial growth factor (VEGF) 6,7 and the pro-inflammatory factors 

thrombin and histamine8,9 activate Ca2+, Rho GTPase/ROCK, and myosin light chain kinase 

signaling pathways. Those pathways, in turn, induce the disruption of intercellular junctions 

between ECs. We have recently shown that EC metabolism is a key controller of vascular 

permeability, particularly that fatty acid oxidation is required to maintain the physiological 

permeability of the endothelial cells 10. This highlights the complexity of the mechanisms 

regulating vascular permeability, and suggests that other pathways may play a key role in 

this process. To address this question, we have applied unbiased time-resolved MS-based 

proteomics to an in vitro model where endothelial cells, cultured for one week with growth 

factor stimulation, assemble into a monolayer 11. This model recapitulates aspects of the 

formation of a physiologically permeable blood vessel. 

Autophagy is a catabolic process that leads to the degradation of cellular proteins and 

organelles, and it is crucial to maintain cellular homeostasis. Autophagy is often induced 

when cells are under stress conditions triggered by stimuli such as reactive oxygen species 

(ROS), amino acid starvation and hypoxia. For example, autophagy can generate free amino 

acids and fatty acids, which are used by the cells as building blocks to survive under nutrient 

limitation 12. Autophagy is a multistep process whereby targeted cytoplasmic components 



4 
 

are engulfed by double membrane organelles called autophagosomes 13. The fusion of an 

autophagosome to a lysosome generates an autolysosome, which degrades its contents by 

virtue of its acidic pH and the presence of lytic enzymes 14,15. Autophagy (ATG)-related 

proteins tightly regulate the autophagy process. As an example, ATG5 controls the formation 

of autophagosomes. Notably, ATG proteins can be targeted to inhibit autophagy 12. 

Autophagy is active in ECs in vitro and in vivo, but its functional role in ECs is quite 

controversial. In human umbilical vein endothelial cells (HUVECs) autophagy is induced 

upon silencing of VEGF and this leads to cell death 16. Conversely, autophagy promotes cell 

survival in response to hypoxia in bovine aortic ECs (BAECs) cultured under glucose-

deprived conditions 17. Autophagy has also been implicated in regulating vessel growth. By 

manipulating the expression of ATG5, it has been shown that autophagy enhances the 

ability of nutrient deprived BAEC to assemble in a capillary-like network when cultured on 

matrigel 18. However, HUVECs silenced for ATG5 do not have any sprouting defects when 

embedded into a three dimensional gel 19. In contrast, inhibition of autophagy by silencing 

ATG5 in HUVECs enhances their assembly into network-like structures when co-cultured 

with neuroblastoma cells 20. In vivo, EC-specific deletion of Atg5 or Atg7 in mice did not 

affect postnatal retinal angiogenesis 21 65. However it decreased von Willebrand factor (vWF) 

release upon epinephrine stimulation, with a consequent prolongation of bleeding time 21. 

Finally, EC-deletion of Atg5 in mice bearing a graft of B16-F10 melanoma cells produced 

tumors with smaller, more numerous and tortuous vessels 19. Hence autophagy is necessary 

for the regulation of endothelial functions. 

By in depth measurement of the proteomes of HUVECs cultured either sparsely or tightly 

confluent in the presence of nutrients and growth factors, we have discovered that 

autophagy levels are higher in a fully formed endothelial monolayer. We show that inhibiting 

autophagy in ECs, either pharmacologically or by silencing ATG5 with siRNA, impairs their 

permeability. Bioinformatic analysis of proteomic changes occurring upon inhibition of 

autophagy in ECs, predicted ROS as an upstream regulator of the measured changes. 
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Finally, we show that HUVECs require autophagy to control ROS levels in order to maintain 

their permeability. 

 

Experimental Section 

Cell culture and transfection. Human Umbilical Vein Endothelial Cells (HUVECs) isolated 

from 2-5 umbilical cords were pooled together and cultured in EGM-2 (Lonza, Basel, 

Switzerland) until passage 6 on 1% gelatin-coated dishes. Cells were nucleofected with 60 

pmol of si-ATG5 (RNA-Stealth, pool three single siRNAs, Thermo Fisher Scientific) or si-NC 

(non-targeting siRNA, Thermo Fisher Scientific) per 106 cells using Amaxa nucleofector and 

nucleofector kit (Lonza) and experiments were performed 4 days after transfection.  

SILAC labeling. To generate the EC SILAC standard, HUVECs were cultured in custom-

made EGM-2 without arginine and lysine (Lonza) supplemented with 13C6
15N4 L-arginine, 

and 13C6
15N2 L-lysine (SILAC heavy) (Cambridge Isotope Laboratories) for 3 passages, 

corresponding to more than 97% of heavy aminoacid incorporation. 

Cell lysis and sample preparation for proteomic analysis. Sample lysate in 2% SDS in 

0.1 M Tris HCl buffer pH 7.4 was mixed with an equal protein amount (125 µg for the 

confluency experiment, 5 µg for the bafilomycin experiment, 65 µg for the si-ATG5 

experiment) of SILAC internal standard. 

For the confluency and si-ATG5 experiment, three replicates (cells cultured separately and 

processed on the same day) were analyzed. Proteins were trypsin (sequencing grade 

modified, Promega) digested using the filter-aided sample preparation protocol 22 and 

peptides fractionated into six fractions using pipette tip strong anion exchange separation 

microcolumn 23. 

For the bafilomycin experiment, three replicates (cells cultured separately and processed on 

the same day) were analyzed. Proteins were precipitated in methanol-chloroform, 
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resuspended in urea buffer (8M urea, 75mM NaCl, 50mM Tris), reduced with dithiothreitol, 

and alkylated with iodoacetamide. Endoproteinase Lys-C (Waco) followed by trypsin were 

used to digest the proteins (enzyme to protein ratio = 1:50). 

For the conditioned medium analysis, ECs were grown until confluence in EGM-2 medium. 

They were washed in PBS with Ca2+ and Mg2+ and treated or not with bafilomycin 100 nM in 

EGM-2 without serum. After 4 hours the supernatant was collected and spun at 4°C (300 g 

for 10 minutes, followed by 2,000 g for 10 minutes and 10,000 g for 30 minutes). The 

proteins in the supernatant were extracted as previously described 24. Collected proteins 

were precipitated with methanol and chloroform, resuspended in 8 M urea buffer, reduced, 

alkylated and Lys-C and trypsin digested. 

Peptides were desalted by using C18 StageTip 25 and eluted in 80% acetonitrile, 0.5% acetic 

acid and stored at -20 °C until analyzed at the MS. 

Mass spectrometry analysis. Proteomic MS analysis was performed using a linear trap 

quadrupole (LTQ)-Orbitrap Elite (Thermo Fisher Scientific), operated in the high energy 

collision dissociation (HCD) fragmentation mode, coupled on-line with a nano-liquid 

chromatography (nLC) (EasynLC, Thermo Fisher Scientific) as described previously 10. The 

tryptic peptides were separated on a 20 cm reverse phase column packed with 1.9 µm C18 

resin (Dr.Maisch, GmbH, Ammerbuch-Entringen, Germany) using a flow of 200 nl/min in 90 

min gradient from 5% to 25% ACN in 0.5% acetic acid. The MS spectra were acquired in the 

Orbitrap analyzer at a resolution of 120,000 at 400 m/z, and a target value of 106 charges. 

HCD fragmentation of the 10 most intense ions was performed using a target value of 

40,000 charges which were acquired in the Orbitrap at a resolution 15,000 at 400 m/z. Data 

were acquired with Xcalibur software. 

MS proteomic data analysis. MS data were processed using the MaxQuant computational 

platform 26 (version 1.3.6.0 for the cell confluency proteomes and 1.3.8.2 for the autophagy-

inhibited proteomes) and searched with Andromeda search engine 27 against the human 
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UniProt database (release-2012 01, 88,847 entries). The ‘match between runs’ 26 option was 

enabled. An initial maximal mass deviation of 7 ppm and 20 ppm was required to search for 

precursor and fragment ions, respectively. Trypsin with full enzyme specificity and peptides 

with a minimum length of seven amino acids were selected, and two missed cleavages were 

allowed. Oxidation (Met) and N-acetylation were set as variable modifications, whereas 

Carbamidomethylation (Cys) as fixed modification. False discovery rate (FDR) of 1% was 

used for peptides and proteins identification. Only proteins identified with a minimum of one 

unique peptide and quantified with a minimum of two ratio counts were used for the analysis. 

Only peptides uniquely identified were used for protein quantification. The relative 

quantification of the peptides against their SILAC-labeled counterparts was performed by 

MaxQuant. Label-free quantification was performed with the label-free algorithm integrated 

in MaxQuant 28. Common contaminants 26 were excluded from the analysis. 

Data analysis. MS data statistical analysis and 2D analysis were performed with Perseus 

software 29. Comparative pathway analysis was performed with Ingenuity® Pathway Analysis 

IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity . 

Cell proliferation and apoptosis. To assess cell proliferation, HUVECs were incubated 

with EdU for 1.5 h. After harvesting and staining with Click-iT EdU kit (Invitrogen) according 

to manufacturer’s recommendations, EdU incorporation was analyzed by FACS. To assess 

apoptotic cell death, Annexin V kit (Invitrogen) was used according to manufacturer’s 

recommendations and cells were analyzed by FACS.  

Immunoblot analysis. HUVECs were lysed in 2% SDS in 0.1 M Tris HCl pH 7.4 and mouse 

ECs in 50 mM TrisHCl, pH 7.5, 140 mM NaCl, 1% Igepal and complete protease inhibitor 

(Roche) buffer. Proteins were separated on 4-12% gradient NuPAGE Novex Bis-Tris gel 

(Life Technologies) and transferred to PVDF membranes (Millipore). The membranes were 

probed with the following primary antibodies: anti-ATG7 (H-300, sc-33211), anti-β tubulin (H-

235, sc-9104) from Santa Cruz Biotechnology; anti-vinculin (V9131) from Sigma; anti-ATG5 

http://www.qiagen.com/ingenuity
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(D1G9, #8540) and anti-LC3B (#2775) from Cell Signaling; anti-p62/SQSTM1 (#PM045) 

from MBL. 

Permeability assay (Trans Endothelial Electrical Resistance, TEER). HUVECs were 

plated on 0.4 µm pore size polyester membrane (Corning, New York, NY) pre-coated with 

1% gelatin and grown 100% confluent. STX2 electrode connected to an EVOM2 

voltohmmeter (World Precision Instruments) was used to measure TEER. The background 

resistance measured in transwells with no cells was subtracted from the transwells with 

cells.  

Permeability assay (FITC-dextran or FITC-albumin). HUVECs were plated and grown as 

for the TEER assay and treated as indicated. For the ROS scavenging experiment, the cells 

were pre-incubated with N-acetyl-L-cysteine (1mM, Sigma) and ascorbic acid (vitamin C, 

500 µM, Sigma) for 15 minutes before treatment with 100 nM bafilomycin. FITC-dextran 40 

KDa or FITC-albmin 65 KDa, 10 µM (Sigma-Aldrich), was then added in the top wells and 

after 30 minutes the transwells were disassembled and the fluorescence of the medium in 

the bottom chamber was measured by using a fluorescence plate reader.  

Mice and Miles assay 

The C57Bl/6 mice with endothelial-specific deletion of Atg7 were generated by cross-

breeding Atg7flox/flox (kindly provided by Prof. Masaaki Komatsu) with Cdh5 (PAC)-CreERT2 

mice (kindly provided by Prof. Ralf Adams) to produce Atg7flox/+Cdh5-Cre+/−. These mice 

were further crossed to generate Atg7flox/floxCdh5-Cre−/− (used as control) or Atg7flox/floxCdh5-

Cre+/− mice. Three mice per genotype were used to extract the lungs which were used to 

isolate endothelial cells. Mice were injected intraperitoneally with 2 mg of tamoxifen daily for 

three days and sacrificed two weeks later. 

Mouse lung endothelial cells (MLECs) were isolated from lungs of 8 weeks old mice with 

slight modification to the protocol previously described 30. Mice were culled by cervical 

dislocation and lungs placed in Opti-MEM (Life Technologies) with 20% fetal bovine serum 
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and antibiotics. Minced tissue was left for 45 minutes at 37ºC in pre-warmed 2mg/ml type 1 

collagenase (Sigma) in Dulbecco’s PBS (Sigma). The cell suspension was gently passed 

through a 19 gauge cannula twelve times then through a 70µm cell strainer prior to being 

centrifuged and the pellet re-suspended in cold PBS/0.1% bovine serum albumin. Cell 

suspension was incubated for 10 minutes at room temperature with Dynabeads (Dynal) pre-

coated with anti-mouse CD102 (Icam-2) antibody (Pharmingen), 15 µl of beads/ml of cell 

suspension. After separation and washes using a magnetic separator, the cells were plated 

in M199 (Invitrogen) with antibiotics, 16% fetal bovine serum, 10 µg/ml heparin, 2 mM 

glutamine and endothelial cell growth supplement (Sigma). A second sort with the magnetic 

beads was performed after 3 days of culture. 

The Miles assay was performed as previously described with minor modifications 31. Briefly, 

30 min before Evans blue injection, mice were intra-peritoneally injected with 100 µl of 

pyrilamine maleate salt (4 mg/kg body weight in 0.9% saline, Sigma-Aldrich) to inhibit 

histamine release. Then 200 µl of 0.5% solution of Evans blue were injected tail vein and left 

in the circulation for 20 min. Mice were sacrificed by terminal anesthesia. Residual Evans 

Blue within the blood vessels was removed by heart perfusion with PBS followed by 0.1% 

PFA in PBS. Lungs were excised, weighed and processed to extract the Evans blue. After 

48h incubation in formamide, the Evans blue was quantified with a spectrophotometer 

(wavelength = 610 nm) and normalized to the weight of the lungs. 

All mouse procedures were in accordance with ethical approval from University of Glasgow 

under the revised Animal (Scientific Procedures) Act 1986 and the EU Directive 2010/63/EU 

authorized through Home Office Approval (Project license number 60/4181). 

Reactive oxygen species (ROS) measurement. HUVECs were incubated for 30 minutes 

with 3 µM CM-H2DCFDA probe (Invitrogen), harvested and assayed by FACS. Alternatively, 

cells plated on gelatin-coated glass bottom dishes were incubated with the carboxy, 
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H2DCFDA probe (Image-iT ™ LIVE Green Reactive Oxygen Species Detection Kit, 

Invitrogen) and imaged live according to manufacturer’s recommendations.  

Experimental Design and Statistical Rational. 

All the proteomic analyses were performed using samples from three replicate experiments, 

where cells were cultured in separate  dishes, and lysed and prepared for MS analysis on 

the same day. For the time resolved MS-proteomic analysis, in order to compare all cell 

conditions between them, an ANOVA test corrected for multiple testing analysis (maximum 

permutation-based FDR of 0.1%) was used. For the other MS-proteomic analyses, a cut-off 

of 2 standard deviation (SD) from the mean of the calculated SILAC ratios was used. This 

test was chosen because the data (SILAC ratios of ratios) followed a normal distribution, and 

because the distribution of the ratios was quite narrow. This allowed us to select proteins 

with moderate changes in levels, but consistent between replicates. 

For all other analyses, for each assay, a representative experiment of at least three 

reproducible independent experiments is shown. As controls we used a non-targeting siRNA 

for silencing experiments, and vehicle for drug-treatment experiments. In the plots, bars 

represent mean ± standard error of the mean (S.E.M) for n = 3 technical replicates. 

GraphPad Prism software was used for statistical analysis. A two-tailed unpaired t-test was 

used to calculate p-values: * = p<0.05, ** = p<0.01, *** = p<0.001. 

Results and Discussion 

Proteomic profiling of ECs reveals increased autophagy upon reaching 

confluency.Endothelial cells cultured sub or tightly confluent have a distinct phenotype 11,32. 

Sub-confluent cells are proliferative, motile, and almost devoid of intercellular cell-cell 

adhesion contacts. Confluent cells stabilize cell-cell contacts and secrete extracellular matrix 

(ECM) components. These latter processes contribute to inhibiting cell proliferation and 

making ECs quiescent 33. This condition is typical of ECs in mature and physiologically 

permeable vessels in vivo. We reasoned that a time-resolved analysis of proteomic changes 
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associated with the transition from sub-confluent to confluent cells would be an excellent 

model to identify mechanisms required for the formation and maintenance of a 

physiologically permeable endothelial monolayer. We performed an in-depth MS-based 

proteomic analysis of HUVECs (referred to as ECs) that have been cultured sub-confluent 

(50% confluence, sc) or that reached a tightly confluent state after 24h (tc), 4 days (4d) or 8 

days (8d) culture (Figure S1A). The culture medium was changed every second day to avoid 

nutrient limitation. With this setup we aimed to identify mechanisms that are activated when 

ECs form a monolayer, from early formation to full maturation of cell-cell adhesion contacts. 

To accurately quantify proteomic differences among these four cultured conditions, a lysate 

of SILAC-labeled ECs was used as an internal standard 34 and spiked-in to each of the 

unlabeled samples. From three replicate experiments, we identified 7565 proteins and 

quantified 4591 in at least 2 of 3 replicates (Table S1). The median reproducibility between 

replicates was higher than 0.8 (Pearson correlation coefficient), which highlighted the 

reproducibility of this study. An ANOVA test corrected for multiple testing analysis (maximum 

permutation-based FDR of 0.1%) identified 2221 proteins with significantly regulated levels 

in at least one experimental condition (Table S1). Hierarchical clustering based on average 

Euclidean distance (based on K-mean pre-processing, with number of clusters = 5) 

highlighted two major clusters. These two clusters contained proteins with either lower (blue 

block in Figure 1A) or higher (red block in Figure 1A) levels in confluent compared with sub-

confluent cells. Gene Ontology (GO) category enrichment analysis using Fisher’s exact test 

(Figure 1B and Table S2) pinpointed the categories that the regulated proteins belonged to. 

Categories related to cell division (e.g. Mitosis, p-value = 2.51x10-6) and DNA/RNA-related 

processes (e.g. rRNA processing, p-value = 2.91x10-17) were enriched in proteins which 

were less abundant in confluent cells. This suggests that, upon reaching confluency, ECs 

reduced proliferation, and is in line with the fact that cell-cell contacts in primary cells induce 

growth arrest 35,36. In fact, EdU incorporation analysis showed reduced proliferation of cells 

cultured tc compared with sc cells. Proliferation was almost abrogated in cells cultured 

confluent for 4-8 days (Figure 1C). Instead, categories related to extracellular matrix (ECM) 
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(e.g. extracellular matrix organization, p-value =1.68x10-4), metabolic process (e.g. lipid 

metabolic process, p-value = 3.55x10-9), and vesicles (e.g. vacuole organization, p-value = 

4.12x10-4) were enriched in the subset of proteins whose levels increased in confluent cells. 

It is known that ECs in mature vessels contribute to the production and secretion of ECM 

components 37. However, less is known about the contribution of vesicles and metabolic 

pathways to these processes. The GO category “vacuole organization” was the most 

enriched one, and contained several lysosomal proteins (Figure 1D, and Table S2). The 

levels of some of these proteins increased in confluent cells after 24h and 4h culture, and all 

of them increased levels after 8 day culture (Figure 1D). This suggests an increased 

engagement of the lysosomal compartment occurs during maturation of an endothelial 

monolayer. It is known that lysosomes are required for autophagy to occur. Moreover, while 

ATG protein levels did not change upon reaching confluency, sequestosome 1/p62 

(SQSTM1) was consistently downregulated in confluent cells (Table S1). SQSTM1 is a 

component of the autophagic machinery which accumulates in undigested autophagosomes 

upon autophagy inhibition 38. We verified SQSTM1 downregulation in confluent cells by 

western blot analysis (Figure 1E). These observations prompted us to investigate whether 

autophagy was increased in confluent ECs. First we blocked the autophagic flux by treating 

cells with bafilomycin A1. Bafilomycin is a well-characterized drug that inhibits the vacuolar 

type H+ ATPase, thus preventing lysosomal acidification and favoring the accumulation of 

autophagosomes 38. Autophagosomes contain at their membrane the lipidated form of the 

protein LC3B (LC3BII), which can be easily detected by western blot analysis and used to 

quantify autophagy flux levels in total cell lysates 38. As expected, we assessed that 

autophagy flux increased in ECs upon reaching confluency. Indeed, we measured higher 

levels of LC3BII in bafilomycin-treated confluent compared to sub-confluent ECs. 

Furthermore, we showed that this was independent of the time that the cells had been 

confluent for (Figure 1F). Next we investigated the functional role of autophagy in ECs. 

Autophagy inhibition impairs EC barrier functionality. 
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We assessed whether autophagy had a functional role in a confluent monolayer of ECs by 

inhibiting it either by acute treatment (4h) with bafilomycin or by knocking down ATG5 with 

siRNA (Figure 2A). First we investigated the effects of autophagy inhibition on EC 

proliferation. ATG5-silenced cells (si-ATG5) decreased proliferation, as measured by EdU 

incorporation (Figure 2B), while no changes were measured in ECs treated with bafilomycin 

(Figure 2C). Similarly, we measured no (Figure 2D) or minor (Figure 2E) effects on EC 

apoptotic death. Next, we investigated the possibility that autophagy controls other EC 

functions. A key function of a monolayer of ECs in vivo is to maintain the physiological 

permeability of blood vessels. In vitro, the permeability of a monolayer of tightly confluent 

ECs can be measured by trans-endothelial electrical resistance (TEER) or by using FITC-

labeled dextran or albumin. The first assay measures the passage of ions (high resistance = 

low permeability and low resistance = high permeability). The second method measures the 

passage of labelled 40-65 KDa macromolecules through the EC monolayer. We used both 

approaches and tested the effects of autophagy inhibition on EC barrier function. For this 

purpose, we used ECs cultured confluent for 4 days. In this condition, cells had pronounced 

proteomic changes (Figure 1A). Moreover, after 4 days autophagy was induced (Figure 1F), 

cell proliferation was strongly reduced, as well as the levels of SQSTM1 (Figure 2B). Both 

approaches showed that EC permeability was significantly increased upon autophagy 

inhibition with ATG5 siRNA (Figure 2F,H and Figure S2A) or bafilomycin treatment (Figure 

2G,I and Figure S2B). We confirmed the relevance of these results in vivo using adult mice 

that were conditionally depleted for Atg7 within endothelial cells (Atg7EC). The effective 

depletion of Atg7 in the vasculature was measured by western blot, which showed 

substantially reduced levels of Atg7 in mouse primary endothelial cells isolated from Atg7EC 

mice (Figure 2J). Torisu et al. 21 have previously reported that Atg7EC mice have no clear 

vascular phenotypes. However, the functionality of the vasculature was not assessed in their 

study. Similar to Torisu et al., we could not observe any obvious phenotype in the lung 

vasculature of the Atg7EC mice (not shown). Moreover, we could not measure any defects in 

angiogenesis, by using an ex vivo aortic ring assay, where the sprouting of endothelial cells 
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from explanted mouse aortas was induced with VEGF (not shown). However, when we 

assessed the functionality of the blood vessels in the lungs, we measured a striking 

difference, because significantly more Evans blue leaked out from the lung vasculature of 

Atg7EC mice compared with control mice (Figure 2K). Hence, autophagy is required to 

maintain physiological vascular barrier functionality. 

Acute and long-term inhibition of autophagy with bafilomycin or si-ATG5 alters levels 

of proteins involved in cell motility, matrix organization and morphogenesis. 

Next, we identified the molecular mechanism(s) that require a controlled autophagic flux in 

ECs. We used SILAC spike-in proteomics and measured proteomic changes occurring in 

ECs upon autophagy inhibition (Figure S1B). First we investigated the effects of acute 

autophagy inhibition upon 4h treatment with bafilomycin (Figure 3A and Table S3). In 

triplicate experiments, we identified 3888 proteins and quantified 1970 of them with a median 

reproducibility between replicates of 0.751 (Pearson correlation coefficient). Among the 

quantified proteins, 125 were up-regulated and 87 down-regulated, based on a cut-off of 2 

standard deviation (SD) from the mean of the SILAC ratios (Table S3). The most 

upregulated protein was SQSTM1, which provided a positive control for our experimental 

setup. Furthermore, palmitoyl-protein thioesterase 1 (PPT1), cathepsins (CTS) B, CTSA and 

CTSZ, and tripeptidyl-peptidase 1(TPP1) were among the most down-regulated proteins. 

Such decreased amounts of lytic enzymes are typical in cells with lysosomal dysfunctions 

because enzymes are released in the extracellular environment 39. Accordingly, label-free 

MS analysis of EC conditioned medium identified a strong accumulation of lytic enzymes in 

bafilomycin-treated cells (Table S4). Another protein up-regulated upon bafilomycin 

treatment was amyloid beta A4 protein (APP). APP is an integral membrane protein 

overexpressed in the endothelium of atherosclerotic and Alzheimer disease tissues and is 

involved in monocytic cell adhesion 40. Interestingly, APP overexpression has been shown to 

promote blood-brain barrier hyperpermeability and angiogenesis 41, and endothelial 

dysfunction caused by APP-induced oxidative stress 42. Next, we measured the proteomic 
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changes occurring by prolonged autophagy inhibition upon ATG5 knockdown in ECs. Also in 

this case we used a SILAC spike-in approach. In triplicate experiments with a median 

reproducibility between replicates of 0.882 (Pearson correlation coefficient) we identified 

6807 proteins of which 5333 were quantified (Figure 3B and Table S5). Among these, 128 

increased while 122 decreased levels in si-ATG5 cells based on a 2 SD cut-off from the 

mean SILAC ratio. Transgelin (TAGLN), transforming growth factor beta 2 (TGFB2), retinal 

dehydrogenase 1 (ALDH1A1) and prostaglandin G/H synthase 2 (PTGS2) were among the 

most up-regulated, and UHRF1-binding protein 1 (UHRF1BP1), inositol-pentakisphospate 2-

kinase (IPPK), dimethyladenosine transferase 1 (TFB1M) were among the most down-

regulated proteins (Table S5). A two dimension (2D) category enrichment analysis 29 

revealed that most of the categories that the regulated proteins belonged to were the same, 

whether autophagy was inhibited with bafilomycin or si-ATG5 (Figure 3C and Table S6). In 

particular, the GO categories “ECM organization”, “locomotion”, “cell morphogenesis” and 

“anatomical structure formation” were enriched in the up-regulated proteins. Categories 

related to chromatin organization and RNA metabolic processes were enriched in the down-

regulated ones. When we compared the list of regulated proteins in EC autophagy-inhibited 

upon drug treatment or knockdown, we identified 4 proteins commonly up-regulated (Figure 

3D-E). Among those there was RHOB, a member of the Rho GTPase proteins, which are 

key regulators of actin dependent processes 43. Rho GTPases have been shown to be 

responsible for thrombin-induced endothelial hyperpermeability in HUVECs by promoting 

actomyosin contractility through myosin light chain (MLC) phosphorylation 44 45,46. The small 

overlap of proteins commonly regulated between the two experimental setups may be due to 

several reasons: 1) autophagy was blocked at different points of the autophagic flux; 2) the 

different duration and extent of autophagy inhibition (several days for the siRNA, with some 

residual ATG5 protein; hours for the bafilomycin treatment); 3) bafilomycin affects 

endosomal and lysosomal functions, not only autophagy. However, despite the fact that few 

proteins were commonly regulated, the inhibition of autophagy with bafilomycin or ATG5 
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knockdown resulted in a similar EC phenotype (Figure 2A-I) and cellular function alterations 

(Figure 3C-D). Hence we sought the presence of common upstream regulators. 

Pathway analysis predicts oxidative stress being induced upon autophagy inhibition. 

We used Ingenuity Pathway Analysis (IPA) to predict the upstream drivers of the proteomic 

alterations upon autophagy inhibition with bafilomyicin and si-ATG5. This comparative 

analysis identified TGFB1, interleukin 1B (IL1B), p53 (TP53) and hydrogen peroxide, which 

is a major mediator of oxidative stress 47, as the most likely regulators (Figure 4A-C). All of 

these stimuli control, or are regulated by, autophagy 48 49 50. RHOB was upregulated upon 

autophagy inhibition with bafilomycin and siATG5 (Figure 3D). Since RHOB is highly 

expressed in response to oxidative stress and increases the permeability of human 

pulmonary endothelial cells 51-55 we hypothesized oxidative stress as a possible driver of EC 

alterations induced upon autophagy inhibition. We assessed oxidative stress in autophagy-

inhibited ECs by means of quantifying reactive oxygen species (ROS) with a fluorescent 

probe. This assay revealed a pronounced increase in ROS in bafilomycin-treated (Figure 

4D) and si-ATG5 (Figure 4E) ECs compared to controls. Of note, autophagy inhibition in 

BAECs has been reported to reduce ROS levels 18. This contrasting result may be due to the 

fact that the authors induced autophagy by serum-starving the cells, while in our work 

autophagy was triggered by cell-cell contact. Moreover, here we have used probes for 

detection of general intracellular ROS (CM-H2DCFDA and carboxy,H2DCFDA), while Du et 

al. used a probe (DHE) that specifically detects superoxide species. Further studies are 

therefore required to investigate the source of ROS generated upon autophagy inhibition 

and the link between autophagy inhibition and RHOB-dependent permeability. It is well-

established that autophagy is induced by ROS to decrease oxidative stress and protect cells 

from damage. Our work shows that ECs additionally require autophagy to maintain ROS 

levels, and this corroborates the concept that a dynamic crosstalk exists between ROS and 

autophagy 56-58. 
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ROS induced by inhibition of autophagy impair EC barrier functionality.  

ROS can promote endothelial hyperpermeability 59. Therefore, we determined whether the 

increase in ROS upon autophagy inhibition was responsible for the impaired EC barrier 

functionality (Figure 2F-I). We treated ECs with bafilomycin and scavenged ROS with N-

acetyl-L-cysteine (NAC) and ascorbic acid (vitamin C). Firstly, NAC and ascorbic acid were 

able to reduce bafilomycin-induced ROS in confluent ECs (Figure 4F). Then, we measured 

EC permeability by means of FITC-dextran and FITC-albumin. ROS scavengers partially 

restored the permeability of a monolayer of bafilomycin-treated ECs to the levels of control 

cells (Figure 4G and Figure S2C). This proves that oxidative stress drives the impaired 

barrier functionality of autophagy-inhibited ECs. Hence, we uncovered that autophagy 

maintains EC barrier function in vitro and in vivo. Moreover, we showed that this occurs, at 

least in part, through the control of ROS levels. Interestingly, Torisu et al. 21 have recently 

shown that mice knocked-out for Atg7 in endothelial cells have defects in maturation and 

secretion of vWF, when stimulated with epinephrine. Since oxidoreductase reactions are 

necessary for vWF maturation 60,61 and vWF oxidation can block its proteolysis and secretion 

62,63, it is tempting to speculate that autophagy controls the redox status of ECs also in vivo. 

Conclusions 

In conclusion, in this work we have used in depth quantitative proteomics and an in vitro 

model of human primary endothelial cells mimicking the formation of a stable, mature vessel, 

when in the presence of nutrients. We discovered that autophagy controls endothelial 

permeability in vitro and vascular permeability in vivo. Moreover we have unraveled part of 

the mechanisms behind this process and showed that ECs need autophagy to maintain their 

redox balance, and that this is required to maintain endothelial permeability in vitro. Hence, 

our work opens new windows to study autophagy-regulated ROS functions in blood vessels 

in physiology and diseases. 
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Figures and Tables 

Figure 1. Proteomic profiling reveals increase autophagy in confluent HUVECs. (A) 

Heat map and hierarchical clustering calculated on average Euclidean distance. The 

columns represent 4 different confluency states of ECs: plated sub confluent and grown for 

24h (sub-confluent, sc), 4 days (confluent, 4d), or 8 days (confluent 8d) or plated at high 

density and grown for 24h (tightly confluent, tc). The blocks on the left highlight group of 

proteins increasing (in red) or decreasing (in blue) their levels upon reaching confluency. (B) 

http://proteomecentral.proteomexchange.org/cgi/GetDataset
mailto:reviewer63162@ebi.ac.uk
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Scatter plot showing the GO biological processes (GOBP) categories enriched (Enrichment 

factor>1) or de-enriched (Enrichment factor <1) in the red cluster compared to the blue ones, 

based on Fisher’s exact test analysis. Enriched categories refer to proteins whose level 

increased when cells reached confluency (red block in (A)). GOBP categories with 

Enrichment factor<1 are those enriched in proteins decreasing their level when cells reached 

confluency. (C) Proliferation of ECs when cultured at different confluency, as measured by 

EdU incorporation. (D) SILAC ratio, relative to sc cells, of lysosomal proteins that belong to 

the GO category “vacuole organization”, which was found enriched among proteins 

upregulated upon confluency (B). Bars = mean +/- SEM (n = three experiments performed 

with cells cultured separately and processed for MS analysis on the same day). (E-F) 

Western blotting for p62 (E) and LC3BII (F) showing increased autophagy upon confluency. 

Bafilomycin was used to mark the presence of autophagy flux by blocking the autophagic 

degradation of LC3BII and p62. TUBB = β-tubulin, VINC=vinculin which were used as 

loading controls. 

Figure 2. Autophagy inhibition impairs the functionality of a HUVEC monolayer. (A) 

Western blotting for ATG5 showing the efficiency of the silencing and levels of reduced 

autophagy (LC3B) in HUVECs transfected with siRNA. Quantification of ATG5 is relative to 

TUBB (based on LiCOR software). Bars = mean +/- SD (n = 3 independent transfections). 

TUBB = β-tubulin, which was used as loading control. (B-C) EC proliferation upon ATG5 

siRNA (B) or 4h treatment with 100 nM bafilomycin (C), measured by EdU incorporation. (D-

E) Cell death of ECs upon ATG5 knock-down (D) or bafilomycin treatment (E), measured by 

Annexin V and PI staining. Apoptotic cells are the Annexin V positive. (F-I) Endothelial cell 

barrier permeability measured by trans-endothelial electrical resistance (TEER) upon ATG5 

siRNA (F) or bafilomycin treatment (G) and measured by FITC-dextran permeability upon 

ATG5 siRNA (H, data from 4 combined experiments) or bafilomycin treatment (I). (J) 

Western blotting for Atg7 showing the efficiency of Atg7 depletion in endothelial cells isolated 

from tamoxifen-treated Atg7flox/floxCdh5-Cre+/− (Atg7 fl/fl) and Atg7flox/floxCdh5-Cre−/− (used as 
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control, Ct).  Vcl = Vinculin was used as loading control. (K) Quantification of the Evans Blue 

injected in the vasculature and that leaked out from the blood vessels of the lungs of 

tamoxifen-treated Atg7flox/floxCdh5-Cre+/− (Atg7 fl/fl) and Atg7flox/floxCdh5-Cre−/− (Ct). n = 5 mice 

from two independent experiments. 

Figure 3. Proteomics of autophagy-inhibited HUVECs. (A) Top 15 proteins with 

increased (top) and decreased (bottom) levels upon bafilomycin treatment (4h, 100nM). (B) 

Top 15 proteins with increased (top) and decreased (bottom) levels upon ATG5 siRNA. (C) 

Two dimension (2D) category (Gene Ontology) enrichment analysis highlighting the 

presence of several categories similarly enriched (red dots) and de-enriched (blue dots) 

when autophagy was inhibited with bafilomycin or si-ATG5. X and y axis represent the 

normalized averaged regulation (based on the measured SILAC ratio) of the proteins 

belonging to the indicated category 29. (D) Venn diagram of proteins increasing (UP) or 

decreasing (DOWN) their levels in the bafilomycin and si-ATG5 experiment. (E) Proteins 

commonly up-regulated upon bafilomycin treatment and si-ATG5.  

Figure 4. Increased ROS caused by autophagy inhibition are partially responsible for 

increase in endothelial barrier permeability. (A) Predicted upstream regulators in 

response to autophagy inhibition by si-ATG5 or bafilomyicin treatment (calculated by IPA). 

(B-C) Hydrogen peroxide targets found regulated upon si-ATG5 (B) or bafilomycin (C). Red 

= upregulated, green = downregulated, orange arrow = leads to activation, blue arrow = 

leads to inhibition, grey arrow = effect not predicted, yellow arrow = finding inconsistent with 

state of downstream molecule. (D-E) Reactive oxygen species (ROS) measurement in live 

cells upon autophagy inhibition by si-ATG5 (D) or bafilomycin (E). (F) Total cellular ROS 

measurements showing that increased ROS due to autophagy inhibition in HUVECs with 

bafilomycin are diminished by treating cells with the anti-oxidants N-acetyl-L-cysteine (NAC) 

and ascorbic acid (vitamin C). (G) Endothelial cell barrier permeability measured by FITC-

dextran permeability shows that increased HUVEC barrier permeability due to autophagy 

blockade by bafilomycin is rescued by scavenging the ROS with NAC and vitamin C. 
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Supporting Information 

Figures and Tables 

Table S1. Proteins identified and quantified in HUVECs (total lysate) forming a tightly 

confluent monolayer. 

Table S2. Gene Ontology (GO) category enrichment analysis of proteins regulated 

when HUVECs form a tightly confluent monolayer 

Table S3. Proteins identified and quantified in HUVECs (total lysate) cultured 

confluent for 4 days upon 4h bafilomycin treatment. 

Table S4. Proteins identified and quantified in HUVECs (serum-free conditioned 

medium) cultured confluent for 4 days upon 4h bafilomycin treatment. 

Table S5. Proteins identified and quantified in HUVECs (total lysate) silenced for 

ATG5. 

Table S6. Two dimension (2D) Gene Ontology (GO) category enrichment analysis 

upon autophagy inhibition with si-ATG5 or bafilomycin. 

Figure S1. Proteomic analyses. 

Figure S2. Autophagy inhibition increases the permeability of EC monolayer. 
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A B
Gene names 4d BAFI vs 4d DMSO SD

APP 1.0405 0.3871
GJA1 0.8476 0.0910
IL6ST 0.8248 0.1795
FHOD1 0.7987 1.0811
SQSTM1 0.7642 0.5557
CRIM1 0.7206 0.2279
CD55;DAF 0.6496 0.7921
JAK1 0.6351 0.4495
PSAP 0.6335 0.3135
MMP14 0.6296 0.1179
TMEM30A 0.5526 0.2082
SLC38A2 0.5498 0.2560
NRP1 0.5126 0.2353
CD81 0.5057 0.4297
B2M 0.4947 0.4426

Gene names 4d BAFI vs 4d DMSO SD
PPT1 -2.1983 0.1729
CTSB -1.8161 0.1314
TPP1 -1.7345 0.0998
CTSA -1.3144 0.2982
UAP1L1 -0.8194 1.2450
CTSZ -0.7535 0.3370
CSTF3 -0.6394 0.7419
GLB1 -0.6269 0.2059
ITGA2 -0.6162 1.1088
DUSP3 -0.6030 0.6497
CTSC -0.5727 0.6213
NUCB1 -0.5696 0.2511
KRT18 -0.5554 0.5541
MPRIP -0.5461 0.2839
SULT1E1 -0.5074 0.6127

Gene names si-ATG5 vs si-NC SD
TAGLN 2.0007 0.2275
TGFB2 1.3358 0.4121
ALDH1A1 1.2263 0.2599
PTGS2 1.1474 0.4739
PLA2G4C 1.1167 0.1238
BMP1 1.1141 0.3995
RELB 1.0999 0.3678
FABP4 0.9845 0.3196
TNFSF4 0.9325 0.2508
MMP2 0.9174 0.2204
DPYSL4 0.9170 0.2593
FN1 0.8609 0.1359
MMP1 0.8596 0.2195
COL4A1 0.8576 0.5980
COL12A1 0.8562 0.1999

Gene names si-ATG5 vs si-NC SD
UHRF1BP1 -2.1638 1.1195
IPPK -2.0385 0.8934
TFB1M -1.5909 0.9517
DUS3L -1.5845 1.9065
KIF14 -1.5361 0.9782
IL1RL1 -1.3688 0.4280
ATG16L1 -1.3247 0.2046
CLDN5 -1.2626 0.3482
MED1 -1.1434 0.2293
EIF4EBP1 -1.1283 0.4788
CCDC56 -1.1244 0.9382
FLNB -1.0805 0.8160
SMAGP -1.0770 0.2295
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BIN1 -0.9247 0.3207
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Protein name Gene names
Complement decay accelera ng factor CD55
Cys-rich motoneuron 1 protein CRIM1
Endothelial cell-specific molecule 1 ESM1
Rho-related GTP-binding protein RhoB RHOB
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E

Upstream regulators si-ATG5 vs si-NC 4d Bafi vs 4dDMSO si-ATG5 vs si-NC 4d Bafi vs 4dDMSO
TGFB1 2.2872 1.7203 7.9138 1.4132
IL1B 1.5375 2.0572 6.8569 5.8206
TP53 1.4051 2.1014 14.3846 4.2281
MYC -1.9865 1.5086 7.8838 3.6273
genistein -2.4262 -1.0000 2.3878 7.4605
hydrogen peroxide 1.7341 1.4318 3.0191 4.2466
dexamethasone 1.2176 1.9412 10.6236 2.0324
lipopolysaccharide 2.9670 -0.1489 10.1792 2.8588
EDN1 2.8505 0.2249 5.0362 2.5139
tre noin 2.2303 0.7484 6.0427 4.7774
D-glucose 2.5803 -0.3906 2.8383 2.3047
PDGF BB 0.8739 1.9640 7.0983 1.7706
MYCN -1.9322 -0.8083 5.5656 3.9757
PPARG -0.9430 -1.7321 4.9348 1.4173
IL1 1.4719 1.1879 1.9816 2.4421
TNF 1.7528 0.8959 6.1062 7.5474
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Supporting Information 

Table S1. Proteins identified and quantified in HUVECs (total lysate) forming a tightly 

confluent monolayer. 

Table S2. Gene Ontology (GO) category enrichment analysis of proteins regulated 

when HUVECs form a tightly confluent monolayer 

Table S3. Proteins identified and quantified in HUVECs (total lysate) cultured 

confluent for 4 days upon 4h bafilomycin treatment. 

Table S4. Proteins identified and quantified in HUVECs (serum-free conditioned 

medium) cultured confluent for 4 days upon 4h bafilomycin treatment. 

Table S5. Proteins identified and quantified in HUVECs (total lysate) silenced for 

ATG5. 

Table S6. Two dimension (2D) Gene Ontology (GO) category enrichment analysis 

upon autophagy inhibition with si-ATG5 or bafilomycin. 

Figure S1. Proteomic analyses. (A) Time resolved SILAC-based proteomic analysis used 

to identify cellular processes regulated in HUVEC while assembling into a physiologically 

permeable monolayer. (B) SILAC-based proteomic analysis used to identify proteomic 

alterations which occur in HUVEC upon acute/short term or chronic/long term inhibition of 

autophagy. Short term inhibition was triggered by 4h bafilomycin treatment while long term 

inhibition (4 days) by silencing ATG5 (si-ATG5). Control = DMSO-treated cells; siNT = non 

targeting siRNA. 

Figure S2. Autophagy inhibition increases the permeability of EC monolayer. (A-B) 

Endothelial cell barrier functionality measured by FITC-albumin permeability upon ATG5 

siRNA (A) or bafilomycin (bafi) treatment (B). (C) Increased FITC-albumin permeability due 

to autophagy blockade by bafilomycin is rescued by scavenging the ROS with NAC and 

vitamin C (NAC + Vit C). 
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