
H U M A N D E C I S I O N - M A K I N G I N C O M P U T E R S E C U R I T Y
I N C I D E N T R E S P O N S E

jonathan michael spring

PhD
Computer Science

Faculty of Engineering
University College London (UCL)

2019

Supervisors:
Prof. David Pym
Dr. Phyllis Illari
Dr. Emiliano De Cristofaro

Jonathan Michael Spring:
Human decision-making in computer security incident response
Creative Commons license BY-NC 4.0, 2019
version 1.1

DECLARATION

I, Jonathan Michael Spring, confirm that the work presented in this
thesis is my own. Where information has been derived from other
sources, I confirm that this has been indicated in the thesis.

London, UK, 2019

Jonathan Michael Spring

DEDICATION

This work is dedicated to my parents, for their continued love and
support.

5

ABSTRACT

background: Cybersecurity has risen to international importance.
Almost every organization will fall victim to a successful cyberat-
tack. Yet, guidance for computer security incident response ana-
lysts is inadequate.

research questions: What heuristics should an incident analyst
use to construct general knowledge and analyse attacks? Can we
construct formal tools to enable automated decision support for
the analyst with such heuristics and knowledge?

method: We take an interdisciplinary approach. To answer the first
question, we use the research tradition of philosophy of science,
specifically the study of mechanisms. To answer the question on
formal tools, we use the research tradition of program verification
and logic, specifically Separation Logic.

results: We identify several heuristics from biological sciences that
cybersecurity researchers have re-invented to varying degrees. We
consolidate the new mechanisms literature to yield heuristics re-
lated to the fact that knowledge is of clusters of multi-field mech-
anism schema on four dimensions. General knowledge structures
such as the intrusion kill chain provide context and provide hy-
potheses for filling in details. The philosophical analysis answers
this research question, and also provides constraints on building
the logic. Finally, we succeed in defining an incident analysis logic
resembling Separation Logic and translating the kill chain into it
as a proof of concept.

conclusion: These results benefits incident analysis, enabling it to
expand from a tradecraft or art to also integrate science. Future
research might realize our logic into automated decision-support.
Additionally, we have opened the field of cybersecuity to collab-
oration with philosophers of science and logicians.

7

IMPACT STATEMENT

The potential impact of this thesis is both within and outside the
academy.

Improvements to the practice of incident response will take some
significant effort to transition, not least because the attention of such
personnel is a scarce resource. The learning curve on scientific know-
ledge generation heuristics is steep. Nonetheless, I will provide two spe-
cific improvements that can impact incident response and Computer
Network Defense (CND):

• robust knowledge creation and structured-observation design
heuristics;

• a logical language to communicate reasoning steps without reveal-
ing sensitive data.

The thesis should enable further work within the academy. This
thesis will, in some ways, chart out new fields of philosophy of cybersec-
urity in general and of computer security incident response in particular.
Furthermore, this thesis will sensitize the fields of logic and philosophy
of science to cybersecurity. The three research or development areas
that appear most fruitful going forwards are: automated decision sup-
port for incident response; meta-logical analysis of the properties of the
logic defined; and extension of the account of explanation and mechan-
ism discovery both into cybersecurity and back into the philosophical
literature on scientific explanation generally.

The third area for impact will be in how we train new incident ana-
lysts. There are at least three areas in which this impact might be real-
ized. First, standards bodies could work to fill the gap Chapter 2 will
identify in existing standards. Second, both Chapter 3 and Chapter 4
will identify likely challenges; future work on pedagogy could focus on
how to best enable analysts to overcome them. Chapter 4, Chapter 5,
and Chapter 7 will offer qualitative progress on some norms and ex-
pectations for analytic steps, but integrating these ideas into training
and measuring results is future work.

In all three of these areas – practice, academics, and pedagogy – in
order to bring about impact the work will need to be disseminated, in-
tegrated into education, and potentially engage public policy makers or
business leaders about integrating these changes into the way computer-
security incidents are handled.

9

CONTENTS

1 introduction and motivation 23
1.1 Summary of the argument 23
1.2 Impact 24
1.3 Important definitions 25
1.4 Publications and submissions adapted for thesis 26
1.5 Publications not adapted in thesis 27
1.6 Disclaimer 29

i background

2 literature review – incident response 33
2.1 Introduction 33
2.2 Scope 35

2.2.1 Scope—Topic 36
2.2.2 Scope—Publication Venues 38

2.3 Related literature reviews 43
2.4 Methods 47

2.4.1 Search strategy 47
2.4.2 Appraisal strategy 48
2.4.3 Synthesis methods 49
2.4.4 Limitations 52

2.5 Results 54
2.5.1 IETF 55
2.5.2 ISO 56
2.5.3 FIRST 56
2.5.4 Intelligence community 59
2.5.5 Referenced Documents 60

2.6 Discussion 71
2.6.1 Comments and clarifications on Table 2.12 76
2.6.2 Note on case studies 83

2.7 Gaps and Work Plan 84
2.7.1 Research question 84

2.8 Related work 85
2.8.1 Interdisciplinary overlaps 86
2.8.2 Parts of information and computer science 89

2.9 Conclusion 92
3 literature review – science and security 95

3.1 Purported impediments to a science of security 96
3.2 Philosophy of science – historical background 97
3.3 Existing statements of science and security 100

3.3.1 Prepositions: ‘of’ or ‘for’ security 111
3.4 Practicing Science of Security 112

3.4.1 Scientific methods 114
3.4.2 Evaluating Results 120
3.4.3 The nature of scientific inquiry 126
3.4.4 Scientific Language(s) 130

11

12 contents

3.4.5 Engineering or Science? 133
3.5 A Science of Security very much exists 135
3.6 Research plan 137

ii generalising, applying, and formalising know-

ledge

4 general knowledge of mechanisms 141
4.1 Introduction 142
4.2 Generality in philosophy of science 145

4.2.1 Turning away from laws 145
4.2.2 Generality and mechanisms 147

4.3 Building mechanistic knowledge in cybersecurity 152
4.3.1 The three challenges for cybersecurity 153
4.3.2 Three examples of cybersecurity mechanisms 158

4.4 Building general knowledge in cybersecurity 168
4.4.1 Constraining: On improving coordination in cy-

bersecurity 173
4.5 Conclusion 176

5 the intrusion kill chain as a case study 181
5.1 Introduction 181
5.2 Reasoning with the kill chain as a mechanism 184

5.2.1 Higher-level mechanisms 190
5.2.2 On lower-level mechanisms 192

5.3 Examples of Incident Analysis 194
5.3.1 Example 1: The Cuckoo’s Egg 195
5.3.2 Example 2: Airport Security 200

5.4 Conclusions 204
6 separation logic as a case study 207

6.1 Introduction to Separation Logic 207
6.2 Solving a Hard Problem 212
6.3 Why Separation Logic Works 217

6.3.1 The separating conjunction 219
6.3.2 Hoare triples 220
6.3.3 Frame Rule 221
6.3.4 Automatable abduction 222

6.4 The Semantics of Separation Logic 223
6.4.1 Bunched Logic 224
6.4.2 The Semantics of Bunched Logic 225
6.4.3 The Resource Semantics of Separation Lo-

gic 229
6.5 Deployable Proof Theory for Separation Logic 233

6.5.1 Separation Logic and the Frame Rule 234
6.5.2 Deployability via Contextual Refinement 235
6.5.3 Bi-abduction 236

6.6 Conclusion 243

iii a logic of reasoning in incident analysis

7 logic definition 249
7.1 Philosophical and historical analyses 249

contents 13

7.1.1 Summary of requirements 252
7.2 Logic design choices 253
7.3 Logic Definitions 255

7.3.1 Expressions 256
7.3.2 Basics and syntax 257
7.3.3 Model 259
7.3.4 Semantics 262
7.3.5 Abduction 264
7.3.6 On the metatheory of the security incident ana-

lysis logic 265
7.4 A worked example 266

7.4.1 A logic of the kill chain 270
7.4.2 Using more granular knowledge 273
7.4.3 Composition of attacks into a campaign 275

7.5 Benefits of this logic 279
7.6 Conclusions 280

iv consolidation

8 summary 283
9 conclusions 285

v backmatter

bibliography 293

L I ST OF F IGURES

Figure 3.1 The mathematical modeling cycle 120
Figure 4.1 GameOver Zeus botnet mechanism 159
Figure 4.2 Simple kill-chain diagram 163
Figure 5.1 Improved kill chain mechanism 185
Figure 5.2 Mechanistic translation of common language for

computer security incidents 190
Figure 5.3 Mechanistic translation of a drive-by down-

load 193
Figure 5.4 Model of accounting systems generated by Stoll

during incident analysis 197
Figure 5.5 Representation of game-theoretic model as a

mechanism 201
Figure 6.1 Anatomy of a pointer 214
Figure 6.2 Example pointer error – memory leaks 215
Figure 6.3 Pointers forming a linked list 230
Figure 6.4 Satisfaction relation for BI pointer logic 231

L I ST OF TABLES

Table 2.1 Results of ACM CSUR search for extant literat-
ure reviews 45

Table 2.2 All documents found to be relevant through the
search methodology 54

Table 2.3 IETF database search results 55
Table 2.4 ISO database search results 57
Table 2.5 Summary of results found through FIRST 58
Table 2.6 intelligence community search results 60
Table 2.7 Data formats cited by IETF standards 62
Table 2.8 ISO database search results 65
Table 2.9 Publications referenced by NIST SP800-61 67
Table 2.10 Documents referenced by CERT/CC sources 69
Table 2.11 Resources referenced by intelligence community

documents 70
Table 2.12 Results: document categorization 75
Table 3.1 Common complains against science of secur-

ity 97
Table 3.2 Summary of responses to the common com-

plaints against a science of security 113

14

acronyms 15

ACRONYMS

ACM Association for Computing Machinery

ACoD Art into Science: A Conference for Defense

AES Advanced Encryption Standard

AirCERT Automated Incident Reporting

APWG Anti-Phishing Working Group

ARMOR Assistant for Randomized Monitoring Over Routes

ARPA Advanced Research Projects Agency, from 1972–1993 and
since 1996 called DARPA

ATT&CK Adversarial Tactics, Techniques, and Common Knowledge
(by MITRE)

BCP Best Current Practice, a series of documents published by
IETF

BGP Border Gateway Protocol

BI logic of bunched implications

BIS Department for Business, Innovation, and Skills (United
Kingdom)

BLP Bell-Lapadula, a model of access control

CAE Center of Academic Excellence

CAIDA Center for Applied Internet Data Analysis, based at
University of California San Diego

CAPEC Common Attack Pattern Enumeration and Classification
(by MITRE)

CCIPS Computer Crime and Intellectual Property Section of the
US Department of Justice (DoJ)

CCE Common Configuration Enumeration (by NIST)

CCSS Common Configuration Scoring System (by NIST)

CEE Common Event Expression (by MITRE)

CERT/CC CERT® Coordination Center operated by Carnegie
Mellon University

CIA Central Intelligence Agency (US)

16 acronyms

CIS Center for Internet Security

CND Computer Network Defense

CNO Computer Network Operations

CPE Common Platform Enumeration (by NIST)

CSIR Computer Security Incident Response

CSIRT Computer Security Incident Response Team

CTL Concurrent Time Logic

CVE Common Vulnerabilities and Exposures (by MITRE)

CVRF Common Vulnerability Reporting Framework

CVSS Common Vulnerability Scoring System, maintained by
FIRST

CWE Common Weakness Enumeration (by MITRE)

CWSS Common Weakness Scoring System, maintained by
MITRE

CybOX Cyber Observable Expression, maintained by MITRE

DARPA Defense Advanced Research Projects Agency

DHS US Department of Homeland Security

DNS Domain Name System

DoD US Department of Defense

DoJ US Department of Justice

ENISA EU Agency for Network and Information Security

EPSRC Engineering and Physical Sciences Research Council
(United Kingdom)

EU European Union

FAA Federal Aviation Administration (US)

FBI US Federal Bureau of Investigation

FDA US Food and Drug Administration

FIRST Forum of Incident Response and Security Teams

FISMA Federal Information Security Management Act (US)

FS-ISAC Financial Services Information Sharing and Analysis
Center (ISAC)

acronyms 17

GCHQ Government Communications Headquarters (United
Kingdom)

GFIRST Government FIRST

HotSoS Symposium on the Science of Security

HTTP Hypertext Transfer Protocol, a standard by W3C

HTCIA High Technology Crime Investigation Association

IC intelligence community

ICT information and communications technology

IEEE Institute of Electrical and Electronic Engineers

IEP Information Exchange Policy

IETF Internet Engineering Task Force

IDS intrusion detection system

IODEF Incident Object Description Exchange Format

IODEF+ Incident Object Description Exchange Format Extensions
(RFC 5901)

IDMEF Intrusion Detection Message Exchange Format
(RFC 4765)

ISAC Information Sharing and Analysis Center

ISC Internet Storm Centerpart of the privately-run
SANS Institute

ISO International Organization for Standardization

ISP Internet Service Provider

ITU International Telecommunications Union, an agency of
the UN

LAX Los Angeles International Airport

LBNL Lawrence Berkeley National Laboratory

MAEC Malware Attribute Enumeration and Characterization
(by MITRE)

MITRE the Mitre Corporation

MMDEF Malware Metadata Exchange Format

NATO North Atlantic Treaty Organization

NCA National Crime Agency (UK)

18 acronyms

NCCIC US National Cybersecurity and Communications
Integration Center

NDA non-disclosure agreement

NIDPS Network Intrusion Detection and Prevention System

NIST National Institute of Standards and Technology, part of
the US Department of Commerce

NSA National Security Agency (US)

NSF National Science Foundation (US)

OCIL Open Checklist Interactive Language (by NIST)

OVAL Open Vulnerability and Assessment Language (by MITRE)

OWASP Open Web Application Security Project

OWL Ontology Web Language

pDNS passive Domain Name System (DNS) traffic analysis

RAM Random Access Memory

RCT Randomized Controlled Trial

REN-ISAC Research and Education Networking Information Sharing
and Analysis Center (ISAC)

RID Real-time Inter-network Defense

RISCS Research Institute in Science of Cyber Security (United
Kingdom)

SANS Institute Sysadmin, Audit, Network, and Security Institute

SCAP Security Content Automation Protocol (by NIST)

SiLK System for Internet-level Knowledge, an open-source
analysis tool set published by CERT® Coordination
Center (CERT/CC)

SoK Systematization of Knowledge paper in IEEE Oakland
conference

STIX Structured Threat Information Expression (by MITRE)

TAXII Trusted Automated eXchange of Indicator Information
(by MITRE)

TCP/IP Transmission Control Protocol / Internet Protocol

TLA Temporal Logic of Actions

TLP Traffic Light Protocol

acronyms 19

TSA Transport Security Administration (US)

TTPs Tools, tactics, and procedures

UN United Nations

UML Unified Modeling Language, see Larman (2004)

US United States of America

US-CERT US Computer Emergency Readiness Team, a branch of
NCCIC within DHS

URL Uniform Resource Locator

VERIS Vocabulary for Event Recording and Incident Sharing

W3C World Wide Web Consortium

XCCDF Extensible Configuration Checklist Description Format
(by NIST)

XML Extensible Markup Language, a standard by W3C

1
INTRODUCTION AND MOTIVATION

This thesis is about how we can be better at cybersecurity.1 The thesis

approaches improving cybersecurity by enriching the cognitive tools

we have to reason about problems in the domain. Specifically, via the

central problem of incident analysis, a human-centric task within the

computer security incident management process. The ultimate tangible

output of the thesis is a logic within which incident analysis can be

expressed and refined. The qualitative reasoning tools developed along

the way that guide the development of the logic are also valuable and

more quickly applicable.

1.1 summary of the argument

Based on the literature review in Chapter 2, the research question I

will address in this thesis will be: How to satisfactorily make clear and

explicit the reasoning process used by individual Computer Security

Incident Response (CSIR) analysts while they pursue technical details?

This breaks down into three component questions:

• What heuristics should an incident analyst use to construct gen-

eral knowledge and analyse attacks?

• Is it possible to construct formal tools that enable automated

decision support for the analyst with such heuristics and know-

ledge?

• How can an incident analyst apply general knowledge to improve

analysis of specific incidents?

1 Or, if you prefer a different term, information security, or computer security, or IT

security, or ICT security.

21

22 introduction and motivation

My strategy to answer these questions is to work as much by ana-

logy to existing fields of study as possible, but where necessary build

accounts of general knowledge and formal tools where needed. First,

I will argue that CSIR functions like a scientific endeavour. Therefore,

in many more cases than is currently appreciated, the heurstics of the

sciences, and particularly life sciences, can meet gaps in CSIR analysis.

Building on this claim that CSIR is like a science, I will claim

that CSIR analysts (should) build general knowledge as other sciences

(should). One good model is knowledge of mechanisms. To demonstrate

how such models apply to CSIR, I will provide several examples of

mechanisms in CSIR at various levels. An important recurring example

across chapters will be the intrusion kill chain model of cyberattacks.

Since cyberattacks are a central phenomenon within CSIR, discovering

(a model of) an attack, formalizing a model of an attack, and commu-

nicating general knowledge about the structure of attacks are key CSIR

analysis functions. The recurring example of the kill chain helps ensure

my (mental and formal) tools support such analysis.

Finally, I claim that CSIR analysts should reason (about mechanisms)

explicitly. In order to locate an adequate formal representation of reas-

oning in CSIR, I will perform a case study on Separation Logic, a logic

for program verification in which both reasoning and abduction are

explicit and scalable. One important result of the case study is that

logics should be built to match analytic needs in order to be useful. To

this end, since there is no extant formal tool for reasoning in CSIR, it

will be necessary to construct one. I will take specific care to include

temporal and spatial operators to permit modes of reasoning that the

philosophical analysis of CSIR identifies as valuable.

1.2 impact

Although any security practitioner or researcher is capable of learn-

ing to look at their problems in the light of scientific model discovery,

1.3 important definitions 23

there is no turn-key or push-button solution to change one’s thinking

habits. One benefit of the abstraction level this thesis takes is the wide

applicability of the results. The trade-off is that each practitioner or

researcher who wishes to do so cannot do so casually. Through future

work, the logic defined in Chapter 7 may eventually amplify efforts via

some automation.

The impact of moving towards a more scientific incident analysis

is an analysis process better grounded in evidence and more likely to

produce reliable insights from collected evidence. The impact of bet-

ter incident analysis is likely better incident response, in turn likely

leading to better remediation of incidents and better lessons learned.

Better lessons learned will eventually propagate to better preparation

for, and prevention of, security incidents. The impact of more scientific

incident analysis also should make scientific research in security better

connected to security practice, thereby also improving the relevance of

research practice.

1.3 important definitions

Although I will focus on a specific aspect of cybersecurity, namely

Computer Security Incident Response (CSIR), I feel it is important

to explicitly define cybersecurity. I had preferred the better-defined

‘information security,’ but for this thesis I will generally discuss cy-

bersecurity as the practice to which CSIR contributes. Shirey (2007)

defines information security as “measures that implement and assure

security services in information systems, including in computer systems

and in communication systems” where ‘information systems’ mean “an

organized assembly of computing and communication resources and

procedures – i.e., equipment and services, together with their support-

ing infrastructure, facilities, and personnel – that create, collect, record,

process, store, transport, retrieve, display, disseminate, control, or dis-

pose of information to accomplish a specified set of functions.” Thus

24 introduction and motivation

defined, information security is quite expansive. Even so, I will define

cybersecurity as strictly a superset of information security. The addi-

tional item I take to be included in cybersecurity is the security of the

shared social space created by the various human agents who manip-

ulate information enabled by these information systems (‘The origins

of cyberspace’). This definition is consistent with, for example, the US

military’s definition of cyberspace as a domain of warfare; however, in

the military usage the purpose of the shared social space is to conduct

warfare. In my usage, cybersecurity is: measures to implement and as-

sure security services for the full range of human social uses of shared

(cyber)space, in addition to security services for information systems.

The remainder of this chapter describes my publications both before

and during my time at UCL. Several chapters of the thesis have already

been published, and the remaining material chapters are under submis-

sion. The various publications that are not incorporated into the thesis

form a body of background experience that has informed my problem

specification and approach, but are not directly in support of a more

scientific approach to incident analysis.

1.4 publications and submissions adapted for thesis

The chapters in the thesis are largely derived from material that has

been either published or submitted for publication. Specifically:

• Chapter 2 is an expanded version of a paper submitted to ACM

Computing Surveys in April 2018.2

• Chapter 3 is derived from a paper published at NSPW 2017.3

• Chapter 4 is derived from a paper in Philsophy & Technology.4

2 Jonathan M Spring and Phyllis Illari (Apr. 2018b). ‘Review of Human Decision-

making during Incident Analysis’. In: arXiv preprint 1903.10080.

3 Jonathan M Spring et al. (2nd Oct. 2017). ‘Practicing a Science of Security: A

philosophy of science perspective’. In: New Security Paradigms Workshop. Santa

Cruz, CA, USA.

4 Jonathan M Spring and Phyllis Illari (2018a). ‘Building General Knowledge of Mech-

anisms in Information Security’. In: Philosophy & Technology. doi: 10.1007/s13347-
018-0329-z.

https://doi.org/10.1007/s13347-018-0329-z
https://doi.org/10.1007/s13347-018-0329-z

1.5 publications not adapted in thesis 25

• Chapter 5 is a reworking of a paper published in the Journal of

Cybersecurity.5

• Chapter 6 is derived from a paper in Philosophy & Technology.6

• Chapter 7 is derived from a paper published and presented at the

Conference on Decision and Game Theory for Security, 2018.7

• The concluding Chapters 8 and 9 are new for this thesis.

1.5 publications not adapted in thesis

I have published work both during my time at UCL and prior to joining

UCL that are relevant to this thesis but from which no text is adapted.

There are five additional publications from my time at UCL. Three

publications not represented in the thesis are applications of the philo-

sophical work presented in the thesis to usable security research meth-

ods,8 usable security studies,9 and network security measurement.10

The other two publications are further philosophical developments, on

refining the philsophical tools for use in security11 and malicious soft-

ware classification.12

Publications prior to my time at UCL focus mostly on my experience

of incident analysis and threat intelligence. In both of these areas, the

publications alternate between technical contributions and synthesizing

general knowledge from past work. The work that unexpectedly began

5 Jonathan M Spring and Eric Hatleback (Jan. 2017). ‘Thinking about intrusion kill

chains as mechanisms’. In: Journal of Cybersecurity 3.3, pp. 185–197.

6 David Pym et al. (2018). ‘Why separation logic works’. In: Philosophy & Technology.

doi: 10.1007/s13347-018-0312-8.
7 Jonathan M Spring and David Pym (31st Oct. 2018). ‘Towards Scientific Incident

Response’. In: GameSec. LNCS 11199. Seattle, WA: Springer.

8 Kat Krol et al. (26th May 2016). ‘Towards robust experimental design for user

studies in security and privacy’. In: Learning from Authoritative Security Experiment

Results (LASER). IEEE. San Jose, CA, pp. 21–31.

9 Albese Demjaha et al. (18th Feb. 2018). ‘Metaphors considered harmful? An explor-

atory study of the effectiveness of functional metaphors for end-to-end encryption’.

In: Workshop on Usable Security (USEC). San Diego, CA: ISOC.

10 Leigh B Metcalf et al. (18th Oct. 2017). ‘Open-source measurement of fast-flux

networks while considering domain-name parking’. In: Learning from Authoritative

Security Experiment Results (LASER). USENIX. Arlington, VA, USA, pp. 13–24.

11 Eric Hatleback and Jonathan M Spring (2018). ‘A Refinement to the General Mech-

anistic Account’. In: European Journal for Philosophy of Science.

12 Giuseppe Primiero et al. (2018). ‘On Malfunction, Mechanisms, and Malware Clas-

sification’. In: Philosophy & Technology Online First.

https://doi.org/10.1007/s13347-018-0312-8

26 introduction and motivation

this philosophical thread was a deceptively simple question: what black-

list should I use? This question led to a complicated study to construct

a baseline from which blacklists could be compared.13 These surpris-

ing results were eventually corroborated by further work14 as well as

by other studies within the security community (Kührer et al., 2014;

Trost, 2014; Verizon, 2015). My passive DNS analysis expertise led to

collaborations at major conferences, on typosquatting15 at USENIX

and on the internet of things, back when it was just “customer premise

equipment”, at Black Hat.16

Three publications cover analysis methods, and another is tightly al-

lied with analysis and tools. The first discussed indicator expansion,17

a method for noting how network touchpoints are related by different

data sources. A technical report on CND strategy discussed when indic-

ators should be used for defence – thus revealing to adversaries defender

knowledge – and when such equities should be withheld.18 Another

conference paper provided an analysis of the advancement of adversary

capability, with the goal of supporting long-term defence capability

planning that can account for future, not just current, adversary capab-

ility.19 With several of the System for Internet-level Knowledge (SiLK)

engineers, I captured the analysis and design choices that went into

the design of the tools and why they are optimized for certain kinds of

analytic tasks.20

13 Leigh B Metcalf and Jonathan M Spring (Sept. 2013). Everything you wanted to

know about blacklists but were afraid to ask. Tech. rep. CERTCC-2013-39. Pitts-

burgh, PA: Software Engineering Institute, Carnegie Mellon University.

14 Leigh B Metcalf and Jonathan M Spring (12th Oct. 2015). ‘Blacklist Ecosystem Ana-

lysis: Spanning Jan 2012 to Jun 2014’. In: The 2nd ACM Workshop on Information

Sharing and Collaborative Security. Denver, pp. 13–22.

15 Janos Szurdi et al. (Aug. 2014). ‘The long “taile” of typosquatting domain names’. In:

23rd USENIX Security Symposium. USENIX Association. San Diego, pp. 191–206.

16 Chris Hallenbeck et al. (7th Aug. 2014). ‘Abuse of Customer Premise Equipment

and Recommended Actions’. In: Black Hat USA 2014. Las Vegas, Nevada: UBM.

17 Jonathan M Spring (Sept. 2013a). ‘A notation for describing the steps in indicator

expansion’. In: eCrime Researchers Summit (eCRS), 2013. IEEE. San Francisco.

18 Jonathan M Spring and Edward Stoner (July 2015). CND Equities Strategy. Tech.

rep. CERTCC-2015-40. Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University.

19 Jonathan M Spring et al. (27th May 2015). ‘Global adversarial capability modeling’.

In: APWG Symposium on Electronic Crime Research (eCrime). IEEE. Barcelona.

20 Mark Thomas et al. (1st July 2014). ‘SiLK: A tool suite for unsampled network flow

analysis at scale’. In: IEEE BigData Congress. Anchorage, pp. 184–191.

1.6 disclaimer 27

Prior publications also include some wider-ranging topics. I co-

authored a textbook targeted at policy and management graduate

students, to provide them with a strategic introduction to information

security.21 I took a short diversion into systems security work and

wrote a well-cited analysis of cloud security.22 Further, the initial

philosophical contribution arguing for a mechanistic understanding of

experimentation and generating knowledge within computer science

was published in 2014.23

1.6 disclaimer

I have come to this topic because of my prior work at the CERT®

Coordination Center at Carnegie Mellon University’s Software Engineering

Institute. However, the SEI and Carnegie Mellon are unaffiliated with this

thesis and none of its content necessarily represents the views of Carnegie

Mellon or the SEI, or any other organization with which they are affiliated

or that I have past affiliations with. All opinions expressed herein are my

own (and perhaps those of my wonderful co-authors, where collaborations are

noted).

21 Timothy Shimeall and Jonathan M Spring (Jan. 2014). Introduction to Information

Security: A Strategic-based Approach. Waltham, MA: Elsevier.

22 Jonathan M Spring (2011a). ‘Monitoring cloud computing by layer, part 1’. In: Se-

curity & Privacy 9.2, pp. 66–68; Jonathan M Spring (2011b). ‘Monitoring cloud

computing by layer, part 2’. In: Security & Privacy 9.3, pp. 52–55.

23 Eric Hatleback and Jonathan M Spring (2014). ‘Exploring a mechanistic approach

to experimentation in computing’. In: Philosophy & Technology 27.3, pp. 441–459.

Part I

B AC KG RO U N D

This part is composed of two chapters. The first is an

in-depth literature review on the main topic – human

decision-making during Computer Security Incident Re-

sponse (CSIR). Chapter 2 serves to lay out the scope of

the thesis in detail by specifying what falls under human

decision-making during CSIR and identifying the challenges

the remaining chapters will work to solve. The second

chapter in this part, Chapter 3, introduces in quite brief

and broad strokes the field philosophy of science as well

as reviewing the literature on a science of security. I take

science of security to be the cybersecurity community’s

internal attempt to apply philosophy of science. I will ex-

plain why this science of security approach – and its focus

on laws – has been misguided, and provide some context

for the modern new-mechanist approach to generalised

knowledge and knowledge generation which I will apply in

the next part.

2
L ITERATURE REVIEW – INC IDENT RESPONSE 1

This literature review identifies the structure of human decision-making during

Computer Security Incident Response (CSIR) (shortened as incident response

if the usage is unambiguous) and the existing research programs that underpin

the practical decision-making structure. The utility of such a literature review

is to identify gaps in guidance for CSIR decision making that would benefit

from further research.

Incident response is an attractive topic because it anchors the whole field

of cybersecurity and information security. When information security is not

responding to an incident, it is either preparing for one or learning from past

incident responses.2 Preparation and learning are each complex and independ-

ent activities. However, their crux is incident response. I restrict the focus to

human-centric decision making as opposed to automated or machine-learning

techniques. Such automation is clearly crucial to incident response. However,

deciding what automation to build and use remains a human decision, as does

how to interpret and act on results.

2.1 introduction

Cybersecurity is important, yet breaches are usually detected months after

they occur (Verizon, 2015). Professionals suggest judging whether an organ-

ization has a good security posture by their incident response capabilities

(Shimeall and Spring, 2014, ch. 15).3 The question addressed by this review

is: how do incident responders make decisions during an investigation?

Successful guidance on this question improves incident response, and

thereby all of cybersecurity. However, the question is deceptively simple, and

1 This chapter is based on the joint paper: Jonathan M Spring and Phyllis Illari (Apr.

2018b). ‘Review of Human Decision-making during Incident Analysis’. In: arXiv

preprint 1903.10080.

2 Prevention of future incidents may fruitfully be discussed as independent from in-

cident response, but in practice prevention techniques are almost all adapted from

the lessons learned after responding to an incident.

3 See also: “The question you must accept is not whether security incidents will occur,

but rather how quickly they can be identified and resolved.” https://www.gartner.
com/smarterwithgartner/prepare-for-the-inevitable-security-incident/

31

https://www.gartner.com/smarterwithgartner/prepare-for-the-inevitable-security-incident/
https://www.gartner.com/smarterwithgartner/prepare-for-the-inevitable-security-incident/

32 literature review – incident response

the use of ‘how’ is ambiguous. More specifically, the goal is a satisfactory

process by which incident responders generate and prioritize questions to ask,

a satisfactory process of answering these questions under time constraints,

and a satisfactory process for how these answers lead to decisions. In summary,

there is ample advice on what questions to ask and how to answer a given

specific question, but little on how to prioritize questions or interpret results.

This is a significant lacuna in the existing literature on decision-making and

evidence evaluation during incident response. I will propose possible directions

for filling this gap using philosophy of science and mathematical modelling.

The immediate challenge of this literature review is how to determine an

appropriate yet manageable scope. The scope expands for at least two reas-

ons: the topic is of broad application with many sub-parts, and the academic

literature is not the only relevant source. Practitioners are a necessary source

if the review is to adequately capture the state of the art. Besides simply

increasing the volume of publications to review, cybersecurity practitioners

do not publish with the same reliability or norms as is customary for input to

an academic literature review. This variability makes it difficult to evaluate

contributions on a single appraisal strategy.

I will approach this problem in two parts. The first part covers scope and

problem definition. Section 2.2.1 defines the term Computer Security Incid-

ent Response (CSIR), and which aspects are in scope. Section 2.2.2 defines

the scope in terms of publication venues included in the review. Section 2.3

provides evidence that no literature review with similar scope and goals

has been published. Section 2.4 defines our method for reviewing the state

of decision-making recommendations during computer-security incident re-

sponse.

The second part covers results and proposed research. Section 2.5 provides

the results of the incident response decision-making literature review. The

first four subparts cover each of the four venues in scope, and Section 2.5.5

reports the evaluation of documents cited by those documents from the search

results that are evaluated to be relevant. Section 2.6 critically analyses the

results of the reviews. Section 2.7 identifies the gaps in the literature and

proposes a research question to make substantive progress on the identified

gaps. Section 2.8 examines work from related disciplines.

2.2 scope 33

2.2 scope

This section limits the scope of the literature review in two distinct aspects:

the definition of the topic and the publication venues. I will restrict the

definition of CSIR to three subtasks during investigation: evidence collection,

analysis, and reporting. I will restrict publication venues to relevant interna-

tional standards and academic literature that is referenced therein. Specific-

ally, the search venues will be the Internet Engineering Task Force (IETF), the

International Organization for Standardization (ISO),4 Forum of Incident Re-

sponse and Security Teams (FIRST), and documents understood to represent

the US intelligence community (IC).

As far as possible, I will use standard definitions for terms, preferring global,

consensus, freely-available definitions. Explicitly, in order of preference, the

IETF, ISO, and FIRST. This ordering is based on the extent of consensus (the

IETF membership is broader than FIRST) and the openness of the definitions.

Otherwise, the choice of established definitions for jargon is primarily for

clarity, and to compress the discussion; I assume familiarity with the terms in

the IETF Internet Security Glossary (Shirey, 2007).

The scope is not the traditional academic venues. The operational reason

is to focus on what incident responders actually do. Ideally this would take

the form of first-hand accounts; however, cybersecurity is a sensitive topic.

Chatham House Rules5 and non-disclosure agreements (NDAs) abound in the

discipline; these norms within the security community further frustrate any

usual academic publication expectations. It would be impossible to evaluate

the selection bias or outright deception within studies. The incident response

standards at least form an honest baseline of what is expected of a competent

practitioner. The assumption is that this review applies to competent prac-

titioners, where competent is defined by consensus among practitioners and

codified in the standards. I do not empirically address the extent to which

competence is common. Due to the community norms of secrecy, norms doc-

umented by Sundaramurthy et al. (2014), a comprehensive evaluation seems

impractical.

4 Although ISO standards are only available for a fee, the terms and definitions as

used in the relevant standards (the 27000 series) are freely available.

5 Chatham House Rules indicates a situation in which the information or content

of a meeting, discussion, or presentation may be disclosed but the source of the

information may not be identified, implicitly or explicitly. This request is made by

the speaker prior to disclosing the information.

34 literature review – incident response

Section 2.3 provides evidence that the academic literature does not sys-

tematically cover my scope. The method to justify this is a search through

two common sources of literature reviews, Association for Computing Ma-

chinery (ACM) Computing Surveys and the Institute of Electrical and Elec-

tronic Engineers (IEEE) Security and Privacy “systematization of knowledge”

papers. In summary, no relevant surveys have been published on human

decision-making during CSIR analysis. While the reason why is unclear, the

task is not made easier by the natural secrecy of practitioners.

A further consideration in focusing on standards as the starting point is

simply to prevent an explosion of documents to review. A cursory Google

Scholar search for “computer security incident response” and “digital forensic

investigation” each return about 2,000 results. Alternatively, searches in the

ACM Guide to Computing Literature and IEEE Xplore databases for “computer

security incident response” each return 20-25 results (both on Sep 1, 2017).

Many of these results are obscure, and for those that are not it is challenging

to evaluate their operational impact. Going straight to the standards bypasses

this question of impact – the remit and authority of standards is explicit.

Finally, I draw on six years of personal experience working at a research

center where I was able to interact with a variety of practicing incident re-

sponders.

2.2.1 Scope—Topic

The first task is to situate computer-security incident response within a con-

text of what it excludes and what falls under it. Incident response is a sub-

species of business continuity planning or continuity of operations. Continuity

planning may be a response to man-made or natural events, and either phys-

ical or digital events. A military invasion is a man-made, physical event; a

hurricane is a natural, physical event. Computer-security incident response

is only in response to security incidents that are primarily digital, where a

security incident is something “contrary to system policy” (Shirey, 2007).

Thus, accidents of all kinds are out of scope; though distinguishing apparent

accidents from malicious acts is included. Intentional physical destruction of

computing resources is also out of scope of computer-security incident response

(Brownlee and Guttman, 1998).

2.2 scope 35

Narrowing the focus further, incident response is a task within incident

management.6 CERT/CC definitions of incident management (Alberts et al.,

2004; Mundie et al., 2014) locate incident response as independent from activ-

ities such as preparation, improving defences, training, financing, and lessons

learnt. Mundie et al. (2014) surveys practices including those by CERT/CC and

ISO; six tasks are included as part of incident response: monitoring, detection,

evidence collection, analysis, reporting, and recovery. These six tasks form the

core topic of this survey of incident response.

The human-centric decisions that are elements of these six incident response

tasks vary in importance. Analysis, reporting, and recovery are almost wholly

human-driven. Monitoring is almost wholly automated, while detection and

evidence collection are a mixture. Where detection is automated, say in an

intrusion detection system (IDS),7 it is out of scope. Decisions about what

detection rules to implement in an IDS are part of the preparation or improving

defences phases of incident management, as a result of lessons learnt, and thus

are also out of scope. Actual human intrusion detection is rare, and when

it occurs is usually the result of analysis during incident response to some

other, automatically-detected incident. Therefore, the focus on human-driven

incident response investigation excludes monitoring and detection.

The IETF (Brownlee and Guttman, 1998; Shirey, 2007) and CERT/CC define

neither “investigation” nor “forensics” in relation to the incident management

process. ISO/IEC (2015c) places investigation as the centrepiece of incident

management, where the principles of incident management are to “give guid-

ance on the investigation of, and preparation to investigate, information se-

curity incidents” ISO/IEC (2016, §0). In this way, ISO uses “investigation” as

a near-synonym to “response” in the IETF and FIRST literature.

6 The term “incident management” does not appear in IETF documents consistently.

Trammell (2012a) describes Incident Object Description Exchange Format (IODEF)
(Danyliw et al., 2007) as a protocol for “exchange of incident management data,”

but the term “incident management” does not appear again in Trammell (2012a),

and not even once in Danyliw et al. (2007). ISO/IEC (2016) defines “information

security incident management” as “exercise of a consistent and effective approach to

the handling of information security incidents.” FIRST does not provide a definition

itself, but FIRST (2017) recommends the CERT/CC documentation on incident man-

agement. Trammell and Danyliw both worked at CERT/CC, so this is probably the

source of the informal reference in the IETF documents. The CERT/CC phases are

consistent with the ISO/IEC (2016) phases of plan and prepare; detection and re-

porting; assessment and decision; responses; and lessons learnt. I prefer the CERT/CC
definitions as they are public (vice the ISO standards), and recommended by FIRST
(thus in scope of using global, consensus-driven definitions).

7 Shirey (2007) refers to Bace and Mell (2001) for the definition and guidelines for

IDS, which has been superseded by Scarfone and Mell (2007).

36 literature review – incident response

The use of ‘incident’ emphasizes that the investigation is oriented towards

the violation of some policy, possibly but not necessarily a law. Thus, model-

ling or analysing online crime is an investigation, and so is IT staff looking into

a usage policy violation. Incident response or investigation is entwined with

cybersecurity because one essential aspect of a defence strategy is feedback

from investigation to ‘preparation’ and ‘protection’ (Alberts et al., 2004).

However, detailed discussion of preparation and protection is placed out of

scope.

Incident response, per IETF and FIRST, explicitly includes remediation. ISO

(ISO/IEC, 2015c) treats remediation and response as separate from investiga-

tion. In determining scope, I follow ISO and exclude recovery. Note that both

sets of standards agree that clear reporting is the proper output of incident

analysis, and any recovery follows reporting. However, it does seem clear that

recovery follows a different decision process than analysis, and the two should

be treated separately. Within the six tasks identified within incident response,

three are left in scope:

• evidence collection

• analysis

• reporting

These three seem too tightly coupled to separate, and are described consist-

ently across the international standards organizations.

For each of these three topics, the concern is primarily with how an indi-

vidual analyst makes decisions during these three phases. What tool or what

language the analyst or investigator uses to make these choices is not germane

and is out of scope. This is not a review of available security tools, platforms, or

data exchange formats. The goal is to survey how analysts enumerate options,

evaluate choices, generalize results, and justify these steps.

2.2.2 Scope—Publication Venues

Incident response and investigation includes professional and business aspects;

therefore the scope of viable sources incident response practices cannot justifi-

ably be limited to academic sources. As Chapter 3 will document, the science

of security is an unsettled area of research rather than an area with anything

like standards. In fact, traditional academic publication venues contain little

if anything about day-to-day incident response practices; academics do not

2.2 scope 37

do incident response themselves. Sundaramurthy et al. (2014) seems to mark

the first anthropological study of a Computer Security Incident Response

Team (CSIRT)8 members and their attitudes, but this literature is not about

the actual process of incident response; that is covered in the professional

literature.

Therefore, to understand current incident response practices the scope of

the review is internationally-relevant standards and whatever literature is ref-

erenced therein. The history of standards as its own industry is complex in

its own right (Spring, 2011c). The Internet and IT standards are formed by

heterogeneous processes by a wide variety of actors (Oksala et al., 1996).

Security-relevant standards are beginning to be seen as having their own

unique requirements, distinct from IT standards generally (Kuhlmann et al.,

2016). However, it is a separate project to analyse how CSIR standards have

come to be. The standards in this review are taken as-is, with the understand-

ing that any interpretations should be made cautiously because the standards

may not cleanly fit in to existing studies of how and why other IT stand-

ards are created. More than other IT standards, CSIR standards are likely a

codification of tacit practitioner knowledge (Nightingale, 2009).

The scope of publication venues is limited to ISO, IETF, FIRST, and the US

intelligence community (IC). This choice is based on what organizations are

relevant in influencing or describing international incident response practices,

which is in turn based in the history of the governance of the Internet. I

mitigate potential over-restriction of focus by including any documents cited

by standards publications. The reasoning for selecting these organizations

specifically is as follows.

ISO and the International Telecommunications Union (ITU) are the authorit-

ative technology standards makers (Oksala et al., 1996, p. 11). The US federal

government plays a dominant role in Internet development and standards,

through the original Advanced Research Projects Agency (ARPA) development

under the US Department of Defense (DoD) and subsequent stewardship under

the Department of Commerce.9

ISO is de dicto where one looks for international standards. Each nation-

state is allowed to have one member is ISO, namely the official national stand-

ards body representing all the industry-based bodies in each country. It is a

8 CSIRT is the general term, and will be used unless referring to a specific organization.

9 Two important sub-parts of Commerce are Internet governance by the National

Telecommunications and Information Administration and standards by National

Institute of Standards and Technology (NIST).

38 literature review – incident response

federation of federations, representing a multitude of industries. ISO standard-

izes things like the two-letter country codes (which have been adopted as DNS

top-level domains), paper sizes, and credit cards. The ITU and their CIRT

program10 seems promising in name; however, their website publishes little

besides an events list. It appears that content is provided by FIRST members,

companies, or other consultancies; the ITU does not produce its own incident

response materials or standards. This leaves only ISO in scope of the potential

authoritative international standards bodies.

On the other hand, the IETF is the de facto place to go for international

Internet standards because, for all intents and purposes, its standards are the

Internet. The IETF “doesn’t recognize kings—only running code” and creates

more pragmatic, open (freely-available) standards (Oksala et al., 1996, p. 12).

Open standards happen to have won out on the Internet; IETF standards

like Transmission Control Protocol / Internet Protocol (TCP/IP), DNS, and

Border Gateway Protocol (BGP) underpin every Internet connection. For a

background history of how the precursor to the IETF came to this dominant

role, see Hafner and Lyon (1998). The other main open-standards body is the

World Wide Web Consortium (W3C), which standardizes Hypertext Transfer

Protocol (HTTP) and Extensible Markup Language (XML), for example. W3C

stays narrowly focused on web standards, and although this includes import-

ant web security considerations, W3C does not work on incident management,

so I mark the group as out of scope.

FIRST is not part of this longer information and communications techno-

logy (ICT) standards history. It was formed in 1990 specifically to coordinate

among and represent the interests of CSIRTs globally. FIRST’s mission includes

developing and sharing best practices, as well as creating and expanding in-

cident response teams (FIRST, 2003). FIRST is the one and only global or-

ganization representing those who do human-centric incident response tasks.

FIRST’s work with United Nations (UN) agencies like the ITU also testifies to

its global influence. It is naturally included as in-scope.

There are three organizations one might consider naturally in scope that are

excluded. These are EU Agency for Network and Information Security (ENISA),

NIST, and the US DoD. However, within the gray area between NIST and the

US intelligence community, I identify a fourth set of de facto standards.

ENISA is specifically focused on CSIRTs and information security. The

European Union (EU) makes available an independent evaluation of ENISA’s

10 http://www.itu.int/en/ITU-D/Cybersecurity/Pages/Organizational-Structures.aspx

http://www.itu.int/en/ITU-D/Cybersecurity/Pages/Organizational-Structures.aspx

2.2 scope 39

limited activities.11 Its function is coordination and capacity building among

EU-member CSIRTs and to provide advice on some EU policies. While EU

directive 2016/1148 will increase ENISA’s statutory powers when it comes

into effect in November 2018, at this point ENISA has little authority to force

member states to take its advice. In the scheme of incident response practices,

ENISA – founded in 2004 – is quite young. ENISA documents are informational,

the one document interfacing with EU standards is an extended definition of

the term “cybersecurity” and what EU work is done related to it (Brookson

et al., 2015). Oddly, the document does not even mention incident response

as an area within cybersecurity,12 so it seems safe to leave ENISA out of scope.

NIST is a difficult organization to place in or out of scope. It is part of

the Department of Commerce, and so has loose ties to the remaining Internet

stewardship invested in the National Telecommunications and Information Ad-

ministration. Strictly, NIST merely sets policies for how the US federal civilian

government secures its IT infrastructure and responds to incidents (Cichonski

et al., 2012). This Federal Information Security Management Act (FISMA)

policy responsibility is a part of NIST’s larger role of “advancing measurement

science, standards, and technology in ways that enhance economic security

and improve our quality of life” (U.S. Dept of Commerce, 2017). Through this

role, NIST standardized AES, which is the de facto global standard encryption

algorithm. NIST documents and standards are also cited by the IETF, ISO, and

FIRST, elevating certain NIST work from a national to international status. I

shall consider NIST generally out of scope; however, many NIST publications

will be considered as works cited by the international standards organizations.

There are two US federal government units that do not fall under NIST’s

authority – the DoD and the Central Intelligence Agency (CIA). These two or-

ganizations have not published incident response standards as openly as NIST

or these other standards organizations. The DoD does have other cybersecurity

documents that are tangentially relevant. The Orange Book (Brand, 1985),

which evaluates trusted computing platforms, is relevant background material

for incident responders.

The questions the DoD and its sub-agency the National Security Agency

(NSA) have raised around whether cybersecurity is, broadly, a science (see,

11 “Annual ex-post evaluation of ENISA activities” https://www.enisa.europa.eu/
about-enisa/annual-ex-post-evaluation-of-enisa-activities

12 Despite the fact that ENISA sponsored an informational document on evidence gath-

ering aimed at increasing understanding between CSIRTs and law enforcement (An-

derson, 2015).

https://www.enisa.europa.eu/about-enisa/annual-ex-post-evaluation-of-enisa-activities
https://www.enisa.europa.eu/about-enisa/annual-ex-post-evaluation-of-enisa-activities

40 literature review – incident response

e.g., Galison (2012), Katz (2016) and MITRE (2010)) could inform evidence

evaluation in incidence response because evaluating evidence properly is a

primary scientific activity. While these DoD projects ask the right questions

about science to help with incident response, they have generally concluded

security is not (yet) a science, and so there is little advice. Chapter 3 will

argue this conclusion is ill-founded and excessively pessimistic. However, the

relevant point for this review is that the science of security literature does not

advise CSIR.

While the main part of the DoD is out of scope, the intelligence community

aspects of the US federal government do provide adequate documents. The DoD

and CIA are generally not forthcoming with more conventional descriptions of

their incident response practice. However, given that NIST is not authoritative

over the IC, one would expect them to develop their own standard practices.

Documents related to the practice of the US IC are occasionally published, with

IC attribution either explicit or implicit. Three such documents are relevant

to evidence collection and analysis in incident investigation, forming what

is essentially a de facto standard. The first is a textbook published by the

CIA and used to train intelligence analysts (Heuer, 1999) whose methods are

applicable to CSIR. The second is a pair of documents, the kill chain model of

computer network attacks (Hutchins et al., 2011) and the diamond model of

intrusion analysis (Caltagirone et al., 2013). Unlike the textbook, these doc-

uments are not explicitly acknowledged as standard analysis methods within

the defence and intelligence communities. However, the diamond model paper

is published by the DoD publisher, the Defense Technical Information Center.13

The diamond model builds on the kill chain. Given that Lockheed Martin, a

US defence contractor, published the kill chain, it seems the papers are from

overlapping communities. Although it is tenuous to term three documents

a ‘standard,’ it is clear from the content that they come from a practitioner

community and are one of the clearest available expressions of intrusion invest-

igation methods publicly available. Therefore, it is necessary to place them in

scope for discussion.

The US intelligence agencies exercise out-sized international influence. The

US is part of an intelligence sharing alliance known as the five eyes, which

includes Australia, Canada, New Zealand, and the United Kingdom. As the

biggest partner in this alliance by far, what the US intelligence practitioners

13 See http://www.dtic.mil/docs/citations/ADA586960.

http://www.dtic.mil/docs/citations/ADA586960

2.3 related literature reviews 41

do is probably accommodated, if not directly copied, by the other countries’

services.

US military influence goes beyond the five eyes. The North Atlantic Treaty

Organization (NATO) is the biggest alliance the US leads, with 28 other coun-

tries. NATO intelligence is also presumably influenced by five eyes, as Canada

and the UK also play a big role. The US tends to supply logistics and intelli-

gence support in its alliances, so intelligence standards are likely to influence

allies. Other locations which cooperate extensively with the US include Israel,

South Korea, Japan, and the Philippines. By virtue of these alliances, it is

reasonable to assume that intelligence professionals in all these places are

relatively closely aligned with US intelligence standards. These alliances end

up including most of the global military and intelligence spending. Essentially

only China and Russia are excluded, and the two of them account for 15-20%

of global military spending. Thus, although there are rather few IC documents,

and they are focused on the US, they should provide information about how

a large swath of such practitioners make decisions.

In summary, this review will include the IETF, ISO, FIRST, and available

intelligence community documents as in-scope publication venues for incident

investigation standards of practice for evidence collection, analysis, and re-

porting. The review will exclude the ITU, W3C, ENISA and US federal civilian

government departments and agencies as out of scope due to either limited

applicable content or limited jurisdiction. The most borderline organization

is NIST, which occasionally has standards canonized by the in-scope venues;

the review will only include those NIST standards cited or adopted explicitly

by the four in-scope venues.

Section 2.4.1 describes the method for determining which standards are

relevant within these venues.

2.3 related literature reviews

This section provides a structured survey of the literature to demonstrate

that the intended scope, as defined in Section 2.2, has not been previously

surveyed. Lack of related surveys in two academic venues provide evidence:

IEEE Security and Privacy Systematization of Knowledge (SoK) papers and

ACM Computing Surveys (CSUR) journal. I will appraise the 35 extant SoK

papers (as of August 1, 2017) for relevance. For ACM CSUR I apply a keyword

search to the corpus.

42 literature review – incident response

IEEE S&P has published 35 SoK papers since the venue initiated the SoK

publication option in 2010. I evaluated relevance based on title and abstracts.

The basic relevance criterion in this case is if the SoK is about designing or

evaluating investigations of maliciousness. Of the 35 SoK papers, only Herley

and van Oorschot (2017) and Rossow et al. (2012) are applicable. Chapter 3

will addresses the shortcomings in Herley and van Oorschot (2017) in some

detail. In prior work (Hatleback and Spring, 2014), I expanded on the good

work of Rossow et al. (2012); however, Rossow et al. (2012) is too narrow for

my current scope as it focuses just on malicious software research. None of

the SoK papers systematize knowledge of incident response, investigation, or

analysis.

My CSUR keyword search uses Google Scholar, limiting to publications in

“ACM Computing Surveys” between Jan 1, 2007 and Aug 1, 2017. I use the

same keywords as the main study, described in Section 2.4.1. However, CSUR

is a sufficiently different venue from the intended scope that I found some

different keywords more useful. The surveys returned by the following search

terms are included in Table 2.1. Quotes are applied to the search as listed.

1. “computer security incident response”

2. “incident investigation”

3. “incident management”

4. “computer security” & “evidence collection”

5. “incident response” & analysis

6. “security incident” & investigation

7. “computer security” & incident investigation

8. “computer security” & incident analysis

These eight searches within CSUR return 22 unique results. Note in partic-

ular that the two most precisely relevant searches return no matches. As the

search terms are expanded to include more general, related terms, the results

include a handful of possibly relevant papers.

The following search terms were tried on CSUR but returned too many

clearly irrelevant results to be considered useful, with the total survey papers

returned in brackets. The relevant papers appear to be already included in

the 22 captured by the eight search terms used.

• “computer security” & analysis (79)

• “computer security” & reporting (25)

2.3 related literature reviews 43

Found in search # Criteria
Document 1 2 3 4 5 6 7 8 1 2 3

Li et al. (2017a) 3

Li et al. (2017b) 3

Jiang et al. (2016)
Jhaveri et al. (2017) 3 3

Pendleton et al. (2016)
Khan et al. (2016) 3 3

Laszka et al. (2014) 3 3

Biddle et al. (2012a)
Milenkoski et al. (2015) 3

Tang et al. (2016)
Meng et al. (2015)

Calzavara et al. (2017) 3

Labati et al. (2016) 3

Ye et al. (2017) 3

Edwards et al. (2015)* 3 3 3

Avancha et al. (2012)
Roy et al. (2015) 3

Chandola et al. (2009) 3 3

Pearce et al. (2013) 3 3

Peng et al. (2007) 3

Younan et al. (2012) 3

Egele et al. (2008)* 3 3

Table 2.1: Other literature reviews potentially related to computer security in-
cident investigation from ACM CSUR. The three relevance criteria
are (1) relates to forensics rather than prediction; (2) technical,
investigative focus; (3) useful level of abstraction of incident invest-
igation. Papers with an asterisk (*) are discussed in more detail in
the text.

To determine whether any of these 22 surveys already adequately cover the

topic of interest, I define three relevance criteria; namely, the survey must:

1. relate to reconstructing past events (i.e., forensics) rather than predic-

tion;

2. focus on the technical- and knowledge-based decisions and processes,

rather than management processes;

3. use my target level of abstraction to discuss the problem of incident re-

sponse, investigation, or analysis (human decisions during the process),

44 literature review – incident response

rather than tool development, without being so abstract as to make

implementation impractical.

These criteria are marked in Table 2.1, based on each paper’s abstract. Some

papers deserved a look beyond their abstracts.

Edwards et al. (2015) is the only survey that meets all three criteria, based

on the abstract. However, their focus is quite different from my focus. They

discuss automation of law-enforcement criminal investigation using computer

science techniques. There may be overlap with computer-security incident re-

sponse, in that some subset of law enforcement cases involve criminal action

against computers. However, the focus of Edwards et al. (2015) is what An-

derson et al. (2012, p. 3) call, quoting the European Commission, “traditional

forms of crime... committed over electronic communication networks and in-

formation systems.” Incident response and investigation focuses on a different

category, “crimes unique to electronic networks,” as well as organizational

policy violations that are not illegal under the relevant jurisdiction. Finally,

Edwards et al. (2015) focus on automation of police tasks, whereas my focus

would be on the investigator’s decision process in, among other things, choos-

ing which automation techniques to use and how to evaluate the evidence they

provide. These various differences make a clear case that my intended survey

topic is sufficiently distinct from Edwards et al. (2015).

Egele et al. (2008, p. 1) aims to identify “techniques to assist human ana-

lysts in assessing ... whether a given sample deserves closer manual inspection.”

It is, in fact, a survey of software tools and their features, and does not discuss

how an analyst should use them.

Many papers in Table 2.1 meet the technical criterion (#2) and fail the

other two criteria. This pattern tends to be about some specific subset of

network defence – for example, making better passwords, intrusion detection

systems, or web browser defences. These tools are certainly used and evaluated

as part of security management, and are important considerations. Nonethe-

less, these details are tangential to making decisions during CSIR.

These reviews of the available survey literature demonstrate a lacuna; the

literature lacks a survey of CSIR practices. This omission matters. Most secur-

ity research and security management requires, directly or indirectly, “ground

truth” evidence from incident response teams. Research and management need

this “ground truth” evidence to evaluate any other security infrastructure,

plans, defences, or policy. However, it seems there is no systematic review

of how this evidence should be collected, analysed, and reported. One must

2.4 methods 45

understand these steps in order to properly interpret any such evidence. There-

fore, although the topic of human decision-making during CSIR analysis is

narrow, it has far-reaching impact on cybersecurity more generally.

2.4 methods

The scope here is restricted to evidence collection, analysis, and reporting

in human-driven computer security incident response. It is further restricted

to internationally-recognized standards. This choice maintains a pragmatic

connection to actual professional practice without violating confidentiality

around incident response, which organizations justifiably do not often disclose

in detail. Section 2.3 demonstrated that, at least within the most prominent

information security publication venues, no review overlapping this scope has

been published previously.

This section explains the review methodology in three parts. First, search

strategy. Secondly, the appraisal strategy for whether to include results in the

synthesis. And finally, how to synthesize the results into a coherent statement

of current practice.

2.4.1 Search strategy

The major determining factor in the literature search strategy is the scope

of publication venues, as justified in Section 2.2.2. The search comes in two

parts. First, I perform keyword searches in the relevant web archives. Secondly,

I extract references from valid hits on these searches and include the referenced

documents as sources to appraise.

The IC documents are selected by fiat, given the secretive nature of the

community. Due to the idiosyncratic nature of the IC publication and publicity

processes, there is no sense in a keyword search strategy. I arrived at the three

core documents as the “standards” from this community essentially by word

of mouth through interaction with practitioners.

Each of IETF,14 FIRST,15 and ISO16 have dedicated web pages. For IETF and

ISO, I use their site-based search engines that cover their respective corpora

of standards. FIRST has a smaller, more focused corpus of work, such that it

14 https://www.rfc-editor.org/search/rfc_search.php
15 https://first.org/standards/
16 https://www.iso.org/standards.html

https://www.rfc-editor.org/search/rfc_search.php
https://first.org/standards/
https://www.iso.org/standards.html

46 literature review – incident response

does not have a site specific search engine; I use Google and prepend the term

“site:first.org” to focus the search.

Quotes are applied to the search as listed. The keywords employed are:

1. “computer security incident response”

2. “incident investigation”

3. “incident management”

4. “computer security” & “evidence collection”

5. “computer security” & analysis

6. “computer security” & reporting

I also added or modified terms slightly to accommodate each search venue.

For example, the IETF RFC search tool does not accommodate mixing quoted

phrases with other terms, so for terms 4, 5, and 6 the quotes were removed. I

added the following terms to the IETF search:

• “incident response”

I added the following terms to the ISO search, after it became apparent from

searches 2 and 3 that the ISO documents do not use the term “computer

security” but rather “information security”:

• “information security” & “evidence collection”

• “information security” & analysis

• “information security” & reporting

All the documents returned by this search strategy are appraised using the

methods of Section 2.4.2. I then take a further search step and extract the

references from those documents that pass the appraisal. I only include cited

documents which are publicly available (or, in the case of ISO, readily avail-

able). All the documents extracted from the references are appraised using

the same methods to determine whether they are included in the review, in-

dependent of the document that cited it.

2.4.2 Appraisal strategy

The purpose of the appraisal is to determine whether each document is within

the scope of evidence collection, analysis, and reporting for incident investig-

ation. The cut-off date for inclusion in the review is publication prior to July

1, 2017.

2.4 methods 47

Standards may be superseded or amended by future work. Drafts are also

commonly published for public comment before being finalized. I exclude any

standard superseded as of July 1, 2017, and incorporate any amendments

finalized by July 1, 2017. The existence of drafts on new topics is noted, but

their content is excluded from the review.

Inclusion criteria for whether the content is in-scope are:

• Target audience as expressed by author includes security professionals

• Topic is within scope, namely it applies to one of the following parts

of computer-security incident investigation (or some clear synonym

thereof)

– evidence collection

– analysis

– reporting

• Topic is on investigator practice (rather than implementation of soft-

ware or managerial considerations related to CSIRTs)

• Document is finalized (not a draft) and not explicitly superseded as of

July 1, 2017

• Document is available in English

A document must satisfy all of these criteria to be included.

2.4.3 Synthesis methods

The input at this stage of the method will be all documents that are in scope;

they will be documents for security professionals about investigator practice

during evidence collection, analysis, and reporting. My synthesis goal is to

evaluate the nature and quality of advice that these documents provide about

making decisions during these phases of incident response.

As a prelude to this synthesis, I will classify advice on these topics in sev-

eral ways: to which phases the document applies, the directness with which

the document applies to each phase, the type, investigative goals supported,

broadness of scope, generalizability of advice, and formalism. I use this ini-

tial evaluation to identify groupings of documents and get an overview what

the literature search has found to be available. The following describes each

evaluation in more detail.

48 literature review – incident response

phases indicates what combination of evidence collection, analysis, and re-

porting the document covers.

directness has two possible values: direct and constraints. Direct com-

mentary on incident investigation explicitly talks about what an invest-

igator should or should not do. Constraints provide only requirements

for outcomes or outputs, and do not indicate how these properties

should be achieved. Constraint-based advice is common when situat-

ing investigation within the larger context of incident response, and

situating response within incident management.

type indicates what type and level of detail the document provides to de-

cision making. Possible values are case study, ontology, advice, and in-

structions. At one end of the spectrum are case studies. Case studies

report the facts of an individual case of investigation, without attempt-

ing to abstract up to general lessons. A categorization forms categories

of useful actions (implicitly or explicitly from case studies), but gives no

advice on how to apply these categories. Advice provides some ordering

on what category of action should be taken, given certain conditions.

Finally, instructions provide explicit decision-making instructions on

how to evaluate options. Type also provides some rough guide on how

much effort it will take to apply the document to practice, with case

studies being the most difficult.

goals indicates what sort of investigation the advice targets. An investig-

ator could have, for example, three goals: fix the system, gather intel-

ligence on adversaries, and make arrests. Certainly, there may be other

goals, but these cover a wide degree of practical differences. Investigat-

ors need quite different information between these goals. For example,

to fix a system, one needs to know everything that has been accessed by

the adversary, but you need to know rather little about them. Whereas

to make arrests, one cares very much about the adversary, but also is

bound by several practical matters of what counts as admissible legal

evidence of attribution and loss. When gathering intelligence on what

an adversary may do next, these legal considerations fall away, but one

also focuses on quite different aspects than fixing a system. For example,

to gather adequate intelligence one need not enumerate all compromised

systems.

scope reports how widely the document applies, as reported by the doc-

ument. Options are narrow, medium, and broad. A narrowly-scoped

2.4 methods 49

document targets only a small or unrepresentative group of people, an-

d/or for a short period of time. Broad scopes are intended for most

people within cybersecurity. Medium scope fits somewhere in between.

Examples of medium scope are US-based law enforcement forensics spe-

cialists, or the operators of tier-three (that is, backbone) networks.

generalizability of advice indicates how likely the document can be

relevant to contexts outside those for which it was specifically designed.

Generalizability is explicitly level-set from the document’s scope. Thus,

a document with broad scope but no generalizability may still be ap-

plicable to more people than a narrowly-scoped document that is gen-

eralizable. Whereas scope is a measure taken directly from the docu-

ment being evaluated, generalizability is an evaluation of potential not

explicit in the document. Indicators of generalizability include use of

models or methods from other disciplines with well-established other

uses or evidence from sources other than the document itself that the

advice from the document applies more widely. Options for this criterion

are coarsely set as unlikely (< 15%,±5%), likely (in between unlikely

and highly likely), and highly likely (> 85%,±5%); values represent es-

sentially the evaluator’s prior belief on the document being applicable

outside its stated scope. A final value, widely, indicates the document is

certainly generalizable beyond its scope and is likely to be generalizable

to a much broader scope.

formalism reports the degree of mathematical formalism present in the

advice provided. Options are none, qualitative, formal, and perfunctory.

Perfunctory indicates formalization is present, but essentially unused

to advance the arguments or positions of the document. This rating

does not mean the formalism is wrong; however, it does indicate it

would take significant effort on the part of the reader to make use of

the formalism beyond what qualitative models would provide. None

only applies to narratives that make no attempts at abstraction. Both

qualitative models and formal mathematical models have value in their

own ways, and one should not be considered preferred over the other

per se.

After this classification of the documents, I will undertake a more free

form synthesis of the results. I focus on how analysts and investigators make

decisions about evaluating the quality and importance of evidence, generalize

from particular evidence to evidence of trends or patterns of behaviour, and

50 literature review – incident response

select what to report based on security constraints as well as what others

find convincing. Although these align loosely with the three in-scope phases

of CSIR, there is not a one-to-one connection between the three phases and

the three focal points. For example, if an analyst or investigator knows some

kind of evidence is particularly convincing to report, that should impact what

they look for during the evidence collection phase. Section 2.6 reports the

results of this classification, examination of focal points, and identification of

preliminary gaps.

Section 2.7 identifies what gaps remain after this cursory but broad pass

through potentially helpful fields. Section 2.7.1 suggests a research question

to make progress on addressing these gaps. Section 2.8 identifies related work

that may be useful to fill these gaps but of which the standards do not make

use. Section 2.9 concludes the synthesis by suggesting possible research for

moving forward, given the gaps and the related work.

2.4.4 Limitations

While these methods have much to recommend them, there are of course

limitations. Some of these are practical, such as the restriction to publications

available in English. Some limitations are a function of restricting the scope

to standards. Perhaps the most dangerous limitation is a result of the subject

matter – security practitioners tend to be secretive about their methodologies.

The restriction to English will naturally limit the results. For example,

an internet search for ‘信息安全事件应对’ (information security incident

response) returns a couple dozen results on Google as well as Google Scholar.

This seems to be the preferred term in mainland China. A search for ‘电脑

安全事件应对’ (computer security incident response) returns only a couple

of Taiwanese sites.

The importance of this language choice on actually limiting available docu-

ments is less clear. EU and UN documents would be available in English as a

matter of policy. The US government, which publishes in English, dominates

this space, as do US companies. Countries that are not allied to the US and

have developed computer security capabilities are relatively few; basically just

the Russian Federation and the People’s Republic of China (PRC). While it

is possible these countries have published comprehensive decision making pro-

cedures for incident response, it seems unlike these regime’s dispositions to

publish such things widely. It also seems likely that, given how much attention

2.4 methods 51

the US security establishment pays to Russia and the PRC, if such a thing

were published it would be found and reported on, if not translated. For these

reasons, I judge the impact of limiting the search to English documents is a

low risk.

Focusing on standards, and what they cite, limits the scope but also creates

other limitations. Indeed, reducing the scope to something manageable is one

goal of focusing on standards, and this seems to function as intended. How-

ever, the type of information published in standards is different than that in

academic journals and conferences, and this imposes some limits on the work.

Specifically, standards are on a slower publication cycle than academic work.

This delay would be a problem if the topic were covered much in the academic

literature. However, as indicated by Section 2.3, academic publications do not

appear to cover decision making during computer security incident response.

Creation of technology standards is itself a complex process, and as Sec-

tion 2.2.2 discussed, the process has a complex history in its own right (Spring,

2011c). The way standards are made limits the findings as well. Standards are

rarely made purely for the dissemination of information; rather, they usually

solidify a dominant business position. Security standards appear to be an

outlier from this norm, as they have unique concerns about correctness and

non-subversion (Kuhlmann et al., 2016). Incident response standards are es-

sentially unstudied within the academic standards literature; Kuhlmann et al.

(2016) mostly focus on cryptographic standards. This situation means accept-

ing a risk in that no one discusses openly what biases may be embedded in

the creation of incident response standards. The standards literature provides

evidence there will be a bias, but has not studied incident response standards

in order to provide evidence for what that bias might be. One important ques-

tion is whose interests are best served by the creation of incident response

standards.

A closely related limitation of concern involves secrecy. Many incident re-

sponse organizations may not wish to disclose their processes and procedures

in detail lest the adversary learn how to subvert or avoid them. Other areas of

cybersecurity experience similar publication restrictions. Incident responders

likely have a legitimate concern in this regard, and may also have a legal or

regulatory requirement to keep certain information or processes private. There-

fore, this limitation imposes a significant risk that relevant information is not

public. Lack of access obviously limits the review. My approach to reduce the

impact of this limitation is to read between the lines of available documents

52 literature review – incident response

when plausible, expanding the interpretation of a document’s contents with

circumstantial evidence from the context surrounding its publication. How-

ever, I must accept that there is an amount of information about this topic

which simply is not public and I cannot hope to access for a public literature

review. One could perhaps use news articles and audit reports to attempt to

evidence the extent to which organizations in fact implement the available

standards; I leave such studies for future work. The community first needs a

baseline understanding of the standards literature from which to begin.

2.5 results

Sections 2.5.1 through 2.5.4 present the results per search venue. Section 2.5.5

takes the results from these four venues, extracts the referenced documents

from the results, and evaluates these cited documents.

Table 2.2 lists the relevant documents to analyse in depth. These 29 doc-

uments are the result of reducing from roughly 350 possible documents ex-

amining search results and references.

RFC 2196, §5.4 only (Fraser, 1997) 27035-1 ISO/IEC (2016)
RFC 6545 (Moriarty, 2012) 27037 ISO/IEC (2012)
RFC 7203 (Takahashi et al., 2014) 27041 ISO/IEC (2015a)
RFC 7970 (Danyliw, 2016) 27042 ISO/IEC (2015b)
RFC 8134 (Inacio and Miyamoto, 2017) 27043 ISO/IEC (2015c)
NIST SP 800-61 (Cichonski et al., 2012) Kossakowski et al. (1999)
NIST SP 800-86 (Kent et al., 2006) Alberts et al. (2004)
NIST SP 800-83 r.1, §4 only (Souppaya and Scarfone, 2013)
Gorzelak et al. (2011) Mundie et al. (2014)
Kill chain (Hutchins et al., 2011) Heuer (1999)
Diamond model (Caltagirone et al., 2013) Ciardhuáin (2004)
Carrier and Spafford (2004) Casey (2010, ch. 2)
Osorno et al. (2011) Cheswick (1992)
Joint Chiefs of Staff (2014c, ch. 5 only) Stoll (1988)
Leigland and Krings (2004) Mitropoulos et al. (2006)

Table 2.2: All documents found to be relevant through the search methodo-
logy

2.5 results 53

2.5.1 IETF

Criteria
Document 1 2 3 4 5

RFC 2350 (Brownlee and Guttman, 1998) 3 3 3 3

RFC 3607 (Leech, 2003) 3 3 3

RFC 5070 (Danyliw et al., 2007) 3 3 3 3

RFC 6045 (Moriarty, 2010) 3 3 3 3

RFC 6046 (Moriarty and Trammell, 2010) 3 3 3 3

RFC 6545 (Moriarty, 2012) 3 3 3 3 3

RFC 6546 (Trammell, 2012b) 3 3 3 3

RFC 7203 (Takahashi et al., 2014) 3 3 3 3 3

RFC 7970 (Danyliw, 2016) 3 3 3 3 3

RFC 8134 (Inacio and Miyamoto, 2017) 3 3 3 3 3

Table 2.3: IETF database search results. The criteria are (1) target audience
is security professionals; (2) topic in scope, per Section 2.2.1; (3)
focus is investigator practices; (4) document finalized and not ob-
soleted as of Aug 1, 2017; (5) available in English.

Table 2.3 evaluates the results of the search procedure. Four documents on

meet criteria: RFCs 6545, 7203, 7970, and 8134.

The IETF documents break down into two clear broad categories, BCP 21

(Best Current Practice) on expectations for computer security incident re-

sponse (Brownlee and Guttman, 1998), and all the others, which are to do

with Incident Object Description Exchange Format (IODEF), its expansion,

and usage.

As an expectations document, BCP 21 focuses primarily on the services and

support a CSIRT should provide to its constituency, who that constituency

should include, and so on. These considerations are vital to CSIRT operations;

however they are not directly relevant to the research questions.

The IODEF projects in particular feature CERT/CC staff heavily. The au-

thors Danyliw and Inacio worked there during their RFC authorship and still

do, and Trammell contributed heavily to the SiLK (System for Internet-level

Knowledge) tool suite at CERT/CC. Because CERT/CC is also heavily involved

in FIRST, it is unsurprising to see a sort of division of labour between the IETF

documents and the FIRST documents. In particular, the IODEF format focuses

almost exclusively on technical issues of data exchange and reporting format.

54 literature review – incident response

The softer considerations, of how to collect, evaluate, and analyse the data

contained within IODEF remain in the purview of FIRST.

As technical reporting formats are in scope as reporting results, all RFCs

related to IODEF are relevant. There do not appear to be any other IETF

documents within scope.

These IODEF documents may at first seem to be out of scope, as the scope

as specified is how investigators make decisions, not what tools or formats they

use to document them. This topic recurs in Section 2.5.5.1. IODEF is essentially

a language for talking about computer security incidents. However, because

data formats are out of scope, the language per se is out of scope. IODEF is

in scope because as a constructed language it makes judgments about what

aspects of incidents are important, necessary, or possible to communicate.

These judgments, at least implicitly, bear on what an investigator should

choose to report. I therefore judge IODEF as in-scope. However, the scope

remains how to decide what information to report, not the language used to

report it. Therefore, data formats and languages for anything else remain out

of scope.

2.5.2 ISO

Nine search terms return 31 total results, with 23 unique results displayed in

Table 2.4. Three standards meet the criteria to carry through to the citation-

harvesting and synthesis stage:

• Information security incident management – Part 1: Principles of in-

cident management. 27035-1 (ISO/IEC, 2016)

• Guidance on assuring suitability and adequacy of incident investigative

method. 27041 (ISO/IEC, 2015a)

• Incident investigation principles and processes. 27043 (ISO/IEC,

2015c)

2.5.3 FIRST

FIRST is the smallest body surveyed, and it is not primarily a standards organ-

ization but rather a forum for organizations with a shared purpose – incident

response.

On its “standards” web page, FIRST lists four standards it maintains:

2.5 results 55

Criteria
Document 1 2 3 4 5

IEC 31010:2009 3 3 3 3

ISO 13485:2003 3

ISO/IEC 17799:2005 3 3

ISO/IEC 27000:2009 3 3

ISO/IEC 27001:2005 3 3

ISO/IEC 27002:2005 3 3

ISO/IEC 27004:2016 3 3 3

ISO/IEC 27005:2011 3 3 3

ISO/IEC 27006:2011 3

ISO/IEC 27006:2015 3 3

ISO/IEC 27033-1:2009 3 3

ISO/IEC 27033-4:2014 3 3 3

ISO/IEC 27035:2011 3 3 3 3

ISO/IEC 27035-1:2016 3 3 3 3 3

ISO/IEC 27035-2:2016 3 3 3

ISO/IEC 27041:2015 3 3 3 3 3

ISO/IEC 27043:2015 3 3 3 3 3

ISO/IEC TR 18044:2004 3 3 3

ISO/IEC TR 20004:2015 3 3 3

ISO/NP TS 11633-1 3 3

ISO/TR 11633-1:2009 3 3 3

ISO/TR 11633-2:2009 3 3 3

ISO/TS 19299:2015 3 3

Table 2.4: ISO database search results. The criteria are (1) target audience is
security professionals; (2) topic in scope, per Section 2.2.1; (3) focus
is investigator practices; (4) document finalized and not obsoleted
as of Aug 1, 2017; (5) available in English.

Traffic Light Protocol (TLP) on agreed-upon levels for marking information

sensitivity

Common Vulnerability Scoring System (CVSS) on describing the character-

istics and severity of defects in software systems (not to be confused

with Common Weakness Scoring System (CWSS) by the Mitre Corpor-

ation (MITRE))

Information Exchange Policy (IEP) is a reporting format; in this regard it

is another language for reporting, similar to IODEF or those listed in

Table 2.7. IEP’s focus is on disseminating information responsibly and

56 literature review – incident response

Criteria
Document 1 2 3 4 5

Mundie et al. (2014) 3 3 3 3 3

Alberts et al. (2004) 3 3 3 3 3

OCTAVE (Caralli et al., 2007) 3 3 3

ENISA (2006) 3 3 3 3

Cormack (2015) 3 3 3

Gorzelak et al. (2011) 3 3 3 3 3

Cichonski et al. (2012) 3 3 3 3 3

ETSI (2014) 3 3 3 3

RFC 2350 (Brownlee and Guttman, 1998) 3 3 3 3

RFC 2196 (Fraser, 1997, §5.4 only) 3 3 3 3 3

RFC 2827 (Ferguson and Senie, 2000) 3 3 3

RFC 2504 (Guttman et al., 1999) 3 3 3 3

Table 2.5: FIRST results summary. The criteria are (1) target audience is se-
curity professionals; (2) topic in scope, per Section 2.2.1; (3) focus
is investigator practices; (4) document finalized as of Aug 1, 2017;
(5) available in English.

quickly during incident response, which gives it a different focus than

these other formats.

passive Domain Name System (DNS) (pDNS) is a formatting standard for

DNS traffic analysis; the FIRST group is working on an IETF standard.

None of these standards meet the relevance criteria, because none are about in-

vestigator practice. They all represent things a competent investigator should

understand, but they do not discuss decisions an investigator should make

in a given scenario. FIRST also notes it contributes to several ISO standards,

which Section 2.5.2 covers (namely, 27010, 27032, 27035, 27037, and 29147).

More instructive than these standards are FIRST’s “Security Reference In-

dex”, described as “helpful” to the FIRST community.17 FIRST’s members in-

clude many of the relevant professionals and practitioners. The documents

Table 2.5 evaluates are listed as either best practices or standards in this

reference index.18 Five documents emerge as relevant: Alberts et al. (2004),

Cichonski et al. (2012), Fraser (1997), Gorzelak et al. (2011) and Mundie et al.

(2014).

17 https://first.org/resources/guides/reference
18 Strictly speaking, Mundie et al. (2014) and Alberts et al. (2004) are not linked

directly; they are the most relevant part of a suite of publications linked to by

FIRST as https://www.cert.org/incident-management/publications/index.cfm.

https://first.org/resources/guides/reference
https://www.cert.org/incident-management/publications/index.cfm

2.5 results 57

The security reference index also links to the home pages of other security or-

ganizations; however, I do not review all the content these organizations have

produced in full. In large part, the information is more about solving specific

technical problems than my target for a general problem solving method. Such

specific problems make for instructive cases when thinking about generalized

methods, and so these organizations do provide an integral relevant function.

But they do not aim for the types of documents in scope of this review. The

organizations identified are:

Center for Applied Internet Data Analysis (CAIDA), www.caida.org

CERT® Coordination Center (CERT/CC), www.cert.org

Center for Internet Security (CIS) Benchmarking,

http://www.cisecurity.org/

team cymru A security think tank, https://www.team-cymru.org/services.

html

EU Agency for Network and Information Security (ENISA), https://www.

enisa.europa.eu/, including CSIRT services https://www.enisa.europa.eu/

topics/csirt-cert-services

Open Web Application Security Project (OWASP), https://www.owasp.org/

index.php/OWASP_Guide_Project

microsoft Security Guidance Center, https://technet.microsoft.com/

en-us/library/cc184906.aspx

Sysadmin, Audit, Network, and Security Institute (SANS Institute) reading

room, https://www.sans.org/reading-room/

Although ENISA (2006) targets management rather than practitioners, it

provides links to training for practitioners. The two organizations the report

lists are CERT/CC and the EU-funded TRANSITS.

2.5.4 Intelligence community

The canonical training course for CIA and other intelligence analysts is Heuer

(1999). The book is essentially applied psychology. It covers topics such as

analysing competing hypotheses, which includes evaluating whether evidence

has been planted to deceive, as well as overcoming human cognitive biases

such as anchoring, vividness, and oversensitivity to consistency. Such methods,

especially for evaluating evidence in the face of deception, have clear relevance

to incident investigation.

www.caida.org
www.cert.org
http://www.cisecurity.org/
https://www.team-cymru.org/services.html
https://www.team-cymru.org/services.html
https://www.enisa.europa.eu/
https://www.enisa.europa.eu/
https://www.enisa.europa.eu/topics/csirt-cert-services
https://www.enisa.europa.eu/topics/csirt-cert-services
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Guide_Project
https://technet.microsoft.com/en-us/library/cc184906.aspx
https://technet.microsoft.com/en-us/library/cc184906.aspx
https://www.sans.org/reading-room/

58 literature review – incident response

Criteria
Document 1 2 3 4 5

Heuer (1999) 3 3 3 3 3

Hutchins et al. (2011) 3 3 3 3 3

Caltagirone et al. (2013) 3 3 3 3 3

Table 2.6: Intelligence community results summary. The criteria are (1) tar-
get audience is security professionals; (2) topic in scope, per Sec-
tion 2.2.1; (3) focus is investigator practices; (4) document finalized
as of Aug 1, 2017; (5) available in English.

The model of a computer attack as following a predictable ‘kill chain’ of

steps from start to finish was published by Lockheed Martin incident respon-

ders (Hutchins et al., 2011). The seven steps are reconnaissance, weaponiza-

tion, delivery, exploitation, installation, command-and-control, and actions on

objectives. These are the steps in one single attack – a single phishing email,

a single drive-by download with a malicious advert, etc. Adversaries almost

always compose a campaign out of multiple attacks; the objectives of one

attack may be to obtain a platform from which further attacks are possible.

The purpose of this model “is to capture something useful about the pattern

all, or at least nearly all, attacks follow,” so the analyst can anticipate what

to look for or expect next (Spring and Hatleback, 2017, p. 10).

Caltagirone et al. (2013) builds on attack ontologies, specifically the kill

chain, and intelligence analysis to perform attribution in computer security

incidents and analysis of whole campaigns. The method incorporates Bayesian

statistics to model belief updates of the analyst. These statistical details are

explicitly intended to help overcome analyst cognitive biases, such as those

discussed in Heuer (1999).

2.5.5 Referenced Documents

In this section, I will harvest citations from the standards identified as relevant

in the prior parts of Section 2.5. The evaluations are detailed in a subsection

for each publication venue. The documents harvested from citations that are

directly relevant to the review are:

• Carrier and Spafford (2004)

• Casey (2010, ch. 2)

• Ciardhuáin (2004)

2.5 results 59

• Leigland and Krings (2004)

• 27037 ISO/IEC (2012)

• 27042 ISO/IEC (2015b)

• NIST SP 800-83 rev 1, §4 only (Souppaya and Scarfone, 2013)

• NIST SP 800-86 (Kent et al., 2006)

• Osorno et al. (2011)

• Kossakowski et al. (1999)

• Cheswick (1992)

• Stoll (1988)

• Mitropoulos et al. (2006)

• Joint Chiefs of Staff (2014c, ch. 5 only)

2.5.5.1 IETF documents

The four relevant IETF standards reference 97 unique documents, excluding

the IODEF-related standards already considered in Section 2.5.1. These docu-

ments fall into three broad categories: technical implementation requirements

and dependencies; other related computer-security-incident report formats;

and broader incident handling guidelines that describe the larger analysis

and response context within which the reporting formats are used. This first

category of implementation dependencies is not relevant. Therefore, other re-

porting documents and broader incident handling guidelines are the import-

ant results. There are 22 cited reporting-related documents and exactly one

related to broader incident handling and use of the reporting formats.

Table 2.7 lists the reporting formats and data sources cited by the IETF

results in Section 2.5.1. Other report formats are primarily produced by NIST

and MITRE – with funding from the US government including NIST. These

projects also include the only referenced documents that are continuously

updated data archives. The data formats for CVE, CWE, CWSS, CCE, CCSS,

CPE are also continuously populated and published by NIST and MITRE as

new vulnerabilities, platforms, etc. are discovered or developed. Thus these

projects provide not only a format, but a standard reference dictionary of the

possible terms with which the format may be populated. CVSS is perhaps the

most important of these metrics which provide data and scoring; for a survey

that relates CVSS to other security metrics, see Pendleton et al. (2016).

These standard dictionaries are referenced by many of the other data

formats which inherit the field essentially as a data type. For example, MAEC

may indicate which vulnerability a malware targets using its CVE number.

60 literature review – incident response

Publisher Type Name

CERT/CC Architecture Automated Incident Reporting (AirCERT)
ICASI Format Common Vulnerability Reporting Frame-

work (CVRF)
IEEE Format Malware Metadata Exchange Format

(MMDEF)

IETF

Format Intrusion Detection Message Exchange
Format (IDMEF)

Format Incident Object Description Exchange
Format Extensions (IODEF+)

Format RFC 5941, Sharing Transaction Fraud
Data (extends IODEF)

ISO Format Software asset management: Software iden-
tification tag (ISO 19770)

FIRST Data Common Vulnerability Scoring System
(CVSS)

MITRE

Format Common Attack Pattern Enumeration and
Classification (CAPEC)

Format Common Event Expression (CEE)
Data Common Vulnerabilities and Exposures

(CVE)
Data Common Weakness Enumeration (CWE)
Data Common Weakness Scoring System (CWSS)

Format Malware Attribute Enumeration and Char-
acterization (MAEC)

Format Open Vulnerability and Assessment Lan-
guage (OVAL)

NIST

Data Common Configuration Enumeration (CCE)
Data Common Configuration Scoring System

(CCSS)
Data Common Platform Enumeration (CPE)

Format Open Checklist Interactive Language
(OCIL)

Format Security Content Automation Protocol
(SCAP)

Format Extensible Configuration Checklist Descrip-
tion Format (XCCDF)

XMPP Format XEP-0268 Incident Handling (using
IODEF)

Table 2.7: Computer-security related reporting formats and data formats
cited by IETF standards documents.

2.5 results 61

Such dictionaries are useful background knowledge during incident investiga-

tion, and help reduce confusion by providing common reference tags. However,

following the pattern of other documents surveyed, these reference dictionaries

do not provide agreed-upon evidence collection, field population, or analysis

guidelines for their contents.

The next largest group of cited work from identified RFCs are three more

IETF documents related to IODEF that did not appear in the original search.

Other documents are also related to IODEF. CVRF and XEP-0268 extend

and implement IODEF, respectively. AirCERT is a proposed implementation

architecture that uses IODEF in automated indicator exchange. My conclusions

about the IODEF results identified in Section 2.5.1 therefore apply equally to

these other documents, and I will pass over them.

The remaining documents fall loosely into the NIST-MITRE orbit. ISO 19770

for asset management is developed separately from, but is related to, CPE and

CCE, NIST’s asset management for platforms and configurations, respectively.

MMDEF is not directly related to MAEC; however, MAEC has adopted a

significant component of the MMDEF schema.

The only citation related to actual decision making during an incident is

NIST SP 800-61 (Cichonski et al., 2012). This document is already included

from the FIRST results, see Section 2.5.3. Thus, the IETF citations do not add

any new documents to the review.

2.5.5.2 ISO documents

There are three relevant ISO standards from which to extract references,

namely ISO/IEC 27035, ISO/IEC 27041:2015, and ISO/IEC 27043:2015.

ISO/IEC 27035 comes in two parts; although only the first part is in scope,

I extract references from both parts. (Although ISO charges for access to its

documents, all the bibliographies are freely available, so all documents are

included in this step.)

There are 81 total references among the documents, with 64 unique refer-

ences. Of these, 20 are elements of the ISO/IEC 27000 series of standards

explicitly targeting information security. Four are the documents already ref-

erenced, and several others are already noted as not relevant in Table 2.4.

However, the references add the following two 27000-series publications to

the survey documents as relevant:

62 literature review – incident response

• 27037: Guidelines for identification, collection, acquisition and preser-

vation of digital evidence (ISO/IEC, 2012)

• 27042: Guidelines for the analysis and interpretation of digital evidence

(ISO/IEC, 2015b)

Of the remaining 44 referenced documents, 13 are further ISO standards. Spe-

cifically:
ISO 15489-1

ISO 8601

ISO 9000

ISO/IEC 10118-2

ISO/IEC 12207:2008

ISO/IEC 17024:2012

ISO/IEC 17025:2005

ISO/IEC 17043:2010

ISO/IEC 20000

ISO/IEC 29147

ISO/IEC 30111

ISO/IEC 30121

ISO/IEC/IEEE 29148:2011

All of these other ISO documents are out of scope. Further, the following

are unavailable or already evaluated, and can be ignored: ILAC-G19, which

directly follows from ISO 17020 and 17025; RFC 5070 (Danyliw et al., 2007),

see Section 2.5.1; one by Valjarevic and Venter that is not available but ap-

pears by title and timing to be a working group presentation discussing the

other two papers by these authors. I also will not consider the Daubert 1993

US Supreme Court case, to be jurisdiction neutral. Removing these leaves

the documents listed and evaluated for relevance in Table 2.8. The following

documents pass on to the next stage of analysis: Carrier and Spafford (2004),

Casey (2010), Ciardhuáin (2004) and Leigland and Krings (2004). And, like

the IETF, ISO cites NIST SP 800-61 (Cichonski et al., 2012).

Also cited are two further MITRE data formats not covered in Sec-

tion 2.5.5.1: Structured Threat Information Expression (STIX) and Trusted

Automated eXchange of Indicator Information (TAXII). These build on MAEC,

CVE, and so on as formats for exchanging incident data. Like the other report-

ing formats already discussed, STIX and TAXII are not directly relevant to the

incident response decision-making topic. While they are a language in which

to report, and reporting is in scope, I judge these standards are focused mostly

on the construction of an interoperable language system. Thus, they are out

of scope, as the review is to discuss reporting in a language-independent way.

The Association of Chief Police Officers guidelines are representative of

many of the documents in Table 2.8. Their target audience is “UK law en-

forcement personnel who may deal with digital evidence” (Williams, 2012,

2.5 results 63

Criteria
Document 1 2 3 4 5

Williams (2012) 3 3 3 3

Valjarevic and Venter (2012b) 3 3 3 3

Valjarevic and Venter (2012a) 3 3 3 3

Carrier and Spafford (2003) 3 3 3 3

Carrier and Spafford (2004) 3 3 3 3 3

Edwards et al. (2009) 3 3

Casey (2010) 3 3 3 3 3

Cohen (2010) 3 3 3

Cohen et al. (2011) 3 3 3

Palmer (2001) 3 3

Pollitt (2008) 3 3 3

Reith et al. (2002) 3 3 3

Beebe and Clark (2005) 3 3 3 3

Ciardhuáin (2004) 3 3 3 3 3

Leigland and Krings (2004) 3 3 3 3 3

Rowlingson (2004) 3 3 3 3

Hankins et al. (2009) 3 3 3

SWGDE (2009) 3 3

Garfinkel et al. (2009) 3 3 3

Ballou et al. (2001) 3 3 3

Alberts et al. (2014) 3 3

Cichonski et al. (2012) 3 3 3 3 3

Table 2.8: ISO database search results. The criteria are (1) target audience
is security professionals; (2) topic in scope, per Section 2.2.1; (3)
focus is investigator practices; (4) document finalized and not ob-
soleted as of Aug 1, 2017; (5) available in English.

p. 6). It is primarily about the legal chain of custody necessary to bring

digital evidence to court. This topic is about evidence collection, so it is in

scope. But the target audience is law enforcement, not security practitioners.

The guidelines are not directly transferable to CSIR. The extent of comment

on the actual work of understanding what the digital evidence means is con-

strained: “it is not practically possible to examine every item of digital data

and clear tasking is needed to ensure that the digital forensic practitioner has

the best chance of finding any evidence which is relevant to the investigation”

(Williams, 2012, p. 10).

64 literature review – incident response

Some relevant work will not be carried through because it is obsoleted in a

rather round-about way. Valjarevic and Venter (2012a, p. 1) notes “an effort to

standardise the process has started within ISO, by the authors.” Thus papers

by these authors are obsolete because the authors directly subsumed their

ideas into the ISO process. The process classes and activities used by ISO are

clearly derived from Valjarevic and Venter (2012b, p. 6), which also contains

a matrix of how these reference terms relate to other common forensic invest-

igation ontologies. This set of works cited19 matches the ISO work remarkably

closely, as would be expected since the primary authors are the same. Unfor-

tunately, Valjarevic and Venter (2012b) gives absolutely no methodology for

how they arrived at this list of resources. Their analysis method is also not

discussed, so it is unclear how or why they arrived at their categories and

classification.

These omissions are particularly strange in that Valjarevic and Venter

(2012b, p. 3) quotes Cohen et al. (2011) as rightly concluding the next steps

in reaching consensus on and improving the field of digital forensics are a

review of the literature that can be used to accurately drive consensus. This

task is clearly what’s been attempted, and as it has become an ISO standard

it seems to have been accepted by a variety of practitioners. However, the lack

of explanation of how these documents were selected as the correct set from

which to drive consensus makes it hard to trace the authoritativeness of this

source.

2.5.5.3 FIRST Documents

Five FIRST-related documents (Table 2.5) pass the evaluation of results and

will have further citations harvested from them. Three of these documents do

not have any citations ready to harvest. RFC 2196 (Fraser, 1997) does not

have in-line citations, and only §5.4 is relevant, so the relevant citations to

follow cannot be distinguished. Further, RFC 2196 is already 20 years old,

and so following any citations would provide little modern benefit. On the

other hand, Gorzelak et al. (2011) is a primary source – it is a survey of

preventative practices at over 100 CSIRTs. Gorzelak et al. (2011) notes the

tools that the respondents use, but it makes no citations to other incident

investigation methodology documents. Alberts et al. (2004) is similarly a

19 Specifically, the overlapping works cited are Ballou et al. (2001), Beebe and Clark

(2005), Carrier and Spafford (2003), Casey (2010), Ciardhuáin (2004), Cohen

(2010), Leigland and Krings (2004), Reith et al. (2002) and Williams (2012)

2.5 results 65

primary source, though on incident management from CERT/CC. The only

reference kept from Alberts et al. (2004) is where it explicitly indicates further

information on incident analysis is contained in another CERT document,

namely Kossakowski et al. (1999). Therefore, citations primarily come from

Cichonski et al. (2012) and Mundie et al. (2014).

Cichonski et al. (2012) references three classes of resources. First is a list of

incident response organizations, second is a list of NIST publications related

to incident response, and finally a list of applicable data formats. The list of

organizations includes many already discussed in Section 2.5.3. Those jointly

listed by NIST and FIRST are CERT/CC, ENISA, and FIRST itself. NIST addition-

ally lists the Anti-Phishing Working Group (APWG); Computer Crime and In-

tellectual Property Section (CCIPS); Government FIRST (GFIRST); High Tech-

nology Crime Investigation Association (HTCIA); InfraGuard; the Internet

Storm Center (ISC); the National Council of ISACs; and US Computer Emer-

gency Readiness Team (US-CERT). These organizations are certainly involved

in various aspects of incident response. However, organizations as such are out

of scope.20

Criteria
Document 1 2 3 4 5

SP 800-53 (Ross et al., 2013) 3 3 3

SP 800-83 (§4) (Souppaya and Scarfone, 2013) 3 3 3 3 3

SP 800-84 (Grance et al., 2006) 3 3 3

SP 800-86 (Kent et al., 2006) 3 3 3 3 3

SP 800-92 (Kent and Souppaya, 2006) 3 3 3 3

SP 800-94 (Scarfone and Mell, 2007) 3 3 3

SP 800-115 (Scarfone et al., 2008) 3 3 3 3

SP 800-128 (Johnson et al., 2011) 3 3 3

Table 2.9: NIST publications referenced by Cichonski et al. (2012). The cri-
teria are (1) target audience is security professionals; (2) topic in
scope, per Section 2.2.1; (3) focus is investigator practices; (4) doc-
ument finalized and not obsoleted as of Aug 1, 2017; (5) available
in English.

20 As a convenient sample, I have presented at APWG (Spring, 2013b; Spring et al.,

2015) and attended InfraGuard meetings, and I do not expect there would be signific-

ant benefit in expanding the scope to include them. Likewise, I have interacted with

several ISACs, and reviewed their available materials (Research and Education Net-

working Information Sharing and Analysis Center (ISAC) (REN-ISAC) and Financial

Services Information Sharing and Analysis Center (ISAC) (FS-ISAC) especially) and
do not believe they have any documents relevant to human decision-making in CSIR.

66 literature review – incident response

Table 2.9 lists and evaluates the relevance of the NIST publications refer-

enced by Cichonski et al. (2012). All of these publications contribute to relev-

ant background knowledge. For example, any incident response professional

will need to know what a intrusion detection and prevention system is and

how they are deployed (SP 800-94). But this topic is not about evidence col-

lection, analysis, and reporting; it is merely necessary background knowledge.

The two publications that are relevant are the guides to Malware Incident

Prevention and Handling for Desktops and Laptops (Souppaya and Scarfone,

2013, §4 only) and Integrating Forensic Techniques into Incident Response

(Kent et al., 2006).

The data exchange formats listed by Cichonski et al. (2012) are quite similar

to those NIST, IODEF, and MITRE formats extracted from the IETF documents

in Table 2.7. The only difference is the addition of Asset Identification, Asset

Results Format, CVSS (from FIRST, see Section 2.5.3), and Cyber Observ-

able Expression (CybOX). As discussed in Section 2.5.5.1, these formats are

languages for reporting results, but do not directly discuss what to say. The

research question here includes what to say in results, while being language

agnostic, which puts these various formats and languages just outside the

scope.

Mundie et al. (2014) cites 27 documents. They include several technical

format documents for ontologies in the W3C Ontology Web Language (OWL),

KL-ONE knowledge representation, knowledge graphs, process specification

language, or the display tools used (Graphviz), which are out of scope. There

are also psychology and ontology that are obviously out of scope (Baader,

2003; Miller, 1956). Further, four references have already been considered,

namely ISO/IEC 27001, ISO/IEC 27002, Cichonski et al. (2012), and Beebe

and Clark (2005). These exceptions leave the eight documents evaluated in

Table 2.10. The only documents that pass the evaluation are Osorno et al.

(2011) and Kossakowski et al. (1999).

MITRE (2010) on whether cybersecurity is a science is not within the

current scope. However, since CSIR is an important subset of cybersecurity,

whether security investigations are a kind of subcategory of scientific invest-

igation clearly impacts the question of what incident investigation is and how

to link it to knowledge generation and evidence evaluation more generally.

Chapter 3 addresses the relationship between cybersecurity and science in

detail; I will argue that cybersecurity as practised is a kind of science.

2.5 results 67

Criteria
Document 1 2 3 4 5

MITRE (2010) 3 3 3

Mundie and Ruefle (2012) 3 3 3

Fenz and Ekelhart (2009) 3 3 3

Osorno et al. (2011) 3 3 3 3 3

Magklaras and Furnell (2001) 3 3 3 3

Wang and Guo (2009) 3 3 3

Chiang et al. (2009) 3 3 3

Ekelhart et al. (2007) 3 3 3 3

Kossakowski et al. (1999) 3 3 3 3 3

Table 2.10: Documents referenced by CERT/CC documents. The criteria are
(1) target audience is security professionals; (2) topic in scope
(Section 2.2.1); (3) focus is investigator practices; (4) document
final and not obsolete as of Aug 1, 2017; (5) available in English.

Fenz and Ekelhart (2009) provides a difficult decision. It is one of the few

attempts at formalization in the literature. However, its target is to formalize

security knowledge, not security practice. This topic is closely allied to my

hope to formalize CSIR analysis, as security knowledge would be instrumental

to that project. So while not in scope for this review, this document may be

useful for future related work.

2.5.5.4 IC Documents

Heuer (1999) presents some challenges to adequate reference harvesting. The

book contains no collected list of references, written in a traditional humanities

style in which references are in footnotes intermixed with commentary, but this

is not the central problem. As essentially a military intelligence and psychology

book, its sources are quite wide-ranging. References range from World War II

Nazi-propaganda analysis to behavioural economics. It is only through Heuer’s

CIA experience that these disparate sources are converted into a useful guide

on how to reason in adversarial situations. The other challenge is that Heuer

(1999) makes only passing reference to computers as tabulating machines.

The closest he seems to get to computer science is via Simon (1996), as he

discusses decision-making and satisficing. For these three reasons I consider

Heuer (1999) as essentially a primary source and do not trace citations from

it. One should not be surprised it has many features of a primary source, as

68 literature review – incident response

surely its main value is summarizing CIA analytic experience not otherwise

publicly available.

Criteria
Document 1 2 3 4 5

Stamos (2010) 3 3 3

Amann et al. (2012) 3 3 3

Cheswick (1992) 3 3 3 3 3

Stoll (1988) 3 3 3 3 3

Duran et al. (2009) 3 3 3

Cohen (1995) 3 3 3

Lewis (2008) 3 3

Tirpak (2000) 3 3 3 3

Hayes (2008) 3 3 3

Willison and Siponen (2009) 3 3 3 3

Mitropoulos et al. (2006) 3 3 3 3 3

Caltagirone and Frincke (2005) 3 3 3 3

Caltagirone (2005) 3 3 3 3

Bellovin (1992) 3 3 3 3

McClure et al. (2005) 3 3 3 3

Brenner (2002) 3 3

Van Eck (1985) 3 3 3

John and Olovsson (2008) 3 3 3 3

Joint Chiefs of Staff (2014a) 3 * 3

Joint Chiefs of Staff (2013) 3 3 * 3

Joint Chiefs of Staff (2014c, ch. 5 only) 3 3 3 * 3

Table 2.11: Documents referenced by Caltagirone et al. (2013) and Hutchins
et al. (2011). The criteria are (1) target audience is security pro-
fessionals; (2) topic in scope, per Section 2.2.1; (3) focus is in-
vestigator practices; (4) document finalized and not obsoleted as
of Aug 1, 2017; (5) available in English. A (*) indicates the IC
document cited the document current at the time, but it has since
been updated and I cite the document current as of Aug 1, 2017.

Caltagirone et al. (2013) and Hutchins et al. (2011) are more straightfor-

ward. There are 79 citations between the two, with no overlap, though Calta-

girone et al. (2013) cites both Hutchins et al. (2011) and Heuer (1999). The

references in Caltagirone et al. (2013) are noticeably more strategy-focused

over the tactically-focused Hutchins et al. (2011), as one would expect from

their different topics. Hutchins et al. (2011) cites several vulnerability bulletins

and company advisories as cases; it is more of a primary source, documenting

2.6 discussion 69

the analysis methods used by Lockheed Martin incident response staff. I do not

consider such advisories, software tool documentation, and news items, as they

are not within review scope. There are also several references already covered

elsewhere: Cichonski et al. (2012), STIX, CVE, and SANS Institute. There is yet

a new reporting and data exchange format: Vocabulary for Event Recording

and Incident Sharing (VERIS). References that are definitions of terminology

are excluded. These exceptions reduce the total referenced works to 50.

The kill chain (Hutchins et al., 2011) and the diamond model (Caltagirone

et al., 2013) are both attack ontologies. They model the possible routes an

adversary may take when executing an attack. I discuss attack ontologies as

a kind of related foundational work in Section 2.8.2. One big class of cited

work is other attack ontologies. I consider the kill chain and diamond model

as de facto standard ontologies, but they likely reached that level of agreement

within the IC because they also come with investigative norms for interpreting

and filling in the ontologies. The referenced attack ontology works do not

come with such guidance, and so I will not consider them directly in scope

here. This decision removes 16 references from consideration because they are

attack-ontology related.

There are also several references that are clearly for background or motiva-

tion, such as Hawkins (2004), Liu and Motoda (1998), Symantec’s analysis of

the Duqu malware, and assessments of Chinese attack capabilities. I removed

how-to descriptions for conducting particular methods of technical analysis,

namely on passive DNS analysis (Antonakakis et al., 2011), crime-pattern ana-

lysis (Palmiotto, 1988), and honeypots via the Honeynet Project. This leaves

the 22 documents in Table 2.11. Of these, four pass all relevance requirements:

Cheswick (1992),21 Stoll (1988), Mitropoulos et al. (2006), and Joint Chiefs

of Staff (2014c, ch. 5 only).

2.6 discussion

Given the purported importance of reliable incident response in the standards

literature, it is rather surprising there is such a gap, without systematic advice

for CSIR analysis on what questions to hypothesize and prioritize or how to

reliably collect and interpret evidence. Table 2.12 classifies advice on CSIR

21 Technically the citation is to this article’s republication in a popular textbook,

Cheswick et al. (2003, ch. 16). However, as the rest of the textbook is not directly

referenced, I reference just the original publication.

70 literature review – incident response

topics in several ways: to which phases the document applies, the directness

with which the document applies to each phase, the applicability of the advice,

investigative goals supported, broadness of scope, generalizability of advice,

and formalism. This section is organised to make some commentary on all the

documents in the Table.

This section begins with an analyst of what I view to be the primary gap

in the literature. The evocative evidence for this claim will be the three NIST

publications, as they make the point most clearly. After discussing these, the

section moves on to the ISO, IETF, etc. documents in the order they appear

in Table 2.12.

Despite recommending everyone use a methodical approach, NIST fails to

provide one. This failure is symptomatic of the state of available practicable

policy advice and practitioner training material. This is the central gap iden-

tified by the literature review: There may be adequate concrete tools and

training available, but there is no general training or policy advice for stra-

tegic selection of tactics, that is, which analysis heuristics or technical

tools to employ in a particular situation and why. A related gap is

a failure to advise on when the analyst or investigator is justified in

generalizing; that is, making a stronger, broader claim from singular pieces

of evidence. Because there is no advice on which strategy to employ, or when

broadening claims are justified, there is similarly a gap in what information

to report in order to convince a reader.

Examining NIST SP 800-61 (Cichonski et al., 2012), it is obvious why all

four standards venues reference it or use it as their standard. It is compre-

hensive and thorough without being overbearing. However, its focus is incident

management, not investigation. The analysis phase receives about three pages

of discussion (p 28-30), reporting one page (p 31),22 evidence collection half

a page (p 36), and general decision making and prioritization two pages (p

32-33). Cichonski et al. (2012, p 32) addresses the problem of scarce resources

directly: “prioritizing the handling of the incident is perhaps the most critical

decision point in the incident handling process.” This is probably the best

discussion of these topics in the documents found. Yet it is far from sufficient

for a robust account of the nuances and difficulties of evaluating evidence,

generalizing from particulars, and deciding how best to report findings.

22 SP 800-61 acknowledges its discussion of reporting is too brief, and refers the reader

to RFC 5070. This document has since been obsoleted by RFC 7970 (Danyliw,

2016).

2.6 discussion 71

NIST SP 800-83 (Souppaya and Scarfone, 2013) §4.2 is titled “detection

and analysis,” yet I have labelled the document as having no bearing on the

analysis phase. This decision is because the section’s advice on analysis is

entirely tool-focused pragmatics. For example, analysis should take place on

an isolated or virtualized operating system to prevent spread of infection, and

so on. The document mentions some fields that the investigator may want to

collect, such as file names, service ports, and “how to remove the malware.”

There is no advice on how to obtain this information, why, or what it might be

useful for. Therefore, these are best understood as reporting constraints, not

analysis advice. This result is disappointing, considering §4 gives its opening

motivation as “this section of the guide builds on the concepts of SP 800-61

by providing additional details about responding to malware incidents.”

NIST SP 800-86 Kent et al. (2006) suffers similarly to SP 800-83; it consists

of a stream of data formats and types and assumes what to do is known. These

make up underlying technical skills necessary for an investigation, and so are

not completely irrelevant to incident investigation. However, they do not help

us understand how investigators make decisions. Advice on analysis again

amounts to essentially constraints on reporting and collection: “the analysis

should include identifying people, places, items, and events, and determining

how these elements are related... often, this effort will include correlating data

among multiple sources” (Kent et al., 2006, p 3-6).

These NIST documents seem to acknowledge at least a shadow of the gaps

I identify, even if they do not fill it. Kent et al. (2006, p 3-8) recommends

all organizations have an incident response capability and that analysts use

“a methodical approach to a digital forensic investigation.” The document

clearly states the importance of digital forensic investigation and advises on

terminology, analysis techniques, and pitfalls to avoid. Despite NIST’s policy

recommendation to do so, based on this survey NIST does not actually provide

a methodical approach to analysing data during an investigation. SP 800-61

comes closest, but the discussion of analysis method there still amounts to

an unordered collection of tips, tricks, and pitfalls to avoid. While these are

all accurate and sound advice, they do not comprise a method. The NIST

documents evaluated and surveyed here are one significant effort at providing

practical advice to a wide audience on a complex topic. Their focus is practical

guides on aspects of tools used in digital forensics. But the assumption is that

once an analyst or investigator is taught how to use a tool, they will know

72 literature review – incident response

when and why to use it. This gap is a recurring assumption, and precisely my

intended focus for improvement.

Many of those people writing these documents or making these tools are

competent in CSIR analysis already, and so is the intended audience of their

colleagues. Therefore, I imagine they do not write down some process that

seems common sense to them. They seem especially likely to do so when it

is expedient: security professionals tend to be under continuous time pres-

sure. Skipping this step is doubly attractive if the intended audience seems to

know already and there are more pressing issues. Finally, computing is known

for a sort of rugged individualism as a profession (Ensmenger, 2015) that

prefers self-taught struggle over asking for explicit details. Based on expedi-

ency, rather than slowing down the whole standards process, those who did

manage to ask such a question were likely tutored privately – apprenticed in

the trade-craft – either in formal training or informally. Finally, those offering

formal training at high cost have little incentive to publicize their work.

2.6 discussion 73

Directness
by Phase

Scope by
Goal

Document Col AnlRep Fix Int LE Gen Type Formal

27035-1:2016 (ISO/IEC, 2016) C C C B Un Ont Qual
27037 ISO/IEC (2012) D M Un Ont Qual

27041 ISO/IEC (2015a) C C C Likely Instr ∅
27042 ISO/IEC (2015b) D D M Un Instr ∅
27043 ISO/IEC (2015c) C C C B M Un Ont Qual

RFC 2196, §5.4 only (Fraser, 1997) C D M B Likely Instr ∅
RFC 6545 (Moriarty, 2012) C C D N B Un Ont Formal

RFC 7203 (Takahashi et al., 2014) C C N N N Un Ont Formal
RFC 7970 (Danyliw, 2016) C D M M M Un Ont Formal

RFC 8134 (2017) C B B Un Study ∅
NIST 800-61 (Cichonski et al., 2012) C D C M M Un Adv Qual

NIST 800-83 §4 (2013) D C B Un Ont Qual
NIST 800-86 (Kent et al., 2006) C C High Study Qual
Gorzelak et al. (2011) (ENISA) D N Un Study Qual

Alberts et al. (2004) (CERT/CC) C B Un Ont Qual
Kossakowski et al. (1999) (CERT/CC) C D C M Likely Adv Qual

Mundie et al. (2014) (CERT/CC) C C C B High Ont Perf
Osorno et al. (2011) (US-CERT) C C B B High Ont Qual

Hutchins et al. (2011) (IC) C C M Un Adv Qual
Caltagirone et al. (2013) (IC) C D M High Adv Perf

Heuer (1999) (CIA) D B B B Wide Instr Qual
Joint Chiefs of Staff (2014c, ch. 5) D M High Instr Qual

Casey (2010, ch. 2) C D D B Wide Ont Qual
Mitropoulos et al. (2006) C C C M N Un Study Qual

Carrier and Spafford (2004) D C D M Likely Ont Qual
Ciardhuáin (2004) C C C B Un Ont Perf

Leigland and Krings (2004) D N N N Likely Instr Formal
Stoll (1988) C D C N M N Likely Study ∅

Cheswick (1992) C D B Likely Study ∅

Table 2.12: Categorization of relevant documents. Phases are collection, analysis, and re-
porting; a cross means phase is not addressed. Advice directness is direct (D) or
constraints-based (C). Goals are: fix an infected system (fix), gather intelligence
(int), and law enforcement action (LE). A document’s intended scope is narrow
(N), medium (M), or broad (B). The generalizability (Gen) of an approach
is unlikely (Un), likely (Likely), highly likely (High), or already widely gener-
alizable (Wide). Document types are case studies (Study), ontologies (Ont),
advice on actions (Adv), or explicit instructions (Instr). Formalization is either
not present (∅), qualitative (Qual), formal, or perfunctory (Perf).

74 literature review – incident response

2.6.1 Comments and clarifications on Table 2.12

Table 2.12 is complicated, and requires some unpacking. The following items

explain some of my classification decisions captured in the table.

the iso 27000-series is dedicated to information security. Five iden-

tified standards on information security are within the scope on the

particular parts of CSIR. The relationship between these standards is

documented by their Figure 1, reproduced in each of the ISO standards

(which, due to copyrights, I cannot reproduce here). This figure states

clearly that all the listed standards are applicable to “investigation pro-

cess classes and activities” (ISO/IEC, 2015c, p. ix). Process classes are

readiness, initialization, acquisitive, and investigative; activities overlap

these classes, and are plan, prepare, respond, identify-collect-acquire-

preserve, understand, report, and close. This taxonomy is essentially

consistent with the taxonomies used by the IETF, NIST, and FIRST

(Mundie et al., 2014).

However, where a NIST standard such as SP 800-61 is a single 70-page

document, the ISO incident response standards are each 10-15 pages of

unique content with 10-15 pages that are repeated in each document.

The five ISO documents combined are comparable in scope and detail

to SP 800-61. Unlike a NIST publication, the ISO documents do not

present a clear investigative goal (e.g., fix the system, legal prosecution,

etc.), even within documents, let alone among them.

27043, for example, alternates between incident response for fixing systems

and analysis for providing evidence to a legal proceeding. Within 27043

ISO/IEC (2015c), §8 reads like advice from CERT/CC (Alberts et al.,

2004), and §9 reads like advice from Casey (2010, ch. 2). The shift is ab-

rupt and without explanation. The shift includes a shift in terminology

and jargon for referring to essentially the same mental process by the

investigator. This oddity does not build confidence that the ISO stand-

ards actually present a unified methodology for incident investigation

as a series of disconnected vignettes.

27041 does little to dispel this sense of disconnectedness. This ISO document

is disconnected from the other incident management documents in that

it focuses on the client-contractor relationship. A process is validated

in that “the work instruction fulfils the requirements agreed with the

2.6 discussion 75

client” (ISO/IEC, 2015a, p 9). 27041 ISO/IEC (2015a, p 12-13) states

an investigation composed of validated examinations “can be considered

to be validated” while defining a validated examination as one mode

up of validated processes. Assuming composability of valid processes

is a dangerous claim. Concurrent program verification has shown such

claims cannot be assumed and are challenging to prove (Milner, 1989;

O’Hearn, 2007); even though the technical sense of “valid” is slightly

different.

For these reasons, the ISO standards would struggle to function well as a

unified whole. There does not seem to be overarching editorial guidance to

assure consistency or navigate conflicts. At best, if the reader already knows

how to navigate the different, conflicting contexts, the ISO documents are

useful expressions of each area of concern. The level of detail is appropriate

for ensuring management ability to oversee a process, rather than to do the

process itself. Even the most specific documents (27037 and 27042), to which

the other, more general documents refer for details, are thin on anything

that might help with actual decision-making. ISO/IEC 27042 provides a basic

distinction between static and dynamic analysis of malware (it uses “live”

for dynamic), but all that is really provided are a few descriptions of what

distinguishes static and dynamic analysis. These descriptions do not provide

information on how to actually do either kind of analysis, or even common

pitfalls or errors to avoid.

rfc 2196 is quite old, and its advice shows its age. The steps are in general

sound; however, they are from a time when it was reasonable to ask

for “all system events (audit records)” to be recorded and evaluated by

the investigator (Fraser, 1997, p 54). The text assumes that incident

investigators will know what to do with these events once logged. This

advice is not bad, such as it is; however it is best understood as historical

rather than actionable advice.

rfc 6545 and RFC 6546 jointly detail Real-time Inter-network Defense

(RID). RFC 6545 describes conceptual and formal details, whereas

RFC 6546 provides technical communication and encryption details.

RFC 6545 is an extension of IODEF (Danyliw, 2016), specifying meth-

ods and norms of communication using IODEF between organizations.

As such, the document focuses on what to report, and how to use reports

for mitigation. Policy of use and sensitivity of information is explicitly

76 literature review – incident response

integrated into the format. How analysis produces adequate data is

out of scope. By providing such explicit standards on what should be

reported and how those reports can expect to be used, RID does put

constraints on analysis and evidence collection – those phases need to

produce reporting with the specified types of fields.

rfc 7203 extends IODEF (Danyliw, 2016) “to embed and convey various

types of structured information” Takahashi et al. (2014, p 2). Spe-

cifically, the various metrics and formats such as CVSS and CVE lis-

ted in Table 2.7. This extension serves to integrate two types of re-

porting format and constraint. This is useful, but is mostly program-

matic. Therefore, it is not directly about reporting in the same way as

RFC 7970. Although technically detailed, from a decision-making point

of view RFC 7203 just suggests that these metrics are useful ways to

describe an incident and report on it, and that investigators should

do so. RFC 5901 makes similar suggestions specifically for reporting

phishing (Cain and Jevans, 2010).

rfc 7970 is the heart of the IETF incident analysis standardization effort. It

obsoletes RFC 5070, which is cited or used by most publication venues

as the incident reporting format. The focus is on exchanging indicators

of incidents for collective defence. Although IODEF is, strictly speaking,

just an XML schema for document incidents, the available options and

the ontology provided constrain the other phases up to reporting. For

some fields, this provides only minimal collection requirements. How-

ever, consider the system impact type attribute, which is a required

field. There are 24 options specified, ranging from “takeover-account”

to “integrity-hardware” (Danyliw, 2016, p 46). Differentiating these

various impacts would require a relatively sophisticated incident invest-

igation and analysis capability; it is not so easy as logging an IP address

and passing it along. Just within the assessment class, one of two dozen

overarching classes, there are five types of impact to distinguish between

with similar detail: system, business, time, money, and confidence. Such

detail provides the most rigorous reporting requirements and guidance

available.

rfc 8134 is informational, and not a standard. It provides a list of inform-

ation exchanges, collaborations, and implementations that make use of

IODEF. Because information exchanges are a source of evidence collec-

tion, the details about what information is available from what groups

2.6 discussion 77

provides evidence collection suggestions and introductions. Although

this advice is at a rather abstract level, it is useful because it provides

a discussion of network defence information sharing arrangements that

is not commonly quite so public.

Gorzelak et al. (2011) is a study commissioned by ENISA and ex-

ecuted by the Polish CERT. The focus is on data sources – how do

CSIRTs monitor their constituents. The method employed is a survey

of over 100 CSIRTs. While this data is at best instructive of where to

get data, it is an important resource for how respondents evaluate the

quality of data sources. Such evaluation is directly relevant to evidence

collection decisions. It is unlikely this study is instructive outside this

relatively narrow context. However, it is directly relevant context for

this work.

Alberts et al. (2004) is primarily about contextualizing incident

management within a wider organizational context. In fact, Alberts et

al. (2004, pp 24-26) is one of the best assessments of the relationship of

investigation to preparation and protection from this review. However,

my scope is narrower than its topic, namely how to situate the CSIR

process within an organization. Alberts et al. (2004, p 128ff.) is an

ambitious effort to organize a flow chart for incident response. Because

their scope includes technical, management, and legal responses, the

level of detail devoted to analysis amounts to “[d]esignated personnel

analyze each event and plan, coordinate, and execute the appropriate

technical response” (Alberts et al., 2004, p 136).

Kossakowski et al. (1999, p 17ff.) provides classes of advice, like

collect logs and isolate infected machines from the network. These per-

haps come the closest to advice about how to collect evidence from

computer incidents. However, it is silent on which logs to collect, or

what to look for when examining network traces. While this advice

is highly likely to be able to generalize to all cases of incident invest-

igation, the level of detail is not operationalizable as decision-making

instructions.

Mundie et al. (2014) is, in effect, a literature review of incident man-

agement. As such, it mostly constrains the inputs and outputs one would

expect from incident investigation. The formalism provided is in a spe-

cification of an OWL ontology language of incident management. This

language is a useful step in reconciling various incident management

78 literature review – incident response

processes. However, it is a few levels of abstraction above the current

task.

Osorno et al. (2011) has done something similar to the scope here,

in that they inventory various incident management processes, with

two main differences. First, they focus on moving up a level to inter-

organizational coordination during complicated incidents, rather than

zooming in on individual analyst decision-making. Second, they focus

on the US context. This different purpose leads to substantial differences

in emphasis as to what is reviewed; for example, where this review has

generally set aside data exchange formats (see Section 2.5.5.1), Osorno

et al. (2011) spend considerable effort mapping these formats into each

other. For this reason, the extent of their recommendation on incident

investigation amounts to do an OODA-style loop (p 7).23

Hutchins et al. (2011) discusses courses of action for network defence.

These are not direct advice on incident investigation steps. The level

of advice is on the order of “to disrupt installation events, use anti-

virus.” This advice is sound, but it is not particularly concrete. However,

matching this advice with an attack model (and perhaps a catchy name)

has meant that the kill chain model of intrusion analysis proposed by

Hutchins et al. (2011) has gained some traction outside the IC.

Caltagirone et al. (2013) provides some light formalization of their

qualitative categories into both graph theory and subject probabilities

and Bayesian statistics. ‘Perfunctory’ formalization indicates the extent

of their documentation is to list the formal structures that are equally

well-described by their prose. The document does not make any use of

the formalism, and it is not central to their arguments. The structures

appear to be constructed adequately; it is simply that any application

of them is left as an exercise for the reader in much the same way as if

they were not there.

Heuer (1999) is an instructive case for some advice being too broad for

CSIR purposes. The book is comprised of explicit decision-making in-

structions for analysis of intelligence. However, the level of abstraction

is so broad that it can be argued to be applicable to almost any ad-

versarial decision-making environment. So while it is valuable, and it

provides instructions for avoiding cognitive biases, it does not provide

23 OODA is a military decision-making term standing for observe, orient, decide, and

act.

2.6 discussion 79

instructions at the level of detail that are directly useful for an invest-

igation.

Joint Chiefs of Staff (2014c, ch. 5) is about how to think like

your adversary. It is an extended treatment of developing and evaluat-

ing adversary action plans across multiple dimensions under constrained

resources. The basic cycle is to identify objectives, enumerate courses

of action, evaluate and rank the likelihood of following each action,

and identify necessary intelligence collection requirements to determine

adversary decisions. The document is about military intelligence oper-

ations generally, not computer-security incidents. However, one narrow

but necessary aspect of any investigation is how to anticipate an ad-

versary. This document covers the thought process behind the topic of

anticipation in a way which should be easily applicable to computer

security.

Casey (2010, ch. 2) is built around the claim that digital forensics is

just another kind of scientific investigation. The basic ontology of the sci-

entific method is represented simply as create and evaluate hypotheses

dispassionately based on evidence. This description is supported by sev-

eral case study examples working through the method. This pedagogical

strategy does not quite amount to ‘advice on decision making’, but it is

also more than merely an ontology. The end of the chapter includes ad-

vice on how to report conclusions convincingly to a jury or prosecuting

attorney. The advice is simple, but direct and effective: be concise, let

the evidence speak for itself, do not jump to conclusions, summarize key

results up front. The target audience is law enforcement who will be us-

ing information technology to support general legal cases, not computer

crimes. Despite this broad audience, the treatment of decision-making

as part of the scientific method allows for easy and broad re-purposing

for other scenarios more directly related to computer-security incidents.

Mitropoulos et al. (2006) is relevant to CSIR analysis for its series

of small case studies on how to analyze different types of network logs.

They provide a flow chart for analysis of IDS logs, intended to serve

as an example of analysis of a particular kind of technical information.

Although only represented at a relatively abstract level, this is a rep-

resentation of reasoning and decision making during incident response.

They also provide basic instructions on how to gather intelligence data

on adversaries using various network protocols. While I have ranked

80 literature review – incident response

this as unlikely to generalize, it is also very specifically targeted to tech-

niques that are commonly useful during incident investigation. So it is

not particularly necessary that they are generalizable. These sorts of

cases are difficult to teach and capture in a more abstract form, and are

inflexible, and so this specificity has a cost. Mitropoulos et al. (2006) do

not advise in which scenarios to employ these different types of forensic

techniques.

Carrier and Spafford (2004) describes a evidence collection and

hypothesis testing and reporting model for digital forensic investigation.

They use forensic in its formal legal sense, and so target specifically the

gathering of adequate legal evidence. Their treatment of analysis is

particularly brief; it is rolled into the evidence collection process based

on whether the data element is relevant to the defined target. As to

target definition, it “is the most challenging of the search phase” and

is done “from either experience or existing evidence” (Carrier and Spaf-

ford, 2004, p 8). Like the other documents, this one sidesteps most of

the hard work on which I will focus.

Ciardhuáin (2004) attempts a novel formalization by incorporating in-

formation flow; although not cited, this is a term likely taken from

Barwise and Seligman (1997). However, the application to forensic in-

vestigation (Ciardhuáin, 2004, p 21) bears little resemblance to formal

information flow models. The discussion places vague constraints on

evidence reporting such as “the investigators must construct a hypo-

thesis of what occurred” and “The hypothesis must be presented to

persons other than the investigators” (Ciardhuáin, 2004, p 7). But in

practice these are of little use in making decisions during an investiga-

tion.

Leigland and Krings (2004) provides a formal specification of evid-

ence collection methods that can be adapted to specific operating sys-

tems. The language associates collection goals with certain common

attack patterns. The goal is narrowly practical: to speed collection of

evidence by technicians during an investigation while reducing super-

fluous data collection to make analysis a bit easier. The language maps

general actions to specific operating-system commands. The technician

needs to specify file identifiers for specific attack campaigns; the main

downfall of this method is that adversaries have learned to random-

ize certain identifiers within their attacks. Such randomization makes

2.6 discussion 81

keeping an adequate library of definitions for this language as defined

essentially impossible.

2.6.2 Note on case studies

Case studies or collections of cases that have been analysed by others provide

demonstrations of what sort of attacks are possible. Two of the earliest ex-

amples of this style of reporting are Stoll (1988) and Cheswick (1992). A

survey of incident case studies may be a useful additional project. The practi-

tioners who wrote these standards documents would be aware that many se-

curity vendors publish accounts of adversaries they have tracked in the course

of their work. These are of varying quality, scope and importance. More recent

impactful studies include Mandiant tracking an alleged unit of the Chinese

military (Mandiant, 2013) and Google’s self-report of compromise attributed

to China (Drummond, 2010). Some case reports are official government com-

missioned, such as the Black Tulip report analysing the compromise of a

TLS certificate authority critical to the operation of many Dutch government

websites (Hoogstraaten, 2012).

The scope need not be an individual case. Some studies focus on trends

rather than individual cases. Verizon’s Data Breach Investigation Report is

probably the best-known example (see, e.g., Verizon (2015, 2016)). United

States federal civilian agencies must make annual breach reports to Congress

per FISMA requirements; such detailed reports have been examined for trends

(Pang and Tanriverdi, 2017).

One notable change in this style of report since Stoll (1988) and Cheswick

(1992) is a trend away from discussing how exactly the investigators found

what they found. In an environment where adversaries are likely to read any

reports their targets publish, this shift towards withholding information is

understandable. Paradoxically, this makes the old case studies more valuable,

as they remain some of the better expressions of the investigator’s thought

process. Of course, the tools and networks the old case studies discuss are

almost entirely irrelevant, which can make them hard to apply to today’s

systems. And the case studies do not do any of the work to make the necessary

generalizations. Many of the modern expressions of the form of CSIR analysis

cycles, as documented in this survey, are quite consistent with the mental

process Stoll (1988) and Cheswick (1992) describe.

82 literature review – incident response

2.7 gaps and work plan

Section 2.6 suggests three primary gaps in the incident investigation standards

around decision-making:

• strategic selection of tactics, that is, which analysis heuristic or technical

tool to employ in a particular situation and why

• when the investigator is justified in generalizing; that is, making a

stronger, broader claim from singular pieces of evidence

• what information to report and how to communicate it in order to

convince someone that the investigator should be believed

2.7.1 Research question

In order to make progress towards providing decision-making in these gaps, I

propose to examine the following research questions:

How to satisfactorily make clear and explicit the reasoning process used by

individual CSIR analysts while they pursue technical details?

This breaks down into three component questions:

• What heuristics should an incident analyst use to construct general

knowledge and analyse attacks?

• Is it possible to construct formal tools that enable automated decision

support for the analyst with such heuristics and knowledge?

• How can an incident analyst apply general knowledge to improve ana-

lysis of specific incidents?

My answer to these questions will be within two expectations and scope

limitations:

• It must include how to decide what information to report as results,

but excluding decisions about actions in response (remediation, legal

action, policy changes, etc.).

• The description and/or formalization of the reasoning process should

support the evidence collection, analysis, and reporting phases of CSIR.

Within each of these three phases, each of the three gaps need to be

addressed. For example, what information to report is not just a prob-

lem for reporting, it is also a problem when one completes the evidence

collection phase and needs to report results to the analysis phase.

2.8 related work 83

2.8 related work

Because standards are slow to evolve, one might expect more advanced work in

related academic fields. This section will suggestively map out fields where one

might expect to find related work, even though the result of this mapping will

be that little of the work is relevant. Specifically, I will sketch the intersection

between cybersecurity and the fields of economics, game theory, statistics, ma-

chine learning, modal logic, information theory, risk assessment, and systems

engineering. Each of these fields has an established interdisciplinary overlap

with security.

There is also potentially related work within computer science from fields

that are allied with parts of cybersecurity. The subfields include attack onto-

logies, vulnerability analysis, intrusion detection, internet measurement, and

science of security.

The discussion of related work in these fields is suggestive rather than

exhaustive. A comprehensive review to codify the discussion could be done as

future work, but probably would provide little additional insight. The results

of the review in Section 2.5.5 indicate the standards do not integrate work

from academic fields outside cybersecurity. The cited academic work is limited

to digital forensics ontologies, attack ontologies, and classic case studies from

around 1990. Better understanding of why practitioners seem to integrate so

little academic work into these standards is perhaps an interesting sociology

of science or science communication research question for future work. One

probable reason, among others, is that available academic discussions are not

at the correct level of abstraction to be useful in investigative decision-making.

The available levels of abstraction – attack ontologies, economics, etc. –

have continually left gaps. My basic strategy is step away a bit further, to a

higher level of abstraction about problem solving and decision making. From

this perspective, the available tools can perhaps be adapted to fill the gaps.

The goal of this section is to identify areas that could be most easily adapted

to the incident investigation context. There are likely useful lessons to be

taken from all of these fields. The challenge is how to synthesize these lessons

at a level of abstraction that is actionable during incident investigation. In

general, none of the fields in this section can adequately inform the gaps of

knowledge generation or reasoning in CSIR. I have left out of this section the

two fields that I do find promising and will pursue through the rest of the

84 literature review – incident response

thesis. These are philosophy of science (see Chapter 3 and Section 4.2) and

program verification (see Chapter 6).

2.8.1 Interdisciplinary overlaps

economics does not tend to study individual decision making, but it

does study average decision making of larger groups. The economics of in-

formation security, as its own field of study, is generally seen as initiated by

Anderson (2001). At a minimum, economics adds constraints in two ways:

what incident responders can do during an investigation, and expected reas-

onable motivations and economically-viable attacks of adversaries.

Economics has also been used in delimiting useful interventions to deter

attacks. For example, Kanich et al. (2011) identify credit card payment pro-

cessors as the main choke-point for generation of revenue from spam soliciting

illicit pharmaceutical sales.

game theory began as a sub-field of economics; however, it has

evolved into its own area of mathematical study of adversarial decision mak-

ing. A game is any situation in which two or more intelligent decision makers

knowingly compete. Game theory became famous around the question of how

nuclear-armed superpowers could rationally interact without destroying the

world (Ross, 2018).

Game theory seems a reasonable place to search for standards to guide de-

cision making during incident investigation. There are well-developed theories

for game theory and security, for example used to decide patrol schedules at

Los Angeles Airport (Tambe, 2011).

Alpcan and Başar (2011) specifically focuses on computer-network security,

including attack detection, optimal allocation of security investments, and

joint responses to malware epidemics. These are all related to incident man-

agement – detection, preparation, and recovery, respectively. These are all

management topics, not analysis topics, that were placed out of scope for this

review.

More recent work has developed these topics further. For example, Ander-

son et al. (2016) takes a more realistic, qualitative preference-based view of

defender investment priorities. Spring (2014) highlights the complexity of the

relationship between adversary, victim, and system-owner is likely not redu-

cible to a two-player game. These topics are refinements of those followed by

2.8 related work 85

Alpcan and Başar (2011). The proceedings of WEIS, the pre-eminent venue for

game theory and computer security, also focus on management and resource

allocation questions, true to the focus on the economics of information security.

Game theory provides rather well-developed support of decisions about alloc-

ating resources to parts of the incident management cycle, but is silent on how

to make decisions about evaluating evidence during an incident investigation.

statistics is often used to express confidence or belief in what aspects

of an event have occurred. Although they do not use the formalism, Calta-

girone et al. (2013) specifically provide a field for Bayesian statistics (Kadane,

2011) within their analysis model. Of course, experiment design is itself in-

timately tied to design of statistical methods (Fisher, 1971). With a focus on

causal analysis, Pearl’s work has had a big impact (Pearl, 2009). Causal mod-

elling has been applied to software engineering problems (Letier et al., 2014),

but not security. Any application would likely require much thought into what

exactly the causal relation represents, as Pearl’s model is not without valid

critics (Dawid, 2010). Computational complexity also presents a challenge at

scale (Chockler and Halpern, 2004). Scalability is necessary for viable proof

theories and models in computer science, as I will demonstrate in Chapter 6.

machine learning uses statistical models to classify objects or

identify trends. The field’s integration with incident management is advanced.

Darktrace sells a security product that is designed to be hands-off by the

analyst and to simply develop and deploy defences according to its statistical

models (Palmer, 2016). The main challenge is that my goal is to develop a

model of decision-making. Machine learning makes decisions, but how and why

something is or is not malicious is generally opaque. This technique works well

when outcomes are clearly definable, success and failure are clear, and scope is

clearly defined. However, incident investigation is full of yet-to-be delineated

outcomes, poorly defined success criteria, and problems with indeterminate

scope. Therefore, while an important tool, machine learning is not the solution

to the research question.24

modal logic is a branch of formal logic that includes modal oper-

ators such as necessity, being informed, and so on. As investigators need to

24 My thinking on this point was clarified by a talk by Heather Douglas on "How the

public can assess expertise" at UCL on Jan 31, 2018. See https://www.youtube.com/
watch?v=cuB06iZ8-sM.

https://www.youtube.com/watch?v=cuB06iZ8-sM
https://www.youtube.com/watch?v=cuB06iZ8-sM

86 literature review – incident response

track what the adversary knows, it seems like an attractive formalization of

such ideas. Ditmarsch et al. (2015) provides good coverage of such epistemic

issues, and Floridi (2011) develops a logic of information intended to capture

similar relations including machines as well as humans. Anderson and Pym

(2015) adapts such modal structures to reasoning under and about constrained

resources.

information theory and the sub-area information flow are ref-

erenced in passing within the reviewed documents. Process theory (Milner,

1989) does indeed seem to be a promising area for defining decision processes

around state changes, which is related to my research question. However, it

would take significant effort to take a theory intended to reason about atomic

operations inside a computer and bring it to bear on human decisions. If the

atomic units of process theory are too small, atomic units in other works are

too big or underspecified. A logic of distributed systems (Barwise and Selig-

man, 1997) and information-based logic (Devlin, 1995) both work primarily

with information in an abstract sense, and the work to bring it to bear on

human decisions during incident investigation seems likewise huge. If anyone

has attempted to make such information logic more concrete, it is Floridi

(2011), and the attempt remains a long way away from my practical concerns.

risk assessment is about determining how much one should spend

on a project or various protections based on measured expectation of loss.

Quantitative risk assessment works well in situations such as determining

how much rain to prepare for when building a dam. The canonical reference

for risk assessment methods comes from the Dutch government (Uijt de Haag

and Ale, 1999).

Quantitative risk assessment is closely related to decision theory. Decision

theory is mathematically similar to game theory but with the modified inter-

pretation that only one player is actually making decisions (anything else is

Nature).

In principle, these fields could provide decision support to incident invest-

igation. However, the detailed information necessary to accurately calculate

expected impacts is not generally available. This statistical approach works

for building dams based on 150 years of reliable data on water levels coupled

with a justified expectation that this past weather is reasonably representative

of future weather. Incident responders have neither this wealth of historical

2.8 related work 87

data nor the naive expectation that past adversary behaviour can be at all

representative of future behaviour. Past adversary tactics do inform expecta-

tions of future behaviour, but not in such a simple 1-to-1 manner as with the

weather that would justify simple statistical projection into the future (Spring

and Stoner, 2015).

systems engineering includes adequate incident management as

an essential part of engineering secure systems – responding to incidents is

an important impetus for modifications to systems (Ross et al., 2016, p. 3).

In general, when designing a system it is important to know what attacks it

will plausibly face. Incident management supplies this data on attacks. This

informs what reporting should contain, insofar as it defines a common use of

reporting. Part OP-3 of Ross et al. (2016, p. 142ff) gives high-level guidance

that security anomalies need to be measured, tracked, and mitigated. The

references for how this is to be done are ISO and NIST documents on incid-

ent management, which Section 2.6 notes are inadequate for CSIR analysis

purposes.

Incident responders also benefit from a knowledge of security engineering.

The canonical work by Anderson (2008), for example, sets expectations about

common system design errors that might be the weak link exploited by an

adversary in an incident. Such information is broadly useful for setting ex-

pectations of incident investigators, but does not provide concrete decision

support.

2.8.2 Parts of information and computer science

attack ontologies are long-standing line of research within se-

curity that aims to understand attacker behaviours. Attack ontologies break

down into several sub-categories, such as attack graphs, “a succinct repres-

entation of all paths through a system that end in a state where an intruder

has successfully achieved his goal” (Jha et al., 2002, p. 1). Lippmann and

Ingols (2005) provides an early, canonical review. A canonical starting point

is Schneier (1999).

More broadly than attack graphs, ontologies of attacker methods abound

(Bejtlich, 2004; Howard and Longstaff, 1998). These are certainly useful, and

should inform incident response decision making. More recent efforts have

included improved visualization of such graphs (Homer et al., 2008). The

88 literature review – incident response

kill chain model (Hutchins et al., 2011), discussed as a standard view within

the intelligence community, is one specific type of attack ontology. There are

clear influences on the de facto standard ontologies. For example, the diamond

model aspect of Caltagirone et al. (2013) comes from Obrst et al. (2012).

At a higher level of abstraction than attack graphs, Spring et al. (2015)

models the development of capability by the global community of adversaries

against types of systems.

vulnerability analysis includes several sub-parts, such as a

standardized process for listing vulnerabilities (MITRE, 2012), assessing sever-

ity of vulnerabilities (Abraham et al., 2015; Scarfone and Mell, 2009), enumer-

ating software coding weaknesses (MITRE, 2015), and secure coding practices

to avoid all these problems (Seacord, 2005). Tools that scan a computer net-

work for vulnerable or misconfigured hosts are free (Lyon, 2011). Tools for

finding vulnerabilities in software via formal methods are in industrial applic-

ation (Newcombe et al., 2015; O’Hearn, 2015), including free ones (Calcagno

et al., 2015b). Vulnerability discovery can also be performed via black-box

testing, or fuzzing, where the tester does not have access to the source code of

the program to be tested (CERT/CC, 2017). Vulnerabilities can be automat-

ically turned into exploits, as well, to decide which deserve priority to be fixed

(Avgerinos et al., 2014). Creating exploits also transitions naturally into using

them, which when done within the bounds of the law is called penetration

testing.

During a penetration test trusted investigators, either contracted third

parties or internal employees, “attempt to attack [identified] vulnerabilities

in the same manner as a malicious hacker to verify which vulnerabilities are

genuine” (Muniz and Lakhani, 2013, p. 1). There are open source tools, such

as Metasploit, and whole ready-to-go tool suites, namely Kali Linux, for this

purpose (Pritchett and De Smet, 2013).

Vulnerabilities can be considered from a more theoretical or comprehensive

level as well. The term for this kind of analysis is the attack surface of software

or a computer. Attack surface aims to estimate “the set of ways in which an

adversary can enter the system and potentially cause damage” (Manadhata

and Wing, 2011, p. 371). The main motivation for attack surface work is for

security engineering and risk mitigation, not incident response. However, an

incident responder might use the attack surface metric to prioritize investigat-

ing the weakest targets during an incident. Unfortunately, this is impractical

2.8 related work 89

as existing attack surface metric calculation requires source code, often un-

available, and large code bases, “such as a Linux distribution,” are too large

to compute a value for anyway (Manadhata and Wing, 2011, p. 385).

intrusion detection is the automated detection of security incid-

ents; detection may be either signature- or anomaly-based (Scarfone and Mell,

2007). Intrusion detection is a mature field in its own right. Signature-based

detection has a mature industry around supplying signatures for detection

(Hopkins, 2009; Roesch et al., 2013). Applied statistics and machine learn-

ing has traditionally been more difficult, due to low base-rates of occurrence

making reliable alerts difficult (Axelsson, 2000).

While any decent security installation includes an IDS, the primary function

is detection, not analysis. However sophisticated automated detection may be,

it does not directly tell the incident investigator what the adversary’s goal is.

Attack graph research has attempted to bridge this gap by classifying intrusion

detection alerts to aid interpretation, but fails to scale in real-world problems

(Lippmann and Ingols, 2005).

internet measurement includes both academic and professional

communities. For incident response, the relevant measures are those that in-

form prior beliefs about the common attacks, common attack source locations,

and reputation of operators regards responsiveness to reports of abuse on their

infrastructure. The Anti-Phishing Working Group (APWG) produces multiple

reports a year detailing patterns in domains that host phishing, which contain

information related to this particular type of attack (see, e.g., Anti-Phishing

Working Group (2016) and Rasmussen and Aaron (2012)). In the related but

broader space of email anti-abuse, the Messaging, Malware, and Mobile Anti-

Abuse Working Group (M3AAWG) reports levels of unwanted bulk email,

commonly termed spam (M3AAWG, 2014).

There are also several efforts that measure the ecosystems supporting abuse

and fraud. For example, several measurements indicate that attacks have got-

ten cheaper and easier to execute over time, such as crimeware-as-a-service,

as detailed by Sood and Enbody (2013), and exploit-as-a-service, as detailed

by Grier et al. (2012). Measurements of blacklists recommend using all pos-

sible lists with good conceptual fit, because each list shows little overlap with

others (Metcalf and Spring, 2015). These measurements align with predic-

tions that the cost of domains to attackers would approach their marginal

90 literature review – incident response

cost of zero (Spring, 2013b). Such measurements are examples of background

information relevant to how incident responders should collect and analyse

malware samples, exploits, blacklist information or internet identifiers (i.e.,

various types of evidence) during an incident.

science of security Whether or not cybersecurity is a science was

first widely raised by MITRE (2010) as part of a US DoD contract. The result

has been general consternation over the question of whether cybersecurity is

a science with a general consensus (among those asking the question, at least)

that the correct answer is “not yet.” Chapter 3 argues against this pessimistic

view and surveys the science of security landscape. That chapter will serve to

argue that one can use scientific methods to better understand CSIR as well

as a wider science of security. Chapter 3 is a separate literature survey, with

a scope around the science of security and philosophy of science.

Although not generally discussed within the science of security community,

the relationship between science and forensics is also potentially of interest.

Casey (2010) states clearly that digital forensics uses the scientific method,

though the author does not explore how it may differ in the digital context.

There is relatively little work on how forensic science methods differ from

their more academic counterparts; however, see, for example, Morgan and

Bull (2007). CSIR is similar to forensics, in that when conducting CSIR the

analyst has a policy violation they wish to explain. Unfortunately, there is not

much in the way of a philosophy of forensics that is readily applicable to the

scope of CSIR analysis.

2.9 conclusion

This chapter has established a gap in the published advice available for how

to perform CSIR analysis. My research question is how to formalise the reas-

oning process within CSIR analysis. Formalise here has both a qualitative and

mathematical sense, and I will pursue both. The opportunistic pass through

various fields in Section 2.8 suggested the available formalisation frameworks

and tools are inadequate.

Based on this literature review, I claim that CSIR analysis lacks a strong

intellectual foundation on which to build. In day-to-day practice, incident re-

sponders do good work. But strong intellectual foundations would help both

improve this work and scale it up. Chapter 3 will map out which aspects

2.9 conclusion 91

of the intellectual foundation of other sciences can be readily borrowed and

which need to be constructed for CSIR specifically and information and cyber-

security generally. Following Chapter 3, I will be a position to discuss con-

cretely what type of models of knowledge and reasoning in CSIR need to be

constructed to address the research question.

3
L ITERATURE REVIEW – SC IENCE AND SECURITY 1

Although not framed as specific to incident response, there has been a prom-

inent call to improve the research and practice of cybersecurity by making it

more ‘scientific’. Its proponents claim a science of security is needed for ongo-

ing progress. Per the historian of science Dear, I use ‘scientific’ here as “a very

prestigious label that we apply to those bodies of knowledge reckoned to be

most solidly grounded in evidence, critical experimentation and observation,

and rigorous reasoning” (Dear, 2006, p. 1). To scope out the security aspect

of the discussion, I take the definition of security from RFC 4949: “measures

taken to protect a system” (Shirey, 2007); see the RFC for the meaning of

measures, protect, and system. As a starting point, then, I will consider a sci-

ence of security to be the label we should apply to the most solidly grounded

bodies of knowledge about measures one can take to protect a system.

The available literature is about a science of security in general, and not

of incident response. In the prior chapter, I argued that incident analysis is

valuable to study because it can have broad impact across the field of cyber-

security. In this chapter, I will rely on the idea that because incident analysis

is a central subset of cybersecurity, any arguments about the field of science

of cybersecurity also apply to a scientific approach to incident analysis. This

review of the science of security literature does not discuss incident response

explicitly. When seeking a scientific approach to human decision-making in

incident analysis, it is sufficient to sketch it in a science of security in general.

This chapter will broadly outline philosophy of science before reviewing

the science of security literature. I will find that there are no established

methods from science of security to readily apply to incident response. I will

find ready solutions from the modern philosophy of science literature for many

stated challenges to cybersecurity (and thus to incident response). However,

philosophy of science is not a ready solution for all challenges in security.

Chapter 4 will directly tackle some of these as-yet unsolved challenges, con-

1 This chapter is based on joint work, the paper: Jonathan M Spring et al. (2nd Oct.

2017). ‘Practicing a Science of Security: A philosophy of science perspective’. In:

New Security Paradigms Workshop. Santa Cruz, CA, USA.

93

94 literature review – science and security

tributing to both security and philosophy. Let’s start by introducing these

stated challenges.

3.1 purported impediments to a science of security

The following items have resonated as serious obstacles to the practice of a

science of security:

• Experiments are impossible in practice, because they are unethical or

too risky;

• Reproducibility is impossible;

• There are no laws of nature in security;

• Cybersecurity will not be a science until everyone agrees on a common

language or ontology of terms;

• Computer science is ‘just engineering’ and not science at all: questions

of science of security are misplaced.

A philosophy of science perspective will show these obstacles are either mis-

guided or can be overcome. The purported obstacles are frequently not genuine

challenges because they rely on outdated conceptions of science, which yields

a simplistic idea of evaluating evidence for claims (namely, falsification) and

a naïve reductionism to universal laws that supposedly underpin all scientific

endeavours. Alternatively, modern philosophy of science tends to describe, if

applied adequately to security, what good security practitioners already do.

Security is, as practised, already a kind of science. Table 3.1 summarizes our

positive perspective on executing a science of security.

Section 3.2 provides a brief background on the logical empiricist movement

within philosophy of science. Section 3.3 examines prior statements to detail

the obstacles to practising a science of security. Section 3.4 explains how

philosophy of science informs the scientific process already taking place in

cybersecurity research, and Section 3.5 suggests a main gap is improving the

reliability and growth of general, shareable knowledge. Chapter 4 will address

this gap directly; the logic I will define in Chapter 7 also enables codifying

and sharing knowledge.

3.2 philosophy of science – historical background 95

Experiments are
untenable

Scientists make structured observations of the
empirical world

Reproducibility
is impossible

Evaluate evidence by repetition, replication,
variation, reproduction, and/or corroboration

No laws of
nature

Scientists employ mechanistic explanation of
phenomena to make nature intelligible

No single
ontology

Specialization necessitates translation

‘Just’
engineering

Both science and engineering are necessary

Table 3.1: Five common complaints raised by the science of cybersecurity com-
munity and positive re-framing from the philosophy of science lit-
erature.

3.2 philosophy of science – historical background

Philosophy of science is a field that has developed as a discourse on top of

science: a second-order reflection upon the operation of the sciences (Uebel,

2016). For three centuries, the scholars now recognized as scientists were

called ‘natural philosophers’; there were no separate philosophers of science.

In inter-war Vienna, a group of thinkers who identified as ‘the Vienna Circle’

challenged both the prevailing metaphysics and political Romanticism (i.e.,

the Church and European fascism).2 This movement emphasized themes of

observation of the world, trust in science, high value on math and logic, and

modernism. A key movement of the Circle has come to be called logical em-

piricism, for its reliance on logical rules based on empirical observations.3

Presently, I will briefly introduce two of the main tenets of logical empir-

icism: (i) empiricism and verification and (ii) unity or reduction of scientific

fields (Creath, 2014). These tenets coalesced in the 1930s, were refined through

the 50s, and by 1970 had suffered ample critiques to be changed beyond recog-

nition. This historical trajectory makes it intellectually dangerous to rely upon

logical empiricist arguments or concepts uncritically. Yet, Section 3.3 finds

much logical-empiricist work uncritically assimilated in current statements on

a science of cybersecurity.

2 The Economist (2016) argues that 1880–1930 Vienna produced the most vital in-

tellectual movements in science, art, and philosophy of the 20th century.

3 Logical empiricism is closely related to logical positivism and neopositivism; I will

not distinguish these at my level of analysis (Creath, 2014; Uebel, 2016).

96 literature review – science and security

empiricism and verification Statements testable by ob-

servation were considered to be the only “cognitively meaningful” state-

ments (Uebel, 2016). Although logic and mathematics are the most reliable

forms of reasoning, logical empiricists did not take them to rely on observation

but instead accepted them as true by definition, following Russell and early

Wittgenstein. Therefore, according to the logical empiricist view, the key

scientific challenges are how to verify a statement is in fact about the world,

and how to meaningfully integrate observations into logic and mathematics.

Such integration is necessary for science to be useful. Integrating observations

into deductive logical statements is also a response to Hume, two centuries

earlier, and his famous problem of induction. Hume, in broad strokes, argues

that no matter how many times everyone observes the sun to rise, we cannot

prove (in the sense of deductive proof) that the sun will rise tomorrow based

on the observations.

Consistent with logical empiricism, Carnap proposed a method for veri-

fication by working on atomic elements of logical sentences, and expanding

observational sentences out based on rules from atomic observations (Creath,

2014). The goal of empiricism is to be grounded in observations. The goal of

verification is to integrate those observations into a framework of general know-

ledge, in the form of statements in first-order logic, that can justify predictions.

Carnap thus links induction and deduction, bypassing Hume’s complaint.

Yet it became clear that verification might not always be achievable. It

is against this backdrop that Popper proposed the more limited objective

of falsification (Popper, 1959), which claims scientists cannot verify logical

statements at all. Instead, Popper asserts that the best anyone can do is hope

to falsify them.4

Even the more limited goal of falsification was shown to be untenable with

Kuhn’s challenge to Popper in 1962 (Kuhn, 2012). Kuhn refutes the premise

that scientists operate solely on logical statements. Rather, he argues that key

examples, literally ‘paradigms’, are scientists’ operative cognitive model. Later

work in philosophy of science has refined the shape of these cognitive models

– one prominent method is as mechanistic explanations (see, e.g., Glennan

and Illari (2017)) – and improved understanding of how data are processed

to provide evidence for phenomena (see, e.g., Bogen and Woodward (1988)).

4 Popper published this in German in 1935, though the popular English translation

appeared in 1959. Thus Carnap’s 1956 work is actually done in knowledge of and

contrary to Popper. Earlier verificationists, stricter than Carnap and against whom

Popper reacted, include Wittgenstein as early as 1929 (Creath, 2014).

3.2 philosophy of science – historical background 97

Even ignoring Kuhn’s socio-scientific critique, falsification is about mapping

observations into logic. Popper is silent on designing reliable observations and

choosing what logic or conceptual framework in which a person should reason.

These two problems are more important, and would provide more actionable

advice, than whether something is falsifiable. More useful than falsification

are modern discussions of investigative heuristics for scientists (Bechtel and

Richardson, 1993), models of when a conclusion from observations is warran-

ted (Norton, 2010), and accounts of causation that make use of intervention

and statistics rather than logical implication (Woodward, 2003).

reduction of science to first principles The other

tenet of logical empiricism often unwittingly inherited by debates in science

of security regards the unity of science or the reduction of science to single

first principles. There are two senses of unity here that are often not properly

distinguished: methodological unity and unity of content by reduction to a

single set of models. A unity of methods would mean that, although indi-

vidual sciences have distinctive approaches, there is some unifying rational

observation and evaluation of evidence among all sciences. This view was de-

emphasized within logical empiricism. With confusing terminology, modern

arguments often return to this idea under mosaic unity or pluralism: the

sciences are about widely different subjects, but there are important shared

social and methodological outlooks that unify science as an enterprise.

The traditional idea of reductionism is that the set of laws of one science

can be logically reduced to that of another (Nagel, 1979). This notion requires

the conception of laws as logical rules of deduction. As famously critiqued by

Cartwright (1983), the laws of physics are not true explanations of the world,

but rather of the models of the world. If laws are about models, and models

can be diagrams or small-scale physical replicas, it is unclear how reduction

could be defined. Bickle (2008) defines reductionism (in neuroscience) as when

a lower-level mechanism contains all the explanatory power necessary to in-

tervene on a higher-level mechanism. Merits of Bickle’s view aside, he has

disposed of all logical-empiricist ideas of laws, deduction, and verification and

uses the modern concepts of mechanistic explanation and intervention.

Reductionism is dangerous because it tends to blind researchers from us-

ing the appropriate tool for the job. If everything reduces to physics, then

a physics-hammer solves all problems, and everything looks like a nail. But

I claim a more diversified toolbox is needed in a field such as cybersecurity.

98 literature review – science and security

Social sciences play an equally important role as technical sciences (Anderson

and Moore, 2006). The modern terms in philosophy of science are integrative

pluralism (Mitchell, 2003) or mosaic unity (Craver, 2007). The core of these

terms is that fields cooperate on adding constraints to coherent explanations

according to their particular tools and expertise. Such interfield explanations

are what is valuable, not reductions (Darden and Maull, 1977). I explore chal-

lenges due to reductionism and its alternatives further in Section 3.4.3 and

Section 3.4.4.

science as a process A common pitfall treats the terms ‘scientific’

and ‘correct’ as synonyms. Science is a process; it yields answers. Answers

are correct or not based on facts of the world. However, one calls a process

‘correct’ if it follows an agreed, human-defined form. The question about a

process should be whether it is satisfactory in efficiently producing adequate

answers. One should not assume answers are reducible to one ‘correct’ answer;

many answers may adequately satisfy a purpose (Simon, 1996). Conflating

‘scientific’ with ‘correct’ and ‘correct answer’ with ‘adequate’ results from

logical-empiricist assumptions in the common complaints.

Removing these faulty assumptions is not a panacea. A sound scientific

process may produce unsatisfactory results if the subject matter is difficult

to study for undiagnosed reasons. One may construct a model of a system or

phenomenon using scientifically rigorous methods. The model constructed will

have certain properties that are considered correct if it adequately captures

the properties of the system or phenomenon that are required to address the

questions that the model is intended to explore. One key goal of this chapter is

to refocus the question from ‘is this process scientific’ to ‘why is this scientific

process producing unsatisfactory results’.

Section 3.3 will evidence how logical empiricist threads pervade existing

discussions of science of security and continue to tie in critical reflection from

modern philosophy of science.

3.3 existing statements of science and security

Many organizations have proposed problem statements and solutions regard-

ing the state of cybersecurity research. Since 2008, these statements are fre-

quently phrased using the language of a science of security. The motivation and

3.3 existing statements of science and security 99

goals are complex, but one important consideration is policy makers asking

for intelligible explanations that can inform their decisions. This section will

first survey the problem and then the proposed solutions.

There is broad agreement that there is a problem with the state of cyber-

security. That sense predates the arguments that science is the answer; for

example, education and standardization efforts predate the focus on science.

More accurately, developing a science of security is part of a multi-pronged

approach by the US government, later picked up by others, to respond to

threats to ICT infrastructure. As early as 2001, the National Science Founda-

tion (NSF) funded both student scholarships and academic capacity building

(e.g., designing courses) to universities designated by the NSA as a Center of

Academic Excellence (CAE) in Information Assurance Education (NSF, 2001).

The NSA CAE program began in 1998. The National Institute of Standards

and Technology (NIST) has been involved in information security standards

for decades. Unlike what Chapter 2 found for incident response, in security

generally the IETF and IEEE are at least as prominent as NIST. The study

of how security standards require different features than usual information

technology standards has only just begun (Kuhlmann et al., 2016). However,

around 2008, there seems to have been a shift emanating from the US DoD

that brought the question of science to bear on cybersecurity problems.5

The DoD expresses the motivation for its scientific shift in its tasking to

MITRE, quoted by MITRE’s JASON office in its final report. The reason for

the timing is unclear, but the concern that precipitates the scientific shift is

clear. This concern is worth quoting at length:

“The Department of Defense, the Intelligence Community, and

the planet have become critically dependent on the Internet for

services, transactions, social interactions, communications, med-

ical treatments, warfare; virtually everything. Cybersecurity is

now critical to our survival but as a field of research does not

have a firm scientific basis. Clearly, there is a scientific basis for

the infrastructure of the internet such as computation, commu-

nications, and integrated circuits but its security attributes are

5 The first use of ‘science of cybersecurity’ or ‘science of information security’ is elusive.

Google Scholar searches for these terms (with quotes) on Mar 1, 2017, restricted to

1990-2007, yield exactly one plausible result: a 2004 work on critical infrastructure

policy (Winn, 2004). Perhaps (Winn, 2004) borrowed from the 2004 U.S. House

Subcommittee on Cybersecurity, Science, and Research & Development, which she

cites. However, besides in the subcommittee title, its report does not mention ‘science

of cybersecurity’ or security science.

100 literature review – science and security

often vague or un-measurable. . . . There are concerns that future

damage could be catastrophic to major components of our core

infrastructures such as power and water distribution, finance and

banking, even the ability to deploy forces to defend the country.

Our current security approaches have had limited success and

have become an arms race with our adversaries. In order to

achieve security breakthroughs we need a more fundamental un-

derstanding of the science of cyber-security. However, we do not

even have the fundamental concepts, principles, mathematical

constructs, or tools to reliably predict or even measure cyber-

security. It is currently difficult to determine the qualitative im-

pact of changing the cyber infrastructure (more secure now or

less secure?) much less quantify the improvement on some spe-

cific scale. We do not have the tools to do experiments that can

produce results that could be compared to theory, models, or sim-

ulations. Request the JASONs consider whether cyber-security

can become or should be a science. If so, identify what is needed

to create a science of cyber-security and recommend specific ways

in which scientific methods can be applied to cyber-security. If

not, what can we learn from the practice of science that would

enable us to improve the security of our cyber infrastructure and

assure the integrity of information that resides in the information

technology infrastructure?” (MITRE, 2010, p. 9-10)

Note three key aspects of the problem statement. First, cybersecurity is

of critical societal importance. Secondly, a desire to predict and measure se-

curity via “concepts, principles, mathematical constructs, or tools.” Third,

the purpose of this prediction is to prevent future catastrophic infrastructure

damage. Science is positioned as a possible answer, but is not presumed. The

real question is not whether security is a science, but “what can we learn from

the practice of science that would enable us to improve the security of our

cyber infrastructure.”

Much government-centric or government-funded science of security work

seems to accept this problem statement, including the Air Force MURI project.

There is one recent voice with which to compare. The inaugural event for the

working conference “Art into Science: A Conference for Defense (ACoD)” in

early 2017 held the goal:

3.3 existing statements of science and security 101

“Push the art to a science: Creating a professional discipline. To

mature our practice, we need to be able to share our methodo-

logies in a systematic and consistent way. We have many profes-

sionals in the security industry, but do not have a professional

discipline. We’d like to philosophically discuss concepts in secur-

ity, push them forward, and model them” (Evron, 2017, emphasis

original).

Interpreting this goal as a problem statement, it is a claim that security

practitioners cannot share methods satisfactorily. Science is taken as a way to

systematize knowledge at the appropriate level of generality that it can both

be shared and remain useful. Sharing generalized knowledge would support

the prediction and measurement of security, as identified in the DoD state-

ment. The two statements do not disagree, but the modified focus may lead

to different kinds of solutions. However, the ACoD community is too new to

evaluate the results of this different perspective.

Having covered the available problem statements, I will switch to six state-

ments of the current status of the science of security, each positioned as a

method to solve the DoD problem statement. First, the direct response in

MITRE (2010). Second, a DoD agency, the NSA, in its funding priorities. Third,

a speech by Dan Geer, head of the public venture capital firm of the CIA, In-Q-

Tel. Fourth, I will inspect the mission statement of the UK Research Institute

in Science of Cyber Security. Fifth, the 2016 cybersecurity strategy laid out

by the President of the United States. Finally, I consider a systematization of

academic knowledge by Herley and van Oorschot (2017).

mitre—jason Although the DoD does not presuppose science as the

answer to their challenge statement around cybersecurity, the problem state-

ment does presuppose a conception of science. This received conception dir-

ectly impacts the answers possible. For example, the report concludes “There

are no intrinsic ‘laws of nature’ for cyber-security as there are, for example,

in physics, chemistry or biology” (MITRE, 2010, p. 79). As Section 3.4 will

demonstrate, the claim that there are laws in biology is highly contested, and

the notion of unqualified, universal laws anywhere has been challenged with

general success.

The implicit goal of science as putting forward unifying theories perhaps

leads to the recommendation that “the most important attributes would be

the construction of a common language and a set of basic concepts about

102 literature review – science and security

which the security community can develop a shared understanding” (MITRE,

2010, p. 3, cf. p. 15). MITRE is funded to curate several language ontologies,

including MAEC at the time of the JASON report.

JASON does not provide a concise statement of what science means within

the report, or what the report is hoping to provide. The report searches for

“guidance” from other sciences, namely economics, meteorology, medicine, as-

tronomy, agriculture, model checking, and immunology. Thus it seems the

authors judge all these fields to be sciences worthy of emulation. The report

notes that sciences need not conduct experiments and may be observational.

The “crucial feature” is that data be “generalizable” (MITRE, 2010, p. 34).

Unfortunately, the report is silent on how to achieve this. The closest JASON

gets to a formulation of what a science of security would contain is to say “it is

not simple to define what the ‘security’ in cyber-security means” and to call for

precise definitions (MITRE, 2010, p. 22). One gets the sense that the authors

explained what existing sciences may contribute to security, rather than how

scientific methodology could be adapted to cybersecurity as an independent

field.

nsa The NSA uses a definition of ‘Security Science’ to guide research

funding considerations. Although this was posted rather obscurely to an online

community forum of security researchers, the NSA operates the forum, and the

description is by the technical director emeritus:

“Security Science – is taken to mean a body of knowledge contain-

ing laws, axioms and provable theories relating to some aspect of

system security. Security science should give us an understand-

ing of the limits of what is possible in some security domain, by

providing objective and qualitative or quantifiable descriptions

of security properties and behaviors. The notions embodied in

security science should have broad applicability – transcending

specific systems, attacks, and defensive mechanisms. The indi-

vidual elements contained within security science should contrib-

ute to a general framework that supports the principled design

of systems that are trustworthy, they do what people expect it to

do – and not something else – despite environmental disruption,

human user, and operator errors, and attacks by hostile parties.

Trustworthy system design may include contributions from a di-

verse set of disciplines including computer science, systems sci-

3.3 existing statements of science and security 103

ence, behavioral science, economics, biology, physics, and others”

(Meushaw, 2012b).

This definition of science of security seems to be what the Symposium on

the Science of Security (HotSoS) CFP has in mind when it refers to building “a

foundational science of security” (Katz, 2016). The CFP does not otherwise

define science of security, but the conference is funded largely by NSA. The

definition has also influenced academic work, such as that summarized in a

special issue of S&P Magazine, Evans and Stolfo (2011).

The NSA definition defines the characteristics of an answer, not a process.

The science is a “body of knowledge,” it provides “objective...descriptions,”

and should support “principled design of systems that are trustworthy.” Such

goals describe the outputs of a process, not how to conduct the process so as

to achieve these results. Advice would be more actionable for practitioners if

it guided how to act in order to bring about an end goal. This observation

does not make the NSA statement wrong, just less useful.

Security academics informed the NSA definition. The NSA collected its in-

fluential thinkers for a special issue in “The Next Wave” on a “blueprint for

a science of cybersecurity.” The magazine highlights emerging trends salient

to the NSA. The issue entrenches a logical empiricist position on a science

of security, especially Schneider’s article (Meushaw, 2012a). Like the JASON

report, some articles mention biology or engineering, but nothing systematic

and with no true departure from the inherited logical empiricist world view.

dan geer Related to HotSoS, the NSA also runs an annual ‘science of

security’ award for best paper. One of the distinguished experts that review

the nominations, Dan Geer, provides the following insight into the reviewers’

decision making:

“Amongst the reviewers our views of what constitutes a, or the,

Science of Security vary rather a lot. Some of us would prioritize

purpose... Some of us view aspects of methodology as paramount,

especially reproducibility and the clarity of communication on

which it depends. Some of us are ever on the lookout for what a

physicist would call a unifying field theory. Some of us insist on

the classic process of hypothesis generation followed by designed

experiments” (Geer, 2015).

104 literature review – science and security

The disagreement highlighted by this statement is that cybersecurity ex-

perts may view the area with which they are familiar as the area that makes

security into science. This bias is natural, any expert has likely pursued what

they view as the most important topics. Why would any of Geer’s listed

possible priorities take primacy? All contribute to a wider understanding of

the world and its mechanisms via different methods. There are unifying as-

pects, and important differences, between different biological sciences, as one

example. However, reducing the decision to one or another feature, as Geer

(2015) indicates the reviewers of the best ‘science of security’ paper are dis-

posed to do, collapses away the nuance necessary for a constructive perspective

on a science of cybersecurity.

riscs Research Institute in Science of Cyber Security provides a per-

spective outside North America. Research Institute in Science of Cyber Se-

curity (RISCS) was established in 2012 and funded by the UK Engineering

and Physical Sciences Research Council (EPSRC), Government Communica-

tions Headquarters (GCHQ), and Department for Business, Innovation, and

Skills (BIS). Further, RISCS is cited by The Royal Society in their strategic

plan for cybersecurity research in the UK generally (Royal Society, 2016). The

statement of purpose summarizes the Institute’s mission:

“RISCS is focused on giving organisations more evidence, to al-

low them to make better decisions, aiding to the development

of cybersecurity as a science. [RISCS] collects evidence about

what degree of risk mitigation can be achieved through a partic-

ular method – not just the costs of its introduction, but ongoing

costs such as the impact on productivity – so that the total cost

of ownership can be balanced against the risk mitigation that’s

been achieved. [RISCS]’s main goal is to move security from com-

mon, established practice to an evidence base, the same way it

happened in medicine” (UCL, 2017).

The emphasis on science is much more pragmatic in this British context.

The primary goal of the Institute is to provide evidence for improved decision

making; this in itself is taken to advance a science of cybersecurity. This

approach neatly sidesteps many of the questions about what makes a science.

RISCS issues annual reports about its work, and this may be leading by ex-

ample, but it is not self-reflective about how the work advances a science of

3.3 existing statements of science and security 105

cybersecurity (RISCS, 2016). It is not enough to say we need to use evidence,

like in medicine. That statement is true, and the work done by RISCS certainly

is scientific and does advance a science of cybersecurity. Similarly, the work

presented at HotSoS and otherwise supported by DoD has a positive impact on

the field. The community should want to extract the reasons why. For this

explanatory task, the pragmatic statement of RISCS is not enough.

white house The White House has developed a ‘cybersecurity re-

search and development (R&D) strategic plan’ (Shannon et al., 2016, p. 2).

To a large extent, the plan takes the definition of science for granted. The

plan is much more about what types of work the agencies should prioritize

for funding. However, these priorities explicitly include reinforcing a scientific

foundation and a research infrastructure that are deemed to be lacking.

“Cybersecurity...needs sound mathematical and scientific found-

ations with clear objectives, comprehensive theories (e.g., of de-

fense, systems, and adversaries), principled design methodologies,

models of complex and dynamic systems at multiple scales, and

metrics for evaluating success or failure. ...[Currently,] most tech-

niques are domain- and context-specific, often not validated as

mathematically and empirically sound, and rarely take into ac-

count efficacy and efficiency. Thus, the state of the practice con-

sists of heuristic techniques, informal principles and models of pre-

sumed adversary behavior, and process-oriented metrics” (Shan-

non et al., 2016, p. 30).

“Research Infrastructure: Sound science in cybersecurity research

must have a basis in controlled and well-executed experiments

with operational relevance and realism. That requires tools and

test environments that provide access to datasets at the right

scale and fidelity, ensure integrity of the experimental process,

and support a broad range of interactions, analysis, and valida-

tion methods” (Shannon et al., 2016, p. 13).

The strategic plan emphasizes certain aspects of security to focus on, for

example defense should focus on deter, detect, protect, and adapt. This is un-

objectionable as far as practical direction goes. However, these are the subject-

areas about which to do science, but not related to any definition of science.

The scientific foundations and research infrastructure are cross-cutting issues

106 literature review – science and security

of methodology to be applied to the subject matter of priority. In this way,

the strategic plan plausibly separates the desire for answers from the method

by which reliable answers are derived. At the same time, the prescriptions

will come to seem overly rigid in our analysis. Why are domain-specific tech-

niques not scientific? The statement “most techniques are domain-[specific]”

above seems to imply that this state of affairs is unacceptable compared to

“comprehensive theories,” but this argument is unclear. Does the fact that

specially-designed radio telescopes for finding pulsars in the centres of distant

galaxies cannot be used to analyse toxicity in marsh ecosystems make finding

pulsars unscientific somehow? Clearly not.

academic survey Herley and van Oorschot provide a comprehensive

academic perspective (Herley and van Oorschot, 2017). Their main thesis

takes a pessimistic outlook:

“[T]he security community is not learning from history lessons

well-known in other sciences. ... What is [hard] to accept is [The

security community’s] apparent unawareness or inability to better

leverage such lessons” (Herley and van Oorschot, 2017, p. 16).

“...practices on which the rest of science has reached consensus

appear little used or recognized in security, and a pattern of

methodological errors continues unaddressed” (Herley and van

Oorschot, 2017, p. 1).

“...The failure to validate the mapping of models and assumptions

onto environments and systems in the real world has resulted

in losing the connections needed to meet [the goal of improving

outcomes in the real world]” (Herley and van Oorschot, 2017,

p. 16).

The belief underlying this assessment seems to be that security researchers

are unfamiliar with scientific methods or philosophy of science. This claim

motivates an argument that the science of security initiative is essentially

too vague to be useful. The solution Herley and van Oorschot advocate is to

introduce the philosophical literature and draw practical lessons for security

researchers. I concur with this general assessment, and the direction of the

discussion and solutions. However, the solution does not focus on the most

relevant or helpful segments of the philosophical literature. Instead, they rely

on a historical framing emphasizing logical deduction and the problem of

3.3 existing statements of science and security 107

induction. This framing inherits a world view from logical empiricism, Hume,

and Kant. While historically important in philosophy of science, this per-

spective does not provide adequate tools for solving the modern challenges

of a science of security. Modern philosophy of science judges the science of

security less harshly than the failings identified by Herley and van Oorschot,

while providing more actionable positive advice. Here, I focus on the philosoph-

ical summary and argue why the proposed solutions in the Systematization

of Knowledge (SoK) are inadequate; Section 3.4 provides the positive advice

from modern philosophy of science.

Supposed failures to apply lessons from science are the core argument. Some

are novel compared to the government and industry positions explored above;

for example, “failure to seek refutation rather than confirmation” and “reliance

on unfalsifiable claims” (Herley and van Oorschot, 2017, p. 11,13). Unfortu-

nately, these observations require logical empiricist views, notably Popper and

Ayer. As explained in Section 3.2, logical empiricism is an outdated view that

has been supplanted by more recent scholarship in the philosophy of science.

Relying upon logical empiricist arguments has unfortunately led the authors

to draw conclusions that are often unhelpful or incorrect.

Consider the criticism of failure to seek refutation rather than confirma-

tion. What do practitioners refute in security? If it could be logical sentences

somehow implying authorization, perhaps this is a useful criticism. However,

authorization is a policy decision; in the terms of logic, it is a semantic

property. One must define the model structure, satisfaction condition, and

domain before interpreting any sentences and checking semantic properties.

Such definitions can be argued for or justified, but are always contextual and

not something usually refuted or confirmed. Like all of security, it cannot be

done according to absolutes. This logical-empiricist drive for logical absolutes

confounds security just as quickly as it has confounded other sciences. A bet-

ter expression of these worries is that generalizations from particulars should

be properly evidenced and that reasoning from existing knowledge should be

justified appropriately. As elaborated in Chapter 4, I take the mechanism

discovery literature as a better framework in which to discuss generalization.

While the philosophical aspects are not made explicit, this emphasis on evalu-

ating evidence and warranted generalization is consistent with the arguments

put forth by Shostack and Stewart (Shostack and Stewart, 2008).

Because (Herley and van Oorschot, 2017) takes falsification as central, it

is silent on how to draw useful generalizations in the social sciences. Since

108 literature review – science and security

a social science perspective is needed to understand cybersecurity (Anderson

and Moore, 2006), this is a significant shortcoming. To see this, consider the

statement “refuting evidence is [always definitive]” (Herley and van Oorschot,

2017, p. 16). This statement assumes the item being refuted has certain prop-

erties; namely, it must be a decidable, valid logical sentence in a sound proof

system with excluded middle that is satisfied in a relevant model structure.

Common, useful biology and sociology statements do not have these proper-

ties. Instead, sociologists (Elster, 1989) and biologists (Glennan, 2015) tend

to talk about mechanisms. I expand on such alternatives in Section 3.4.3.

Two other failures, “to bring theory into contact with observation” and “to

make claims and assumptions explicit” (Herley and van Oorschot, 2017, p. 12),

are already represented by complaints from other sources about reproducib-

ility, challenges to experimentation, and a common language. Making claims

explicit is generally good advice, though Herley and van Oorschot (2017, p. 12)

wants explicitness so observations will fit into a common-language of a logical

theory. Thus I wish to dispense with the common-language critique while

retaining the recommendation of explicitness. Explicitness has been recom-

mended in science of cybersecurity previously by Maxion (2015), under the

term “structure” or argument clarity, and by Hatleback and Spring (2014) as

“transparency”.

Despite our criticism, many recommendations in Herley and van Oorschot

(2017, §5) are good. I agree that physics-envy and crypto-envy are counter-

productive, for example. So why does it matter that they rely on outdated

philosophy – logical empiricism – to get there? For one, the reasons for these

conclusions matter. Physics- and crypto-envy are counterproductive because

there is nothing special about them to envy. Physics and crypto are especially

well-suited to a logical-empiricist perspective of logical laws of nature that

can be falsified by observation presenting contradiction. Rejecting crypto-envy

would not make sense if it were actually well-suited to our definitions of sci-

ence. It matters that one do not merely say ‘do not worry you are not as good

as physics’ but instead ‘physics is not as unique as you think it is’. Craver’s

conception of mosaic unity in the mechanisms literature (Craver, 2007) is a

more useful framework to understand why crypto-envy is counterproductive.

Each field participates in a multidisciplinary endeavour like security by con-

tributing constraints on complex mechanistic explanations. Crypto is just one

such field, and all fields produce constraints that are, a priori, of equal value

to the overall explanation.

3.3 existing statements of science and security 109

3.3.1 Prepositions: ‘of’ or ‘for’ security

This is a small digression on the two phrases ‘science of security’ and ‘science

for security’. The choice of preposition makes a large difference in mental

orientation. Those that use ‘for’ include the DoD problem statement and RISCS.

Many of the other statements use ‘of’.

These small words (for vs. of) unpack into some big differences. Science

for security seems to indicate taking any scientific discipline or results and

using that to make decisions about cybersecurity. Thus, ‘for’ is agnostic as to

whether there is any work within security that looks like science. Science for

security would simply advocate for evidence-based security decisions.

On the other hand, a science of security looks for a security science to

establish itself as an independent, peer discipline of other sciences, with idio-

syncratic methods, concerns, and venues. As this section highlighted, almost

all the published work on a science of security is pessimistic about its exist-

ence or contributions. I suggest that distinguishing a science of security from

science for security will yield more actionable advice on what to do moving

forwards, and how to make both science of and for security better.

For example, NASEM (2017) follows the above pessimism on a science

of security. However, ‘for’ or ‘of’ may matter a lot. Is cryptography part of a

science of security, or is it mathematics for security? It seems plausible to treat

cryptography as mathematics for security. But if that’s the case, then lessons

from cryptography have little bearing on methods for a science of security. For

example, one would not expect lessons from cryptography to apply to usable

security any more than expect lessons from mathematics to apply to sociology.

Such transmissible lessons can be found, such as with statistics in experiment

design, but they are quite context-specific.

This reorientation naturally presents the question of what topics are in a

science of security. Perhaps, topics that cannot be studied independent of

security concerns. Or perhaps it is just areas where the challenges specific to

cybersecurity dominate the challenges of other disciplines. Either way, CSIR

would be one example of a science of security. This is not to say that a sci-

ence of security is more important than any sciences for security. To some

extent, the core science of security may primarily be a translator between

and among the other sciences for security. Certainly, if science is understood

following Dear (2006, p. 1) (“a very prestigious label that we apply to those

bodies of knowledge reckoned to be most solidly grounded in evidence, critical

110 literature review – science and security

experimentation and observation, and rigorous reasoning”) all these various

disciplinary perspectives on contributing to such knowledge in security are

worth encouraging and nurturing.

Summary

These six broad statements highlight common themes. All agree there is a

problem: cybersecurity is vitally important to society, yet not sufficiently un-

derstood to produce reliable systems. Each account on the source of that

problem directly informs proposed solutions. The academic SoK uses histor-

ical philosophy of science to suggest what security needs. The other North

American statements, from DoD and MITRE especially, implicitly use this

logical-empiricist view heavily. Dan Geer’s view highlights a naïve reductionist

philosophy of science closely related to logical empiricism. RISCS’s pragmatic

statement carries little philosophical baggage, but provides little advice on

how to adequately gather and evaluate evidence. A common mistake is to

confuse evaluation of the process of doing science with the evaluation of the

answers the process provides.

The common thread is to look to biology, physics, or other sciences for

advice. This search may be misplaced. Philosophy of science is the independ-

ent field that discusses how to execute other sciences and such issues. As

Section 3.4 will demonstrate, I can disqualify all of the complaints extracted

from the above that cybersecurity is not a science. Security is a science, and

should look to philosophy of science to address the genuine challenges of a

science of cybersecurity.

Some claim a science of security is not possible; some there is no science of

security yet (see Hatleback (2017) for a recent expression of this view); some

just that too few people practice it. By contrast, Section 3.4 will disassemble

the argument that such a science is impossible by explaining how modern

philosophy of science supports the practices of cybersecurity as a science in

essentially its present form.

3.4 practicing science of security

Section 3.3 covered a broad selection of complaints that security is not sci-

entific enough. This section contrasts those complaints with alternatives based

3.4 practicing science of security 111

Untenable experiments
Structured observations more broadly, not just experiments, are neces-
sary for science. Qualitative research methods (Given, 2008) such as
case studies (Stake, 1995), and natural experiments (Morgan, 2013),
provide usable intellectual structure. Privacy and ethical concerns are
adequately addressed by the Menlo report (Dittrich and Kenneally,
2012). Rapid technological change makes generalization a genuine chal-
lenge, but existing tactics can be synthesized, as Chapter 4 will explore.
Reproduction is impossible
Reproduction comes in many forms (corroboration, statistical power,
repetition, etc.) and usually only some work (Feitelson, 2015; Stodden,
2015). The misconception is requiring all forms simultaneously. See
Cartwright (1991) for a touch point. Scientific work may cover non-
replicable events, e.g., the extinction of the dinosaurs (Glennan, 2010).
No laws of nature
‘Law’ interprets how scientists explain or generalize knowledge, but is
too rigid even to describe physics (Cartwright, 1983). Causal explan-
ation as intervention is well-developed (Halpern and Pearl, 2005a,b;
Woodward, 2003). Philosophy of science provides access to a rich set
of mechanism discovery heuristics used in other sciences (Bechtel and
Richardson, 1993; Craver, 2007; Darden, 2006) that Chapter 5 will
port to security. From ‘laws’, these heuristics for designing and inter-
preting observations are unavailable.
No single ontology
A single language does not define a field. Within physics, the sub-
fields communicate via trading zones in which exchanges between the
their jargons occur (Galison, 1999). Trading zones apply in security
as well (Galison, 2012). Neuroscience provides a better metaphor for
demarcating a science of security: the mosaic unity coheres from mul-
tiple subfields providing constraints on multi-level mechanistic explan-
ations (Craver, 2007).
‘Just’ engineering
Engineering as usually practised depends on science (Vincenti, 1990),
while at the same time science as usually practised depends on engin-
eering (Dear, 2006). Chapter 6 will explore the extent of the overlap
between logic, engineering, and science in a case study of program veri-
fication.

Table 3.2: Summary of common complaints raised by the science of cybersec-
urity community and recommendations on positive actions from
the philosophy of science literature to counteract the complaints.

on a more comprehensive view of science according to the philosophy of science

literature. The immediate aim is to clear away these unjustified complaints

that security is unscientific. The larger purpose is to, thereby, make genu-

112 literature review – science and security

ine challenges more visible. Table 3.2 lists the five common complaints and

summarizes how to defuse each with the positive advice in the history and

philosophy of science literature.

3.4.1 Scientific methods

claim: experiments are untenable The inability to con-

duct experiments, at least in many contexts, is held to be a major strike

against a science of cybersecurity. The received view is an explicit evidence

hierarchy, with Randomized Controlled Trials (RCTs) at the top (Cartwright

and Hardie, 2012, p. 135ff). This view is rooted in medicine, influenced public

policy generally, and in turn security. A critical study of proper evidence-based

policy summarizes the received view succinctly: “You are told: use policies that

work. And you are told: [RCTs] will show you what these are.” And yet, they

immediately follow with “[RCTs] do not do that for you” (Cartwright and

Hardie, 2012, p. ix).

Nevertheless, experiments generally, and RCTs specifically, hold a high

status. High enough status that many statements from Section 3.3 present

lack of experiments as sufficient grounds to demonstrate security is not a

science. Ultimately, this high status reaches back to a conception of science as

falsifying logical statements inherited from logical empiricism, for which RCTs

are well-suited. I counter three common reasons for the claim experiments are

untenable in security: lack of suitable control, privacy constraints, and rapid

technological change.

Untenable experiments, narrowly understood, is not the right complaint in

the first place. Section 3.2 expanded our view of scientific explanation bey-

ond falsifiable logical statements. Therefore, robust explanation needs broader

methods of evaluation than experiments.

alternative: structured observations of the empir-

ical world Experiments are not a necessary condition for a field to be

a science. No one can induce controlled hurricanes, yet meteorology remains

a science. Similarly for astrophysics – no one induces supernovae – and palae-

ontologists, as no one induces extinction via meteor impact. Social sciences

abound that rely on case studies; an individual case is “a specific, a complex,

functioning thing” (Stake, 1995, p. 2).

3.4 practicing science of security 113

I will prefer the term ‘structured observations’ over experiment as a neces-

sary feature of science. I mean structured observations to include both exper-

iments and case studies. Robust research methods provide the structure, for

example as described by (Given, 2008; Stake, 1995). Structured observations

are empirical, and this includes both qualitative and quantitative studies. Let

us rephrase the complaint, then, as structured observations are untenable in

security. Nonetheless, I will clearly demonstrate how those practicing a science

of security can and already have been overcoming objections in the context of

structured observations.

overcoming: lack of control groups There are surely

some situations in studying security in which RCTs are not possible. Such

a trial involves dividing a group of subjects such that the only statistically-

meaningful difference between the two groups should be the intervention of

interest. This structure permits statistical determination of the intervention’s

impact, granted various properties about the design hold.

RCTs have come to be considered a cornerstone of evidence-based medicine,

and there is prestige associated with RCTs. However, recent projects challenge

this perception of RCTs as standing alone at the top of a strict evidence hier-

archy. For example, without mechanistic evidence, one cannot decide the de-

tails of what RCT to design and conduct (Williamson, 2015). Such arguments

do not cast doubt on the use of RCTs when they are plausible, but rather

cast doubt on the undisputed primacy of RCTs as the best evidence. Various

interlocking kinds of evidence are necessary for evidence-based medicine; I see

no reason why security should differ in this regard. Case studies, natural exper-

iments, model-based reasoning, and RCTs all have important, interdependent

roles to play. This insight helps sharpen what is actually needed in security

research to make it more like medicine, as called for by the UK’s RISCS.

There are instances where RCTs have a role to play in security, particularly

where security interfaces with psychology, e.g., in usable security. Examples

are success in studying alternatives to passwords (Biddle et al., 2012b) or bio-

metric uses of keystroke dynamics (Killourhy and Maxion, 2009). Usable se-

curity experiments do have pitfalls essentially unique to the field; for example,

to make sure users have a realistic sense of risk in the lab environment (Krol

et al., 2016). And like in medicine, evidence is needed to link the experimental

result to cases outside the lab.

114 literature review – science and security

As an example of a variety of approaches to structured observations in

action, consider the following brief review of research involving passwords.

Case study methods yield insights into how people select passwords and what

motivates their behaviour. An example of a qualitative case study comes from

Wash (2010), who conducted in-person interviews to identify the mental mod-

els people use when thinking about security, including passwords. Wash found

that while everyone agreed that selecting good passwords was important, ar-

ticulating why or how was much harder. Gaw and Felten (2006) present a

quantitative case study of 49 undergraduate students that documented wide-

spread password reuse, along with incorporating non-private attributes such

as phone numbers into passwords. These case studies are complemented by

later observational studies carried out at a larger scale. For example, Das et al.

(2014) analysed hundreds of thousands of leaked passwords to quantify the

prevalence of password reuse and other insecure activities. This study corrob-

orated earlier case studies. Motivated by this and other studies, researchers

have proposed new mechanisms to enable better password selection, which

can then be evaluated empirically. For example, Ur et al. (2012) ran an exper-

iment in which users selected passwords with the aid of 14 deployed strength

meters. While the most stringent meters did elicit stronger passwords, they

also required longer interactions and stirred greater resentment among users.

Egelman et al. (2013) proposed a strength meter, then evaluated it using both

a laboratory experiment and field study conducted over a much longer period

for selecting a lower value password. Interestingly, while in the experiment

users selected better passwords using the meter, in the field experiment on

low-value passwords, the meters had no discernible effect. Finally, governments

are now basing recommendations for password selection and use informed by

the academic literature (NCSC, 2017).

What lessons can one draw from this brief survey through the passwords

literature? First, that many methodological approaches are in use. Second,

that structural observations can improve our understanding of a problem and

produce better technology.

overcoming: ethical constraints A further concern is that

experiments are impracticable in security for privacy and ethical reasons,

rather than simply being impossible to design properly as the foregoing argu-

ment held. The ethical considerations of security studies have been traced in

detail by the Menlo Report (Dittrich and Kenneally, 2012). In the biological

3.4 practicing science of security 115

and social sciences, the Belmont Report established the ethical guidelines for

experiment design; in the US and UK some of these guidelines have been put

into law. Universities enforce these policies via review boards that oversee ex-

periment design before the experiment can be run. The Menlo Report updates

the three classic considerations – respect for persons, beneficence, and justice

– for an inter-networked world. A fourth, respect for law and public interest,

is added. Privacy plays in all four of these organizing principles.

Ethical restrictions are a basic part of research in many scientific fields.

Neuroscientists cannot open up the brains of human test subjects and apply

electrical shocks. Physicists should not wantonly release radioactive particles

to test atomic phenomena. Virologists cannot test the spread of disease by

releasing a pathogen in an airport and tracking its progress. All these fields

make do by designing ethical observations that get to the necessary explan-

atory insights. A thorough update to these ethical considerations for ICT is

available in the Menlo Report (Dittrich and Kenneally, 2012). Engaging with

ethical review boards may slow down security researchers at first. But ethical

review has not stopped other sciences, and it should not stop security.

There is some nuance to this privacy challenge to experiments, which is that

participant data being private means that experiments are not reproducible;

the data cannot be shared with other researchers. Using the language I will

develop in Section 3.4.2, this is only a problem for rerunning statistical tests.

In the other seven senses, the data is re-collected. If all the other artefacts

for experiments are available, including the code to collect and analyse data,

repetition, reproduction, and so on should be possible without knowing the

original participants. And even then, in some cases the original data may be

anonymizable. Therefore, the cost in terms of reproducibility for the researcher

to comply with ethics and privacy appears manageable.

overcoming: rapid change The third critique on the tenability

of structured observations in security concerns the longevity or generalizability

of results due to the pace of technological change. The critique runs, roughly,

that although experiments are plausible, their results are not useful because

the results are outdated by the time they are compiled and published.

This critique rests on a combination of selecting the phenomenon of interest

and a conception of who culturally is doing science. Some phenomena are

more ephemeral than others, in the sense that the phenomenon only exists for

a short time. The extinction of the dinosaurs was an ephemeral event in this

116 literature review – science and security

sense (Glennan, 2010). Ephemeral is not to be conflated with quick. Chemical

reactions may happen fast, but the phenomenon of gunpowder exploding is

a robust chemical phenomenon, for example. If one selects an ephemeral phe-

nomenon of interest in security science, do not be surprised that the resulting

explanation has short-lived relevance. Forensics and CSIR are especially likely

to be interested in ephemeral phenomena because to investigate the specific

details of past events is almost always to investigate ephemeral mechanisms.

This focus is analogous to the difference between palaeontology and contem-

porary biology. Furthermore, since forensics is usually defined as applying

science in the service of the law, it would be odd to claim there is no science of

cybersecurity which is being applied in the course of digital forensics (Morgan

and Bull, 2007).

The selection of ephemeral phenomena interacts strongly with who is con-

sidered a scientist in the security landscape. Beyond universities, many govern-

ment organizations and private companies have security research labs. Even

beyond staff with ‘research’ in their job description, the notion of engineering

as satisficing to create artefacts and science as crafting generalized knowledge

induces some interesting perspectives. A software developer writing code is

building something, therefore engineering. But such classification blurs when

the developer is trying to find the point in the code responsible for a bug,

or conducting code reviews generally. Surely, the developer is following estab-

lished practice, not inventing new modes of experiment (Oram and Wilson,

2010). But one does not say that a high-school student following textbook

steps for a chemistry experiment is not participating in the scientific enterprise,

just because the steps are known. The line blurs further for older students,

following known procedures but with slightly varied chemicals to measure po-

tential differences. Likewise, a developer may follow textbook steps for estab-

lishing a hypothesized source of a bug, intervene on the system, and measure

to establish evidence for whether the intervention confirmed the hypothesis.

But the code is new, so the answer is not known a priori.

I claim developers, or more likely in security, malware reverse engineers

investigating the functionality of unknown code based on hypotheses, who

operate in this mode participate in science. Therefore, the longevity-of-results

picture changes. Experiments may have a short window of application, but

cybersecurity experiments may also be quite quick to execute and apply. An

experiment might be automated malware reverse engineering that runs the

malware in a sandbox, extracts suspicious domain names and IP addresses

3.4 practicing science of security 117

from connection attempts, and publishes those network elements to a blacklist.

The time frame between the beginning of the experiment and operational

impact on defender networks may be 15 minutes. Just because it takes the

Food and Drug Administration (FDA) 15 years to approve a drug does not

mean anything scientific takes years. The network elements may have a short

lifetime of usefulness, but it is at least proportional to the duration of the

experiment.

The critique that experiments in security are untenable because of rapid

technological change takes an unacceptable combination of options – that

these miniature experiments are not science, but that science must cope with

highly ephemeral phenomena without such experiments. There is no reason to

conceptualize science in this contradictory way. In either other conception of

science’s relation to automation and the expectations for its results, the chal-

lenge that rapid technological change makes it impossible simply evaporates.

There may be methodological or generalization-based challenges to a science

of cybersecurity so conceived. Chapter 4 will recognize such challenges and

confront them directly.

structured observations via mathematical model-

ling Another important purpose of structured observation is to support

the construction of mathematical models of systems, perhaps incorporating

representations of policies. The use of mathematical modelling in supporting

the practice of science and engineering is well established. The process by

which mathematical models are constructed is summarized by Figure 3.1.

Observations of the world are performed; by a process of induction, the con-

struction of a model is commenced; using deductive reasoning, the properties

of the model are derived; those properties are interpreted in the observed

world; and further (structured) observation of the world is used to assess

the accuracy or utility of the model as constructed so far. This process of

observation, construction, deduction, and interpretation is iterated until the

modeller is satisfied that the constructed model is fit for purpose. This process

by which mathematical models are constructed makes use of both inductive

reasoning, for conclusions about the empirical world using observations and

inferences from those observations, and deductive reasoning about the math-

ematical model itself. The process seeks to constrain each type of reasoning

by reference to the other.

118 literature review – science and security

!!

!
!!!!!

in! out!
observa-ons! models!

consequences!real3world!
consequences!

induc-on!

deduc-on!

interpreta-on!

valida-on!

Figure 3.1: The mathematical modeling cycle

Both during the construction of a model and during the use of a completed

model in an engineering process, two kinds of reasoning about the properties

of models are used. First, models can be explored intensionally, in the style

of experimental mathematics; that is, the space of evolutions of the model

is explored systematically using simulation methods, such as Monte Carlo

(Collinson et al., 2012a; Jain, 1991), and absolute and expected properties can

be observed and deduced. For example, Caulfield and Pym (2015a) explores

the consequences of different levels of resourcing for the effectiveness of access

control to buildings and consequent information security breaches. Second,

properties of the model can be explored extensionally; that is, the full range

of logical and mathematical tools can be used to reason about the properties

of the model considered as an object of mathematical study. This latter form

of reasoning can be illustrated in the context of program verification by the

set-up of Separation Logic, as I will describe in Chapter 6.

The mathematical modeling method applies in the science and engineering

of security just as it applies, for example, in civil, electrical, and mechanical

engineering and their supporting sciences.

3.4.2 Evaluating Results

claim: reproducibility is impossible This complaint re-

quires considerable unpacking. There are some intuitive challenges; for ex-

ample, if reproduction of phenomena under controlled conditions is an abso-

lute requirement, then astrophysicists and palaeontologists are not scientists.

This complaint inherits a flavour from logical empiricism; reproducible exper-

iments are necessary to repeatedly test and increase confidence in falsifiable

3.4 practicing science of security 119

(but not yet falsified) statements of universal law. Fragile or contextual conclu-

sions in biology – conclusions that were not readily reproducible – historically

led to serious claims that biology was not a science (Cartwright, 1983).

Complaints of irreproducibility, at heart, strike out at the genuine observa-

tion that conclusions in cybersecurity research are often fragile or contextual.

Philosophy of biology countered similar logical-empiricist attacks by creating

a more nuanced idea of evaluating explanations and results. I will leverage

this work about biology to do the same. Reproducibility is a complex term

in itself; I will present no fewer than eight different senses of the term that

discuss different aspects of evaluating evidence from structured observations.

alternative: evaluation takes many forms Although

the distinction between replication and repetition is not new (Cartwright,

1991), recent work provides actionable advice to scientists. I focus on the

family of five terms suggested by Feitelson (2015), plus the notion of statist-

ical reproducibility from Stodden (2015). I will discuss three distinct senses

of statistical reproducibility, for a total of eight distinct methods to support

the robustness of evidence. When one complains that cybersecurity lacks re-

producibility, usually what is meant is that one or two of these eight senses

is impossible. All sciences similarly struggle to achieve reproducibility in all

these senses at once. Thus, cybersecurity is no worse off than other sciences.

Feitelson (2015) suggests five distinct terms for a computer science discus-

sion of evaluating results:

Repetition – to rerun exactly, using original artefacts

Replication – to rerun exactly, but recreate artefacts

Variation – repetition or replication, but with a measured intentional modi-

fication of a parameter

Reproduction – to recreate the spirit, in a similar setting with similar but

recreated artefacts

Corroboration – to aim to obtain the same or consistent result as another

study via different means

Each of these strategies has its uses, one is not strictly preferred over the oth-

ers. This subsection uses an extended example of evaluation of Network Intru-

sion Detection and Prevention Systems (NIDPSs). One may question whether

evaluating an NIDPS rule is scientific, in the sense desired. NIDPS rules may

be very specific and not widely generalizable, but the same could be said for

120 literature review – science and security

determining whether a particular enzyme in the blood of some rare Amazonian

fish actually selectively binds to some specific parasite. Chapter 7 will pick up

on the example of NIDPS rules and how to integrate them into more general

knowledge using the strategies from Chapter 4.

repetition Even in the restricted context of evaluating a single NIDPS

rule, these strategies all have a sensible interpretation. Given a recorded

stream of traffic, if one plays the stream back through the same NIDPS with the

same network configuration, the same rules should fire. A failure of repetition

would be indicative of race conditions or performance bottlenecks, or perhaps

an architecture with multiple distinct NIDPS systems and a network switch

that randomly assigned packets, meaning any rule that required correlation

between packets would not reliably fire across repetitions. It is because of re-

petition experiments such as this that Bro, Snort, or Surricata work on flows,

not packets. When load-balancing any of these tools, traffic is balanced based

on flows, so that all packets in one conversation go to the same thread. Flow-

based balancing is needed because a NIDPS works to reassemble application-

level, or at least transport-layer, information (Scarfone and Mell, 2007). Any

network architecture that randomized packets among instances, as opposed

to maintaining flow-based balancing, would lead to unrepeatable observations

because application-level reconstruction would fail to be the same, and the

NIDPS tests would be applied to different information.

replication Replication might mean to use different NIDPS software

and re-write the rule in its language to get identical detection. Replication

might also mean using the same NIDPS architecture and rules on traffic that

is artificially generated to have the same malicious features as a prior ex-

periment; or perhaps it is simply to recreate the same network architecture

at a different physical location and replicate that the NIDPS works on a pre-

recorded traffic stream to provide evidence the newly setup sensor architecture

has been installed correctly.

I have claimed that creating a new NIDPS rule and testing it on a pre-

recorded traffic stream is an experiment. Am I abusing the use of experiment

here, in a way that is not consistent with other sciences? No. Perhaps strangely,

the objects of the experiment are artefacts, and software artefacts at that.

But if cybersecurity is a science of anything, certainly it is of software (and

how people interact with it). Therefore, the NIDPS analyst making a rule has

3.4 practicing science of security 121

an untested specimen (the NIDPS rule), a hypothesis about how it should

behave (what she designed it to do, in this case), and establishes a controlled

environment in which to test the properties of the specimen of interest. This

matches all the usual hallmarks of an experiment.

From repetition and replication, variation is straightforward and I will not

discuss it in detail. For an NIDPS it is basically making a small change to a

signature and observing how the results change.

reproduction and corroboration Reproduction of NIDPS

alert efficacy is something practitioners measure often; with the same rule in

a different network architecture, they evaluate the outcomes. Corroboration is

similarly useful. Perhaps against different traffic patterns, do different NIDPS

systems see similar but distinct alerts about exploitation of Heartbleed, for

example, that allow corroboration of wider claims about internet-wide abuse

of the vulnerability.

statistical properties Stodden (2015) distinguishes three fail-

ures of statistical reproducibility. Lack of statistical reproducibility may result

from poor design of observations, namely issues with low statistical power or

sampling bias. Even if the sample design is appropriate, the statistical tests

applied may be inappropriate. For example, a test may be applied despite

requiring assumptions that the situation does not meet. Finally, results may

be generalized beyond what statistics justifies. A rough translation of these

three problems is:

• design of observations

• analysis of observations

• interpretation of observations

If an observation is poorly designed, it will not be able to be reproduced.

Poorly designed means either there is a consistent, unknown confounding

factor in the design (sample bias) or that the number of elements is not large

enough to produce results independent of natural random variation. Sampling

bias happens quite naturally across various organizations that might deploy

the same NIDPS rule – different adversaries attack banks, militaries, and uni-

versities. In security, this reduces to a challenge of comparing like with like. In

medicine, it is understood that patients from different age groups or income

brackets have different health outcomes. But these differences are measured,

122 literature review – science and security

and then can be controlled for when observing the impact of a treatment on

a varied population. The sampling bias is controlled by knowing the shape

of bias with sufficient precision. Security suffers from an additional layer of

evidence-gathering bias. Organizations may not report or disclose vulnerabilit-

ies, for example, due to ignorance, fear of financial risk, legal obligations, or to

improve the reputation of their brand (Shostack and Stewart, 2008, p. 52ff).

Such social and cultural biases apply to many types of security evidence. Ad-

equately understanding these biases, and how to mitigate them, remains an

area for further work.

The statistical analysis and tests performed after data are collected can

also impact whether a compatible result can be obtained in any of the five

strategies for confirming results. One common problem is for researchers to

selectively report results, and even tests performed. If a researcher runs “many

tests until one of them yields a p-value of less than 0.05 and then report[s] this

result as if the other tests had never been run” then the result is actually a stat-

istical outlier, even though it is being reported as a reliable result (Stodden,

2015, p. 6). The researcher essentially misrepresents the robustness of the

result, which of course impacts confirmation attempts. Such statistical ma-

nipulations are well-documented to result in publication bias in psychology

journals, for example (OSC, 2015). A science of cybersecurity must guard

against such misapplications of statistics just like any other science.

The final area of statistical reproducibility to discuss is the data collection

and generation process. Problems with data generation lead to a lack of gener-

alizability of the results. For example, studies commonly report a linear regres-

sion establishing a relationship between two measurements, such as deploying

an NIDPS rule and the number of intrusions. Unless the data generation is

very strictly constrained, one may not safely use that relationship anywhere

outside the data collected – the result may not be generalized (Stodden, 2015,

p. 6). Generalizability is a problem in cybersecurity. However, to the extent

that this challenge is due to failure to meet known statistical constraints on

data collection, cybersecurity is not distinct from other sciences. Following

this line of reasoning, Chapter 4 will draw on other sciences for strategies on

how to build generalised knowledge in cybersecurity.

forensics and reproducibility One intuitive objection on

reproducibility stems from the idea that security is forensic, and so necessarily

considers single events. By definition, if some security event only happened

3.4 practicing science of security 123

once, it cannot be repeated. Forensics or history may be different from science

(see Section 3.4.5); however, there is not a sharp distinction. Establishing

evidence for a particular series of events at a particular time in the past

is forensic. Sometimes sciences require such evidence as part of knowledge

creation, generalization, and application to new scenarios. It seems implausible

to claim that astrophysics, palaeontology, and macroeconomics are unscientific.

Yet they are largely historical, in a way similar to CSIR.

A science of security can integrate forensics in an analogous way to how

biology integrates palaeontology and physics integrates astrophysics. Palae-

ontologists build evidence for the mechanism of what killed the dinosaurs,

for example. Glennan (2010) refers to these one-time events of interest as

being driven by “ephemeral” mechanisms, as opposed to say chemistry where

mechanisms have a more robust, repetitious nature. The reason for unifying

ephemeral mechanisms, as studied in palaeontology, with other sciences is

because mechanism discovery strategies and mechanistic explanation provide

a coherent account of scientific activity. Bringing palaeontology into that fold

brings the philosophical account of scientific explanation via mechanisms in

line with the obvious similarities between astrophysics and palaeontology on

one hand and physics and biology on the other. Biology is not unscientific

because it contains a sub-field focused on single events in the past – palae-

ontology; similarly, a science of cybersecurity is not totally scuttled simply

because it contains a sub-field that focuses on forensics.

summary The thrust of this argument is that observations in cybersec-

urity appear, to a large extent, to be amenable to the various senses of repro-

duction. I frame this issue under the task of evidence evaluation. However, I

did not attempt to refute the fragility of conclusions in cybersecurity, as this

fragility appears genuine. The question can be more productively answered

by selecting the correct level of analysis than naïvely insisting against repro-

ducibility.

Questions of reproduction skip the important issue of what phenomenon is

to be reproduced. Which phenomenon is of interest will impact which evid-

ence evaluation strategies (repetition, statistical tests, etc.) are most valuable.

Scientists are often interested in discovering the mechanism responsible for

a phenomenon in order to better explain the phenomenon. Defining the phe-

nomenon differently will change the mechanism of interest. For example, most

models of computer network attacks have a step for exploitation of the target.

124 literature review – science and security

Attacks are a high-level phenomenon and exploitation is one activity within

the mechanism. At a lower level, there are various mechanisms by which ex-

ploitation could occur, for example drive-by downloads or social engineering

to run untrusted code, as I will discuss in Chapter 5.

3.4.3 The nature of scientific inquiry

claim: no laws of nature The critique that there is no science

of cybersecurity until there are laws of security, or mathematical rules which

permit deductions from observations to consequences, comes presumably from

the received view that this is how physics works. The importance of laws in

the received view is to provide predictive power. However, to claim laws are

necessary to make reliable predictions is unsupportable. Many sciences make

reliable predictions without laws; in fact, many philosophers argue physics

does not have laws in the sense commonly understood. Yet, many predictions

of physics have a reliability that a security researcher would envy. This section

introduces philosophical perspectives on how to create and evaluate predictive

models.

Some science of cybersecurity work has noted that not all sciences have

laws. The USArmy Research Lab is more thorough, pragmatically defining a

science of security by specifying its subject matter, and taking models gener-

ally as central (Kott, 2014). However, no prior work goes nearly far enough

in breaking the preconception about laws nor providing alternatives. First,

biology has faced and refuted this conception of laws being a necessary cri-

terion for science in detail; I will provide a brief summary. Second, I adapt to

security a modern conception of explanation that has supplanted that of laws

– mechanistic explanation.

First, let us summarize what a laws-based explanation is intended to mean.

The DoD takes laws as “the basis of scientific inquiry” (MITRE, 2010, p. 4).

Hempel provided a concise definition that is a useful historical basis: a law is “a

statement of universal conditional form which is capable of being confirmed

or disconfirmed by suitable empirical findings” and a law, as opposed to a

hypothesis, refers to such a statement that “is actually well confirmed by the

relevant evidence available” (Hempel, 1942, p. 35). This 1942 definition has

all the seminal features; for example, Popper’s falsifiability criterion in differ-

ent words (“capable of being disconfirmed”). I will push hard on this logical-

empiricist, laws-based conception of explanation with a detailed unpacking of

3.4 practicing science of security 125

the meaning of the term followed by critiques by the modern philosophers of

science Mitchell, Cartwright, Bogen and Woodward, and Woodward following

Pearl.

To understand ‘law’ in this sense one must focus on the technical-

philosophical meaning of three terms: universal, conditional, and capable

of being confirmed. Universal means that the statement of law applies to all

things, at all times, without exception or additional precondition. Conditional

means an if-then statement in classical first-order logic. For a statement to

be capable of being confirmed or refuted, it needs to have semantic content,

or meaning, and be about the universe in which we live. One challenge to

this view is captured by the aphorism ‘all models are wrong, some are useful.’

While models and statements may be semantic, they are also necessarily

simplifications of our universe and there are always conditions in which that

simplification is wrong. But a simplification cannot be confirmed or refuted.

Simplifications may be useful or useless, in various contexts, but that is a

far different thing than absolutely refuted, absolutely true or false. Many

logical empiricists side-stepped such questions by saying that laws were true

universally, so they must be independent of human artifice or language.

This history makes it particularly strange to ask whether there are ‘laws’ of

man-made system security.

Mitchell, a philosopher of science, has deconstructed a laws-based unity of

science. For example, she argues that “nature is complex and so, too, should

be our representations of it” and that complexity and the resulting pluralism

of models “is not an embarrassment of an immature science, but the mark

of a science of complexity” (Mitchell, 2003, p. 115). She advocates that the

relevant aspect is not how theories are defined, but used. Thus, any theory

that functions as an effective generalization might pragmatically be called a

‘law’ in physics, or a ‘model’ in biology. What is important is effective methods

for generating and scoping generalizations so we know where and to what they

apply.

Cartwright identifies various problems with laws-based conceptions. These

include that usual laws-based conceptions cannot make sense of causal state-

ments, and that laws explain the behaviour of mathematical models of the

world, rather than the world directly (Cartwright, 1983). She calls this a

simulacrum account of explanation.

Further deconstructing the logical positivist influence on philosophy of sci-

ence, Bogen and Woodward (1988) identify the mediating influence of data

126 literature review – science and security

and observation on our ability to make theories. People tend to care about the

phenomena in the world, and theories apply to phenomena. However, people

observe data, and data collection is mediated by tools and their norms of use.

The canonical example is the melting point of lead. No one observes lead melt-

ing at 327°C. Observers note many thermometer readings, with both known

and unknown equipment errors and limitations, from which they statistically

derive the value 327°C with some acceptably small margin of error and assign

it to the phenomenon of lead melting. The argument goes on, with some

nuance, that there is no law or even single theory that explains lead melting

at this temperature, much less any of the individually-observed thermometer

readings. The whole apparatus of experiment, including the engineering of

the tools, the statistics, the metallurgical purity of the sample, and so on,

are all necessary to explain the phenomenon. This perspective accords with

Mitchell’s proposition that complicated theories are a sign of maturity, not

immaturity; as well as Cartwright’s simulacrum account of explanation.

Woodward provides an alternative account of causal explanation to sup-

plant a laws-based account. This account is known as an interventionist ac-

count because, roughly, it is based on the idea that the only way to determine

causation is by an intervention that could, in practice or in a thought experi-

ment, make a change (Woodward, 2003). Woodward relies on Pearl’s statist-

ical account of causality (Pearl, 2009), which has been updated since Wood-

ward’s treatment but with some modification is a sound statistical approach

and language for discussing causation (Dawid, 2010). Causal explanation is

not about laws of nature, but about building an explanation of the organ-

ization of elements of a phenomenon in such a way that one may intervene

reliably on the outcome by changing the elements. Again, like Mitchell, there

is a theme of what makes an adequate generalization of a system.

alternative: mechanistic explanations of phenom-

ena Herley and van Oorschot (2017, p. 14) recommend “physics-envy

is counterproductive; seeking ‘laws of cybersecurity’ similar to physics is

likely to be a fruitless search”. This statement is true, but also naïve in two

senses. First, as discussed above, physics does not have strict laws any more

than biology, security, or economics. Second, it does not provide any viable

alternative goal of scientific enterprise, and therefore no expression of what

sort of generalization of knowledge I am seeking for security. I will sketch out

3.4 practicing science of security 127

what tools philosophy of science provides here and Chapter 4 will focus on

this question in more detail.

The most convincing account within the philosophy of science community

is that of a mechanism (Glennan, 2015). However, this word must be di-

vorced from a mechanical, Victorian interpretation as the world analogous

to a machine. The current consensus definition is that “a mechanism for a

phenomenon consists of entities (or parts) whose activities and interactions

are organized so as to be responsible for the phenomenon” (Glennan and Il-

lari, 2017, p. 2).6 This mechanistic conception of scientific reasoning is useful

because it provides a structure to build on and borrow mechanism discovery

strategies.

The literature on mechanism discovery strategies examines how scientists

develop hypotheses to test, and the constraints they build into experiments

and observations in order to test them. Mechanistic thinking is more helpful

than a laws-based approach because it provides hints as to what to do and

what to look for in order to build a useful explanation. Bechtel and Richardson

base their initial strategy of decomposition and localization on Herb Simon’s

work. Their work is specifically positioned as a strategy for scientific discovery

“well suited to problems that are relatively ill defined, problems in which

neither the criteria for a correct solution nor the means for attaining it are

clear” (Bechtel and Richardson, 1993, p. 7). This description is encouraging

for security practitioners beset with ill-defined problems.

The other main contributor to the mechanism discovery literature is Darden.

She provides strategies used on slightly better-defined problems. If a general

mechanism is known, but details of a particular entity or activity are hazy, a

reasonable hypothesis is to attempt to resolve the hazy element more clearly

(‘schema instantiation’). If a mechanism is understood, but not its set-up

or termination conditions, the investigator can chain their reasoning either

backwards or forwards from the known mechanism to constrain our hypotheses

about what must exist either before or after the known mechanism (Darden,

2006, ch. 12).

Hatleback and Spring (2014) discuss and resolve the apparent difficulty

of discussing mechanisms that have been engineered, or created by humans,

such as computer code. This different origin does not present any conceptual

difficulty in understanding the function of the code as a mechanism. Like with

6 Compare to Bechtel and Richardson (1993), Illari and Williamson (2012) and

Machamer et al. (2000).

128 literature review – science and security

any differing fields the exact tools used to examine mechanisms in computing

would not be identical to biology, any more than radio telescopes for stars

are useful in investigating mechanisms of frog ecology. Chapter 5 presents

incident response and intrusion analysis as a kind of mechanism discovery task.

I will show the heuristic of schema instantiation, from Darden (2006), to be

analogous to incident analysis heuristics. Specifically, the heuristic an incident

responder uses when resolving the ‘exploitation’ step in the kill chain to a

drive-by download, for example, and then again when the drive-by download

mechanism is instantiated to clarify what particular domains and web services

participated in the exploitation and could be blocked.

Science of cybersecurity stands to benefit from refusing to consider ex-

planation as laws-based and instead focusing on scientific investigation as

mechanism discovery. The question of whether there are laws of cybersecur-

ity is fundamentally the wrong question to ask. Both philosophy of science

and mathematics have better perspectives on generating intelligible explana-

tions of phenomena than a laws-based explanation. The modern philosophy

of science literature provides heuristics for mechanism discovery that should

be helpful in orienting scientific investigations in security. The mathematical

modelling cycle described in Figure 3.1 provides a complementary heuristic

process.

When using mathematical models, the situation is clear. Practitioners do

not identify laws but rather properties of models. The properties of a model

are used to assess its value and to support its refinement.

3.4.4 Scientific Language(s)

claim: no science without a common language In

this section I will argue against the idea that a single language or ontology

of security would be a defining feature of a science of cybersecurity, although

clarity of expression is necessary. Our main departure point is the insistence

on unification into a single language, and advocate instead for a kind of integ-

rative pluralism – which is what actually exists in other sciences anyway.

JASON identifies a “common language” as the “most important” attribute

necessary for a successful science of cybersecurity (MITRE, 2010, p. 3). The

other statements I reviewed are less direct, but there is a similar drive towards

unification. Phrases that appear sympathetic to unification of language and

explanations include “contribute to a general framework” from the NSA defin-

3.4 practicing science of security 129

ition, “comprehensive theories” as opposed to “domain- and context-specific”

ones in the White House plan, and the negative tone in which Geer relays the

diversity of opinion among the best paper judges.

The implicit assumption amongst these statements is that, at least within

security, a variety of disparate phenomena can be reduced to a relatively com-

pact set of definitions and statements. Oltramari et al. (2014) cite the JASON

reasoning and make this desire to compact the semantic space explicit. The

traditional statement of unification into a common language was ‘reduction-

ism,’ as discussed in Section 3.2 to be logical deduction of one field’s laws to

those of another (Nagel, 1979).

This reductionist idea of a common language implies an explanatory hier-

archy. It seems more realistic to admit that explanations are about different

topics, and each topic develops its own specialized language. A variety of

fields contribute understanding to security mechanisms, from economics to

electrical engineering to elliptic curves. Translations between these fields will

be vital. But that does not create a common language any more than translat-

ing between German and French creates a combined language; it just creates

a translation.

alternative: trading zones, pluralism, and mosaic

unity A more convincing account of interdisciplinary collaboration

comes from physics. Galison, a historian of physics, borrows the anthropolo-

gical term trading zone to describe the contact between subfields of physics,

such as experimental and theoretical particle physicists (Galison, 1999, 2010).

The analogue is in merchant towns, cultural anthropologists observe people

from different cultures coming together and creating just enough of a shared

language such that commerce can happen. As commerce grows and the

communities benefit, the trading zone becomes more robust. This occurs

linguistically as well as materially.

Galison’s insight is that the same process happens between subfields of

physics. There are members of each community who specialize as traders, go

to places where the communities interface, and develop specialized languages

(pidgins, creoles, etc.) that are incomplete mash-ups of each traders’ home

language. Theoretical physicists and experimental physicists do not, in fact,

speak one common language. They speak importantly different languages,

with their own jargons and evaluations of what features of explanation and

evidence are most important. However, the two subfields can productively

130 literature review – science and security

exchange ideas because there is a developed trading zone where ideas can be

translated into a shared language from both directions and then re-translated

back out to the respective communities.

Galison’s insights on trading zones and subcultures seem to have been mis-

understood by JASON. In his presentation about science in cybersecurity,

Galison writes “in these choices of basic objects and their relation lie the

basis of separation of subcultures and the robust power that that division

offers” (Galison, 2012, p. 20). Partiality of language is how Galison envisions

these various subcultures of security communicating, just as in physics. The

sense in which security needs a common language is that it need various

trading zones in which security researchers can communicate. The idea is em-

phatically not to wait for a single common language to emerge with which all

then speak unambiguously. It is not that such a goal may be slow or arduous

to achieve; more importantly, it fundamentally undermines the robust power

that division in specialities offers.

In biology, Mitchell (2003) has argued against reductionism for what she

calls integrative pluralism. For Mitchell, the units of science here are theories,

understood as idealized models of various phenomena. There are many models,

hence ‘pluralism,’ and models are neither totally isolated from each other nor

usually reducible so that one supplants another (Mitchell, 2003, p.192). Since

each model comes with its own terms and specific usage of terms, if anyone

could produce a common language that would be tantamount to unifying

all our theories within security. Integrative pluralism, as a model of biology

at least, indicates this unification of terminology is not possible except in

localized, purpose-built contexts – that is, trading zones.

The most convincing analogue for defining a field of science of cybersecurity

is the mosaic unity of neuroscience (Craver, 2007). The subfields making up

neuroscience collaborate by adding constraints, based on their own individual

methods and viewpoints, on mechanistic explanations. Like the stones in a

mosaic, each subfield has its own unique structure and identity, but if one

steps back each stone contributes to a bigger picture.

Security has a similar arrangement of diverse fields contributing constraints

on explanations. Economics constrains explanations of what users can be

asked to do based on how they spend their money in situations of inform-

ation asymmetry. Usable security constrains explanations of what users can

be asked to do based on how they spend their attention. Craver is more

helpful than Mitchell for security in that, for Craver, the explanations are

3.4 practicing science of security 131

mechanistic explanations, and that structure allows him to elaborate on how

the subfields are interrelated and provide constraints. Different fields work

on different parts of a mechanism or on a different level of a mechanism.

There are a plurality of mechanisms, which are idealizations as theories are

for Mitchell, and mechanisms are integrated via levels of explanation. I will

return to Craver’s concepts in Chapter 4.

These three related conceptions of communication and explanation in sci-

ence all go against the need for a common language. All three also support

the importance of clarity of expression. If context is important, because there

are a plurality of theories and contexts, it is vital for researchers to make

their assumptions clear and use terms consistently. Pluralism is not an ex-

cuse for sloppiness of explanation. If anything, it militates for the importance

of thorough, careful explanation. Perhaps the push for the importance of a

common language in security is actually a push for clarity of expression. Cer-

tainly, methodology sections are vital. Maxion (2015), for example, has argued

strongly for structure and clarity as an aid to good science. However, structure

and clear expression are a separate problem that should not be conflated with

the idea of creating a common language before science can commence.

3.4.5 Engineering or Science?

claim: security is ‘just’ engineering One might ask, if

the goal is to produce reliable systems, why discuss science at all? Producing

systems to a certain standard of usefulness is engineering. While engineer-

ing certainly leverages scientific knowledge, it also uses other kinds of know-

ledge (Vincenti, 1990, p. 229). Indeed, the government call for a science of

security looks similar to Anderson’s description of security engineering:

“Security engineering is about building systems to remain depend-

able in the face of malice, error, or mischance. As a discipline, it

focuses on the tools, processes, and methods needed to design,

implement, and test complete systems, and to adapt existing sys-

tems as their environment evolves” (Anderson, 2008, p. 3).

“[Security engineers] need to be able to put risks and threats in

[context], make realistic assessments of what might go wrong, and

give our clients good advice. That depends on a wide understand-

ing of what has gone wrong over time with various systems; what

132 literature review – science and security

sort of attacks have worked, what their consequences were, and

how they were stopped (if it was worthwhile to do so)” (Anderson,

2008, p. 5).

I resist both the assertion that there is no science to be done in cybersecurity

as well as the pejorative connotation of placing engineering somehow below

science. Sciences that study technology or human artefacts do have their own

nuances and distinct concerns (Meijers, 2009), but this is no reason to collapse

security entirely under engineering any more than it would make sense to

collapse medicine entirely under engineering just because it is not pure biology.

Models, mathematical or conceptual, are a key way science is transmitted

to engineering practice. Chapter 6 will explore the extent to which engineer-

ing, logico-mathematical, and mechanistic models overlap in computer science.

Explaining an incident likely considers a model of the computer system and

explores what sequence of events, as represented in that model, led to a cer-

tain observed outcome, as represented in that model. But in order to fix the

impacted system, the model and explanation need to be transmittable to and

usable by the security engineers. Chapters 4 and 5 will contribute to how to

make conceptual models more clear, transmittable, and usable. Chapter 7 will

contribute to a logico-mathematical model of CSIR. Thus, in many ways, this

thesis is centred around enabling multiple modes of communication between

scientific explanation and security engineering – arranged around the under-

standing in the following ‘alternative’ that there are no sharp dividing lines

between these disciplines.

alternative: science, engineering, and forensics

Efforts have been made to draw boundaries and classify the relationship

between engineering and science. In the two extreme viewpoints, Simon

(1996) tries to subsume engineering under science as a science of design, and

Koen (2003) tries to subsume science under engineering as a special case of

heuristic problem solving. There are also more nuanced views. Engineering

as usually practised generates understanding and depends, in part, on sci-

ence (Vincenti, 1990). At the same time science as usually practised generates

artefacts and depends, in part, on engineering (Dear, 2006). Therefore, it

seems unjustified to place science over engineering or vice versa. If people are

going to engineer secure systems, in the sense of Anderson (2008), we will

need a science of cybersecurity to extract and generalize the knowledge with

which to build. Both building artefacts and extracting knowledge have their

3.5 a science of security very much exists 133

own challenges, making it sensible to distinguish the tasks. Security should

continue the traditional, close interplay between science and engineering.

Dear (2006) exposes a duality within science: between natural philosophy

and instrumentality as twin, mutually indispensable, explanatory strategies

for making nature intelligible. This duality blurs a divide between science and

engineering. A more detailed exposition of the relationship between science,

engineering, and forensics is left as future work. But as an example, I am sym-

pathetic to Leonelli’s conception of scientific understanding, which embraces

this blurred duality between science and engineering:

“Understanding can only be qualified as ‘scientific’ when obtained

through the skilful and consistent use of tools, instruments, meth-

ods, theories and/or models: these are the means through which

researchers can effectively understand a phenomenon as well as

communicate their understanding to others” (Leonelli, 2009).

Clearly science, forensics, and engineering interact tightly. When systems

break, practitioners conduct forensics to learn why and how. They then em-

ploy science to update knowledge, improve models, or document edge-cases

based on this why and how. Adequate updates may include further, purpose-

designed structured observations. Practitioners then employ engineering to

adapt this new knowledge to build a better system, less likely to break. Thus,

a feedback loop from engineering to forensics and science back to engineering

which contains no sharp distinction between a science of cybersecurity and

security engineering. This thesis will focus on the scientific enterprise,where

science is understood as generalized-knowledge, evidence-based, explanation-

generation activities.

3.5 a science of security very much exists

My argument has been that security is, as practised, a science with its own

unique challenges. This statement contrasts with the surveyed views, which

posit that whatever makes security hard also makes it a qualitatively differ-

ent sort of enterprise than science. These detractors often accidentally over-

emphasize some scientific field in conceiving science generally. Of course secur-

ity is not particle physics, nor molecular biology. This conception of science

is too narrow. This overly-narrow view can, in many cases, be traced back to

outdated views related to logical empiricism.

134 literature review – science and security

The common complaints against a science of security are: experiments are

impossible, reproducibility is impossible, there are no laws of nature, there

is no common ontology of terms, and it is ‘just’ engineering. I forwarded

alternative perspectives on all these complaints that already accommodate

security: structured observations of the empirical world, multiple methods for

evaluating evidence, mechanistic explanation of phenomena, specialization ne-

cessitates scientific translation, and the interplay between science, engineering,

and forensics.

Cybersecurity suffers from the same sorts of challenges as other sciences. It

is not qualitatively different. However, different fields of science are defined,

largely, by the characteristic challenges of their subject matter and how those

challenges are approached. Cybersecurity must learn from challenges common

with other sciences while at the same time pushing forward with novel solu-

tions to those challenges and approaches unique to cybersecurity. Where this

chapter suggested existing solutions to challenges shared with other sciences,

Chapter 4 will attempt to overcome some challenges specific to security.

Also like other sciences, a science of security faces important social ques-

tions. Three possible directions are the gap between research and practice; the

customers or recipients of knowledge produced by a science of security; and

how the secretive nature its practice alters the science being done. Dykstra

(2015) and Metcalf and Casey (2016) attempt to narrow the knowledge gap

between practitioners and scientists; but the nature and social function of the

gap should also be studied. Some customers are policy makers; future work

would likely build on Jasanoff (1990). Perhaps some knowledge customers are

practitioners, but as Vincenti (1990) argues, academia also receives knowledge

from practitioners. Systemic secrecy has caused different scientific practice in

the case of biological weapons development (Balmer, 2013); something related

may happen in cybersecurity. An example question is how students with a

classified PhD thesis might differ from those with a publicly published thesis.

It is less important to quibble over whether cybersecurity is a science than it

is to lay out a satisfactory decision-making process for studying cybersecurity.

It is certainly the case that cybersecurity has moved to the forefront of societal

concerns. I seek to move past the debate over science or non-science. A better

concern is to identify robust decision-making and evidence-gathering tools

that enable satisfactory results within a topic of crucial social importance.

I view challenges in security as challenges to building generalized, shareable

knowledge. In many cases, the science of cybersecurity community has hinted

3.6 research plan 135

at this conception of the challenge. Generalization is woven through the dis-

cussions of the difficulty of confirming observations, designing experiments,

and developing a common language. Generalization is implicit in the discus-

sion of laws because, traditionally, laws are a formal vehicle for expressing

generalizations. These descriptions may accurately identify that generaliza-

tion is hard in a science of cybersecurity, but the diagnosis of the cause of

this challenge misses the mark, as Section 3.4 demonstrated. This concep-

tion of generalization as the core problem of a science of cybersecurity works

with my tentative framework of engineering-science-forensics. Engineering and

forensics are about applying knowledge or discovering particulars, whereas sci-

ence is the aspect of security concerned with abstracting knowledge. Justified

generalization is also the key to accurate prediction.

A community can tackle the problem of building general, shareable know-

ledge better if the problem is seen clearly for what it is: a problem shared

by all sciences, with particular strategies more or less transferable between

fields depending on the details of what a field studies. Part of the solution is

to integrate other fields into security, as advocated by security practitioners

such as Shostack and Stewart (2008). But simply bringing in new perspectives

is not enough. Morgan (2014) argues that generalization, which she handles

under the umbrella of resituating knowledge, is hard because knowledge is al-

ways produced locally. Knowledge transfers must be painstakingly warranted.

3.6 research plan

Chapter 2 identified “how to satisfactorily make clear and explicit the reason-

ing process used by individual CSIR analysts” as the research question. Given

the state of the art in the science of/for security literature, I propose the

following research plan. In order to improve CSIR analysis I need to know

what knowledge ought to look like and what reasoning ought to look like. At

present, there is not a satisfying answer that is applicable to CSIR. The main

task of the thesis will be to build credible accounts of knowledge and reasoning

applicable to CSIR (which may apply in security more generally). Throughout,

I will accompany this construction task with examples and demonstrations of

cases where the construction is an aid to good knowledge creation or reasoning.

These research tasks will be localised in the following chapters. Chapter 4

will build an account the structure of general knowledge in security and some

examples of building it successfully. Chapter 7 will build a logico-mathematical

136 literature review – science and security

model for reasoning in incident analysis. Chapter 5 will work through several

examples of incident analysis to both demonstrate the use of my account of the

structure of knowledge as well as gather case studies of reasoning in CSIR to

inform the logic definition. To further inform my logic specification, Chapter 6

will investigate how heuristic and hypothetical reasoning has been formalised

in program verification and what features of a logic make it more likely to

succeed at scale.

Part II

G E N E R A L I S I N G , A P P LY I N G , A N D

FO R M A L I S I N G K N OW L E D G E

The goal of the next part, in three chapters, is to elucidate

qualitative processes for incident analysis as well as under-

stand the design goals and constraints for a logic to describe

incident analysis. Chapter 4 reviews the present understand-

ing of generalised knowledge in philosophy of science and

takes three case studies of building such knowledge at dif-

ferent scales in cybersecurity. The result will allow a struc-

tured account of what to look for when building general

knowledge. This structure provides various heuristic hooks

for hypothesis generation, filling in gaps, and noticing errors

that will be useful both to the current incident analyst and

to logic design. Chapter 5 will apply this structured know-

ledge to some case studies of incident analysis to show how

general knowledge is improved and used. These case studies

also elicit some components and content that any incident

analysis logic is going to need to be able to incorporate.

Chapter 6 is an historical analysis of a logical system used

in program verification – Separation Logic. This chapter

will draw out the technical design and formal requirements

that make a logic usable for reasoning at scale, and the

way hypothesis generation heuristics can be incorporated in

such formalizations. These technical features are what I will

adapt to work with the incident analysis content identified

in prior chapters.

4
GENERAL KNOWLEDGE OF MECHANISMS 1

Scientists from many disciplines explain phenomena mechanistically. Different

accounts of mechanistic explanation have been offered in the philosophy of

science literature, leading to the emergence of something like a core consensus

view referred to as ‘minimal mechanism’ in Glennan and Illari (2017): “A

mechanism for a phenomenon consists of entities (or parts) whose activities

and interactions are organized so as to be responsible for the phenomenon.”2

Within philosophy of science the mechanisms literature actually exists as

two largely parallel literatures, one studying mechanistic explanation in the

life sciences, broadly construed (Bechtel and Richardson, 1993; Glennan, 2005;

Machamer et al., 2000), while the other studies the social sciences (Elster,

1983; Kincaid, 2011; Steel, 2008). This chapter will begin to explore how to

extend this interesting work to a major branch of science that has been largely

neglected by the mechanisms literature: computer science.3

There are some exceptions to this general neglect. Such papers as Piccinini

(2007) examine what it means for a process or mechanism to be characterized

as a computation, Floridi et al. (2015) consider the notion of malfunction

of a computation, and Angius and Tamburrini (2017) discuss explanation

of the behaviour of computing systems. The impact of information security

practices on discovery in medicine is discussed by Tempini and Leonelli (2018),

but the focus is data curation in medicine. Galison (2012) has broadly stated

1 This chapter is based on joint work, the paper: Jonathan M Spring and Phyllis Illari

(2018a). ‘Building General Knowledge of Mechanisms in Information Security’. In:

Philosophy & Technology. doi: 10.1007/s13347-018-0329-z.
2 Compare Craver (2007), Glennan (2017) and Illari and Williamson (2012).

3 There has been a heated debate on the status of computer science as a science,

in addition to the debate over status of security documented by Chapter 3. Tedre

(2011) concludes in his survey of the discussion of the disciplinary status of com-

puting by stating “there is nothing wrong either in considering computing to be a

science, or considering it to be something else. Each of those arguments just assumes

a specific viewpoint about both science and computing” (p. 382). Similarly, Tedre

and Moisseinen (2014, p. 8) argue from their survey on experimentation in comput-

ing that philosophy of science should attempt to understand computing in its own

right, rather than inflict idealized views of scientific methods from other fields on

computing. Chapter 3 argued specifically that cybersecurity is a science. In moving

forward, this thesis will follow the conclusions of these surveys and treat computer

science, and cybersecurity in particular as a sub-field, as scientific disciplines from

which philosophy of science can draw and apply lessons.

139

https://doi.org/10.1007/s13347-018-0329-z

140 general knowledge of mechanisms

knowledge in “Manichaean Sciences” such as cybersecurity should be local

and intercalated, and result from trading zones. Quite different from these,

the focus here will be how computer scientists build more general mechanistic

knowledge.

4.1 introduction

For concreteness, I restrict the work on mechanisms to examples from cy-

bersecurity,4 which is the subdiscipline of computer science concerned with

the “measures that implement and assure security services in information sys-

tems, including in computer systems and in communication systems” (Shirey,

2007).5 This scope is, as in Chapter 3, broader than Computer Security Incid-

ent Response (CSIR). One case study will be a CSIR example, so I am confident

that demonstrating how general knowledge can be built in cybersecurity also

demonstrates how it can be built in CSIR. Furthermore, the knowledge that

an incident analyst must apply may well be broader cybersecurity knowledge

about system or adversary operations, so a broader account of general know-

ledge in cybersecurity is needed to support human decision-making in CSIR.

This chapter demonstrates how general knowledge is built using three case

studies, which are interrelated in interesting ways. Three cases cannot illus-

trate how knowledge is built in all of cybersecurity, much less all of computer

science. Indeed, there may be different ways of building more general know-

ledge, and there may be cases which are too difficult to build anything very

general. Nevertheless, there are three contributions to the philosophical liter-

ature. These are cases where general knowledge is built via methods wildly

different from the majority of cases studied to establish previous philosoph-

ical theories of knowledge. Therefore, the well-studied philosophical methods

Chapter 3 identified as often useful do not appear to be adequate in these cases.

In this philosophically unstudied domain, knowledge can be built in a way that

is not well accounted for in existing philosophical approaches to knowledge.

4 Recall that my use of cybersecurity emphasizes that human users and the physical

world are part of the socio-technical system under study, alongside computers or

cyberspace. This definition is given in Chapter 1, and is a superset of the RFC 4949

definition of information security (Shirey, 2007).

5 Example services are confidentiality, integrity, and availability. Information security

works entirely in the space between confidentiality and integrity on the one hand

and availability on the other. One common quip is that the best confidentiality and

integrity protection for your computer is to turn it off, unplug all the wires, encase

it in concrete, and drop it to the bottom of the ocean. Availability is the necessary

counterbalance.

4.1 introduction 141

Further, the mechanisms literature provides positive insights into how general

knowledge is built in these difficult cases. Whether the mechanisms approach

will generalise to further cases in computing is an area for future work.

Cybersecurity faces a novel constellation of challenges that make it partic-

ularly worth philosophical study. I select three interlocking challenges with

significant impact on both research and methodology. First, the immediate

object of study, namely software, can change behaviour during observations

or between them; second, practitioners face active adversaries that respond

to, and try to confound, observations; and, third, secrecy even among friendly

practitioners is common because successful strategies need to be hidden from

attackers, and participants need to protect their other interests.6

Computer science has a theoretical basis, and the logical basis of computers

and computation may suggest that there should be a logical, a priori answer

as to what a program does and whether that behaviour is secure. However,

this is true neither in principle nor in practice. Turing (1936) famously proved

that it is in principle not possible to calculate a priori whether a computer

program will halt.7 If one cannot determine if a program will halt, then one

cannot determine how many resources it will use, and therefore how many

resources to allocate to it. There are many exhaustible resources, including

RAM, processor cycles, disk space, processor thread identifiers, and file system

identifiers. If a computer runs out of a resource, at best it stops responding to

new requests. At worst, a computer may run out of the resources to remain

stable and crash in a way that makes it vulnerable to adversary attacks.

For extremely small systems, in-practice heuristics and cautious overestim-

ation can overcome this principled hurdle. However, any computer system

actually in use has a complex supply chain for both hardware and software

that cannot be considered a small system. Furthermore, security in-practice

is a risk assessment: balancing costs and benefits, and balancing availability

with confidentiality and integrity. Appetite for risk impacts productivity and

profits; there is no uniquely correct answer to how much risk is the correct

6 This list is not exhaustive. Pfleeger and Cunningham (2010) list nine challenges

to measurement in security. Additional challenges I will not discuss include the

practical difficulty of detecting rare events while suppressing alarm errors (Axelsson,

2000), economic incentives that work against secure systems (Anderson, 2001), and

navigating a changing international legal landscape.

7 This famous “halting problem” is closely related to Church’s Thesis on what math-

ematical functions are calculable and to Gödel’s incompleteness theorem (Boolos

et al., 2002). There is also a subfield of computing, complexity theory, dedicated to

determining equivalence classes of how difficult a computable result is to derive in

practice.

142 general knowledge of mechanisms

amount. The goal of cybersecurity is merely to find a satisfactory level of risk

(of failure), both in a defensive posture and in the design of observations or

experiments to detect adversaries.

Instead of building scientific theories, cybersecurity practitioners model

modes of attack and of defence in ways that can usefully be thought of as

modelling mechanisms of attack and of defence.8 Chapter 3 cleared away the

idea that general knowledge is built in the form of laws of nature. Further,

building general knowledge in domains of this kind does not come by deriv-

ation from theory, as will gradually become clear in Sections 4.2 and 4.3.

Cybersecurity practice is the basis for my account of building knowledge, in

accord with the Philosophy of Science in Practice approach (SPSP, 2017),

rather than attempting to focus exclusively on theories, as has been more

common in the history of philosophy of science. Indeed, rather than assuming

general knowledge is there to find, a focal point is how difficult it is to build.

This chapter’s argument is organized in three parts. Section 4.2 briefly

examines how the challenge of gaining general knowledge has been treated

in philosophy of science. Section 4.3 explains the practice of building what

I treat as knowledge of mechanisms in cybersecurity. Section 4.3.1 begins by

developing the three major challenges of cybersecurity mentioned above. Then

Section 4.3.2 will initiate detailed casework with three examples. The first is

the ‘intrusion kill chain’ (Hutchins et al., 2011), one de facto standard model

(per Chapter 2) of the categories of steps an adversary must take in order

to penetrate and control a system. Second, at one level below the kill chain,

practitioners analyse the malicious software (or malware) that accomplishes a

particular step in the chain. This task is called ‘malware reverse engineering’.

Third, at one level up from the intrusion kill chain mechanism, the example

is the model of the UK National Crime Agency (NCA) about the mechanism

of money theft and laundering by the internet criminal ecosystem (Addis and

Garrick, 2014). These three examples of discovery show how cybersecurity

work in these areas can broadly be thought of as the discovery and modelling

of three interrelated mechanisms.

8 Note that this chapter will not address metaphysical issues at all; instead, see Il-

lari and Williamson (2013). Epistemology is the primary concern. The following

chapters will, however, write about both mechanisms and models of mechanisms.

There are some debates that might suggest this is controversial, particularly the

ontic-epistemic debate; for example, see Illari (2013). This chapter aims to be in

accord with the views even of the most ontic of major mechanists, in particular

Craver (2006) and Glennan (2017), who, in discussing modelling extensively, both

recognise the epistemic aspects of mechanism discovery far more than is usually

recognised in discussions of their work.

4.2 generality in philosophy of science 143

The third part of the argument is located in Section 4.4, which uses this

casework to show how fragmented work can still be seen as building, in a

patchwork way, considerably more general knowledge despite the three cy-

bersecurity challenges. Section 4.5 summarizes the positive impacts of under-

standing general knowledge as built up by discovering and modelling clusters

of multifield mechanism schemas related along four dimensions.

4.2 generality in philosophy of science

Approaches to general knowledge in the history of philosophy of science were

for a long time focused on scientific theory and laws. Section 4.2.1 examines

that history, building on the argument from Chapter 3 that cybersecurity

should follow lessons from the more recent philosophy of the life and social

sciences. To develop this recommended path, Section 4.2.2 extracts from the

philosophical mechanisms literature a coherent thread of how mechanism dis-

covery builds general knowledge in the life sciences.

Note that this chapter will not directly address philosophical views of know-

ledge and generality, instead studying how the focus of such work has moved

away from laws and theories as primary scientific knowledge, and this carries

with it changes in how scientific knowledge is and should be seen. Given Rad-

der’s survey of the ways in which a justified true belief account of knowledge

is not fitting for scientific knowledge, I take a broadly pragmatist approach to

knowledge and understanding, current proponents of which include (Leonelli,

2009; Radder, 2017).

4.2.1 Turning away from laws

There has been a long-standing philosophical interest in understanding what

unified or general knowledge is, and how to build it. Unity of knowledge was

traditionally understood in terms of unifying theory, driven by important the-

oretical unifications in science. An important example attempt at describing

general knowledge in this way was logical laws in the logical empiricist tra-

dition introduced in Chapter 3. A representative description of unification is

given by Bogen and Woodward (1988, p. 325), when it was already being

criticised:

144 general knowledge of mechanisms

‘A characteristic kind of advance in scientific understanding oc-

curs when one sees how what previously seemed to be a number

of independent, unrelated facts can be accounted for in terms of a

small set of common mechanisms or laws. Nineteenth-century op-

tical theories represented an important explanatory achievement

because they provided a unified, systematic account of a wide

range of optical phenomena involving reflection, refraction, dif-

fraction, stellar aberration, and polarization in terms of a few ba-

sic assumptions regarding the transverse wave character of light.

Similarly, Maxwell’s theory provided a unified treatment of an

apparently diverse set of electromagnetic phenomena.’

Bogen and Woodward (1988) already give one influential argument for the

view that focusing exclusively on theory and laws was not adequate. With the

growth of philosophy of life sciences, this questioning accelerated. Philosophers

noticed that general knowledge in the life sciences cannot be understood in this

way. There are relatively few unifying theories in the life sciences, and very few

laws in the traditional sense. One possible exception is evolutionary theory and

its various mathematical expressions, but even this, on its own, is not going

to be adequate to capture everything that is known. Many philosophers of life

sciences rejected a philosophy of science based on traditional laws, following

Cartwright (1983), recognising the plurality and diversity of the life sciences

that makes laws rare (Dupré, 2012; Mitchell, 2003).9

Cybersecurity seems to face a similar problem to the life sciences in under-

standing what counts as general knowledge and how to build it. This challenge

has likewise manifested as a kind of wrestling with the problem of laws. Recall

from Chapter 3 the following question from the DoD.

Are there “laws of nature” in cyberspace that can form the basis

of scientific inquiry in the field of cyber security? Are there math-

ematical abstractions or theoretical constructs that should be

considered?

Which was answered with:

There are no intrinsic “laws of nature” for cyber-security as there

are, for example, in physics, chemistry or biology. Cyber-security

9 Some philosophers sought to re-characterise laws to be friendlier to the life sciences,

such as Mitchell’s pragmatic laws (Mitchell, 1997), or Woodward’s invariant general-

isations (Woodward, 2003). As this chapter’s focus is mechanisms, I do not discuss

these.

4.2 generality in philosophy of science 145

is essentially an applied science that is informed by the mathem-

atical constructs of computer science such as theory of automata,

complexity, and mathematical logic (MITRE, 2010, p. 4).

So it seems there are parallel problems of understanding general knowledge

in the life sciences and in cybersecurity. This similarity means work on the

life sciences may well help address cybersecurity challenges. In philosophy of

life sciences, attention has turned away from laws, to the search for mechan-

isms. However, the initial focus of the mechanisms literature was to give an

account of scientific explanation without using laws, which means there has

not been a lot of work directly on the question of building general knowledge

by discovering mechanisms. There has been work on singular versus general

mechanisms (Glennan, 1997, 2011), on how people should think about really

fragile mechanisms (Glennan, 2010) and on regularity (Andersen, 2017), but

comparatively little on how general knowledge is built, analogous to the idea of

theory-building. This focus means that, in philosophy of science, and in spite

of the turn away from laws in philosophy of life sciences, current efforts to

understand unification or generality are still largely dependent on this history

of focusing on laws or arguments, developing the traditional Hempelian frame-

work (Friedman, 1974; Hempel, 1965; Kitcher, 1981). These developments also

inform normative constraints for what CSIR analysts should seek when they

seek to know about an incident. Therefore, an alternative account of general

knowledge is needed.

4.2.2 Generality and mechanisms

This chapter focuses on how general knowledge can be built in cybersecurity

using the philosophical mechanisms literature. However, the philosophical lit-

erature does not have an account of building general mechanistic knowledge

ready to hand. This section will build such an account. The main goal is to

help build knowledge in cybersecurity; however, I expect future work should

show this account is broadly applicable across sciences.

This section will weave together Darden’s work on clusters of mechanism

schemas, Craver’s discussion of the way multifield mechanisms can form what

he calls a ‘mosaic unity’, and Glennan’s very recent work on the dimensions of

variation of mechanisms. This section will show that threads can be pulled out

of this work and can be woven into a picture of general mechanistic knowledge

146 general knowledge of mechanisms

being painstakingly built as some mechanisms become well known, alongside

related ones, while various interesting relationships among those mechanisms

gradually become better established. The picture that emerges is rather than

generality being something given with laws or theory, it is something painstak-

ingly built up in the mechanism discovery process. In line with this, generality

is something much less than universal, which was the original assumption

which went hand-in-hand with the study of supposedly universal laws. Gener-

ality turns out to be hard to find, and highly valued when found.

Lindley Darden (2006) suggests that if there is such a thing as biological

theory, it consists of clusters of mechanism schemas. Mechanism schemas are,

in crude terms, abstractly specified mechanisms, lacking concrete detail. Mech-

anism schemas apply to far more things than concretely specified mechanisms,

which always include detail that is particular to specific situations.10

For example, protein synthesis can be described at an extremely abstract

level as the process by which genetic material is used by living things to

create the proteins essential for life. This is often understood as involving two

paradigm mechanism schemas: one for cells with a nucleus and one for cells

without, each transcribing DNA to mRNA, which then moves to ribosomes to

translate the mRNA code into amino acid chains. These are slightly different

schemas, but each schema applies to many different kinds of cells, so each

captures something quite general about protein synthesis. Together, know-

ledge of both schemas captures something even more general about protein

synthesis—which includes the divergence between eukaryotes and prokaryotes.

Going further, one more fact about protein synthesis is that lots of organisms

use non-standard methods. One important example is protein synthesis as

performed by HIV. HIV holds its genetic material as RNA, which it reverse

transcribes into DNA, inserting that DNA into the genome of its host cell,

to borrow the protein synthesis apparatus of the cell. But what was first

discovered for a particular virus is now understood as a standard retroviral

protein synthesis mechanism schema. So, one can put this schema alongside

eukaryotic and prokaryotic schemas to understand something even more gen-

eral about protein synthesis.

In this way, Darden’s suggestion is that general knowledge in biology is

built by clustering related mechanism schemas in this way, where the example

has two paradigm cases, closely related and covering many different kinds of

10 See Glennan’s work on ephemeral mechanisms for an account of one-off mechanisms,

i.e. historical mechanisms that may occur only once (Glennan, 2010).

4.2 generality in philosophy of science 147

cells. Additionally, there are many non-paradigm cases, like retroviral protein

synthesis, and probably many more quirky and particular cases to discover.

The cluster cannot be reduced to a laws-description, nor can the local quirks

be collapsed into an overall schema. Biochemistry students build knowledge

by learning about the paradigm cases – and about the quirky cases. In spite of

such variation, the collection of these schemas yields what general knowledge

is actually available concerning protein synthesis. It is at least clear that un-

derstanding the cluster gives scientists something far more general than they

gain from understanding the protein synthesis of one particular cell, or even

one paradigm mechanism schema. So Darden’s suggestion seems to offer an

insightful beginning to an account of generality in mechanistic knowledge.

The second element of the account of general knowledge is the work of

Carl Craver (2007) on what he calls “mosaic unity”, which develops both

his joint work with Darden, and her early work such as Darden and Maull

(1977).11 The traditional view of theory unification, summarised above, ten-

ded to assume that unified theories would be restricted to a single domain,

and until relatively recently the dominant domain examined was physics. I

explained Darden’s suggestion above with reference to the life sciences as she

studied them extensively, but restricted the discussion to the single domain of

biochemistry. However, Craver notes that scientists increasingly collaborate

across domains to explain phenomena, discovering what he calls “multifield

mechanisms” (Craver, 2007). He is interested in how work based in different

scientific fields is integrated. Craver studies the integration of various sciences

of the mind and brain, which offers excellent exemplars of what he has in mind.

I am interested in his insights into how unity can be made that crosses scientific

fields, rather than his more particular studies of neuroscience. Nevertheless,

his choice of case is best explained in his own summary of an influential 1973

paper:

‘[Bliss, Gardner-Medwin, and Lømo’s] introduction is an exten-

ded argument for the relevance of LTP [Long-Term Potentiation]

to learning and memory. Their argument, not coincidentally, ap-

peals to results from multiple fields. They appeal to experimental

psychologists’ ablation studies ..., biochemists’ assays of the mo-

11 This part of Craver’s influential book is not much discussed, although the fact that

the idea of mosaic unity is the topic of the final chapter, and appears in the book’s

title, suggests that Craver considered it very important, at least in 2007. Note that

while Craver creates his account by studying neuroscience, the relevant item is his

theoretical results, the account of mosaic unity.

148 general knowledge of mechanisms

lecular constituents of the hippocampus ..., physiologists’ EEG

recordings during memory tasks ..., psychiatrists’ evaluations of

patients with brain damage ..., electrophysiologists’ theoretical

considerations ..., and computer scientists’ models Results

from these different fields constrain the possibilities for situat-

ing LTP within a multilevel mechanism.’ (Craver, 2007, p. 243,

citations deleted).

I will assume, in accordance with minimal mechanism, that mechanisms

are typically hierarchical in this kind of sense. The relevant interrelationships

among the three cybersecurity cases will become a clear example of it in Sec-

tion 4.3 and Section 4.4, showing a similar significant heterogeneity in relevant

kinds of evidence. Craver argues that scientists’ understanding of memory has

advanced, not by reducing psychological phenomena to neuroscientific law, but

by understanding the relationships between many entities, activities and their

organisation, drawing on all the disciplines listed above.

Craver suggests that one can understand this integration as multiple fields

all exploring a space of all the mechanisms that could possibly explain the

phenomenon of memory. Scientists never explore that whole vast space. In-

stead, knowledge from different fields suggests “plausible” mechanisms. The

discovery of new entities and activities, and forms of organisation, can make

some parts of that space implausible, or open up new areas as plausible: ‘A

constraint is a finding that either shapes the boundaries of the space of plaus-

ible mechanisms or changes the probability distribution over that space...’

(Craver, 2007, p. 247). Craver discusses many such constraints, but one of

the easiest illustrations comes from spatial and temporal constraints (which

Craver takes to operate both intra-level and inter-level). Time is important

for memory, as it was crucial that what was possible at the cellular level could

last long enough to be a plausible part of the mechanism for something that,

at the psychological level, could last a long time – human memory. In this

way, knowledge gained from multiple fields is slowly, carefully, integrated to

provide an understanding that crosses fields. Generality is a slow, and often

painful, achievement.

This allies very naturally with Darden’s work. Memory is not a unified

phenomenon (Bechtel, 2007), and one should think instead of a cluster of

multifield mechanisms of memory – using Darden’s terms alongside Craver’s.

Cybersecurity similarly crosses levels, from the sociotechnical system mapped

by the NCA, to the very technical areas of malware analysis, and can draw

4.2 generality in philosophy of science 149

on knowledge from multiple disciplines, techniques and technologies, so that

beginning from the combination of Craver’s and Darden’s work should be

useful to apply to cybersecurity.

Very recent work by Stuart Glennan suggests further insights that can be

interwoven with those of Darden and Craver. His current view accords well

with the view here so far. He writes: ‘But scientific fields are not islands. For

one thing, they are integrated by what Darden and Maull (1977) once called

interfield theories. This integration does not come via a grand theoretical

reduction, but rather by exploring localized relations of mechanism depend-

ence, where entities or activities assumed in one field are located, filled in and

explained in other fields ...’ (Glennan, 2017, p. 143).

I will focus on drawing out some insights of Glennan’s very recent work

about kinds of mechanisms and ways of comparing them – his ‘taxonomy’

of mechanisms. He uses the account of “minimal mechanism” introduced in

Section 4.1 to build it. The heart of his view is simple: each of the parts of

the characterisation of mechanism direct scientists, somewhat independently,

to how mechanisms are more or less similar to each other. Three parts are ob-

vious: phenomenon, entities and activities, and organization.12 Glennan adds

a fourth, etiology, which is history, or how the mechanism comes about.13 He

writes first of entities and activities:

‘The picture I have given of mechanism kinds gives us some under-

standing about the nature of disciplinarity and of the extent and

limits of the unity of science. Scientific fields are largely defined

by what I have called material similarities—similarities in what

(material) kinds of phenomena they seek to explain, as well as

the set of entities, activities and interactions that they take to be

(potentially) responsible for these phenomena. ... Disciplines grow

around the material and theoretical resources, technologies, and

experimental techniques used to explore these phenomena and

the mechanisms responsible for them.’ (Glennan, 2017, p. 143)

Entities and activities are often the most striking similarities and differences

among mechanisms. Mechanisms that share common entities, like neurons, are

obviously similar in sharing neurons, and fields form around the sharing of

common technologies used to study those entities and their activities. This

12 The ideas of these as important dimension is already in the discussion of multifield

mechanisms in Craver, 2007, but Glennan develops this considerably.

13 This is related to a skeletal account in Illari and Williamson (2012), and is summar-

ised in Glennan and Illari (2017).

150 general knowledge of mechanisms

seems fairly obviously true, and indeed one way of thinking about the insight

Glennan offers is that phenomena, organization and etiology are also very

important to understanding and comparing mechanisms. Glennan offers an

account of these and argues that these dimensions of comparison are to an

important extent independent: for example, mechanisms for the same phe-

nomenon might include quite different activities and entities, and mechan-

isms with similar entities and activities might have quite different forms of

organisation.

Let us examine how Glennan’s point can illuminate the idea of clusters of

multifield mechanisms built from Darden and Craver’s work. Multifield mech-

anisms are painstakingly built up by scientists collaborating on understanding

a particular phenomenon, and, given that mechanisms are not unified, there

are likely to be multiple related mechanism schemas for a particular phe-

nomenon. Glennan’s work, then, illuminates four different places to look for

clustering among related mechanisms.

Of these four, relations between activities and entities in related mechan-

isms will be obvious. The shared technologies created to study them are likely

striking. The nature of the phenomenon, as this is often the initial focus of

work, is also likely striking. Forms of organization and etiology will be much

less obvious. But if Glennan is right, one should expect them to be present

and particularly important to cross-field mechanisms.

This section has woven together threads of insight from Darden, Craver

and Glennan into an initial picture of the building of general knowledge by

discovering clusters of related multifield mechanism schemas, that vary along

four dimensions: activities and entities, phenomena, organization, and etiology.

In this array of ideas, the mechanisms literature offers ways of thinking about

what counts as such general knowledge as it is possible to get, and where to

look for it within sciences which discover mechanisms. The following chapters

will apply these theoretical insights to cybersecurity. Section 4.3 begins this

application with a more detailed exploration of the challenges to building

general knowledge in cybersecurity, and how practitioners respond.

4.3 building mechanistic knowledge in cybersecurity

Building mechanistic knowledge in cybersecurity faces many challenges. Some

are similar to those addressed in the existing philosophical literature. I fo-

cus on three challenges that, while individually not unique to cybersecurity,

4.3 building mechanistic knowledge in cybersecurity 151

jointly produce distinctive difficulties in building general knowledge, making

this a fascinating domain for philosophers interested in general knowledge. Sec-

tion 4.3.2 explores three interrelated examples of active research problems in

cybersecurity that each demonstrate the triad of challenges that Section 4.3.1

establishes. Each example overcomes the triad of challenges differently, and

yet each can be illuminated by the picture of building mechanistic knowledge

provided by the philosophical literature.

4.3.1 The three challenges for cybersecurity

Any problem domain has its own quirks that give practitioners difficulty. In

experimental physics, building precise measurement devices to detect rare

events is a challenge. In virology, pathogens evolve and change year-to-year,

thwarting vaccines. In macroeconomics, one has to rely on natural, rather than

controlled, experiments and cope with the fact that many of one’s subjects are

people, who may read and respond to research results and policy announce-

ments. This section will introduce three aspects of cybersecurity that have

heavily shaped research design and methodology in the practice. While none

of these three aspects is unique to cybersecurity, each exacerbates the other

two. This subsection will provide a rough introduction to the cybersecurity

problem space and its problem-solving methods. This triad of challenges has

forced cybersecurity practitioners to refine their methods beyond what is ex-

pected in disciplines where each aspect or challenge arises alone. This triad

does not cover all the challenges in cybersecurity, but its combination provides

an instructive set of examples.

The three selected challenges in cybersecurity are: the immediate object

of study, namely software, can change behaviour during or between observa-

tions; active adversaries respond to, and try to confound, observations; and

there is often justified secrecy among friendly parties. The combination of

these aspects of cybersecurity pose notable methodological challenges. The

next section illuminates how they pose a challenge to the building of gen-

eral knowledge, by showing how some success has been achieved, using the

three examples of mechanism schemas drawn from active research problems

in cybersecurity.

152 general knowledge of mechanisms

changeable software: That software is changeable is a property

of computer science generally, not just security.14 Code is easily and often

changed by human software developers, and running programs may change

their own behaviour during execution (Thompson, 1984).

This challenge includes at least two closely related issues. First, the fact

that humans frequently adapt code – and can design, reuse and redesign code

to behave differently based on input parameters – will be relevant when dis-

cussing of malware. Second, the fact that software environments are complex,

such that code may behave differently in the presence of other code, combin-

ations of input values, or on certain hardware and not others. This second

issue is more relevant to studies of reliability, vulnerability detection, and

debugging and might be considered the dynamic nature of software, rather

than its changeability per se. However, malware authors tend to leverage the

ambiguity afforded by the dynamic nature of the software environment to

their advantage. The salient aspect in which software is changeable is that

argued by Hatleback and Spring (2014); not that the source code is editable,

but that the behaviour is both dynamic and responsive to the environment in

arbitrary ways. Both the arbitrariness and having-been-designed make study-

ing the dynamism of software a distinct challenge from dynamism in other

fields such as chemistry and biology. For this reason, I use ‘changeability’ to

capture both aspects simultaneously.

In computer science practice, one may want to verify that code as written

has certain properties or meets particular requirements. That software can

change dynamically during a test or experiment is one major challenge in this

endeavour. Different run-time results can be purposeful (for example, if today

is payday, then pay employees), accidental (if I trip on the network cable

while the program is talking to the bank, and disconnect it, it fails because

the environment changed), or stochastic (for example, the program generates

a random number to start from). One impact of these various changeabilities

is that a lot of effort in software development is put towards testing whether a

patch or update has re-broken an old fix of an old flaw. Such ‘regression testing’

only approximates the ideal of testing each change against each past fix over

each possible task the program might perform (Brooks Jr, 1995). In practice

14 For a review of formal semantics attempting to cope with changeability, see Winskel

(1993, p. 297ff). Difficulties related to the changeability of software figure prom-

inently in the historical development of the internet (Hafner and Lyon, 1998). To

account for such changeability during mechanism discovery in security, Hatleback

and Spring (2014) argue for heuristically dividing mechanisms into those that are

engineered and those that are physical or natural.

4.3 building mechanistic knowledge in cybersecurity 153

the software changes too much to test all those possibilities exhaustively, both

in that programmers make edits more quickly than are practical for tests and

in that potential software run-time deviations based on task and environment

are more numerous than are practical to test.

deceptive adversaries: The first challenge becomes particularly

pernicious when combined with the second challenge: active adversaries delib-

erately exploit the changeability of software, re-writing it to make it harder

for defenders to detect and repel. To be an adversary, something or someone

should be what is known in game theory as a bona fide player; that is it

must “(1) make choices and (2) receive payoffs” (Rapoport, 1966, p. 20). A

deceptive adversary takes actions in response to the cybersecurity researcher

to try to change the researcher’s conclusions.

Some methodological problems involving the target system altering during

study are already known in philosophy of science. For example, experimental

manipulations made on a target system alter the causal structure of the system

itself. Such experimental manipulations are known as ‘structure-altering inter-

ventions’ in the literature on Woodward’s interventionist theory. The problem

is discussed beyond this literature; Mitchell (2009, p. 67ff) applies this to gene

knockout experiments. These experiments aim to find out what the knocked-

out gene normally does, but face the methodological challenge that genes are

strongly interactive, and backup mechanisms exist for many essential cellular

processes. So if you knock out one gene, another set of genes often activates to

fulfil the task. This means practitioners need to find other ways to establish

the role of the knocked out gene.15 However, the following will demonstrate

that the combination of the problems of changeable software and deceptive

adversaries goes far beyond that of structure-altering interventions.

Other domains also study targets that in some sense actively resist. For

example, immunology faces adversaries in the pathogens they study. Patho-

gens may change in response to anti-biotics, for example. It would be hard to

argue the pathogens make choices, as adversaries do in cybersecurity. Even if

so, pathogens do not read the immunologist’s research papers and figure out

ways in which to subvert them, as adversaries do in cybersecurity. This is a

qualitative difference with noticeable impact on building general knowledge

in cybersecurity.

15 See extensive discussion by Steel (2008) and Cartwright, primarily with respect to

social sciences. As Cartwright (2012) points out, within economics this problem is

known as the ‘Lucas Critique,’ following Lucas Jr. (1976).

154 general knowledge of mechanisms

well motivated secrecy: The third challenge of the triad

pushes the overall problem further beyond challenges discussed with respect

to other domains. Cybersecurity practitioners must hide knowledge and

successful strategies from adversaries, and so cannot freely share knowledge,

strategies, and successes. Not only does this need for secrecy lead to repeated

work, but each cybersecurity practitioner is not in sole control of what know-

ledge or successes are leaked to the adversaries, who then use that knowledge

to instigate changes to their deception.

These three challenges are averred by practitioners, including Kaspersky,

an anti-virus and security-consulting firm. For example, on the challenges of

secrecy among friends and active adversaries, consider:

...we remain bound by corporate realities, respect for the research

methods of collaborators, and, most of all, legal constraints. As

such, we may not always be able to provide full disclosure of

indicators involved in certain findings. ...we feel these are not

vital to convey the main thrust of our argument, which is that

intermediate-to-advanced threat actors are aware of attribution

methods and are already attempting to manipulate researchers

to expend limited resources chasing ghost leads. Where gaps

arise, let us relegate these accounts to camp fire re-tellings among

friends. (Bartholomew and Guerrero-Saade, 2016, p. 3.)

They also discuss the need for, yet difficulty in, constructing general know-

ledge:

An often ignored facet of the [cybersecurity knowledge] produc-

tion cycle is the role of the analyst whose purpose is to coalesce

various sources of information, arrive at various conclusions, and

vet the overall logic of the finished product. Sadly, at this stage in

the rise of the threat intelligence industry, deficient hiring prac-

tices overemphasize specialized technical knowledge and eschew

generalist broad-thinking capabilities, often assuming technical

candidates will bring these in tow. This is seldom the case...

(Bartholomew and Guerrero-Saade, 2016, p. 9)

This challenge of secrecy goes along with changeability and deception to

create a particularly serious barrier to the building of general knowledge. Ul-

timately, if general knowledge is to help improve cybersecurity practice, then

4.3 building mechanistic knowledge in cybersecurity 155

it needs to be in a form that can be shared, as general knowledge is shared

in many scientific fields. The need for some kind of shareability that meets

these challenges becomes an integral part of the problem of building general

knowledge in cybersecurity.

One obvious way of sharing knowledge is to publish it in the standard aca-

demic, peer-reviewed venues. However, there is a spectrum of sharing between

telling no one and publication, and multiple options are important to cy-

bersecurity. The spectrum ranges from fully-formed government classification

networks with strict military-legal guidelines, to contractual non-disclosure

agreements among corporations, to informal networks among peer individuals.

Indeed, current attempts to reduce barriers imposed by secrecy predominantly

involve painstaking networking among professionals in the field to build per-

sonal relationships that support sharing. There is not much research into this

phenomenon, but Sundaramurthy et al. (2014) anthropologically documents a

case study of the difficulty of gaining trust among computer-security incident-

response staff.

Information sharing may self-organize or be mandated. Two examples of

self-organized or self-selected constituencies are the Anti-Phishing Working

Group and Shadowserver. An example of mandated sharing is the US Pres-

idential Decision Directive 63 which, in 1998, formed information sharing

and analysis centres for each of the national critical infrastructure sectors.

Game-theoretic analysis of information sharing suggests firms best voluntarily

share information in the implausible scenario of highly competitive markets

with firms both large and equally matched – and even then the results fall

short of what would “maximize social welfare” (Gal-Or and Ghose, 2005,

p. 200). Modern operational data agrees that sharing is disjointed and visib-

ility partial.16 Further, cybersecurity contains what economists call a market

for lemons, where a consumer cannot distinguish quality products from bad

ones (lemons), though the vendor has the information to make the distinction

(Anderson, 2001).17

16 Dozens of lists of malicious computer locations are broadly disjoint, even across wide

spans of time (Kührer et al., 2014; Metcalf and Spring, 2015). Limited sharing also

appears to perform worse than public sharing on website compromise recidivism

(Moore and Clayton, 2011).

17 For further reading see the long-running Workshop on the Economics of Informa-

tion Security (WEIS) or the Workshop on Information Sharing and Collaborative

Security (WISCS).

156 general knowledge of mechanisms

I will consider multiple possibilities for sharing beyond academic publica-

tion, but only the forms of sharing that are relatively wide. That is, what can

be shared beyond painstakingly built trusted private networks.

4.3.2 Three examples of cybersecurity mechanisms

This subsection will illustrate how practitioners approach these common chal-

lenges through three examples of active research problems in cybersecurity.

These three examples serve to justify and deepen the various assertions I have

made above about the nature of cybersecurity practice, particularly indicat-

ing the range of applications with which cybersecurity contends. The three

cases are (1) research to track and reduce the harm caused by the myriad

attacks that steal money; (2) the intrusion kill chain model of an individual

attack, which models the entities, activities, and their organization by which

an adversary initiates, executes, and makes use of an attack; and (3) tools

for reverse engineering a single piece of malicious software (malware), which

is a particularly important entity in many individual attacks. These three

examples form what is in some sense a hierarchy. In reverse order, malware

is almost always used in an attack, but it is only one part of the mechanism

modelled by the intrusion kill chain. Likewise, various attacks are used in the

mechanism of electronic crime (e-crime), but they are in turn only a part of

e-crime considered more broadly, from the perspective of national agencies. In

this way, the three examples are hierarchically related. Taken together, they

demonstrate the scope of cybersecurity, from social and economic systems

through the technical minutiae of how malicious software takes control of a

computer.

It will also become clear that cybersecurity practice does still manage to

achieve considerable success in spite of the three challenges, and this subsec-

tion will evidence how thinking of the building of general knowledge in the

field as the building of mechanism schemas – shareable ones – is a reasonable

and useful way of conceptualising the achievement. This prepares Section 4.4

to indicate how fruitful this conceptualisation could be for practitioners.

botnets—the nca’s banking trojan model: The first

example comes from the UK’s National Crime Agency (NCA)18 and their de-

18 Thanks to Stewart Garrick for this example and permission to use his diagram.

4.3 building mechanistic knowledge in cybersecurity 157

scription of how networks of compromised computers (botnets) are created,

monetized, and how the money obtained is laundered. The NCA may seem

an unlikely source for academic lessons on mechanism discovery. However,

cybersecurity concerns are endemic to all sectors of society, and much re-

search activity happens outside academia. Figure 4.1 displays the “banking

trojan business model” for internet criminals who steal money from consumer

banking accounts, as described by Addis and Garrick (2014).

Figure 4.1: Botnet theft and money laundering mechanism as described by
the NCA in Addis and Garrick (2014). Reprinted with permission.

This criminal business mechanism is complex. It starts in the top-center of

the diagram with the controlling coders, the software developers who create

the software necessary to manage a diverse infrastructure of loosely coordin-

ated compromised machines. This infrastructure is unreliable to the criminals,

because the machines’ owners may turn them off, move them, change their

network addresses, or notice and fix the malware infection. The NCA is not

concerned with individual computers in the network, but with the network

itself: that it is unreliable to the criminals changes how they behave and

what they build, and so what the NCA should look for. Like any other savvy

158 general knowledge of mechanisms

project manager, the criminals outsource various aspects of their business.

Grier et al. (2012) and Sood and Enbody (2013) survey these exploitation-as-

a-service and crimeware-as-a-service businesses. The various entities to which

services are outsourced are listed in the diagram, for example “traffic sellers,”

“malware servers,” and “proxy layers.” The NCA’s mechanism discovery has

decomposed the criminal’s task into these entities. A security expert would

also understand the activity localized to each entity. For example, traffic sellers

use various tricks such as compromising popular web sites and sending unso-

licited bulk email (spam) to direct potential victims to the controlling coders’

malware. These two activities produce malicious emails and websites, entities

represented underneath the “traffic sellers” entity. Similar things happen with

the other elements of the mechanism, leading counter-clockwise eventually to

the criminals receiving money.

In this way, the NCA mechanistic model conveys a great deal of information.

But on closer inspection, the NCA are also safeguarding against some of the

challenges of cybersecurity; specifically, the challenges of the changeability

of software and the presence of active adversaries who will respond to pub-

lished observations. The goal of understanding the mechanism of the criminals’

business is to interrupt that business, and this goal could be impeded by pub-

lishing too much. Given this, the mechanism description focuses on essential

functionalities. Although software is changeable, the internet’s basic rules of

operation do not change quickly. The Internet Engineering Task Force and

Internet Architecture Board oversee change proposals, and key services may

be updated only once a decade. The criminals must accomplish certain tasks

within this framework, because all their potential victims are on the internet.

Therefore it is relatively safe to publish to the criminals that the NCA knows

traffic is delivered via email, websites, and proxy layers. There may be myriad

ways to create software that performs these activities, but each activity itself

cannot be easily abandoned if the criminals still want to accomplish their goal.

When legal authorities plan to intervene on a criminal mechanism of this

kind, they must also respect the challenges of cybersecurity. In examining the

planning of successful interventions, one starts to feel the pressure of justified

secrecy among friendly parties. As one example, imagine that Internet Service

Providers (ISPs) detect indicators of compromise among their customers and

notify the banks to freeze the account if one of their mutual customer’s com-

puters is compromised, thus limiting theft. However, privacy laws generally

prevent ISPs from providing information about their customers’ traffic to any-

4.3 building mechanistic knowledge in cybersecurity 159

one, including banks. The ISP may not even be allowed to know the customer’s

bank. And where the victim’s traffic is encrypted the ISP may not be able to de-

tect when a customer is victimized at all. Encryption is mathematical secrecy

between two parties. Encryption is a highly recommended protection against,

among other things, criminals stealing your banking credentials during online

banking. But encryption works just as well for the criminal to hide their

attacks. If encryption is actually to provide privacy, intermediate parties like

ISPs must not be able to distinguish between any two encrypted items, even

if one is encrypted banking and the other encrypted attacks. So privacy, both

legal and technical (provided by encryption), limits the possible cybersecurity

interventions.

For a crime prevention agency, the end goal is usually to arrest the criminals.

This seemingly straightforward goal is further hampered by a combination of

the internet’s global reach and international politics, which creates justified

secrecy in another form. Everyone accesses (essentially) the same internet,

whether it is from London, Moscow, or Tierra del Fuego. Arrest warrants do

not have such an immediate global reach. Although mutual legal assistance

treaties often succeed eventually, and there have been successful arrests, na-

tional legal processes do not allow broad sharing of suspects of investigations

with just anyone. Further, the internet is dominated by pseudonyms, and

arrest warrants for “xxCrimeBossxx” or “192.168.6.1” are not terribly effect-

ive. Although private companies may know the identities of their customers

behind these pseudonyms, for legal or contractual reasons private companies

may not be able to share these with law enforcement, especially foreign law

enforcement. This all means that mechanisms of intervention tend to focus

effort on protection and prevention activities.

The NCA navigates the triad of challenges of changeable behaviour of soft-

ware, reactive adversaries, and justified secrecy. First, they diagram the relat-

ively unchangeable constraints criminals have to operate within, and second,

they publicise only constraints already known to criminals, and not alterable

by them. Of course, this does not eliminate attempted deceit by criminals,

and many issues of secrecy even among those attempting to preserve security

still remain.

a note on the relationship between examples I will

shortly turn to the second example, computer network attacks, but first note

the relations among the examples. The three cases form a mechanistic hier-

160 general knowledge of mechanisms

archy in the sense described by Craver (2007). At the heart of the internet

banking crimes described above are the computer network attacks described

next. These are attacks which convert a healthy computer controlled by its

owner to an infected victim controlled by an adversary. Attacks occupy the

left-hand side of Figure 4.1 above, from the traffic sellers through taking con-

trol of the victim computer, known as the ‘bot’, and ending at the objective

of access to the victim’s bank account. However, Figure 4.1 does not detail

how the attacks happen, what methods the criminals use, or who is targeted.

In part, this is because the attacks used are diverse, and changeable, and so

are hard to model. More importantly, for the level of the explanation of the

criminal business model the details of how the attacks occur are not import-

ant. However, from a different perspective, of computer owners who would

like to protect themselves, the details of how each attack happens are crucial

to detecting and preventing attacks.

Descending a level further hits the third example, malware analysis. Note

that malware is not placed at a lower level merely because it explains phys-

ically smaller items, or merely because a part is spatially contained within a

whole (two popular views). Instead I follow Craver (2007, ch. 4-5) in hold-

ing that levels of explanation are relative to levels of mechanisms for the

phenomenon of interest where the elements are indeed parts of wholes, but

they are also mutually manipulable in the sense that changes at the level

of the part will at least sometimes make detectable changes at the level of

the whole, and changes at the level of the whole will at least sometimes make

changes detectable at the level of the part. So these examples form a hierarchy

because one of the components of the mechanism describing the criminal busi-

ness model shared by the NCA is computer network attacks. And one of the

elements of computer network attacks in turn is malware. This is not strictly

a part-whole relationship; attacks can happen outside of crime, for example

during nation-state espionage. And to explain even one malware sample used

in an attack, one must explain not only its attack role but also its historical

relation to other malware as well as how it hides itself. Yet in this way, a

mechanistic explanation of attack adds to the higher-level explanation of the

criminal business model, and vice versa, and so on with malware related to

these two examples.

computer network attacks – lockheed martin’s in-

trusion kill chain: With that loose approach to mechanistic hier-

4.3 building mechanistic knowledge in cybersecurity 161

Recon
Weaponize

Delivery
Exploit

Install
Control Actions

on goal

Each attack progresses in this order

Figure 4.2: A simple kill-chain diagram showing the steps defined by Hutchins
et al. (2011), with slightly simplified names for the steps.

archy in place, this example moves down a mechanistic level. Understanding

models of attack is the second example of an active research problem in cy-

bersecurity. One de facto standard model of the steps any adversary must

take in a successful attack is the intrusion kill chain (Hutchins et al., 2011).

Chapter 5 will develop this example further and argue that the kill chain can

be considered a mechanistic explanation of an attack.

The kill chain model decomposes an attack into seven steps. For an indi-

vidual attack, where an attack is defined with a quite small scope of targeting

exactly one computer, these steps occur in a linear sequence. The seven steps

are: (1) reconnaissance, gathering necessary details on a target; (2) weaponiz-

ation, creating a malicious file suitable for the target; (3) delivery, sending the

weaponized file, usually via email, web traffic, or USB drive; (4) exploitation,

initial attempt to take over a computer once the file is delivered and opened;

(5) installation, adding additional software to maintain a robust covert pres-

ence; (6) command and control, any communication between the installed ma-

licious software and the human adversary for reporting, updates, or direction;

and (7) actions on objectives, where adversaries finally move to complete their

material goals. Adversary goals may include stealing files, corrupting essential

data, or starting back at reconnaissance (1) to conduct new attacks which are

only viable from a computer which the defender still trusts (Hutchins et al.,

2011, p. 4-5). This describes a single attack, but note that an adversary almost

always coordinates multiple attacks to achieve an effective campaign (which

is accounted for in the de facto standard campaign modelling framework, the

diamond model). Figure 4.2 captures the organization of the seven steps of

the kill chain.19

The kill chain model avoids the challenge of the changeability of software

and adversary responsiveness with a strategy similar in some respects to the

model of criminal business methods. The kill chain model contains somewhat

19 Chapter 5 will improve this diagram to make the relevant entities explicit, see Fig-

ure 5.1.

162 general knowledge of mechanisms

abstractly specified activities that are necessary steps in a successful attack.

There is extraordinary variability in the entities that perform these activities,

where they are performed from, and the exact details of how to accomplish

the activities, but the activities themselves are fairly stable. For an individual

attack, the organization is also fairly simple: activities occur in linear order.

That is slightly more complex for the usual case, which involves multiple inter-

related attacks, which often run simultaneously. Nevertheless, the kill chain

mechanism is a rare statement of a stable organization of stable activities

even in the face of considerable variability and changeability in entities. Ad-

versaries still attempt to hide their activities and status along the chain, for

example by conducting many simultaneous attacks at asynchronous stages of

progress. For example, adversaries are known to confound attack response by

quietly hiding an important attack within a noisy but merely annoying attack.

Although they can cover their tracks in such ways, the kill chain remains a

stable organization of activities per attack.

The triad of challenges in cybersecurity all impact modelling at the level of

the kill chain. The kill chain model was published by Lockheed Martin, one

of the largest US defence contractors, an organization attacked by all manner

of adversaries. The Lockheed researchers who created it based the kill chain

model on their own experience investigating and responding to attacks over

eight years.

One common criticism of the kill chain model is that it is too abstract. This

criticism directly relates to how few commonalities there are among these eight

years of attacks. The changeability of software forces the level of analysis

up to where the activities and their organization are both stable. But this

level of analysis is too high, too abstract, for much day-to-day cybersecurity

because reasoning with the kill chain model is not automatable. The kill chain

research resists the active response of adversaries by selecting elements which

the adversary cannot change and remain effective, but this resistance comes

at a cost.

Defenders benefit from using the kill-chain model of the mechanism of at-

tack because it is a focus for orienting a defensive posture and incident re-

sponse based on what steps of the kill chain the adversary has accomplished.

Although the kill chain alone is too abstract to actually be capable of detect-

ing malicious software, it directs how the defender responds after detecting

malicious software. Such models speed communication among defenders, who

are almost always organized into teams, specifically, a computer security in-

4.3 building mechanistic knowledge in cybersecurity 163

cident response team (CSIRT). Alberts et al. (2004) describe a detailed set

of processes for incident management by CSIRTs. These include establishing

or coordinating clear communication, and educating constituents. Established

models play an important role.20

Publishing the kill chain model helps to diminish secrecy among friendly

parties by providing a common language of discourse and instructing defenders

what to look for. There is a small risk that unskilled adversaries could use the

kill chain as a how-to guide. However, this risk of improving the skills of the

least effective adversaries is weighed against the potential collateral damage

of secrecy. Broad use by allies is also weighed against consulting profits of

maintaining a proprietary model. Lockheed Martin is not a university; rather,

they are publishing the kill chain as industry experts, to try to help their allies

improve their defences.

malware analysis: Security cannot be achieved on the basis of

the kill chain alone, though, because automation is a key aspect of effective

cybersecurity. The actual detection or prevention procedures are handled by

computers. Even a small computer network handles billions of decisions every

minute; no human can be directly involved at such a speed. Thus, the end

goal of cybersecurity work is often a pattern or indicator of malicious activity

which is highly reliable and simple enough to be quickly checked by a computer.

Failing to provide direct progress towards this goal is one criticism of the kill

chain. Automation involves moving down a level of mechanism, even though

this sacrifices some of the stability achieved by the kill chain model. Malware

analysis, the third example of an active research problem, is one method of

generating such patterns or indicators.

In general, to find a pattern or indicator that will work as an adequate

detection procedure requires a person. There is no hard and fast reason for

requiring a person, but one important factor is the fact that the adversaries are

people. Computers can sometimes develop adequate detection indicators; this

is a common application of machine learning. This example, malware analysis,

is driven by a person. Malware analysis relates to the other two examples

20 There is debate about whether functional explanations (which in a sense provide

only a breakdown of tasks) are distinct from mechanistic explanations (Craver and

Tabery, 2017). An important distinction in that debate is whether the breakdown

of tasks is considered complete, or as a stage on the way to something more dis-

tinctively mechanistic. This is a tricky case, because the kill chain, as publishable

and shareable, stops at describing activities. Nevertheless, as it is generally used as

a device for helping to identify the entities used in a particular attack, it is best

thought of as a model of a mechanism.

164 general knowledge of mechanisms

in this chapter in that both have malware as a component entity, and the

malware analyst is attempting to discover the lower-level mechanisms of how

the malware functions. Research on these lower-level mechanisms contends

directly with the challenges injected by the changeability of software and the

adversaries’ ability to respond to and interfere with research results.

Malware analysis is one example of many possible processes of building

a method for understanding and detecting a specific attack or campaign of

attacks. Roughly, a representative process is that a human malware analyst

receives an unknown computer program that has been deemed suspicious or

likely malicious.21 The malware analyst then behaves much like a scientist. She

will put the unknown sample in a specially designed, controlled environment.

She then attempts to determine some relevant properties of the malware, and

trigger the malware within the safe environment to exhibit characteristic mali-

cious behaviour or divulge information about its author or controller. Yakdan

et al. (2016), Lin et al. (2015), and Lawrence Livermore National Laboratory

(2016) describe some of the available technical tools for these tasks.

It is key to understand one fact about computers that makes this task

difficult. Recall that Section 4.1 explained that in practice and in principle,

one cannot know a priori what a computer program will do. This is true even

if you write it yourself, and the problem is far worse if an adversary wrote

the program to be covert or confusing. The in-principle side of this argument

is provided by a suite of formal results, including Turing’s halting problem,

Church’s thesis, and Gödel’s incompleteness theorem (Boolos et al., 2002).

More practically, when a malware analyst receives a program for analysis,

it is just a blob of uninterpreted ones and zeros. You may as well be asked

to determine, a priori, whether a sentence in a foreign language mentions a

cat or not. Even if you can determine the usual word for cat, the speaker

may use any number of metaphors, synonyms, cultural references, or proper

names to refer to a cat without using the word (such as ‘Felix’ or ‘witch’s

familiar’). Computer languages can be similarly evasive. Colloquialisms or

oblique references can conceal the subject of conversation—namely, malicious

actions—from the software analyst. Because a computer tracks references with

a precision impossible for a human, computer languages can also be arbitrarily

long-winded and round-about while performing these oblique concealments.

21 The determination of what programs are suspicious is an independent topic. At a

high level, a program is suspicious if it has properties similar to other malicious

programs (attached to similar emails, for example) or if incident response staff un-

expectedly find it on a misbehaving machine.

4.3 building mechanistic knowledge in cybersecurity 165

Malware analysis comprises multiple specialized sub-tasks for defeating the

deception methods that adversaries employ. A common deception is to hide,

or obscure, the true purpose of the malicious software. There are many tech-

niques adversaries use for hiding or obscuring, collectively called ‘obfuscation’.

Obfuscation takes advantage of the changeability of software to enable a broad

class of activities, such as those described in the kill chain and the criminal

business models, while attempting to avoid notice. The main task of a malware

analyst amounts to seeing through these obfuscation techniques to discover the

malicious mechanism that is the intended purpose of the malware. O’Meara

et al. (2016) describe two case studies of malware development patterns over

several years. The overarching pattern is that defenders defeat the common

obfuscation technique at the time and publish a preventative measure, and

then the criminals change their software to re-hide their larger-level activity

of stealing money so that their thefts are successful again.

An illustrative example of an aspect of the cat-and-mouse game is to play

with time. The malware analyst has thousands or millions of suspicious files

to analyse. The malware authors know this. The authors also know that their

actual targets likely will not know they have been targeted, and tend to be

on their computers for a while after the initial infection. So one of the early

tactics the malware authors implemented was to make their software sleep,

or incubate, for two minutes before doing anything. This defeated malware

analysts who opened a file and expected malicious behaviour immediately.

Some analysts figured this out and realized they could wait. Then the malware

authors increased the sleep period to an hour, far more than any analyst has

time to wait, even in mass-automation of analysis. However, the malware

analyst totally controls the environment, so they can move the computer

environment’s clock forward 12 hours and trick the malware. The malware

authors realized this and started using arithmetic instead, basically telling

their malware to count to a trillion by ones before acting. While counting

is notionally benign, malware analysts soon realized that there are not any

benign programs that start and just count for a while, so this in itself becomes

suspicious. And so on, strategy and counter-strategy.

Under these difficult circumstances, provenance, or the historical sources

and similarities among malware files, is often the most useful guide. Groups

of attackers tend to reuse their past work rather than start from scratch.

The similarity of a malware sample to past samples tends to be important for

understanding it. The history is the most stable part of the target mechanism.

166 general knowledge of mechanisms

In these examples, cybersecurity practitioners find ways to overcome the

joint challenges of the changeability of software, justified secrecy, and active

adversaries. As the malware analysis example exemplifies, the combination

of these challenges is particularly pernicious. If the adversaries could not

make malware changeable in a way reactive to practitioners’ analysis attempts,

understanding adversaries’ activities would be less daunting. If practitioners

could share detailed results widely without tipping off their adversaries, this

daunting burden could be shared and made easier. Alas, this is not the case.

summary In all three examples, cybersecurity practitioners build and

use knowledge of stable activities, stable organization, and the properties of

entities—recognisably mechanism discovery strategies. These mechanism dis-

covery strategies overcome the three challenges and build general knowledge,

though practitioners rarely use these words. These three examples each focus

on a different aspect of what could be thought of as a multifield mechanism

which collects relatively stable and shareable knowledge. Within the banking

trojan example of money laundering, the organization of the parts of the

mechanism is the focus; details of the entities and activities are secondary

and remain abstractly specified. The intrusion kill chain provides a schema of

activities that attacks contain, roughly organized in linear sequence, largely

independent of the highly changeable entities involved. When studying mal-

ware, analysts are often interested in provenance, which equates to etiology or

the historical sources of a malware file. Groups of attackers tend to reuse their

past work rather than start over; similarity to past malware samples provides

important understanding. While each of these examples builds its evidence

through different strategies, they also mutually reinforce each other as part

of a multifield mechanistic explanation.

4.4 building general knowledge in cybersecurity

This section explores how the philosophical threads drawn from the mechan-

isms literature in Section 4.2 can illuminate the field of cybersecurity. I view

the various strategies used by cybersecurity practitioners as mechanism dis-

covery strategies used in the face of the triad of challenges. This mechanistic

view extracts some coherent purpose behind what at first sight are wildly

different actions by practitioners.

4.4 building general knowledge in cybersecurity 167

The examples elaborated in Section 4.3 demonstrate the depth of the triad

of challenges for building general shareable knowledge in cybersecurity. There

is no stable system into which one can make surgical interventions in the

way of Woodward. The challenge is far more difficult. Even further, what

cybersecurity practitioners are facing spans from the technical, in malware, to

the social in the NCA diagram and international legal systems. Flechais et al.

(2005) and Anderson and Moore (2006) claim that only by considering the

socio-technical system as indivisible can practitioners make adequate security

evaluations. This, along with the fact that many parts of that socio-technical

system are highly responsive, means that cybersecurity is in a constantly

evolving arms race between defenders and adversaries.

The examples in Section 4.3.2 also contain myriad successful responses to

that challenge, and draw attention to how success was achieved and then

publicised. This section will extract what successful responses share. In par-

ticular, the strategy in all three cases was to find what is relatively fixed in

the midst of a changeable social and technological system, and, of that, what

is publicised is what need not remain secret. What remains fixed varies in the

different cases, but I will show that they can be seen as elements of mechan-

isms, in the sense discussed by Glennan. Further, just as in other scientific

and technical fields, mechanisms in cybersecurity do not stand isolated and

alone. Mechanisms both cluster within fields and are interrelated across fields,

such that the three examples can be seen as parts of a multifield mechanism,

as recognised by Darden and by Craver.

One can productively see synthesizing general knowledge as linking up

mechanisms along these complex and highly variable lines. Indeed thinking

of this as modelling mechanisms illuminates the coherence of that search for

shareable general knowledge. Finally, cybersecurity both shares enough fea-

tures with other fields which perform mechanism discovery that security re-

searchers can use the mechanisms literature; while it has enough peculiarities

to help develop that philosophical literature in interesting ways.

four elements of mechanisms yield four dimensions

of variation (Glennan): First, if one takes seriously the four di-

mensions of similarity of mechanisms that Glennan draws attention to then

each of these very different examples can be seen as cases where practition-

ers search for some stability in the mechanism. Glennan’s four dimensions

for searching for similarity among mechanisms are the entities and activit-

168 general knowledge of mechanisms

ies involved, the organization of the components, the phenomenon for which

the mechanisms are responsible, and the etiology or history leading to the

mechanisms (Glennan, 2017).

These three cybersecurity examples each focus on a different aspect of mech-

anisms. Tracing banking trojan delivery follows the organization of the parts;

modelling the adversary’s kill chain follows the common activities involved

across incidents, and also shows a reasonably stable organization; and finally

malware analysis focuses on the history (which Glennan calls etiology) of how

the file and its mechanism came to be. In all three cases, the practitioners

use these as foci to work on other things they need to know. Note that none

of the three cases focuses on entities. This might be accidental, but I suspect

that, at the least, it reflects the changeability of the entities. To deal with this,

practitioners look elsewhere to coordinate a response, and find out how to stop

a particular piece of malware, attack in progress, or criminal organization.

This helps to explain why the surface actions of practitioners can be so very

different, although there is a sense in which they are all working on the same

very general problem. Notice also that it helps to explain why each example

coalesces under a recognizable discipline within cybersecurity: internet archi-

tecture (banking trojan delivery), incident response (kill chain), and reverse

engineering (malware analysis). Practitioners acquire considerable expertise

within their fields. Nevertheless, each can be seen as focusing on an aspect

of the highly changeable and reactive mechanism they are facing. And each

makes the sensible choice of focusing on what remains most fixed, and of

sharing information about what does not need to remain secret—because it

is already known by, or cannot easily be changed by, the criminals.

these mechanisms are multifield (Craver): Another im-

portant way of seeing the coherence here is to understand the models of mech-

anisms cybersecurity deals with as hierarchically related, specifically multifield

in Craver’s sense. Craver (2007, ch. 7) argues that in the multifield research

program of neuroscience, explanation of memory is best understood as a mo-

saic of interlocking evidence of a mechanism spanning multiple levels. The

different fields locally depend upon each others’ evidence. Each field provides

support to the other; one is not reduced to the other (Kaiser, 2011). Seeing

the three examples as combining into a multifield mechanism in this way is

also useful for understanding how cybersecurity succeeds.

4.4 building general knowledge in cybersecurity 169

The examples of attack and crime modelling provide one example of this

interlocking support. The kill chain model describes activities carried out over

these distribution channels to which the adversary is constrained. Kill chain

terms such as delivery and exploit describe steps in the banking trojan ecosys-

tem at a finer level of detail. On the other hand, the banking trojan model

expounds on the kill chain’s final activity, action on objectives, to fill in what

the objectives are (steal banking credentials) and explains how criminals use

short-term objectives as stepping stones to accomplish their overarching mis-

sion. In this way each field supports the other; neither has primacy.

So the interrelationship of these three examples occurs in several ways. The

criminal business model is a higher-level mechanism because the kill chain

mechanism is contained within the criminal process. In another sense, the kill

chain represents a mechanism schema which is partially instantiated by the

criminal business model. The crime model instantiates the kill chain because

it restricts certain kill chain activities, such as delivery, to the more specific

methods of malicious web sites and phishing emails. The kill chain activity of

command and control is also instantiated. The NCA criminal business model

is specific to a particular botnet; in this specificity it makes sense as an in-

stantiation of the purposefully-general kill chain model.

None of these relationships are strictly part-whole, nor is malware solely

deployed to steal money. Nevertheless, for understanding this particular crim-

inal activity – and stopping it – responders have to understand this multifield

mechanism, forming a loose hierarchy where what is known about each level

constrains how the whole can operate; that is, a hierarchy in just the way

Craver describes.

clusters of related mechanisms, not unitary mech-

anisms (Darden): While I selected three mechanisms that were inter-

related in a way that illuminates the multifield and hierarchical nature of

cybersecurity practice, it would be a mistake to think these are the only

mechanisms in their domain. Instead, there is a great deal of clustering of

related mechanisms, in accord with Darden’s work. The models of the NCA

mechanism, the kill chain mechanism, and malware reverse engineering mech-

anism are each quite abstracted, capable of being elaborated in different ways.

So each is better thought of as an exemplar, allowing the practitioner to

understand a cluster of related mechanisms.

170 general knowledge of mechanisms

Multifield mechanism models are a focal point for collecting and anchoring

general knowledge. They do not describe one unified mechanism, but a cluster,

or exemplar of related clusters. Alongside the other two mechanisms, the

NCA’s model of the mechanism of computer network attacks form part of a

cluster that illuminates the phenomenon of a criminal campaign to steal money

using the internet. I elide the technical details, but the law enforcement action

included deceiving the criminals’ communication, public awareness to help

prevent and detect attacks, and seizing key physical computers in 11 countries

simultaneously (Addis and Garrick, 2014). The successful execution of these

interventions indicates practitioners developed shareable, general knowledge;

I conceptualize these three examples as a loose hierarchy, and also within the

cluster of multifield mechanisms forming this general knowledge.

The kill chain model provides a schema around which to cluster other mech-

anisms of other specific botnets. Both the original kill-chain work, and further

work building on it, use the kill chain as a schema about which to cluster ma-

licious activity for attribution of similar attacks to similar actors (Caltagirone

et al., 2013). cybersecurity practitioners doing attribution of attacks cluster

on targets, techniques & procedures, and malicious infrastructure. There is

clear resonance here with the clustering features described by Darden, along

the dimensions explored by Glennan.

Glennan (2017) can be used to illuminate how clustering works. Clustering

mechanisms requires a feature on which to cluster. Darden and Craver make

the case for hierarchy, but do not elaborate what about a mechanism is similar

to another mechanism that permits building general understanding. Hierarchy

is not enough to explain on what dimensions mechanisms are similar. Glen-

nan’s dimensions provide features on which to cluster, or features to guide or

assess multiple fields investigating similar mechanisms.

There are interesting relationships within the picture of cybersecurity.

These include the four elements of mechanism, clustering of mechanisms

within a field, and hierarchical relationships across fields. These differences

are all present in cybersecurity. However, the distinctions are not sharp.

Perhaps they never are, but with a domain as fluid, flexible, and reactive as

the changeable technologies and social systems of cybersecurity, one should

not expect to find sharp distinctions and rigid boundaries. Whether a par-

ticular difference counts as variation in, for example, an activity, a different

activity, or a schema instantiation, may often be indeterminate. This does not

mean one cannot usually say something useful about relationships between

4.4 building general knowledge in cybersecurity 171

neighbouring activities, or between an activity and organization, within a

specific context and purpose.

4.4.1 Constraining: On improving coordination in cybersecurity

The resemblance of mechanism discovery in cybersecurity to that in other

disciplines is very useful. This section will indicate how this work might im-

prove coordination in cybersecurity by seeing that the disciplines collaborate

to generate understanding by adding constraints on the overall mechanism

of online crime. As noted, Craver describes this happening in neuroscience

(Craver, 2007; Darden, 2006; Darden and Craver, 2002). So, broadly, this

development of Craver’s view is that the discovery of new entities, activities,

forms of organization, and etiologies can open or close space in the overall

space of plausible mechanisms. This is how discoveries in one case study can

impact on others. Seeing these relations across very different cases can show

how knowledge in cybersecurity is available that is more general even than

the knowledge that can be built of each case on its own.

First consider malware analysis, which relies on constraints from the other

two examples for building general knowledge. For those families of malware

that steal banking credentials, there is a remarkable coupling between de-

fences by the financial services industry and malware capabilities added to

circumvent those defences (O’Meara et al., 2016). Financial institutions add

social defences that interrupt the business model. For example, sending PINs

to customers’ phones; malware authors quickly learn how to infect the phones

and forward the PINs. Malware is also often categorized based on what stage of

the kill chain it is involved in: initial exploit, permanent presence, command-

and-control infrastructure, or achieving objectives. The very name banking

trojan uses such a categorization: trojan malware is for a quiet, permanent

presence, and ‘banking’ indicates what sort of objective it is used to achieve.

Other malware might be categorized based on what vulnerability it exploits.

So if you know what must remain stable on one of the other levels of the

hierarchy, that constrains where you should look in your efforts to combat

malware. Knowledge at one level is a guide to help to build knowledge at

another level.

Malware analysis likewise supports and constrains kill chain analysis. A par-

ticular malware file can only run on a specific system, say a Windows PC or a

Linux server. By indicating what the malware could possibly target, the mal-

172 general knowledge of mechanisms

ware analyst constrains what the potential delivery and action on objectives

activities are. The kill chain model constrains where a practitioner might look

to find malware; if a computer has been the recent target of reconnaissance,

it is more likely malware has been delivered to try to exploit the computer.

Glennan’s work can help illuminate how constraints work, by finding the fea-

ture which is constrained, and in particular where that constraint will travel

to related mechanisms. For example, if one knows what software vulnerability

some malware exploits, then constrain the search for infected computers to

those running vulnerable versions of that software.

The fixedness practitioners seek in the midst of the triad of challenges

tends to occur at the boundary of the phenomenon of interest and another

field or system that provides constraints. The sociological mechanisms22 of

how humans interact with the technology available through the internet are

email and web browsing; thus these are the constraints on the distribution

channels of banking trojans. The challenge in the case of the banking trojan

business model is to determine how the various mechanisms of theft are organ-

ized. It turns out the organization of the mechanism tends to be similar even

for different criminal organizations, especially if each criminal organization

is under similar constraints. The criminals must distribute via the channels

their victims are used to. The kill chain provides constraints on the activities:

delivery before exploitation, for example. Internet architecture provides con-

straints on the entities for delivery, web and email. Criminological work such

as the NCA model constrains the organization and can localize the elements

of the mechanism: both web and email are used simultaneously in this case,

and the task is outsourced to specialized individuals by the criminals. In this

way, understanding how the three mechanism schemas (or clusters of schemas)

above relate clearly yields much more general knowledge than understanding

one alone.

At the other end of the multifield mechanism, constraints also operate in

malware analysis. Here the changeability of entities is very marked, and a

technological arms race exists between criminals and cybersecurity practition-

22 Social systems fall under what Hatleback and Spring (2014) categorise as stable in

that they tend not to change purposefully to disrupt observation within the time

from of usual observation studies. Social systems have been discussed as mechanisms

for some time (Elster, 1989). Social and legal systems seem a liminal case between

changeable mechanisms, such as software, and the more fixed nature of mechanisms

in fields like chemistry. However, the salient feature is that at least some of the

relevant social systems are much less changeable than malware. The local dependence

of the malware on the social provides a dependable constraint on the changeability

of the malware.

4.4 building general knowledge in cybersecurity 173

ers. Nevertheless there are important constraints. Hierarchy matters: malware

is an entity within the kill chain; the activities of the kill chain are activities

that the criminals undertake in their business. However, this overview does

not adequately capture the nuanced similarities between these mechanisms

on other dimensions. The criminal business model is specific to a criminal

network named for the malware used to make the thefts: GameOver Zeus.

The malware analysis that provides this name, specifically this family name

of Zeus, is based on a etiological cluster of many malware samples, all of

which have a common progenitor malware (O’Meara et al., 2016). Attackers

automate and outsource where they can, but they are ultimately people, and

can only build on what they have done before. And so the etiology of the

attack, what is known of that source, is a useful guide to defenders.

The three examples are, in some sense, grouped around similar entities or

activities investigated through different lenses. Constraints learned about one

activity or entity in one example can impose constraints on the whole. Not

only entities and activities, but also organization, phenomenon and etiology

are important.

If this is right, then the impact of constraints hinges on being able to home

in on one of the dimensions of similarity identified by Glennan (2017). When

similarities among mechanisms extend to four dimensions of variation, one

can see how the constraints work. There is no simple link between types of

similarity among mechanisms and relationship between mechanisms, either

within the same level or at different levels. Nor is there an easy link between

aspects of interfield mechanistic explanation, i.e. mosaic unity, and similarity

among mechanisms. However, for two mechanisms to be related, or two fields

to interrelate, they must be related by something. These four dimensions of

similarity provide a plausible starting point.

Ultimately, in the face of these challenges, cybersecurity practitioners have

achieved a great deal. General cybersecurity knowledge supports practitioners,

when building a security architecture or responding to an ongoing intrusion,

because general knowledge indicates courses of action that will plausibly be

successful. The boundary between general knowledge and case-specific know-

ledge is not perfectly sharp. Both chief information security officers at big

companies and malware analysts are practitioners who use general knowledge,

but what counts as general knowledge to the malware analyst probably seems

very case-specific to the other. Nevertheless, the field as a whole knows rather

a lot.

174 general knowledge of mechanisms

4.5 conclusion

Returning to the chapter’s initial philosophical questions, it should be clear

that there are nothing like general laws in cybersecurity, and far from any-

thing like a scientific theory in the traditional sense. General knowledge in

cybersecurity is not gained by finding general laws or theories. General know-

ledge is as hard to win in cybersecurity as it is anywhere, due to the triad of

challenges. Each of these—changeability of software, active adversaries, and

justified secrecy—alone could frustrate generality.

Yet the case is not hopeless; cybersecurity has seen progress, however fit-

ful. The initial strategy of looking to mechanism discovery from philosophy

of science to illuminate this question has shown to be fruitful. One can see

general knowledge built up by discovering clusters of related multifield mech-

anism schemas, expected to vary along four dimensions: activities and entities,

phenomena, organization, and etiology. I demonstrated how this can help con-

ceptualise work in cybersecurity by studying in detail three cases of active

research problems within cybersecurity that can be seen as discovering—and

sharing—mechanisms. The cases of mechanisms in fact vary along these di-

mensions. Although each cybersecurity case comes from a different field of

expertise, and each focuses on a different element of mechanisms, the three

cases are nevertheless strongly interdependent. This approach also happens

to indicate something about what makes cybersecurity a coherent field. Just

as Craver (2007) describes the ‘mosaic unity’ of neuroscience, built up by

interleaving constraints applied by various fields on multifield mechanisms, I

describe a ‘mosaic unity’ of cybersecurity. There is little else that joins ap-

plied logicians verifying software correctness with criminologists interviewing

malware authors into a coherent field of practice.

Future work should study many further interrelated cases. The three ex-

amples show what is possible, but fall far short of defining a whole field.

This chapter provided the beginning of a framework for understanding the

way general knowledge works for other problems within cybersecurity. For ex-

ample, one might apply such a framework to (in the language of mechanisms)

other phenomena, such as skimming credit card details at point-of-sale devices.

These are constrained by how the criminals monetize their gains, attack the

point-of-sale device, and the malware’s development history and how it hides

itself. Practitioners build explanations and models in ways similar to these

examples when, for example, examining how the point-of-sale devices at the

4.5 conclusion 175

retailer Target, which has stores across the US, were leveraged to steal tens of

millions of credit card details before Christmas 2013 (Krebs, 2014). Chapter 5

will study the kill chain example in more detail, examine other levels above

and below it, and how CSIR analysts apply such general knowledge.

These explanatory models of mechanisms are not developed in isolation. For

example, the authors of the NCA’s criminal business model would have been

aware of an attack model similar to the kill chain, if not the kill chain itself.

The kill chain constrains the hypothesized organization of the criminals’ activ-

ities. Delivery happens before exploitation. This matches the criminal business

model. And still higher-level mechanisms are also relevant. For example, mech-

anisms understood from the fields of internet architecture and international

finance also constrain the criminal business model. Via examples like this

criminal business model, one can see how international finance places con-

straints on the kill chain. Cybersecurity practitioners have used such lessons

to notice that, in some cases, the Visa payment system was the weakest point

in a criminal’s mechanism (Kanich et al., 2011). This example demonstrates

one way in which constraints help lead to general knowledge. If an inter-field

constraint applies to a part of a mechanism, and that mechanism is related to

a second based on one of Glennan’s similarities (in this case, the activity of

criminal action on objectives via the kill chain), then other mechanisms sim-

ilar along the same dimension to the same part of the mechanism may also

be subject to the same constraint. Similarity among mechanisms provides a

path for generalizing knowledge to other contexts.

This chapter has not touched on the sociological practicalities of how prac-

titioners go about collaborating to build general shareable knowledge. The

focus here has been on what to build, rather than how to build it, as having

a target for what general shareable knowledge might look like seemed the

priority. The most difficult communications will likely be across the clusters –

between practitioners focused on different topics or with very different research

methods. In this way, building general knowledge perhaps resembles building

what Galison (1999) calls trading zones within the history of physics. People

move between specialised fields, learning enough of the language of each to

translate between them, in the trading zone driven by common need, such as

the creation of a common tool. Indeed, Galison has applied this trading zone

analogy to cybersecurity as part of the JASON report (MITRE, 2010) and at

the first science of security symposium (Galison, 2012). Galison acknowledges

that this kind of work is often under-appreciated, given its important role.

176 general knowledge of mechanisms

Galison’s trading zones provide a description of what structures are needed

(trading zones), but not how to build an effective trading zone. The description

of general shareable knowledge as clusters of multifield mechanism schemas is

likewise silent on how to build trading zones. However, at least with a descrip-

tion of what cybersecurity practitioners may want (an effective trading zone)

and what it should produce (general shareable knowledge) one could evalu-

ate whether a given social situation is effective. Boundary objects (Star and

Griesemer, 1989), as well as conceptual translation, would likely be exchanged,

negotiated, and re-interpreted in trading zones.23

There is another way in which the general knowledge of cybersecurity is

not like building a theory in the usual sense, such as building the theory of

relativity—at least not as that has been traditionally treated in philosophy of

science. The knowledge of cybersecurity is very practically oriented, aimed at

security, which is a very dynamic matter of constantly preventing and analys-

ing attacks. This practical aspect still needs more attention within philosophy

of science. Future work could integrate the ideas here with ideas developing the

nature of evidence of mechanism in medicine (Clarke et al., 2014; Illari, 2011).

Ultimately the goal would be to show how a particular entity, activity, form of

organization or etiology in one place may be well evidenced in cybersecurity,

and that evidence communicated effectively so that it may be made use of

at other levels throughout the sociotechnical system. This line of questioning

elicits a constructive research program and builds on where the summary of

current philosophy of science application to security in Chapter 3 leaves off.

Even in the absence of laws, in a domain that is about as diverse and

changeable as exists, and which has the special problem of secrecy, general

shareable knowledge is still possible. This can be seen as the painstaking

building of clusters of multifield mechanism schemas which vary along at least

four dimensions of similarity: phenomena, activities and entities, organization,

and etiology. Cybersecurity provides cases in which practitioners successfully

build general shareable knowledge along these dimensions.

CSIR analysts should aim to learn such general shareable knowledge. It

constrains what attacks are likely or feasible. It also conditions beliefs on what

investigations are likely to succeed. That is, this account of general shareable

knowledge bears on two aspects of the research question (see Section 2.7). The

structure of general knowledge and the mechanism discovery literature inform

23 MITRE has connected the concepts of boundary objects in this sense to security. CCE
specifically is called a boundary object in Mann (2008), but also presumably CWE,
CVE, and so on are viewed this way. See Table 2.7 for other such data formats.

4.5 conclusion 177

how to construct general knowledge about attacks. This account also suggests

how to apply general knowledge, as a set of constraints on expectations and

priors. Chapter 5 will elaborate on how to use general mechanistic knowledge

further.

5
THE INTRUS ION KILL CHAIN AS A CASE STUDY 1

This chapter will provide case studies of how reasoning in incident analysis

can apply mechanistic thinking. It primarily answers the research question:

“How can an incident analyst apply general knowledge to improve analysis of

specific incidents?”

The majority of the chapter will be dedicated to an extended translation

and example manipulation of the kill chain model introduced in Section 4.3.2.

This chapter bridges the more military language used in practice with more

academic language. I will present two further case studies of good decision-

making in CSIR and how that maps to mechanistic explanation and heuristics

for problem solving discussed in Chapters 3 and 4.

The chapter will thus answer the research question in two parts. First, it

shows how to interpret important practitioner-generated incident models as

mechanistic explanations. Second, it presents two diverse examples of incident

analysis to point out how and where good incident analysts make use of general

knowledge such as incident models.

5.1 introduction

Per Chapter 4, models are important to science and to rational inquiry more

generally. The purposefulness of modelling is critically important. Computer

Network Operations (CNO) is the general term that encompasses attack, de-

fence, and exploitation using computer networks (Joint Chiefs of Staff, 2014b).

Our purpose in modelling CNO by incorporating mechanistic thinking is to un-

derstand intrusions more thoroughly and, ultimately, to reduce the damage

and disruption caused by CNO. Having such a model enables both better

CSIR and better CND because responders and defenders can more adeptly un-

derstand the situation by interpreting it via the model, despite the occasional

oversimplification. Incident responders may not in practice think of themselves

as scientists. However, as argued in Chapter 3 as well as previously in Hatle-

1 This chapter is based on joint work, the paper: Jonathan M Spring and Eric Hatle-

back (Jan. 2017). ‘Thinking about intrusion kill chains as mechanisms’. In: Journal

of Cybersecurity 3.3, pp. 185–197.

179

180 the intrusion kill chain as a case study

back and Spring (2014), analysts stand to benefit from adopting techniques

honed by scientists. The intent of this chapter is to demonstrate how analysts

can integrate mechanistic thinking as an example of, and gateway to, scientific

techniques.

As this chapter is targeted more at the CSIR practitioner, it may be ne-

cessary to motivate why the modelling choice from philosophy of science is

worth the effort above and beyond the modelling languages to which com-

puter scientists are more accustomed. For example, it may seem more natural

to use a modelling language like Unified Modeling Language (UML) since it

is a common model to design computer systems (Larman, 2004). UML and

other software engineering models are not incompatible with scientific model-

ling via mechanisms. However, unlike a systems engineer, and like a scientist,

the security practitioner attempting to understand an incident must build a

model that includes physical, human, and engineered elements. Also like a

scientist, the security analyst must form a descriptive model of how the world

is working, unlike an engineer, i.e. a designer, whose model goal is to satisfice

particular desired features of the design (Simon, 1996, p. 119ff). Chapter 6

will explore the interplay between a model of how the system works, a design

of how the system should work, and mathematical models. However, here we

focus only on elaborating the explanatory or scientific aspect of modelling for

incident analysis.

The kill chain model (Hutchins et al., 2011) is a de facto standard for CSIR

(see Chapter 2) and this chapter takes it as an extended example. The kill

chain model is not complete or perfect, but it is a shared starting point. The

model has enough detail to enable an instructive elaboration of what we might

describe as the cluster of mechanism schema describing an attack. I will take

the structured advice created in Chapter 4 and now apply it to improving the

kill chain model.

Recall that mechanisms are comprised of entities and activities. I will de-

scribe the seven elements of the intrusion kill chain as activities. Thus, one

material improvement provided by this chapter will be to identify the entities

the kill chain leaves implicit. Thinking about the attack process mechanistic-

ally will allow me to import the detailed modelling and design of scientific

observations to enrich incident analyst’s understanding of adversary CNO.

That is, this chapter is the hook by which I will demonstrate how the prior

discussion of science and general knowledge has direct practical impact for

how an incident analyst should reason. The impact of merging how incident

5.1 introduction 181

analysts think with mechanistic modelling is to make CSIR more ‘scientific’

(Recall from Chapter 3 I mean scientific as “a very prestigious label that we

apply to those bodies of knowledge reckoned to be most solidly grounded in

evidence, critical experimentation and observation, and rigorous reasoning”

(Dear, 2006, p. 1)).

There are various parts of an attack. Understanding how these parts inter-

act, or potentially could interact, is a practical challenge. I propose clusters of

multi-field mechanisms help organize analysts’ understanding. For concrete-

ness, consider the exploitation mechanism of a drive-by download, an example

I use later in Figure 5.3. Within CSIR, a practitioner doing each of prepare, pro-

tect, detect, triage, and respond (Alberts et al., 2004) will emphasize different

questions given the mechanism for a drive-by download. Recall that incident

analysis occurs within both triage and respond phases. Within the detection

phase, one may ask what aspects of the mechanism distinguish it from benign

traffic. Within the preparation phase, one may ask how commonly, and what

sorts of, adversaries tend to use drive-by downloads to determine resource

allocation to protection and detection. During the response phase, an analyst

might want to determine whether the exploitation mechanism is well-known,

in which case response may be easier or more reliable. Information such as

mechanism of exploitation also contributes to wider campaign analysis. And

so on.

As Chapter 4 selected examples demonstrating the inter-related levels of

mechanisms in security (the kill chain is lower-level than the GameOver

Zeus money-laundering mechanism), this chapter continues to elaborate inter-

related examples. The incident analyst naturally takes advantage of this fea-

ture; an analyst asks about lower-level details that are distinguishing for de-

tection, and about higher-level details of actors for preparation or attribution

(for example, Caltagirone et al. (2013)). This example also highlights the way

in which a single mechanism is not a stand-alone explanation, but rather

contributes to knowledge by interrelation with other mechanisms.

Although I primarily elaborate the kill chain, Section 5.2.1 situates attacks

(i.e., the kill chain) within the broader context of campaign analysis. The

standard campaign analysis model identified in Chapter 2 is Caltagirone et

al. (2013). However, I will ease into the concept by introducing the simpler

campaign model of Howard and Longstaff (1998), which situates attacks in

the context of adversaries and their objectives.

182 the intrusion kill chain as a case study

When translating models into mechanistic models I will find some explanat-

ory gaps using the heuristics described in Chapter 4. I will propose refinements

to both Hutchins et al. (2011) and Howard and Longstaff (1998) that bridge

these explanatory gaps and provide a more robust model of CNO.

The rest of the chapter is organized as follows. In Section 5.2, I move

forward with expressing the kill chain as a mechanistic model. Subsections

demonstrate knitting together the general knowledge of attacks expressed

in the kill chain with both higher- and lower-level knowledge. Section 5.2.1

provides an example of incorporating the kill chain model of attacks into a

more coarsely-grained model of CNO, and Section 5.2.2 presents an example

member of a mechanism schema cluster that explains a specific activity of

the kill chain. In Section 5.3, I highlight two historical examples of incident

analysis where the decision-making has been well-documented. The purpose

of these cases will be to suggest similarity between mechanistic reasoning and

good analysis cases as well as to provide suggestive examples of what sorts of

processes the logic in Chapter 7 will be expected to capture.

5.2 reasoning with the kill chain as a mechanism

This section will demonstrate that (some) general knowledge in cybersecurity

can be represented as a mechanisms and the process of using heuristics from

the mechanisms literature to refine an item of general knowledge. This process

will yield an incremental improvement to the kill chain. But the focus is to

demonstrate the process, rather than the resulting improvement.

Attack ontologies are not the only type of general knowledge in cybersec-

urity that could benefit from mechanistic modelling. For example, the Bell-

Lapadula (BLP) model (Bell and LaPadula, 1973) for multi-level secure sys-

tems could cleanly be cast as mechanisms: subjects and objects are two types

of entities, and activities are the classic actions initiated by subjects such as

read and write. BLP then describes what set of mechanisms lead to the desir-

able behaviour of a secure system. Incident management processes (Alberts et

al., 2004) are easily cast as mechanisms, with activities such as detect, triage,

and mitigate. Cyber incident attribution (Caltagirone et al., 2013) and cyber

threat intelligence (Chismon and Ruks, 2015) also use models that could be

translated to a mechanistic model. The kill chain model is a good starting

place, however, because attacks are complex enough to provide interesting

challenges while remaining tractable.

5.2 reasoning with the kill chain as a mechanism 183

Adversarys Targets

Exploitc

Computerc

Malwarec

1 Reconnaissance

2 Weaponize

3s

3.1c3 Deliveryc

4 Exploitation

5 Installation

6 Command & Control

7 Act on Objectives

Figure 5.1: Improved Kill Chain mechanistic diagram, where delivery (3) is
replaced by two options, an software-defined changeable activity
directly to the target (3c) and a more stable activity through hu-
man deception (3s) with an optional secondary software delivery
step (3.1c).

At a coarse level of granularity, one can simply cast the kill chain as a

mechanism. The entity acting in each case is an “adversary.” The activities

are the seven steps introduced in Section 4.3.2. These activities each require

an entity as an object as well as an actor, and so at a coarse granularity, the

object of the activities is the “target,” or defender.

But this coarse-grained description abstracts away too much information to

be useful. For example, the adversary and the target are not the only entities.

There are finer-grained entities that are necessary to map the kill chain model

accurately as a mechanism, such as “remote access trojan” (Shirey, 2007, see

“backdoor” and “Trojan”), “exploit” (Seacord, 2005), and “victim system”

(Shirey, 2007, see “system component,” “system entity”). These entities have

coherent definitions in the works cited, despite the fact that the kill chain

paper does not define them or reference definitions (Hutchins et al., 2011).

Employing a mechanistic understanding helps make clear the relationship

between these entities in the kill chain. Figure 5.1 provides a conceptualization

of the seven steps in the kill chain mechanism.

Hatleback and Spring (2014) labelled entities and activities with subscript

e or p to indicate whether the element is changeable software (i.e. ‘engineered’)

or not (i.e., ‘physical’). This prior work makes a useful heuristic distinction

between mechanisms that can change at the will of an adversary in time

comparable to the expected period of observation. A practical example is mal-

ware during reverse engineering. In retrospect, perhaps Galison’s terms ‘Au-

184 the intrusion kill chain as a case study

gustinian’ (no intelligent adversary) and ‘Manichaean’ (with an intelligent ad-

versary) would be less prone to confusion or semantic collision (Galison, 2012).

I will rename the heuristic from Hatleback and Spring (2014) as ‘changeable

within the time period of observation’, c, or ‘stable within the time period’, s,

to make a clear connection to the challenge of changeable software discussed

in Chapter 4. Whatever the term, the distinction is pragmatic for incident

analysts. If there is a mechanism under observation that can be altered by

an adversary during observation, the design and interpretation of the obser-

vations need to be much more careful.

Some elements, in this case delivery, have multiple paths, some Augustinian

and some Manichaean. One important contribution of Hatleback and Spring

(2014) is to note that these different paths should be teased apart for more

reliable analysis. Figure 5.1 incorporates this change by splitting delivery in

two, refining the kill chain model.

The activities, as arrows labelled 1 through 7 in Figure 5.1, represent the

seven steps of the kill chain.The diagram provides a richer interaction describ-

ing the phenomenon by including the entities and their organization (in that

some entities are sub-parts of others). First, the adversary performs recon-

naissance on target. Second, the adversary weaponizes exploit delivery code.

Third, the exploit is delivered to the target. Fourth, the weaponized Exploitc
compromises the victim computer. Fifth, the exploit installs malware of some

kind on the victim system. Sixth, the malware communicates over a command

and control channel with the adversary. Seventh and lastly, the adversary

completes actions on objectives against or with the victim system.

Some activities have aspects that are changeable software elements mixed

with elements that are stable during the time period of an attack. To say

this confidently, one must be able to understand the activity as a mechan-

ism – that is, move to a lower level – and have an explanation for the activity

that includes changeable and non-changeable components on the relevant time

scale. The activities having both types of component are reconnaissance (1),

command and control (6), and actions on objectives (7). An incident analyst

may intuitively learn these distinctions, because whether something is a result

of changeable software or not rather intuitively changes what sort of observa-

tions one can reliably make. So, for example, analysts should learn about the

different aspects of reconnaissance with different techniques.

I will walk through the parts of recon in some detail to demonstrate this

differential study. Reconnaissance is defined as “research, identification, and

5.2 reasoning with the kill chain as a mechanism 185

selection of targets” (Hutchins et al., 2011, p. 4). Research on and selection

of targets are human activities. Adequate explanations are available using

the methods of psychology or economics. For example, the GameOver Zeus

botnet, discussed in Chapter 4, tends to select as targets owners of bank

accounts in wealthier countries. Another factor likely influencing this targeting

is that Russian citizens are discouraged from targeting other Russian citizens

(it is illegal in Russia), but not discouraged from computer fraud generally.

On the other hand, identification of targets is often accomplished by software

scanners or other computer tools, such as the open-source Nmap (Lyon, 2011).

If an analyst wants to explain reconnaissance against her network, it would

be wise to separate these aspects of reconnaissance for separate inquiry. My

intuition is that the study design for stable and changeable mechanisms should

be different. Similar considerations around changeability are important for

understanding command and control and actions on objectives, which I elide

here.

Constructing a more detailed, mechanistic model of the kill chain helps

makes clear to an analyst both areas of high detail and the areas in which more

detail is needed. A target likely has multiple types of systems and components

arranged in a system architecture. The target should know its own architecture

well enough to list these entities; if it does not, it should prepare better.2 Then

one could define exploitation in detail against each of these components, as

I will do in Chapter 7.4 for delivery. For another example, databases such

as CWE (MITRE, 2015) and CVE (MITRE, 2012) are essentially collections

of such finer details of exploitation; they could be understood as clusters of

lower-level mechanism schema elaborating the exploitation activity (schema

because they represent vulnerabilities; actual exploit code would instantiate

the schema of a CVE, yet another level down).

Mechanistic modelling also helps identify what is not yet known. If the

defender needs to complete an assessment of an incident, a mechanistic dia-

gram helps identify gaps. Given a mechanism schema for an attack such as

the kill chain, the analyst can compare the schema to the current assessment

of what is known. If, for example, installation and actions on objectives have

been identified by the analyst, this comparison should immediately provoke

the question of how command and control happened. More generally, the

comparison to relevant general knowledge about how adversaries proceed will

2 Preparation is out of scope for incident analysis, but these sorts of practices are

recommended as part of incident management standards noted in Chapter 2, such

as Alberts et al. (2004).

186 the intrusion kill chain as a case study

produce a list of leads for further investigation. In Chapter 7, I will discuss

this reasoning process more formally as abduction.

The information linkages across different aspects of the kill chain may be

complex. For example, certain types of adversaries may use a certain con-

trol channel; knowing this activity helps identify the adversary and potential

goals. This line of reasoning is precisely the kind of disciplined thinking en-

couraged by the IC de facto standard attack models (Caltagirone et al., 2013;

Hutchins et al., 2011). I am suggesting to enrich their thinking with heuristics

for hypothesis generation and gap identification along clusters of multi-level

mechanism schema, as Chapter 4 described.

A complete diagram of every possible computer network attack could not

be readily comprehended by a human. Similarly, a maximally detailed view

of how the human body works cannot be readily comprehended and used by

a single doctor. Computer security and intrusion analysis should encourage a

way of studying its complex system at different levels as needed. Mechanistic

knowledge facilitates this goal.

Different levels of granularity already are recognized in computer security.

For example, there are large-scale network analysts, and host-based analysts.

The OSI layers are a form of granularity levels with abstraction and encap-

sulation (ISO/IEC, 1996). But the difficulty of communicating important in-

formation across levels of abstraction and among professionals with different

specializations has not yet been overcome. By importing mechanistic think-

ing and attendant good scientific practices, I believe these communication

deficiencies can be overcome.

A final benefit of structured mechanistic knowledge is to improve iden-

tification of areas for improvement. For example, delivery (3) is defined as

“Transmission of the weapon to the targeted environment” whereas exploita-

tion (4) is “after the weapon is delivered to victim host, exploitation triggers

[malicious] code” (Hutchins et al., 2011, p. 4). In the kill chain, a gap exists

between 3 and 4, since the target is different, though the entity acting ap-

pears to be the same. Thus, the approach permits us to question whether the

definition of delivery is accurate or whether there is an additional activity

describing how the weaponized code transits the target environment to get to

the victim system. Gaps such as these are more easily identified when thinking

mechanistically; one goal in a complete mechanistic description is identifying

explanatory gaps (Machamer et al., 2000, p. 3).

5.2 reasoning with the kill chain as a mechanism 187

I propose that delivery (3) is better understood as one of two activities,

one for computer targets and one for human targets. In a phishing email,

there is a malicious link or file delivered to the human’s email inbox. How-

ever, the exploitation (4) does not occur unless the human is tricked into

opening the malicious content. For a clear example of delivery to an purely

computer target, consider the old ping-of-death vulnerability: as soon as the

target computer received the malicious packet, it automatically processed it

and crashed. Therefore I split delivery into deliverys, where a human is in

the loop as the target, is a distinctly different activity than deliveryc, where

a machine will be exploited automatically without human action. This stable

type is readily studied by existing experiment design techniques in psychology,

in deception for example. But researchers may or may not find that the de-

ception techniques have a stable psychological explanation year-on-year, the

length of robust psychology studies, even though they do tend to be stable

for the duration of a computer-security incident. It is an important feature

of this stability / changeability label that it is contextual for the period of

observation and study.

This example of identifying a gap in the explanation warrants further ex-

ploration. One may ask how much the mechanistic approach to modelling has

actually enabled this gap-finding. The modelling language brings this gap to

the fore quite naturally. By doing this translation, the gap is readily apparent,

when it was not before: there is no activity linking the effect of delivery of an

exploit and the installation of the malicious code. The mechanistic language

also provides a ready heuristic for improving the model. To ask what fits in

that gap; namely, the user clicking a link, bypassing a warning, viewing an

email with a malicious font, or perhaps automated system action. While the

content of the model and improving the model both require subject matter

expertise, translation into a mechanistic model provided a check on the explan-

atory soundness of our models by allowing ready inspection for gaps. Thus I

argue it is the structure of thinking mechanistically that is the key enabler

here, not any sort of cleverness of the analyst.

This mechanistic approach to understanding incident analysis does not rely

on the validity of the kill chain per se. The kill chain is my example because it

was identified as a de facto standard in Chapter 2. Other attack ontologies can

be similarly understood as mechanism schema. Some such attack models take

a different view of what is important or what to model than the kill chain. For

example, Bejtlich (2004) models an attack as “Reconnaissance, Exploitation,

188 the intrusion kill chain as a case study

Adversary

Attacks

Objectives

eventsConduct

Want

Achieve

Comprised

Figure 5.2: Visualization of the common language for computer security incid-
ents (Howard and Longstaff, 1998) as a mechanism, where “attack”
is simplified to one entity rather than the finer granularity of the
kill chain’s details.

Reinforcement, Consolidation, Pillage”. This model nearly matches the kill

chain, but has fewer steps. The three steps in the kill chain of weaponization,

delivery, and exploitation are subsumed into just exploitation. Reinforcement

is synonymous with installation; pillage implies a smaller scope than actions

on objectives. Consolidation includes the control of compromised assets, and

so largely mirrors command and control.

One final question may be whether explanatory soundness is valuable in

CSIR, specifically the analysis step (per Chapter 2). The aim of incident ana-

lysis is a robust explanation of what happened. By treating incident analysis

like a science (per Chapter 3), and applying structured knowledge via mechan-

isms (per Chapter 4), I have demonstrated how a practitioner can materially

improve the models they use for individual attacks. In the following, I will

explain how to further link such improvements across levels of mechanistic

explanation.

5.2.1 Higher-level mechanisms

Other models help put attacks in context. The diamond model (Caltagirone

et al., 2013) explicitly puts the kill chain model of attacks in the context of

campaigns – a coherent, long-running operation by an adversary. The dia-

mond model is one of the de facto IC standards identified in Chapter 2. The

Howard and Longstaff (1998) model is less complex than the diamond model;

I use it as my initial illustrative example. The Howard and Longstaff model

involves ‘incidents’, which are comprised of one or more attacks, whereas the

5.2 reasoning with the kill chain as a mechanism 189

kill chain models only single attacks. The natural approach models a single

attack as a lower-level mechanism within the larger mechanism of an incident

or campaign.

The taxonomy of Howard and Longstaff (1998, p. 16) translates naturally

to a mechanistic way of thinking. The taxonomy presents a temporal ordering

of items for an incident, namely “Attackers -> Tool -> Vulnerability -> Action

-> Target -> Unauthorized Result -> Objectives”. The taxonomy groups these

items usefully; “events” are made up of just the “Action -> Target” sequence.

If events are understood as part of a mechanism cluster about attacks, we can

switch perspective to the kill chain and naturally ask which of the seven steps

of the kill chain an event represents (if any). This sort of perspective will be

captured in logic in Chapter 7. “Attacks” (that is, what the kill chain models)

stretch from the “tool” to the “unauthorized result.”

Figure 5.2 presents a coarse visualization of the common language for se-

curity incidents (Howard and Longstaff, 1998). Since there are more entities

than activities specified, mechanistic modelling quickly identifies some gaps.

For example, an adversary must conduct an attack. What that activity en-

tails should be specified. Likewise, with respect to how “attacks” relate to

“objectives,” attacks achieve objectives, although exactly how this unfolds

would benefit from further specification. Howard and Longstaff (1998) dis-

cusses “success and failure” of objectives related to whether the objective was

achieved, but they provide no robust description of what this means. The

mechanistic diagram highlights the importance of understanding this activity

in order to understand the whole incident. Mechanism discovery strategies

such as identifying gaps (Darden, 2006), as surveyed in Section 3.4, should

complement CSIR analysis nicely.

Mechanistic modelling also eases integration of other security research that

can inform CSIR. For example, Liu et al. (2005, fig 2) use a primitive attack

model but graft a sophisticated game-theoretic model of attacker intent (Liu

et al., 2005, p. 89ff) onto it. By seeing these two elements as separate but

related mechanisms, the analyst can upgrade the primitive attack model with

the more appropriate elements from Howard and Longstaff (1998) or Hutchins

et al. (2011). At the same time, these attack models can benefit because of

readier access to a more detailed model of attacker intent. As Figure 5.5

will demonstrate, game-theoretic models are still compatible with mechanistic

understanding of phenomena.

190 the intrusion kill chain as a case study

I also find it natural to explain campaigns mechanistically. Caltagirone

et al. (2013) suggest targets, attackers, infrastructure, and tools & tactics

as the four important analytic categories. These form the four points of the

eponymous diamond. The entities that our mechanistic understanding of the

kill chain model brought out, such as the adversary’s computer, are also ex-

plicit in the diamond model; in the case of the adversary’s computer, that

is ‘infrastructure’. The various dimensions of similarity in Chapter 4 – entit-

ies and activities, phenomena, organization, and etiology – can complement

these pragmatic categories and perhaps guide analysis of how the campaign is

achieved. In some sense, the attack types in Howard and Longstaff (1998)

could be understood as a subset of Tools, tactics, and procedures (TTPs)

within Caltagirone et al. (2013). So these various models need not be seen

as competing, or one strictly better than another. As Chapter 4 described,

understanding the complexities of how the cluster of explanations interrelate

is a sign of successful knowledge building.

5.2.2 On lower-level mechanisms

To be practically useful, an item of general knowledge will have to be able

to explain real attacks and help investigations of them. Figure 5.3 models

an obfuscated drive-by-download delivered via a malicious ad network, as

described by Segura (2014). The mechanism is an example of the delivery

activity from the kill chain examined at a finer granularity. This diagram

focuses on the technical aspects of the delivery to the user’s browser. The

mechanism for how the ad networks select an ad for a user is left at a coarse

grain, but could be modelled in more detail if more data becomes available

(Preimesberger, 2015). Identifying such an item that requires more research

because it is not clearly understood is a benefit of mechanistic modelling.

Most entities and activities in Figure 5.3 have their common English mean-

ing and the same modelling norms as Figure 5.2. A special case is “fetches,”

which is transitive. That is, if the user’s browser fetches a web page, which

fetches an ad, which fetches a Uniform Resource Locator (URL), the browser

has made an HTTP request to fetch all three of these things. Modelling it this

way preserves which resource is redirected to which other resource, while an

arrow from the browser to each resource would not.

It would be sensible to model the activities 3, 7 and 10 in Figure 5.3 as yet

finer-grained mechanisms. Activity 3 is a sort of automated target selection,

5.2 reasoning with the kill chain as a mechanism 191

Browser C

Cookie

Website

Ad network

advert

javascript

URL

Angler kit

exploit

1 : fetches

2 : requests ad

3 : selects

4 : fetches

6 : runs5 : pushes

7 : using C, calculates

8 : fetches
9 : hosts10 : compromises

Figure 5.3: Diagram of an obfuscated drive-by-download delivered via a ma-
licious web advertisement

which if an analyst could expand might provide insight into adversary target-

ing interests. Activity 10 indicates the end of delivery and the beginning of

exploitation. Material to our interest in deepening understanding of this par-

ticular delivery mechanism, consider activity 7; it is the calculation by which

the JavaScript in the advert de-obfuscates the malicious URL. Per Segura

(2014), the mechanism is to use a regex to extract a string from the cookie

and then unescape, split, and reverse that string, which yields a JavaScript

HTTP request to a URL to be fetched (step 8). This mechanism defines a class

of obfuscation techniques using cookies; the report by Malwarebytes (Segura,

2014) goes one level of granularity finer and specifies items like the specific

cookie and regex used.

Thus the analyst naturally moves to three levels of mechanistic explana-

tion below the kill chain – delivery as a drive-by download, URL calculation

and obfuscation within drive-by downloads, and specific obfuscated URLs in a

specific instance of an attack. By understanding the relationship between the

levels of explanation, the analyst can orient themselves within its structure to

192 the intrusion kill chain as a case study

provide context to each mechanism cluster. The creation of Figure 5.3 demon-

strated how to use mechanistic modelling to move fluidly between levels to

make sense of detailed cybersecurity events. An explanation can link specific

obfuscation techniques, to how such techniques relate to delivery of exploits

via Figure 5.3, to how delivery fits into attacks via the kill chain, to how

attacks fit into adversary’s human objectives via Howard and Longstaff.

5.3 examples of incident analysis

So far, this chapter has been about how existing models of security incidents –

attacks and campaigns – can be presented as mechanistic explanations. That

is, the kill chain and the diamond model, for example, are a kind of general

knowledge related to CSIR. These models are general knowledge painstakingly

built up over time, despite the challenges described in Chapter 4, to explain

something about how security incidents tend to happen. The chapter so far

has also demonstrated the multi-level context switching in the context of

mechanisms and how that connects these models. Next, I plan to demonstrate

how such general knowledge can be applied during CSIR analysis. Because

these are models from the intelligence community, there are not canonical

public descriptions of their application. However, the diamond model cites

Stoll (1989) as an inspiration, and so it seems plausible to take that as one

example.

In this section I will use two exemplary instances of analysis to highlight

how incident analysts should make use of general knowledge and structured

reasoning. General knowledge serves two primary purposes in these examples.

The first, familiar from other scientific endeavours, is to assist in the genera-

tion of hypotheses. Many of the strategies of Bechtel, Darden, and Glennan

touched on in Chapter 3 and Chapter 4 are recognizable in the following

examples. The second purpose of general knowledge, more specific to security,

is to identify when something seems wrong; that is, when something may indic-

ate a weakness, a flaw, or a violation of security policy. In this interpretation,

security policy understood by the analyst as general knowledge about how the

system should behave. No human can memorize thousands of lines of router

configurations and access control lists. At a human level, any security policy

must be understood in broad strokes.

I will discuss structured reasoning in more detail in the following chapters.

My goal is to create a logic to express structured reasoning in incident analysis

5.3 examples of incident analysis 193

in Chapter 7. The following examples put important constraints on this logic

to come. Broadly, these constraints will be uncontroversial. Incident analysts

reason about events in the past; CSIR analysts reason about events on com-

puters; and they care about composing different incidents together to explain

campaigns of malicious activity. Other features of structured reasoning have

important details, such as how to integrate a(n) (in)validated hypothesis into

one’s model of the attack. I will bring such details out in the examples.

This section contains two examples. The first, obviously applicable to CSIR,

is from the famous Cuckoo’s Egg (Stoll, 1989). The second, less obviously

applicable to CSIR, is the famous application of game theory to deployed

decision-making at Los Angeles International Airport (LAX) via the Assistant

for Randomized Monitoring Over Routes (ARMOR) tool (Tambe, 2011). We

use this non-computerized example to analyse a security situation with ex-

plicitly structured, formalized decision-making. Access to results of applying

such formal decision-making to CSIR are not publicly available,3 so I make do

with an analogous physical-world case.

5.3.1 Example 1: The Cuckoo’s Egg

Stoll (1989) recounts a laborious intrusion detection investigation by the com-

puting staff at Lawrence Berkeley National Laboratory (LBNL) in the late

1980s. The tale represents a comprehensive example because the investiga-

tion evidences many of the good practices currently recommended during

intrusion analysis per Caltagirone et al. (2013) and all of the canonical stages

of a computer security incident identified in Howard and Longstaff (1998) and

Hutchins et al. (2011). This similarity is despite predating these models by

a decade or two. This example is a case study of an investigator’s thought

process through hypothesis generation guided by general knowledge, seeking

data, integrating this data into her models, and iterating until the investigator

is satisfied. Stoll makes for a good case study, even retrospectively, because

his training as an astrophysicist lead to suitable notes about his process. The

format, a book targeting a lay audience, also provided space and motivation

for introspection in a detailed way that modern forensics specialists rarely

include.

3 Decision-making systems in cybersecurity are predominantly naive pattern-matching

rules, such as with NIDPS, or based on machine learning. These approaches have

their successes. However, in either case, the decision-making is not formalized and

accessible in the sense meant in the logic or game-theoretic communities.

194 the intrusion kill chain as a case study

The story opens with the investigation of a small accounting error. Stoll

gathers qualitative data on what entities within the whole-lab system are

involved in calculating charges for computer usage. The initial hypothesized

mechanisms cannot distinguish between the error resulting from the account-

ing system that collects usage data, or the billing system that charges the

academic departments for their usage.

From this basic model the investigator asks several questions about how

to best resource further inquiry. Since there are two likely candidate error

sources, the clear approach is to attempt to eliminate one. To this end, Stoll

performs what one might now call a code review of the accounting system.

The most important features of a code review are that it is accurate, clearly

documented, exercises all parts of the system, and does not damage the system.

These four features track remarkably well to the four primary features desired

of experiments in computing more generally: internal validity, transparency,

external validity, and containment (Hatleback and Spring, 2014; Rossow et al.,

2012), respectively.

The process of the code review impacts the investigator’s confidence in

his results. Confidence in a technique is specific to the relevant domain and

probably can only be precisely expressed in its own jargon. The value assigned

to confidence in a process may change as a domain develops more refined tech-

niques. This discussion of incident analysis generally abstracts away from the

technique specifics, although psychology of intelligence analysis may provide

a framework for robustly assessing confidence (Heuer, 1999).

Abstraction from specific techniques cannot lose the importance of specifics

in assigning confidence and belief. In this example, the code review results in

the investigator eliminating the accounting system as the source of the error.

As Figure 5.4 demonstrates, this is because the review provides reliable evid-

ence that each of the component entities and activities of the custom system

mechanism function as expected. The UNIX OS accounting mechanism stands

as the only remaining source, which now becomes the hypothesis. This pattern

of model-building, abducing likely outcomes, testing predicted outcomes, and

revising the model is extremely common. Both the scientific method and math-

ematical modelling follow it (Collinson et al., 2012b), recall also Chapter 3.

Any adequate decision support for incident analysis must address how to

assign and warrant such abduction and model changes adequately.

This is one example of how Stoll warrants his belief. The whole investig-

ation continues on this loop, through a combination of extrapolating on his

5.3 examples of incident analysis 195

Whole accounting system

homemade system

UNIX system

6=
Error

usage data

accounting

3

usage data

3

cost data

3

accounting

usetabulate3

tabulate3

tabulate3

output

tabulate

output

Figure 5.4: Stoll’s model of the two concurrent accounting systems, including
verification efforts on the home-made system (Stoll, 1989, p. 5).
I am representing his belief as a mechanistic model. Circles are
entities, arrows are activities, and boxes surround phenomena of
interest. Check marks represent an experimental result indicating
the element is not malfunctioning. The dashed arrow is assumed
activity. This experimentation provides evidence that the error is
not due to a flaw in the home-made system.

physicists’ experiment-design training and inventing new cybersecurity tools,

such as his own NIDPS. Figure 5.4 represents the investigator’s belief at a time.

On page 5 of the tale, Figure 5.4 is a reasonable assessment of the situation

on the computer system. On page 100, it is not.

Stoll abduces the cause of the user’s insertion into the billing system as

either a human paperwork error or a system data-handling error. He sets

about to test this new model. The human error is given more weight based on

the investigator’s prior knowledge. Bayesian statistics gives a useful account

of prior knowledge (Kadane, 2011). Some accounts of incident analysis rely

on Bayesian reasoning heavily (Caltagirone et al., 2013). My approach will

be that all that really matters is the preferred order of prior knowledge, and

not their relative “distance”. Thus, logic is an adequate tool, and Bayesian

reasoning would be overkill. Humans do not reason with statistical precision

about preferences, and humans are famously non-statistical, especially with

very high and very low probabilities (Kahneman et al., 1982). One feature

my logic should have is to preserve the ability to prefer certain heuristics or

beliefs over others, while dispensing with the computational overhead of the

precise statistics.

The model in Figure 5.4 demonstrates a shift in focus on a lower-level, or

more detailed, mechanism. Initially Stoll thought of the accounting system

196 the intrusion kill chain as a case study

as one single black box. Figure 5.4 represents his model after examining the

system in detail. I present his belief as a mechanistic model; this is a small

interpretive leap from of what Stoll reports himself, but it is clear from the

text that he views himself as behaving scientifically and making a scientific

model of the incident. Circles represent entities. Lines represent activities. Ar-

rowheads represent the organization of the activities — which entity is acting

on which along the line. Boxes surround discrete phenomena of interest. I use

these elements of a mechanism — entity, activity, organization, phenomena —

in the sense defined by (Glennan and Illari, 2017). The dotted line represents

an activity that is assumed to exist but is not measured. The check marks

represent that Stoll performed some test to warrant his belief that the entity

or activity is performing as expected and is not responsible for errors.

This ability to change focus highlights an important benefit of mechanistic

modelling. Specifically, it is a benefit laid out in the mechanism discovery liter-

ature; I have touched on that briefly in relation to alternatives to scientific laws

(Section 3.4.3). The most brief explanation is that when seeking an explan-

ation for a phenomenon, the structure of mechanisms helps by constraining

plausible explanations that are considered or sought. More particularly, the

mechanism in question is decomposed into parts, and the different properties of

the system are localized within certain components (Bechtel and Richardson,

1993). Decomposition and localization are the two key mental heuristics that

Bechtel and Richardson (1993) identify in scientists’ work that make mechan-

istic modelling an effective method. Stoll is doing it naturally, as this heuristic

has suffused scientific problem solving. In this example, he decomposed the

accounting system, localizing tasks to subsystems, and checked that each sub-

system performs the task accurately. I seek to preserve this compositional

reasoning as much as possible; I will take advantage of Separation Logic for

this feature in Chapter 7.

The process of warranting a belief in an individual component of a mechan-

ism may be simple or quite involved. In this case, Stoll (1989, p. 5) recounts

it took a day to write a test suite to verify the in-house accounting system. In

a contrasting modern example, the security firm Mandiant spent more than a

year warranting their belief that a particular PRC army unit in Shanghai was

an explanation of security incidents against over 100 of their clients (Mandi-

ant, 2013). Much like in science generally, there is no hard and fast rule about

when data is adequately warranted (Norton, 2015); however, analysts follow

and continually refine guidelines.

5.3 examples of incident analysis 197

The investigator’s action following building the satisfactory model of Fig-

ure 5.4 reflects his goal. Common goals in incident analysis include attributing

attacks to a particular adversary or group, legal prosecution of a person, or

fixing the impacted system. At different stages in the narrative, Stoll (1989)

manifests each of these goals. However, at this early stage his goal is to elimin-

ate a small accounting error, that is, fix the system. So his action, accordingly,

is to delete the offending user (Stoll, 1989, p. 7). This goal and subsequent

action is entangled with the belief that the modification was not malicious,

but rather an error. Stoll’s belief of root cause later changes as additional

evidence arises.

Investigators should learn this lesson early: it is important to keep an open

mind for new evidence and avoid the dangers of confirmation bias (Heuer,

1999), although confirmation bias is far from the only danger for human ana-

lysis of sparse data (Puvathingal and Hantula, 2012). Confirmation bias is one

of many human cognitive biases that have been established in psychological

study of decision-making (Kahneman et al., 1982). Specifically, confirmation

bias is the (unconscious) behaviour of favouring existing beliefs, including un-

fairly discounting contrary evidence or alternative possibilities to the existing

belief. Scientific methodology (see Section 3.4) provides advice for mitigating

these biases. But, per the de facto IC standard analytic methodology of Heuer

(1999), in the presence of an adversary the analyst needs additional safeguards

against cognitive bias the adversary can intentionally abuse. The case studies

on building general knowledge in cybersecurity (see Chapter 4) indicate that

mechanism discovery and mechanistic explanation can be, and to some extent

have unwittingly been, adapted to mitigate biases even in this adversarial

case.

Deleting the user account is an intervention in a system that is only partially

understood – that is, a scientific experiment. Therefore the belief that the error

will not recur is conditioned on the assumption the analyst’s present model

is correct. This set-up provides a natural test. If the error recurs, the model

is likely incomplete or incorrect, so the analyst iterates over the evidence

collection and model update process again. This happens to Stoll repeatedly.

Eventually, after many iterations, it leads to the model of a Soviet spy using

the LBNL computers to attack US military computers. This discussion covered

only the first cycle in the course of the example. To avoid belabouring the

point, I will not map these iterations but rather switch to a second example.

198 the intrusion kill chain as a case study

5.3.2 Example 2: Airport Security

I would like a widely applicable model of incident analysis. Therefore, the next

example is a physical-world investigation example with a different goal than

Stoll (1989). This section examines the use of game theory to provide decision-

support for security patrols at Los Angeles International Airport (LAX) air-

port using the Assistant for Randomized Monitoring Over Routes (ARMOR)

software agent. This example is helpful because it explicitly has a model of

behaviour, unlike Stoll. On the other hand, security patrols at LAX are a very

different kind of analysis than determining the root cause of an accounting

error.

But ARMOR represents a kind of ongoing incident analysis. The divergent

aspects of this case study are helpful because they help establish the extent of

generalizability of my representation of CSIR. By selecting rather widely varied

examples, I aim to establish a wide space of applicability and demonstrate

significant commonality between information and physical security.

My main source for LAX security are the papers collected by Tambe (2011).

This section will focus on the chapters that provide motivation (Southers,

2011), development (Pita et al., 2011), and evaluation (Taylor et al., 2011) of

the game-theoretic security solution at LAX.

Southers (2011) motivates securing LAX with a combination of shifting

global risk factors and past targeting of LAX. Because of increasingly strict se-

curity measures post-9/11, the author predicts increased threat at pre-security-

checkpoint areas. LAX is the largest point-of-origin and point-of-destination

airport in the world (Southers, 2011, p. 35) and it spends roughly 23% of its

operating budget on police resources (Southers, 2011, p. 41). Furthermore, the

terminal’s pre-screening area suffered six terrorist attacks between 2001 and

2011, the most of any US-airport during this time frame (Southers, 2011, p.

38).

Pita et al. (2011) provide the details of ARMOR’s implementation at LAX.

The heart of the implementation is a Bayesian Stackleberg game, a type of

game in which the first player makes a decision to commit to a strategy and

the second player decides knowing the first player’s choice (Pita et al., 2011,

p. 72). The mathematical model here is clear. The link from math to the

conceptual model of the phenomenon, terrorist attacks at LAX terminals, is

also clear. However, one may reasonably question the sense in which this

5.3 examples of incident analysis 199

leader

x

p` → q`

followers

q`0

q`1

q`2

q`3
q`4

q`5

...

checkpoints

0

1

2
3

4

... R` C`

payoff

xi patrol strategy

observes

q` attacks j
or
do nothing

patrol fail

success

attack detered

Figure 5.5: Translation of ARMOR (Pita et al., 2011) to a mechanistic diagram.
The diagram does not have the precision of the mathematical rep-
resentation, but it captures the qualitative flow of the patrol mech-
anisms defined by ARMOR. The leader selects a (mixed) patrol
strategy xi of the checkpoints, then nature selects which adversary
q` the leader will face using p`. The adversary q` observes the
leader’s strategy xi and then makes her decision of which check-
point to attack, if at all. Utility payouts are calculated from the
matrices R` and C` to the leader and follower, respectively, based
on which of the three possible results obtained, where patrol fail
means the adversary successfully executed an attack, patrol suc-
cess means the adversary was caught in an attack attempt, and
attack deterred means the adversary did not attack.

is incident analysis, or at least in which the example bears on day-to-day

computer network operations.

The conception of incident analysis for LAX physical security is that it is

the multi-year ongoing patrolling and searching of the LAX premises. ARMOR

informs scheduling decisions within the active incident analysis for where to

most profitably search for evidence; it is only one of many resources available

in the multi-layered approach to LAX defence (Southers, 2011, p. 37). Not

all layers are active, for example hardened cockpit doors are a static defence

strategy. The whole process of analysis and investigation which ARMOR in-

forms includes the officers actually at the checkpoints, their routine for screen-

200 the intrusion kill chain as a case study

ing vehicles, response plans when contraband is discovered, etc. Thus while

the ARMOR model is a key decision-support resource, it is not the whole of

the investigation.

Let’s explicitly note the instantiations of the challenges listed in Chapter 4

to verify this example is applicable to incident analysis. The Stackleberg game

within ARMOR explicitly assumes the adversary will observe defender strategy

choice and adjust. The justified secrecy among friends is implicit in the intel-

ligence sharing arrangement; LAX police receive an unclassified subset of their

Federal Bureau of Investigation (FBI) liaison’s classified intelligence. Since it

is a physical security case, the changeability of software is not present in the

same way. The ARMOR case does share some other features with cybersecurity.

For example, both deal with detection of rare events.4 ARMOR is also dealing

with the challenge familiar to incident management of being a cost center for

its parent organization where the desired outcome is that nothing happens.

LAX spends 23% of its operating budget on security.

In providing background, Southers (2011) demonstrates two important fea-

tures of models. First, models are situated in the world, and the facts of the

world determine how well a model fits. A poor understanding of the facts of

the world usually leads to an ineffective model, and thus an ineffective incident

analysis. Secondly, the data ingested by the analyst when forming her model

may actually be reports of other analyst’s models. That is, the process is re-

cursive. Concretely, Southers (2011, p. 47) clearly situates the ARMOR model

as an appropriate response to a RAND Corporation model of most dangerous

threats to LAX, joint vulnerability assessments by the US Transport Security

Administration (TSA) and FBI, the intelligence community’s model of the ter-

rorist planning cycle, and the police divisions report on its available material

resources. Incident analysis rarely occur in a vacuum, unrelated to any other

incidents.

Taking the relevant scope as the large-scale patrolling of LAX contrasts

nicely with the small-scale analysis example provided by the initial 10 or so

pages of Stoll (1989). Some elements, such as the process, resources, model,

decisions, and value of information are more obvious in this larger scope (Pas-

man, 2011); for precise definitions of how these terms interact see Caulfield and

Pym (2015b). For example, the purpose of randomizing patrol strategies is

explicitly to reduce the predictively-valuable information available to adversar-

4 For the canonical description of this problem in NIDPS systems, see Axelsson (2000).

LAX experienced six attacks in ten years with 165,000 people passing through the

terminal daily (Southers, 2011, p. 47).

5.3 examples of incident analysis 201

ies (Pita et al., 2011, p. 69). This fact highlights the strategic and adversarial

nature of incident analysis and the value of information to both parties; this

nature is less clear in smaller investigations which consist of one adversary

action, then analyst response.

It may not appear that the game theory model used at LAX fits with mechan-

istic explanation. The game theory literature does not use the word mechanism

or mechanistic, but that is more a difference of terms than of substance. Recall

from Chapter 4 that “a mechanism for a phenomenon consists of entities (or

parts) whose activities and interactions are organized so as to be responsible

for the phenomenon” (Glennan and Illari, 2017).5 In the LAX game, the phe-

nomenon is optimal patrol of the airport, the entities are the two sets of agents,

the activities are the actions the agents can select, and “organized so as to be

responsible for” is the mathematical structure of the Stackleberg game and

its rules. I do not imply that either discipline should change its vocabulary or

jargon. However, the disciplines should benefit from more or better trading

zones, a term sociology of science borrows from anthropology to refer to the

places where useful interchange of ideas can occur between specialized discip-

lines (Galison, 2010). I utilize mechanistic modelling language in this spirit,

to help translate the insights of this analysis, culminated as a game-theoretic

model, beyond the discipline of game theory.

Figure 5.5 puts game-theoretic mathematics into a mechanistic form. The

value in this exercise is to demonstrate how detailed mathematical models are

compatible with qualitative investigative methods and representations. Both

are necessary for full explication of a phenomenon; diagrams cannot replace

mathematical models. A savvy investigator uses the best-suited language of

the various logical, mathematical and conceptual jargons available in order to

express the different aspects of her model. Indeed, one intended benefit is to

help the analyst realize what parts of her model would most benefit from ad-

ditional (mathematical) detail. The devil is in the details for elaborating such

mathematical models; I have selected ARMOR as an example to demonstrate

that it is nonetheless possible.

Finally, Taylor et al. (2011) report on the value of the ARMOR model relative

to the goals of the LAX security forces. The primary goal is feedback into the

effectiveness of the model (Taylor et al., 2011, p. 274) and with the explicit

secondary goal of providing data for evidence-based policy decisions (Taylor

et al., 2011, p. 282). Taylor et al. divide the security force’s goals into direct

5 Compare Craver (2007) and Illari and Williamson (2012).

202 the intrusion kill chain as a case study

benefits and indirect benefits, such that direct benefits are practicably meas-

urable whereas indirect benefits are generally not. These goals are for security

decision-support systems, and so should overlap with the my goals for logical

tools. The direct goals suggested are: “reduced security costs; attacks preven-

ted or mitigated during execution; increased numbers of attackers caught; or

reduced damage from successful attacks” (Taylor et al., 2011, p. 272). The

suggested indirect goals are: “attacks prevented through deterrence; increased

attacker planning time; increased requirements for a successful attack; im-

proved public perceptions of security; or improved (qualitative) assessments

of security by experts” (Taylor et al., 2011, p. 272). These goals apply to

cyber-defence generally as well.

5.4 conclusions

The intrusion kill chain is a model of attacks. As such, CSIR analysts use

it to understand the steps that have led to an incident. This chapter has

demonstrated how such attack models can be understood as mechaistic mod-

els, or, more accurately, multi-field clusters of mechanism schema. This view

provides analysts access to the heuristics for hypothesis generation discussed

in Chapter 4. I have also demonstrated how the structure of general mechan-

istic knowledge provides heuristics improving models of attacks by filling in

gaps.

Chapter 4 located the kill chain in a mechanism hierarchy related to botnets

and malware. In this chapter, I have located the kill chain related to specific

exploitation steps and within campaigns of attacks. Chapter 7 will further

enrich this web by located the kill chain model relative to NIDPS alerts on

the delivery phase of the kill chain and a natural method of composing the

results of multiple kill chain instances. Thus, through the repeated location

of clusters of mechanisms, we are building up general knowledge for incident

analysts.

Cybersecurity is now regarded by respected practitioners like Geer (2014) as

outside the comprehension of any single expert. The cybersecurity community

needs more structured communication between experts for the field to progress

with the necessary speed and accuracy to continue to be effective. Mechanistic

models are one way to provide this richer and more clear language to expand

on the models practitioners already use. Chapter 6 provides the necessary

foundation to move forward in Chapter 7 with another way to provide such

5.4 conclusions 203

precise and clear language that is needed by the CSIR community, comple-

mentary to and supported by the mechanistic example from this chapter.

6
SEPARATION LOGIC AS A CASE STUDY 1

This chapter focuses on logic as a technology by reflecting on the achievements

in verification of computer programs using logics as tools. Specifically, I will

trace the history of Separation Logic, a development within theoretical com-

puter science firmly established by Ishtiaq and O’Hearn (2001), O’Hearn and

Pym (1999) and Reynolds (2002). The result is a case study with multiple

uses. The paper on which this chapter is based argued for several uses, to both

logicians and philosophers. However, within this thesis, the primary purpose

of a historical case study on Separation Logic is to extract the features of a

formal system that make it work, in the sense that it is deployable and usable

in industrial ICT settings. In Chapter 7, I will seek to emulate and build with

these features. Additionally, this chapter introduces the formal definitions of

Separation Logic on which Chapter 7 will build.

6.1 introduction to separation logic

Separation Logic adds a connective to standard logic called ‘and, separately’

that solves a problem of reasoning about the resources a computer program

will need when it executes. This chapter will lay out what makes reason-

ing about computer resources hard and explain Separation Logic’s special

arrangement of properties that enable its effective use in program verification

problems.2 This chapter focuses on the current form of Separation Logic; for

1 This chapter is based on joint work, the paper: David Pym et al. (2018). ‘Why

separation logic works’. In: Philosophy & Technology. doi: 10.1007/s13347- 018-
0312-8.

2 The sub-discipline of logic and verification of computer programs has flourished

within wider computer science since at latest 1970 with the activity surrounding

Floyd–Hoare logic (Apt, 1981). The first academic conference dedicated to studying

programming languages, including the verification of languages using logic as a tool,

took place in 1973 (Principles of of Programming Languages, or ‘POPL’, http://www.
sigplan.org/Conferences/POPL/) and a dedicated journal appeared in 1979 (ACM

Transactions on Programming Languages and Systems, or ‘TOPLAS’, http://toplas.
acm.org). Independent publication venues help mark where an academic community

forges its own identity, characteristic problems, and norms. Program verification may

be some mix of computer science and logic, but it is also independent. I will focus

on the technical aspects of program verification. For a wider sociological view of

how program verification fits into the history of mechanizing proofs, see MacKenzie

(2004).

205

https://doi.org/10.1007/s13347-018-0312-8
https://doi.org/10.1007/s13347-018-0312-8
http://www.sigplan.org/Conferences/POPL/
http://www.sigplan.org/Conferences/POPL/
http://toplas.acm.org
http://toplas.acm.org

206 separation logic as a case study

an account of its development history, see Calcagno et al. (2015a) and O’Hearn

(2015).

There are two main reasons why Separation Logic works. First, it merges

with the scientific-engineering model the programmer uses to understand and

build software. This feature mirrors in some ways the dual abstract-physical

nature of computer code in general (Turner and Angius, 2017). Close interac-

tion between scientific models (the topic of prior chapters) and logical models

will be an important feature of the logic of incident analysis in Chapter 7.

Secondly, the proof theory developed to check software using Separation Logic

is based on rules for scaling the reasoning task, and has has been deployed in

numerous tools for formal reasoning about programs. These tools range from

‘proof assistants’ that are used by humans to automatic software analysis

tools that provide pragmatic and usable advice to software engineers during

development.

Program verification holds growing importance as a problem. Assigning the

appropriate resources to a computer program is important for efficiency, accur-

acy, reliability, and security. The 2016 Gödel prize, awarded to Brookes and

O’Hearn for resolving these resource management problems with Concurrent

Separation Logic, puts the problem in context:

“For the last thirty years experts have regarded pointer manipu-

lation as an unsolved challenge for program verification. . . ”

Program verification as a discipline is focused by the practical challenges of

making computer software function reliably, such as by assuring the program

claims, uses, and releases the correct resources at the correct times. Resource

allocation decisions are hard both in principle and in practice. In principle,

recall from Section 4.1 that given computer code (i.e., software), one cannot

determine a priori when or if the program will halt (Turing, 1936). In practice,

for small programs this impossibility-in-principle is overcome by estimates

based on past experience with similar programs. Modern software projects at

companies like Microsoft, Facebook, and Google have many millions of lines

of code, written by thousands of people. With such a fragile, distributed, and

complex system in which changing fives lines of code out of a million can

drastically change behaviour, estimates based on experience are inadequate.

Therefore, although software is a human artefact, one does not in general know

surely what any given computer code will do when executed. To overcome

these challenges, companies including Spotify and Facebook use Separation

6.1 introduction to separation logic 207

Logic to verify their mobile app software (Calcagno et al., 2015b) using a

tool called ‘Infer’. Separation Logic is not limited to one use; extensions of

it are used, for example, to verify operating-system scheduling (Xu et al.,

2016), a crash-tolerant file system (Chen et al., 2015), and an open-source

cryptographic operation (Appel, 2015). The scope of this case study is the

development of Separation Logic from fundamentals in logic through to real-

world application.

The resource about which Separation Logic can best reason is computer

memory, specifically Random Access Memory (RAM) (hereafter, simply

‘memory’). Appropriately resourcing memory for a computer program is an

important task within computer science. Memory errors are not easily handled

during program execution, and adversaries can use errors to remotely take

control of computers using open-source attacks.

Separation Logic was developed at a crossroads of two problems, a logical–

theoretical issue of reasoning about resources generally, and a technological–

computer-science problem of preventing errors in memory usage. This conflu-

ence led to a special constellation of properties. Under the right conditions,

interpreted the right way, the logical model can be at once a logic model and

a scientific model. To be a genuine joint logic-scientific model is to take on

the features and norms for use of models both in a logic and in a scientific

discipline.3 In practice, not just the model but also the proof theory adapts

to satisfice the needs of the engineering problem at hand (‘satisfice’ as per

Simon (1996)). I will not propose anything surprising about the features of

models. The surprise has come forward in powerful results for reasoning about

computer programs once Separation Logic was built with the constellation of

properties that genuinely make for features of both types of model.

Separation Logic is one example case out of several projects in computer

science that exhibit this simultaneity of logic and scientific models. In the

1970s, Floyd–Hoare logic merged the engineer’s notion of program execution

into first-order logic. However, Hoare logic by itself does not adequately adapt

to the task of efficiently reasoning about pointers and mutable data; proofs are

not practically tractable (Bornat, 2000). A primary feature of an engineering

model is to be satisfactorily useful, not merely to include considerations from

3 In the journal paper, we used ‘engineering’ here instead of ‘scientific’. But given my

arguments that computer security is a kind of science in Chapter 3, as well as my

prior work arguing computer science generally conducts experiments (Hatleback and

Spring, 2014), I will treat scientific and engineering models as interchangeable for

the purposes of this discussion.

208 separation logic as a case study

the engineered world. This further step is more rare. It requires adapting the

logic model, model structure, and proof theory to suit the engineering model

or task and to test that suitability empirically. For example, temporal logic,

as used in tools built by Amazon to manage its infrastructure, also seems to

have achieved this special merging of logic and engineering models (Newcombe

et al., 2015). This chapter will survey how Separation Logic has adapted its

features to the task of verifying a program’s use of memory. The logic is

adapted through its syntax and proof theory as well as its model structure –

the engineering model does not merely supply semantics to a logical syntax.

As Chapter 3 touched on, there is a historical connection between scientific

laws and logic models. The logical positivists in the mid-20th century held

that a scientific theory was a set of sentences in first order logic. The physical

world and its laws of nature are interpreted as a model of true scientific theories

(Frigg and Hartmann, 2012, §1.3). Logical positivism and this usage of model

have fallen out of favour. Practitioners use scientific or engineering models to

represent phenomena or data (Frigg and Hartmann, 2012, §1). To say here

that Separation Logic merges logic and engineering models, I do not mean a

by-definition (de dicto) merging reminiscent of logical positivism. I mean a

logic built and empirically tested to usefully reason about a phenomenon.

Although the computer scientists building tools such as Separation Logic

have not explicitly intended it, the result is logic as a technology that is com-

patible with the idea of general knowledge as clusters of related mechanisms

as put forward in Chapter 4. Each logic model is useful within its specific,

empirically-tested domain. If one switches to a different domain of computer

science problems, a different model likely applies. But these logics naturally

form related clusters of how practitioners use and understand them, such as

Separation Logic.

This case study focuses on practical questions of the efficient use of models

for reliable reasoning, not ontological questions of what processes are compu-

tation. The important part of Infer is that it predicts what a salient complex

object will do, not questions of whether physical objects compute (Piccinini,

2007) or whether a computation is a miscomputation or dysfunctional (Floridi

et al., 2015). This distinction gives a sense of the extent to which tools like

Infer are pragmatic, engineering projects. Yet, testing for mundane proper-

ties like stability still requires a novel development of a logical technology.

As Swoyer might say, Separation Logic represents computer programs ‘in a

medium that facilitates inference’ (Swoyer, 1991) about them.

6.1 introduction to separation logic 209

Another lens of interpretation for the case of Separation Logic is that of

scientific representation. Suárez (2010) distinguishes between analytical and

practical inquiries into the nature of representation. This chapter considers

Separation Logic tools to be a case study in pragmatic representation. The

case has value within the analytic–practical distinction because within these

verification tools one logical model (Separation Logic) is used as a pragmatic

representation of another system (computer code). Tools such as Infer have

both representational force and inferential capacities, as defined by Suárez

(2010, p. 97). This case study will describe the details of Separation Logic

that give it these two properties, thus making it both a model in the scientific

sense and in the logical sense. The following sections will support the claim

that this merging is a vital feature of what makes Separation Logic successful,

and is worth emulating. A logic model that is also a scientific model poses an

interesting case for analytical inquiry in future work. However, this chapter

will focus on the practical description of how programmers use Separation

Logic to solve problems using this form of model building.

The two categories of Separation Logic’s properties this chapter will elab-

orate are its semantics, which has a clear interpretation in the mathematical

model of computer memory, and its proof theory for composing reasoning

about resources, which is both automatable and modular so as to scale to

real-world problems. Both of these features are related to the properties of

the connective ‘and, separately’, represented in symbols as ∗. The primary in-

sight is to learn to recognize situations in which a logic model, by coincidence

or by design, usefully overlaps with a model of a practical problem. When

this coincidence is recognized and pursued, the development of both the logic

and the practical solution benefit. Pursuing this confluence will be my goal in

Chapter 7.

Separation Logic mirrors the computers in the physical world in a deep and

important way that first-order logic does not. Both atoms of Separation Logic

and computer parts are composable in a natural way. In some sense, the other

beneficial properties of Separation Logic derive from pursuing and refining

the benefits of a logical primitive (∗) that directly and cleanly captures the

compositionality of resources in the physical world.

Section 6.2 describes the context of the application, including details about

what challenges make program verification of allocation of computer memory

resources a hard and important problem to solve. Section 6.3 introduces the

properties of Separation Logic that meet the relevant challenges. Section 6.4

210 separation logic as a case study

surveys the logical properties (semantics, syntax, etc.) of Separation Logic,

focusing on its novel connective ‘and, separately’ (∗). Section 6.5 describes how

the Frame Rule and automated abduction make Separation Logic a solution

for reasoning about computer memory resources that is practical for large

software development firms to deploy. Section 6.6 concludes the chapter by

extracting advice from this case study for Chapter 7: that a simultaneous logic-

engineering model is a good start, but to succeed the logic model’s structure

must be exploited to give some measurable benefit.

6.2 solving a hard problem

Memory management is challenging, and errors potentially lead to unstable

behaviour, resource exhaustion, or security threats. Management of the com-

puter’s memory falls directly to the programmer in languages like C. This

section will introduce the importance of C-like languages and the task of

memory management. This description amounts to the programmer’s model

of what the computer does, a model very much like any other scientific model.

The main features of the model are pointers and memory locations, to which

this section will give a minimal introduction. This section will motivate why

problems in memory management matter, and why some other methods of

finding such problems are unsatisfactory. These gaps help understand some

reasons why Separation Logic works.

The C programming language was first developed in 1972, to implement

the UNIX operating system. Every major computer operating system is now

written using C. C and languages derived from it — such as Java, C++, C#,

and Python — may account for as much as half the computer code written

yearly.4 The impact of C is perhaps even more than this ratio indicates. As

part of the operating system, C code is in the critical path for almost any

computer task.

As introduced above, the programmer cannot in general know what her pro-

gram will do once written. The popularity of C has to do with its expressivity,

speed, and effectiveness. Unfortunately, its benefits do not include easy iden-

tification, or tolerance, of errors. The computer can check that it understands

the syntax the programmer wrote, which catches some errors. Beyond this,

4 There is no precise way to count code written; however, analysis of publicly available

web sites indicate C and descendant languages account for about half. See http:
//www.tiobe.com/tiobe_index.

http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe_index

6.2 solving a hard problem 211

one cannot readily predict errors5 that will occur during execution of the

program, known as run-time errors. There are various technical types of run-

time errors, but for present purposes let’s partition them into ‘annoying’ and

‘catastrophic’. Annoying errors lead to incorrect results, for example dividing

by zero. The program can catch annoying errors and recover. Catastrophic

errors lead to the program fatally failing, such as by crashing or exhausting

available resources. Recovering intermediate progress is not generally possible

after a fatal failure. If the program is able to exhaust all system resources, such

an error may bring down the rest of the computer system as well. Memory

management errors are one common type of catastrophic run-time error.

Memory management is not the only task for which Separation Logic

provides a suitable logical substrate. Task scheduling within an operating

system is another source of catastrophic run-time errors (Xu et al., 2016).

Section 6.5.2 touches on the use of Separation Logic to address this second

example; however, the memory management context is the primary example.

To see what makes memory management errors catastrophic, consider the

basics of computer memory.

The programmer’s model of memory management abstracts away from the

hardware. Computer memory is a slab of silicon electronics. Conventionally,

the smallest elements are binary digits, or bits, interpreted as 1 or 0 based

on whether the local voltage is high or low. The hardware is designed such

that any location can be read or written equally quickly (thus ‘random ac-

cess’ memory). Eight bits are usually grouped into a byte for the basic unit

of memory with which humans interact. The programmer thus models the

memory as a list of individual bytes, like houses on a very long street. In

64-bit operating systems, these bytes in memory are given an address from

one to 264 − 1.

Strictly, a pointer is the address of some object in memory. A pointer-

variable (usually, unhelpfully, just ‘pointer’) is a kind of variable that con-

tains an address; in particular, the address where some other variable’s value

is stored (Kernighan and Ritchie, 1988, p. 93). Pointers are well-known in

computer science to be both ‘extremely powerful’ and ‘extremely dangerous’

(Ishtiaq and O’Hearn, 2001, p. 1). Pointers are powerful because they allow

quick calculation over items in memory. Figure 6.1 demonstrates pointer ba-

sics. Each variable is represented by a square. Its name is above the square;

5 A programmer might take different dispositions towards errors, as summarized by

Petricek (2017).

212 separation logic as a case study

Value

Name p1

6

x p2

Figure 6.1: Anatomy of a pointer. Pointer p1 points to the variable x, whose
value is 6. The name for pointer p2 is reserved, but it does not
point anywhere; such a pointer has a special value called NULL.

contents are inside. If the content is a pointer, it is represented as a arrow to

its target. A pointer may be declared, to reserve its name, without a target,

which is represented by a wavy arrow without a target. A pointer with no

target has the special value NULL, and is called a null pointer. One common

memory management error which one can find with Separation Logic is when

a program attempts to use a null pointer in a situation that requires a pointer

with a valid value.

A more subtle pointer error is to lose track of items in memory. An item in

memory is only accessible if there is a pointer to it. Garbage is the official term

for memory which is allocated but not accessible. If memory garbage is not

cleaned up by the programmer, memory eventually gets clogged by allocated

but inaccessible data. This slow exhaustion of reserved memory by failure to

clean up is called a memory leak. Figure 6.2 demonstrates a method by which

a memory leak may occur. The term for cleaning up memory is to free it; that

is, release reservation on its use. Unfortunately, it is not so simple as to just

ensure the program frees all memory eventually. Errors when freeing memory

also lead to dangerous behaviour. If the program maintains and uses a pointer

to a memory location after freeing the memory, the location could have been

used by another program to store different data.

A program with a memory management error may behave erratically.

Whether this behaviour is catastrophic in a human sense depends on the

importance of the program. A word processor with a memory leak which

means it cannot run for more than four hours is probably fine. If the software

is for a continuously-operating air traffic control radar facility, it is more

severe.6

Memory management errors are also security problems. As Chapter 2 de-

scribed, CWE tracks canonical types of flaws that lead to security vulnerab-

ilities. The entries for null pointer exceptions, resource leaks, and memory

6 A 2015 Federal Aviation Administration (FAA) press release description of such a

failure suggests that the cause was a memory leak (FAA, 2015).

6.2 solving a hard problem 213

p1

6

p2

22

p1

6

p2

22

Set
p2 = p1

Figure 6.2: One example error involving pointers. The data element 22 is no
longer accessible, because there is no pointer to it. That memory
space has ‘leaked’ and cannot be freed (released back to the com-
puter) or accessed. Memory leaks eventually lead to resource ex-
haustion.

leaks (which are CWE-476, CWE-402, and CWE-401, respectively) provide

a long list of software that has been vulnerable to a hostile takeover due to

these memory management errors (MITRE, 2015). Again, the amount of harm

depends on the importance of the victimized computer. However, criminals

can use and resell the electricity and network connection of any computer, to

either hide more sinister attacks or rent as infrastructure for less technolo-

gically capable criminals (Sood and Enbody, 2013). Thus, it is important to

prevent vulnerabilities such as memory management errors in all computers.

These are two major reasons memory management errors are problematic.

They cause instability and make a program crash, which is bad for function-

ality and usability. They also frequently lead to exploitable security vulnerab-

ilities.

I will now switch from a survey of the challenges to a survey of the solutions.

There are two classes of methods to find flaws in computer software: static and

dynamic. In static analysis, one analyses symbolic and structural features but

does not run the code.In dynamic analysis, one runs the code and measures

what happens. With Separation Logic, one finds errors statically.

Success in program verification can be measured in at least four ways:

reduced software flaws, accuracy of findings, speed of analysis, or reduced

human time to fix software flaws. In practice, measuring how many flaws a

technique finds is easy to do but hard to interpret. The total number of flaws

remains unknown, because of Turing’s halting result discussed in Section 6.1.

Other, complementary explanations for why program verification might fail

include difficulty in communicating how one’s understanding of the program

214 separation logic as a case study

should change based on the verification (De Millo et al., 1979). A more fun-

damental historical contention by Fetzer (1988) is that abstract formalisms

such as proofs are categorically about different types of things than physical

computer operations, and so the former cannot, strictly speaking, deductively

demonstrate properties of the latter. It shall become clear that Separation Lo-

gic works because it supports reasoning about physical systems using formal

systems specifically by designing the two types of systems with overlap in

important and reliable ways.

Regardless of exactly why, it is evident that one cannot know for certain

how many flaws remain undetected after a verification attempt. Therefore, cal-

culating accuracy or relative reduction of flaws is impracticable. The problem

is that finding 99 flaws could equally well be 99% effective or 2% effective. A

more interpretable measure for the software industry is the rate at which found

flaws are able to be fixed. This measure relates to analysis speed, because hu-

mans fix software better if given fast feedback. These desirable engineering

outcomes suggest static analysis.

To make progress with static analysis, one must take a defined subset of the

general problem of all software flaws. To target memory in particular, elements

of Separation Logic faithfully incorporate the engineer’s model of how the

computer manages memory; that is, pointers as previously described. Within

verification software such as Infer, the logic model and the engineering model

will coincide. This confluence overcomes several of the challenges described in

this section to more effectively prevent memory management errors.

Pure technical logical matters are not sufficient for success. Brooks’ essay

(Brooks Jr, 1995) is an example starting point for general software engineer-

ing considerations. For a program analysis tool such as Infer, integration with

an organization’s programming culture and process is significant work; see

O’Hearn (2015). For logic to impact software engineering practice of artefacts

such as operating systems or cryptography software, in which proofs of proper-

ties closer to functional correctness are important, effective integration with a

powerful proof assistant is critical (Appel et al., 2014). While these contextual

questions are important, this chapter will focus on the features of the logic

and its model that contribute to its success, not on the additional contextual

factors which are nonetheless important.

This section introduced pointer management in computer memory. Pointer

mismanagement can lead to serious stability and security flaws. Such flaws

are hard to find dynamically during run-time. However, finding such flaws

6.3 why separation logic works 215

statically, based on the program’s source code, has historically been too hard

to do well enough to be useful. The following sections describe how Separation

Logic succeeds at this task. Section 6.3 introduces all the properties of the

logic that contribute to success. Separation Logic’s properties that make it

useful can be tackled in two broad categories: semantics (Section 6.4) and

proof theory (Section 6.5). I will argue that the logic undergoes a holistic

adaptation to meet the practicalities of the engineering task.

6.3 why separation logic works

Separation Logic works for solving this problem of reasoning about memory

allocation because of a group of features:

• A useful engineering model of computer memory;

• A logical model and language that are grounded, respectively, in an

interpretation of and semantics for exhaustible resources;

• The productive overlap of these two (types of) models;

• The use of the connective ∗ for ‘and, separately’, from the logic of

bunched implications (BI), to facilitate the formulationof a ‘Frame Rule’

to support compositional local reasoning; and

• Scalable pre- and post-conditions.

The first three elements are modelling choices that provide a powerful capacity

for prediction of computer memory usage which is not otherwise available. The

latter two elements support a scalable algorithm for calculating and proving

these predictions for a given computer program.

BI can be interpreted as a logic of exhaustible resources (Galmiche et al.,

2005). For example, if one has 10 coins, it is certainly true that one has the

capacity to buy a tea that costs 4 coins. It is also true that one has the

capacity to buy a lemonade that costs 5 coins and the capacity to buy a beer

that costs 7 coins. It is not, however, true that one has the capacity to buy

both a lemonade and, separately, a beer – 12 being more than 10. 10 coins

does provide the capacity to buy both a tea and and a lemonade, or two

lemonades. The resource-interpretation of BI’s semantics provides a precise

interpretation of formal logical statements of such cases. More specifically,

BI makes a distinction between the usual logical ‘sharing’ conjunction, for

example,

‘10 coins is enough for a lemonade and is enough for a beer’

216 separation logic as a case study

which is true only if the resource of 10 coins can be shared or ‘reused’ by the

two parts of the statement, and the separating conjunction, for example,

‘10 coins is enough for a tea and, separately, a lemonade’

where the resource of 10 coins must be divided, or separated, into those re-

quired for each part of the statement.

Computer memory, like money, is an example of an exhaustible resource.

Though a computer is, basically, electricity and magnetism in silicon, com-

puter programmers7 do not write software as if they were individually manipu-

lating millions of tiny magnets. Like most engineers, a programmer works with

a model of what she is building. To the programmer, the model of computer’s

memory is provided by the stack and heap. In a violently simplified analogy,

the stack is what you’re doing, and the heap is what you’re working on. These

metaphorical names are evocative of their function. The stack is an ordered

array of data elements, and the computer can only put elements on the top,

and take them off the top. This structure ensures an orderliness and efficiency

good for sequential recursive instructions but not good for big chunks of data.

In the heap elements can be accessed in any order but only if the program’s

stack has a pointer to the information’s location in memory. Note that the

stack maps variables into values, whereas the heap maps addresses into values

(Reynolds, 2002).

Though the programmer’s model abstracts away from it, location here has

a physical interpretation. Computer memory is an apparatus with a numerical

address for each microscopic bit in its vast silicon plane. Like the structural

engineer who has mathematical equations that inform her choices for bridge

design, the programmer uses the model of the stack and heap to inform soft-

ware development. In both cases, the engineer’s model’s prediction is not

perfect, and the bridge or the program could collapse despite best efforts.

One success of Separation Logic is to merge the logic-model and the

engineering-model. The stack and the heap have formal representations in

Separation Logic, with the heap as a resource. A programmer’s models of

memory can be expressed as sentences within Separation Logic without unac-

ceptable loss of applicability to the real world. Sentences in Separation Logic

have deductible consequences, and can be proved. In the computing context,

this amounts to proving properties of future behaviour of possible program

7 Instead of ‘programmer’, one may find ‘(software) developer’, ‘coder’, or ‘software

engineer’. These terms have differing connotations across various communities, which

are not relevant here. I just mean anyone who writes software.

6.3 why separation logic works 217

executions. Such proofs enhance the engineering-model of the program directly.

If the logic deduces a section of the program code will make a memory-usage

error, the code can be tested empirically to verify the error and gather inform-

ation about the mechanism by which the error is committed. These logical

and empirical results update the programmer’s model of the software, and

she fixes the code accordingly. Although the engineering-model is of a built

system, the programmer updates this model similarly to how natural scientists

might update their model of a phenomenon after using a tool to observe it.

In this case, logic is a primary tool, as opposed to telescopes or microscopes

in other sciences.

An engineer’s model commonly merges mathematical modelling with some

subject-matter expertise to make predictions. For example, a structural engin-

eer can use mathematical models to predict when stress on a bridge element

will exceed its shear strength because of established accurate physical meas-

urement of each material’s properties, gravity, etc. But computers are devices

made up of logic more-so than metal. However, just as with bridges, when

building a computer and software, one does not know everything that the

computer will do just because an engineer designed it. There are interactions

with the world that are unpredictable. Logic is one of the subject-matter ex-

pertise areas programmers use, as a structural engineer uses materials science.

Also similar to other engineering or science disciplines, using the correct logic

is important. The correct logic for a programming task is determined empir-

ically; in our8 experience with Separation Logic, the process seems similar to

the usual scientific model-building.

There are four distinct logical elements which have made separation logic

successful: the connective ∗, Hoare triples, the Frame Rule, and the specifica-

tion of automatable abduction rules.

6.3.1 The separating conjunction

The connective ‘and, separately’ (∗) is related to the familiar connective for

conjunction (∧). One writes φ ∧ ψ for the situation w |= φ ∧ ψ (read w |= . . .

as ‘the world w “supports” or “satisfies” . . . ’) if and only if (abbreviated iff)

w |= φ and w |= ψ. One can make a different conjunction, ‘and, separately’ to

capture the resource interpretation for reasoning about exhaustible resources.

8 This attestation is David’s and Peter’s experience, filtered through our discussions

218 separation logic as a case study

This construction requires a little more knowledge about the world w that

supports φ ∗ ψ to say when w |= φ ∗ ψ. The world needs to be able to be

broken up into disjoint parts, which is usually represented as w1 · w2 = w to

say w1 composed with w2 is w. Given this decomposition, then w |= φ ∗ ψ iff

there are w1 ·w2 = w such that w1 |= φ and w2 |= ψ (Galmiche et al., 2005).9

The difference between w |= φ ∧ ψ and w |= φ ∗ ψ is just that aspects of

the world can be reused to satisfy conjunction, but not with the separating

conjunction. This difference is most obvious in that if w |= φ, then w |= φ∧φ

is always true, but w |= φ ∗ φ need not be true, because it may be the case

that there is one part of the world that satisfies φ (w1 |= φ), but the rest of

the world does not (w2 2 φ). If φ is ‘I have enough money to buy a drink’,

then w |= φ ∧ φ says nothing new, but w |= φ ∗ φ says I have enough money

to buy two drinks.

6.3.2 Hoare triples

The second technical element that enables the success of Separation Logic

is the Frame Rule. Separation Logic builds on Floyd-Hoare logic (Apt, 1981)

(henceforth, ‘Hoare logic’). Hoare logic developed through the 1970s specific-

ally to reason about the execution of computer programs. The intuition is

straightforward: proving the relevant properties of a program C amounts to

proving that whenever a certain precondition holds before executing C, a

certain postcondition holds afterwards. This statement, known as a Hoare

triple, is written formally as

{φ}C {ψ},

where φ is the precondition and ψ is the postcondition. Hoare logic provides

various proof rules for manipulating triples. For example, composing two pro-

gram fragments if the postcondition of the first is the precondition of the

second. Such deductions are written as

{φ}C1 {χ} {χ}C2 {ψ}
{φ}C1 ; C2 {ψ}

with the given statements on top and the deduced statement below.

9 This treatment of ∗ is for Boolean BI, where the set of worlds is not ordered. An

intuitionistic definition (see Section 6.4.2) requires that w1 · w2 v w, where v is a

preorder that is defined on the set of worlds and which satisfies monotonicity.

6.3 why separation logic works 219

6.3.3 Frame Rule

The Frame Rule permits one to combine a Hoare triple with ∗ – for ‘and,

separately’ – to reason about just the local context of a program fragment.

This support for local reasoning is critical, supporting compositional reason-

ing about large programs by facilitating their decomposition into many smaller

programs that can be analysed and verified independently. This analysis relies

on the compliance of resource semantics with Frege’s principle that the mean-

ing of a composite expression be determined by the meanings of its constituent

parts.

Logicians write the Frame Rule as

{φ}C {ψ}
{φ ∗ χ}C {ψ ∗ χ}

provided χ does not include any free variables modified by the program C

(that is, formally, Modifies(C) ∩ Free(χ) = ∅). The Frame Rule is powerful

because it lets analysts ignore context they have not changed. Reasoning loc-

ally, as opposed to globally, is vital when analysing large programs. Normally,

a program verification technique would have to re-evaluate a whole program

if one line changes. When the program has even ten thousand lines of code

this is prohibitively inefficient. Industrial scale program analysis must analyse

millions of lines of code, and so without the ability to reason locally any

approach will fail.

The sorts of preconditions and postconditions that are interesting are dir-

ected by the programmer’s goals for modelling. Abstracting away from the

details of a computer, the precondition may be something like ‘there exists an

available resource not currently in use’ and the postcondition may specify the

details of ‘nothing bad happened’ or ‘the program worked’. The Frame Rule

is powerful because now one can break the program up into disjoint parts.

Having proved {φ}C {ψ} for one parts, one can take χ to be the union of

all other pre- and post-conditions of disjoint parts of the program and know

{φ∗χ}C {ψ ∗χ} without having to re-prove the statement in the new context.

Thus, if a million lines of code can be broken up in to ten thousand disjoint

fragments, then after a code modification in one it is only needful to prove

{φ}C {ψ} for that fragment and not the 9,999 others.

220 separation logic as a case study

6.3.4 Automatable abduction

With these two design choices in place, I’ll introduce the last – automatable

abduction. Local reasoning is helpful for reasoning about programs at scale,

but a human still has to be rather clever and expert to choose exactly the right

pre- and post-conditions. There are simply not enough clever experts to do

this at scale. Large software development companies have many hundreds of

developers who each need their code checked and analysed within a few hours

of making complex changes. A human logician might take days to figure out

the right conditions for the Hoare triples for each code change. Even if that

many experts could be trained, no company is likely to pay for that sort of

increased labour cost. Separation Logic works because of abducing potential

pre- and post-conditions to test.

Industrial-scale use of logic for proving program properties requires a de-

ployable proof theory. The combination of local reasoning and abduction sup-

port a deployable proof theory for Separation Logic. Abduction, as introduced

by Peirce (Bergman and Paavola, 2016), is akin to hypothesis generation.

Initial implementations of Separation Logic to analyse programs required a

human analyst to provide the pre- and post-conditions. However, logicians

have been able to automate abduction within the scope of well-defined and

well-structured problems (O’Hearn, 2015). One such automatic analysis pro-

gram, Infer, is published freely as open-source for anyone to use (Calcagno

et al., 2015b).

Computer code is not arranged into Hoare triples, so verification tools must

create that logical structure as they read and analyse the program. A pre- or

post-condition may be established in a segment of the code far distant from

where they are needed or checked. One cannot build a table of all possible

combinations of legal Hoare triples to solve this problem; the number is as-

tronomically large for even modest programs. Abduction makes this problem

manageable by determining at analysis-time what conditions a segment of

code might expect. Pre-determining the full extent of such conditions, as is

necessary for many other analyses, is prohibitively expensive. The trade off for

this benefit is that each abductive hypothesis is not perfect. But each hypo-

thesis can be tested quickly and the results reused. The analysis program can

quickly and soundly check each hypothesized pre- and post-condition; because

reasoning is local (per the Frame Rule) the result can be stored and reused

easily.

6.4 the semantics of separation logic 221

Separation logic is useful because it calculates predictions of hard-to-handle

computer program execution errors; this is well known. Why separation logic

is so effective at this useful task was not deeply questioned. Yet, understanding

successful tactics will help reproduce success in different areas of inquiry, of

which there are many in logic and computer science. The thesis I will argue

for is that the useful predictions are generated by the convergence of two

senses of the word model and an effective proof theory. Namely, the logic

model designed specifically for the task and the programmatic-engineering

model of what the computer and its software actually do. A proof theory is

effective only if it meets the engineer’s goals, which in this case are timely and

explanatory prediction of errors.10

This section has introduced the features of Separation Logic that are adap-

ted for it to become an adequate engineering model. Section 6.4 introduces

the semantics of Separation Logic; the exposition reinforces the integration of

the logic and engineering models. Section 6.4 can be skipped without loss of

continuity. Section 6.5 discusses two features that contribute to making the

proof theory ‘deployable’ – local reasoning, as supported by the Frame Rule,

and automated abduction. These details will demonstrate directly that the

logic model and the engineering model are inescapably and intricately inter-

twined. This confluence is a source of Separation Logic’s success in analysing

programs.

6.4 the semantics of separation logic

The development of Separation Logic has been influenced by many ideas and

systems, from program verification developed in the 1970s through to how

tech giants produce computer programs today. One formative idea is Hoare’s

development of assertion programs, with the insight that valid program ex-

ecution can be interpreted as a logical proof from the preconditions to the

postconditions (Apt, 1981). However, the familiar classical logical connectives

— ¬, ∨, ∧, and → — and quantifiers — ∃ and ∀ — did not capture the

resource management problems that computer science then found intractable.

10 That results must be timely is straightforward. That the result also provides satis-

factory explanation of the error is equally important. Practically, the programmer

must receive enough detail to locate and fix the error. Psychologically, programmers

are less likely to trust an arcane or unintelligible report than a transparent docu-

mentation of the entities and activities responsible for the error. This transparency

merges a sense of adequate scientific explanation with the logical community’s sense

of when a proof is both convincing and elegant.

222 separation logic as a case study

Linear Logic (Girard, 1987), originally developed as a tool in proof theory,

introduced an explicit single-use resource interpretation and a modality (!)

to mark resources as being usable as many times as needed. Although linear

logic has enjoyed much success, the resource-management problem remained

out of its reach.

With the benefit of hindsight, what was necessary was a logic of resources

with a structure that was composable and decomposable in a way that mir-

rors the composability of resources in the physical world. Resources in linear

logic are usable once, or infinitely many times. This pattern does not match

real-world resources like sandwiches or money. How many hungry people a

sandwich satisfies depends on how many parts it can be decomposed into that

independently satisfy a hungry person. This number is often more than one

but less than ‘as many as needed’. Those working to develop Separation Logic

into a verification tool wanted a logical structure that mirrors this behaviour.

This section will present three historical stages of exposition to reach this

structure: first, bunched logic, then the semantics of bunched logic, and fi-

nally the semantics for resources in separation logic. Thus, the history will be

a technical history, traced through the formal developments. I highlight how

these logical tools continued to be developed until the logical model and tools

met the needs of program verification practice.

6.4.1 Bunched Logic

O’Hearn and Pym (1999) introduced BI. In its initial form, BI can be under-

stood as freely combining the intuitionistic propositional connectives (additive

connectives in BI) with the multiplicative fragment of intuitionistic linear logic

(multiplicative connectives in BI).

The idea of bunching is used to formulate natural deduction and sequent

calculus proof systems for BI. Bunching is an older idea from relevant logic;

see, for example, Dunn and Restall (2002) and Read (1988). The key point

is that proof-theoretic contexts are constructed using two operations, one

corresponding to the additive conjunction, ∧, and one corresponding to the

multiplicative conjunction, ∗.

6.4 the semantics of separation logic 223

To see how this works, consider the natural deduction rules for introducing

the additive and multiplicative conjunctions, ∧ and ∗, respectively. If Γ ` φ is

read as ‘φ is provable from assumptions Γ’, then the introduction rules are:

Γ ` φ ∆ ` ψ
Γ; ∆ ` φ ∧ ψ ∧ I and Γ ` φ ∆ ` ψ

Γ,∆ ` φ ∗ ψ ∗ I.

Notice that the ∧I rule combines the contexts Γ and ∆ using semi-colon,

corresponding to ∧, whereas the ∗I rule combines them using the comma.

Semi-colon admits the contraction and weakening rules,

Θ(Γ ; Γ) ` φ
Θ(Γ) ` φ C and Θ(Γ) ` φ

Θ(Γ ; ∆) ` φ W,

respectively, whereas the comma does not. The form of these rules draws

attention to a key point; bunches are trees, with leaves labelled by propositions

and internal vertices labelled with ‘ ; ’ and ‘ , ’.

Contraction is what permits the simple additive form of the ∧I rule. What

is meant when one says the context Γ is shared between the two components

of the conjunction is just ∆ = Γ in ∧I.

6.4.2 The Semantics of Bunched Logic

The semantics of BI can be seen as being based on the notion of resource. Intuit-

ively, the builders of Separation Logic sought to bridge a scientific-engineering

concept of resources with a logical model that allows reasoning about resources.

An English description of the properties of resources was translated to a math-

ematical description of these properties in the form of a monoid, which was in

turn translated to a structure that permits interpretation of logical sentences

and the determination of logical satisfaction (i.e., a model). Specifically, two

central properties of an engineering model of resource, bearing in mind the

examples of interest as discussed above, are as follows.

• Given two elements of a given type of resource, it should be possible,

subject to an observation spelled out below, to combine them to form

a new element of that type of resource. In the example of coins in

Section 6.3, combination was the addition of numbers of coins.

• Given two elements of a given type of resource, it should be possible to

compare them. In the coin example from Section 6.3, the usual math-

ematical less-than relationship is a meaningful comparison between the

224 separation logic as a case study

number of coins available (10) with the number required to buy both a

lemonade and a beer (12).

Mathematically, these ’axioms’ for resource were captured conveniently by

requiring that a given type of resource carry the structure of a preordered

partial commutative monoid.11 That is, a (type of) resource R is given as

R = (R, ·, e,v),

where R is the set of resource elements of the given type, · : R × R ⇀ R is a

partial function, e is a unit (or identity) element for · such that, for all r ∈ R,

r · e = r = e · r, and v is a preorder on R. In coin example case, the monoid

of resources can be taken to be the ordered monoid of natural numbers,

(N,+, 0,≤).

The partiality of · reflects that in many natural examples of resource, such

as computer memory, not all combinations of resource elements will be defined.

In this coin example, addition of natural numbers happens to be total, but this

is not necessary. Where it helps clarity, I write r ↓ to denote that a resource

r is defined.

Finally, for technical mathematical reasons, logicians required that the com-

bination · and comparison v of resources should interact conveniently. Spe-

cifically, the following functoriality condition is required: for all r1, r2, s1,

s2,

r1 v r2 and s1 v s2 implies r1 · s1 v r2 · s2.

For example, in the ordered monoid of natural numbers, (N,+, 0,≤), if m1 ≤

m2 and n1 ≤ n2 implies m1 + n1 ≤ m2 + n2.

This set-up is known as resource semantics. The technical choices made in

setting up resource semantics provide a mathematical representation of the

engineer’s model of the two desired properties about resources. This mathem-

atical structure is a necessary step to translate between the English-language

description of resources and a formal logical model one can reason with auto-

matically. For a more detailed history and sociology of the way the mathem-

atical structure of monoids have been used in computer science, see Petricek

11 A preorder v on a set S is required to be reflexive and transitive. It is not a total

order.

6.4 the semantics of separation logic 225

(2018). This mathematical structure is exactly what is required to define a

formal logical model of BI.

The starting point for this is intuitionistic logic (Kripke, 1965) and its

Kripke semantics in which an implication φ→ ψ is interpreted as a function,

or procedure, that converts evidence for the truth of φ into evidence for the

truth of ψ. Technically, this is achieved using a preorder on the set of possible

worlds, or states of knowledge (Van Dalen, 2004): if an observer can establish

the truth of ψ from the truth of φ at its current state of knowledge, then it

must also be able to do so at any greater state of knowledge; this is called

monotonicity.

A similar interpretation can be applied to the separating conjunction, ∗,

described in Section 6.3. Where r |= φ ∗ φ says I have enough money to buy

two drinks, if r v s, then it will always be the case that s |= φ∗φ. Intuitively, if

r is a world in which you have 10 coins, and that is enough for two lemonades,

then in any world where you have at least 10 coins (i.e., s) will also satisfice

for two lemonades.

Monotonicity is defined formally below.

With these interpretations in mind, and assuming (i) a ‘resource monoid’

R = (R, ·, e,v), (ii) that r |= φ is understood as ‘the resource r is sufficient

for φ to be true’, and (iii) for each atomic proposition p, a set V(p) of resource

elements that are sufficient for V(p) to be true, consider a formal semantics

to BI as follows, where r |= φ is read, as before, as ‘the world r supports, or

satisfies, the proposition phi’:

r |= p iff r ∈ V(p)

r |= ⊥ never

r |= > always

r |= φ ∨ ψ iff r |= φ or r |= ψ

r |= φ ∧ ψ iff r |= φ and r |= ψ

r |= φ→ ψ iff for all r v s, s |= φ implies s |= ψ

r |= I iff r v e

r |= φ ∗ ψ iff there are worlds s and t such that (s · t)↓ v r

and s |= φ and t |= ψ

r |= φ−∗ψ iff for all s such that s |= φ and (r · s) ↓,

r · s |= ψ.

226 separation logic as a case study

All propositions φ are required to satisfy monotonicity: if r |= φ and r v r′,

then r′ |= φ.

With this semantics and with a system of rules of inference along the lines

of the ones sketched above, Galmiche et al. (2005) and Pym et al. (2004)

obtain soundness and completeness theorems for BI: the propositions that are

provable using the inference rules correspond exactly to the ones that are true

according to the semantics.

In the context of this semantics, the significance of the contraction and

weakening rules can now be seen: they explain how the semi-colon combines

properties of resources that may be shared whereas the comma combines

properties of resources that must be separated.

This description is the original, intuitionistic formulation of BI. However,

Separation Logic in fact builds on the classical or ‘Boolean’ variant (Ishtiaq

and O’Hearn, 2001; Reynolds, 2002). Boolean BI is based on classical logic,

so that the implication φ → ψ is defined to be (¬φ) ∨ ψ, where the negation

satisfies the classical ‘law of the excluded middle’. Technically, Boolean BI

works with a resource semantics based on simply partial commutative monoids,

without including a preorder. That is,

R = (R, ·, e),

where R is the set of resource elements of the given type, · : R × R ⇀ R is a

partial function, e is a unit (or identity) element for · such that, for all r ∈ R,

r · e = r = e · r.

With models of this form, the semantics of Boolean BI is given as above,

but with the following variations:

r |= φ→ ψ iff r |= φ implies r |= ψ

r |= I iff r = e

r |= φ ∗ ψ iff there are worlds s and t such that (s · t) ↓= r and

s |= φ and t |= ψ.

Notice that in Boolean BI the separating conjunction divides the resources

exactly.

6.4 the semantics of separation logic 227

6.4.3 The Resource Semantics of Separation Logic

The resource semantics described above, much richer than that in linear logic

(Girard, 1987), allowed the construction of specific logical models for a charac-

terization of computer memory. Characterizing memory addressed challenging

problems in program verification (Ishtiaq and O’Hearn, 2001). Over the next

15 years, this logic acquired the name Separation Logic (O’Hearn, 2007; Reyn-

olds, 2002) and developed into a reasoning tool successfully deployed at large

technology firms like Facebook (O’Hearn, 2015) and Spotify (Vuillard, 2016).

This section will explain how the semantics of (Boolean) BI forms the basis of

Separation Logic.

Ishtiaq and O’Hearn (2001) introduced ‘BI Pointer Logic’, based on a spe-

cific example of Boolean BI’s resource semantics. Three points about BI Pointer

Logic are important to the historical development of a logical model adapting

sufficiently closely to the engineer’s model to be useful.

• First, its resource semantics is constructed using the stack, used for

static, compile-time memory allocation, and the heap, used for dynamic,

run-time memory allocation.

• Second, the semantics of the separating conjunction, ∗, splits the heap,

but not the stack. The stack contains the allocations required to define

the program, which are unchanged at run-time; the heap contains the

allocations made during computation.

• Third, it employs a special class of atomic propositions constructed

using the ‘points to’ relation, 7→: E 7→ E1, E2 means that expression

E points to a cons cell E1 and E2. (It also employs a class of atomic

propositions which assert the equality of program expressions, but this

is a standard formulation.)

These factors combine to give an expressive and convenient tool for making

statements about the contexts of heap (cons) cells. For example, the separating

conjunction

(x 7→ 3, y) ∗ (y 7→ 4, x)

says that x and y denote distinct locations. Further, x is a structured variable

with two data types; the first, an integer, is 3, and the second is a pointer to y.

The variable y denotes a location with a similar two-part structure in which

the first part, also called the car, contains 4 and the second part, sometimes

228 separation logic as a case study

called the cdr (‘could-er’), contains a pointer back to x (Ishtiaq and O’Hearn,

2001). Note that the pointers identify the whole two-part variable, not just

the car. Figure 6.3 displays this linked list relationship.

x y

3 4

Figure 6.3: As in Figure 6.1, variable names are listed above their square,
and contents of the variable are inside the square. The diagram
represents the logical statement (x 7→ 3, y) ∗ (y 7→ 4, x).

Separation Logic can usefully and safely be seen, per O’Hearn and Yang

(2002), as a presentation of BI Pointer Logic. The semantics of BI Pointer

Logic is an instance of the resource semantics of first-order Boolean BI in

which the monoid of resources is constructed from the program’s heap. In

detail, this model has two components, the stack and the heap. The stack is

a partial function mapping from variables to values, a ∈ Val, such as integers,

and the heap is a partial function from natural numbers to values. In logic,

the stack is often called the valuation, and the heap is a possible world. In

programming languages, the stack is sometimes called the environment.

Within this set-up, the atomic formulae of BI Pointer Logic include equality

between expressions, E = E′, and, crucially, the points-to relation, E 7→

F . This set up requires some additional notation for the components of the

computer and how the logic handles them. dom(h) denotes the domain of

definition of a heap h and dom(s) is the domain of a stack s; h#h′ denotes

that dom(h)∩ dom(h′) = ∅; h · h′ denotes the union of functions with disjoint

domains, which is undefined if the domains overlap; [f | v 7→ a] is the partial

function that is equal to f except that v maps to a; expressions E are built

up from variables and constants, and so determine denotations JEKs ∈ Val.

With this notation, the satisfaction relation for BI Pointer Logic is defined as

in Figure 6.4.

6.4 the semantics of separation logic 229

s, h |= E = E′ iff JEKs = JE′Ks
s, h |= E 7→ (E1, E2) iff JEKs = dom(h) and

h(JEKs) = 〈JE1Ks, JE2Ks〉
s, h |= emp iff h = [] (the empty heap)

s, h |= φ ∗ ψ iff there are h0, h1 s.t. h0 #h1,
h0 · h1 = h, s, h0 |= φ and s, h1 |= ψ

s, h |= φ−∗ψ iff for all h′, if h′ #h and s, h′ |= φ,
then s, h · h′ |= ψ

s, h |= ⊥ never
s, h |= φ→ ψ iff s, h |= φ implies s, h |= ψ

s, h |= ∃x . φ iff for some v ∈ Val, [s | x 7→ v], h |= φ

Figure 6.4: The satisfaction relation for BI Pointer Logic (Ishtiaq and
O’Hearn, 2001).

The judgment s, h � φ says that the assertion φ holds for a given stack and

heap, assuming that the free variables of φ are in the dom(s).

The remaining classical connectives are defined in the usual way: ¬φ = φ→

⊥; > = ¬⊥; φ ∨ ψ = (¬φ)→ ψ; φ ∧ ψ = ¬(¬φ ∨ ¬ψ); and ∀x . φ = ¬∃x .¬φ.

The definition of truth for BI Pointer Logic – that is, its satisfaction relation

– provides a clear illustration of the merging of logic-models and engineering-

models. The stack and the heap and how they are manipulated by programs

are considered directly by working programmers; indeed, memory manage-

ment at this level of abstraction is a key aspect of the C programming language

(see Kernighan and Ritchie (1988) for descriptions of the history, definition,

and usage of C). BI Pointer Logic, with its truth-functional semantics of the

form

s, h |= φ

provides elegant semantics for reasoning about the correctness of programs

that manipulate computer memory.

However, this is not yet the full story of how Separation Logic was imple-

mented. Hoare logic, based on triples {φ}C {ψ}, is both more natural and

convenient for reasoning directly about the behaviour of programs. The main

reason why Hoare triples are so convenient is that they directly include code,

C, whereas BI Pointer Logic is formulated wholly in terms of properties of the

contents of memory. These two points of view were connected by providing

230 separation logic as a case study

a semantics of Hoare triples in terms of BI Pointer Logic (Calcagno et al.,

2007). There are essentially two ways of connecting them, depending upon

on the strength of requirements on the behaviour of the code. The behaviour

of code is expressed in terms of the evaluation of a program C, using stack

s and heap h, with respect to sequences of steps defined by its operational

semantics (). Code behaviour is essentially denoted by C, s, h ∗ s′, h′,

read as ‘the program C transforms the memory configuration s, h into the

memory configuration s′, h′. There is a special configuration, fault, indicating

a memory fault or abnormality.

The first semantics for Hoare triples, partial correctness, relies on the notion

of safety,

C, s, h is safe if C, s, h 6 ∗ fault

and is the ‘fault-avoiding’ interpretation, per O’Hearn and Yang (2002).

Partial correctness semantics: {φ}C {ψ} is true in a model of Pointer

Logic if, for all s, h, it is the case that s, h |= φ implies

– C, s, h is safe, and

– if C, s, h ∗ s′, h′, then s′, h′ |= ψ.

The second semantics, called total correctness (O’Hearn and Yang, 2002),

does not require the safety condition because it requires the ‘stronger’ property

of ‘normal’ termination, which requires the program returns a value that lies

within its intended range of outputs:

Total correctness semantics: {φ}C {ψ} is true in a model of Pointer

Logic if, for all s, h, it is the case that s, h |= φ implies

– C, s, h must terminate normally, and

– if C, s, h ∗ s′, h′, then s′, h′ |= ψ.

These definitions took the development of a Frame Rule for Separation

Logic most of the way. The further necessary elements were some non-trivial

technical development as well as soundness (that the rule transforms true

properties into true properties) and completeness (that the rule derives one

specification statement from another just when this inference holds semantic-

ally) theorems for the Frame Rule. The formal statement of the Frame Rule

for Separation Logic is (O’Hearn and Yang, 2002):

{φ}C {ψ}
{φ ∗ χ}C {ψ ∗ χ}

Modifies(C) ∩ Free(χ) = ∅,

6.5 deployable proof theory for separation logic 231

This theorem says, roughly, that conclusions about what a set of instructions

(C) does can ignore the activity in other parts of the program, so long as those

other parts do not interact with the variables used by the set of instructions.

Together, the above theorems give precise mathematical expression to the

coincidence of the logical and engineering models of computer memory alloc-

ation. More explicitly, given soundness and completeness properties for the

Frame Rule (O’Hearn and Yang, 2002), it exactly characterizes logical truth

for local reasoning about memory allocation.

This section provided some detail on the novel aspects of Separation Logic’s

semantics, and how they support reasoning about computer memory as a

resource. At heart, the atoms of the logic are composable in a way that mirrors

the way that the physical substrate is composable. The physical transistors

come apart, and one can make meaningful claims about affixing or pulling

apart bits of silicon that have reliable impacts on the changes to the electrical

and computational properties of the physical system. The structure of the

logical model using partial commutative monoids and ∗ allows claims made

using Separation Logic to naturally mirror this physical fact.

Section 6.5 will detail the cluster of properties surrounding the proof theory

of Separation Logic that make it a successful engineering tool. These details

are related to the composability of ∗ through the Frame Rule, as it is leveraged

for efficient computation of results. Equally important to the deployability of

the proof theory is the automation of bi-abduction for generating hypothetical

pre- and post-conditions to drive proof solutions. The abductive rules in use

are essentially encodings of engineer’s heuristics about computer memory us-

age, further demonstrating the deep ways in which the logical and engineering

aspects of the task merge in Separation Logic.

6.5 deployable proof theory for separation logic

An important consequence of a system of logic having a completeness theorem

is that its proof system can be used as a basis for formal reasoning within it.

Consequently, the study of the automation of proof systems — that is, the

provision of computationally feasible presentations of proof systems — is a

widely studied topic in modern logic. Perhaps the most famous example is the

provision of resolution systems for classical logic (Robinson, 1965). Resolution

is deployed in the programming language Prolog (Hodgson, 1999; Van Emden

and Kowalski, 1976) and within SAT solvers, with good results (Heule and

232 separation logic as a case study

Kullmann, 2017). Not every proof system supports mechanized reasoning as

well as it does resolution; for instance, a natural deduction or a Hilbert-style

system sees many choices of applicable proof rules at any time, and this leads

to a blow up of the search space.

Let us call a proof system that can support effective mechanized reasoning

deployable. That is, the search for, and construction of, proofs in the system

is computationally tractable. For a problem to be tractable, the compute re-

sources required are acceptable for their intended use. This section discusses

the intellectual choices that make Separation Logic deployable. Actual deploy-

ment requires integration with software engineering practices. Integration is

not trivial; the deployment challenges associated with Infer are described by

O’Hearn (2015).

The setting of Separation Logic presents a deployable proof system for

a semantics that simultaneously captures the engineering model of computer

memory allocation and its logical interpretation. There are two key properties

that a proof theory ought to have to be deployable: scalability and automa-

tion. Separation Logic achieves these engineering-type implementation goals

through features built in to the logic. Scalability comes mainly from access to

the Frame Rule, and the parallel computation that it enables. Automation of

proofs is a large topic on its own, with tools such as Coq. However, Separation

Logic has also been used to make systems that can automate reasoning about

what is relevant to attempt to prove — that is, abduction. Automating ab-

duction in this context means formalising heuristics engineers use to diagnose

errors. The logical system must be tailored to accomplish this task.

6.5.1 Separation Logic and the Frame Rule

The formal definition of the Frame Rule for Separation Logic was introduced in

Section 6.4.3. The ‘frame’ in the Frame Rule is essentially a context, formally a

set of logical statements In software engineering, the frame is the variables and

memory resources that a program modifies. The Frame Rule lets the analyst

break a program into disjoint fragments, analyse them separately, and cleanly

and quickly conjoin the results. The Frame Rule allows the following: as long

as the frame and the program do not modify each other’s variables, one can

freely conjoin the frame to the pre- and post-conditions for the program.

Consider a drinks-as-resources analogy. If the ‘program’ of interest is I

drink my drink, a sensible pre-condition is that I have a full drink. The post-

6.5 deployable proof theory for separation logic 233

condition is, let’s say, that I have an empty glass. The frame then is all the

other drinks in the restaurant, as well as the food, and the sunshine outside,

as long as there is no joker in the place going about pouring people’s drinks

into one another’s glasses. In computer programming, logicians can check rig-

orously for such jokers because they can check what variables (in this example,

the glasses) different programs can access.

The benefits for scalability, and therefore deployability, are immediate. Ima-

gine if one had to re-analyse one’s ‘program’ for drinking a glass of water every

time another patron entered or exited the restaurant, or any time any other

patron refilled or finished their own drink. In program verification, this is a

serious threat to viable tools. Programs change often, and are expensive to

analyse wholesale. It is not plausible to reanalyse a whole program for each

minor change. The Frame Rule gives Separation Logic a deployable proof the-

ory for two reasons. First is the facility it provides for the saving of results from

past analyses of unchanged program fragments and applying them quickly to

analyse small, changed fragments. The second reason is perhaps more subtle,

but more powerful. Modern computing is done largely in clouds owned by

giant tech companies. The benefit of cloud computing is that hundreds of

thousands of processors can work on a computation in parallel and merge

their results. Without the Frame Rule, Separation Logic would not be able to

take advantage of the massive computational resources of cloud computing;

parallelization requires fragmentation of a problem into smaller parts and

sound merging of results.

6.5.2 Deployability via Contextual Refinement

The Frame Rule is not the only path to a deployable proof theory for Separ-

ation Logic. Xu et al. (2016) describe an extension of Concurrent Separation

Logic (O’Hearn, 2007) that uses contextual refinement between implementa-

tion and specification of a program to prove the correctness of the program.

Contextual refinement is a formal specification of the following property: the

implementation – that is, the actual written computer code – does not have

any observable behaviours that the abstract design specification of the system

does not have.

234 separation logic as a case study

Xu et al. (2016) deploy Separation Logic to verify the scheduling behaviour

of operating system kernels.12 This application of Separation Logic treats

computer memory as a resource. However, the relevant memory property is

unique ownership by a task, rather than unique identification of a pointer

location. The main difficulty in scheduler design is ensuring that two programs

that both hold the same pointer do not interfere with each other. The technical

details are out of scope; however, this is a common and challenging computer

science problem. Complex scheduling has been common since the mid 1990s

to improve hardware usage efficiency. Deployable verification of scheduling for

a real-world (pre-emptive) operating system kernel uses Separation Logic (Xu

et al., 2016).

The design of a logic to verify operating system scheduling is tailored to

that problem, to the extent that ‘the interrupt mechanism in our operational

semantics is modelled specifically based on the Intel 8259 A interrupt control-

ler, and the program logic rules for interrupts are designed accordingly’ (Xu

et al., 2016, p. 77). To arrive at a satisfactory semantics, the authors modelled

the behaviour of a specific processor on specific Intel hardware. This clearly

demonstrates the merging of the logical model and the engineering model. The

inference rules Xu et al. (2016) uses are different from those used by Calcagno

et al. (2011). The following subsection focuses on inference rules over memory

allocation via Calcagno et al. (2011); there are analogous rules for operating

system scheduling which I elide (Xu et al., 2016, p. 72).

6.5.3 Bi-abduction

Section 6.3 briefly discussed the importance for the effectiveness of Separation

Logic of the concept of abduction. This section introduces how it is integrated

into the logic. Abduction was introduced by Charles Peirce around 1900, when

writing about the scientific process, and explained by Peirce as follows:

‘Abduction is the process of forming an explanatory hypothesis.

It is the only logical operation which introduces any new idea’

(Bergman and Paavola, 2016, CP 5.171).

Consider a non-technical example. A baby is crying for no obvious reason.

Approaching the problem like an engineer, you should like to know the source

12 The kernel is the most trusted part of the operating system; it coordinates all other

applications’ access to the physical hardware.

6.5 deployable proof theory for separation logic 235

of the baby’s distress, in order to devise a method to allay it. But as no

one saw the child begin to cry, you must guess at, or abduce, the source.

Perhaps you abduce that a malicious Cartesian demon is making the baby

believe it is being viciously pinched. Or perhaps you guess hunger is the source.

Neither are entirely new ideas, both suggested by past experience with, and

structure of, the world. Yet the abduction of hunger is preferable, if for no

other reason than there is a ready method to allay hunger, and none such

for demons. That is, whether the baby is hungry is testable. One can guess

at the expected post-condition after intervening if the precondition is true:

if the baby is hungry, and then fed, then the baby will stop crying. If once

fed, the baby does not stop, we surmise our guess failed and move to abduce

something else. Thus, even though there are incalculably many conceivable

causes of the baby’s crying, the structure of the situation suggests certain

abductions. Knowing, or abducing, what should or might be true of conditions

after a process or intervention puts constructive constraints on the abductions

of prior conditions.13

There is not a general process by which one generates useful new ideas.

However, if one has both a precise language and a detailed conception of the

mechanisms of interest in the system, abduction becomes more tractable. The

logic and the engineering model of computer memory, respectively, provide

these features. Further, the proof theory provides a fast and composable

method for soundly checking the correctness of the guesses from abduction.

Infer can automate abduction in the case of looking for pre-conditions and

post-conditions that lead to memory errors in computer code.

Abduction in classical logic is formalised, deceptively simply, as:

Given: assumption φ and goal ψ;

Find: additional assumptions χ such that φ ∧ χ ` ψ.

In this expression it is customary to disallow trivial solutions, such as φ→ ψ.

Reasoning about computer memory and pointers uses the separating conjunc-

tion in the obvious analogue:

Given: assumption φ and goal ψ;

Find: additional assumptions χ such that φ ∗ χ ` ψ.

13 This process is not solely abduction. Such hypothesis generation is also constrained

by general knowledge of the mechanisms that often lead to a baby crying; in this

way Chapter 4 also helps guide abduction. The ability to manipulate models, in

general, is also needed. Structural reasoning (Swoyer, 1991) thus perhaps plays a

role in addition to mechanistic knowledge. However, this chapter focuses only on

abduction as that is the feature that Separation Logic identifies as automated.

236 separation logic as a case study

Because the problem domain is program analysis and specifically the pro-

gram’s use of memory, χ is constrained to formula representing a heap. This

constraint disallows trivial solutions such as φ−∗ψ (Calcagno et al., 2011, p. 6).

To contribute genuinely to a deployable proof theory, one needs to know

both the pre-conditions necessary for the piece of code to run safely and also

all the logical conditions that will be true after the piece of code finishes. Post-

conditions for a single piece of code do not help to verify that particular piece

of code. However, computer programs are complex arrangements of separable

but interrelated pieces of code. The post-conditions of one segment are good

candidate guesses for pre-conditions of other segments. Calcagno et al. (2011)

coin the term bi-abduction for finding both pre- and post-conditions. In pro-

gram analysis, the pre-conditions are the anti-frame and the post-conditions

are the frame, so bi-abduction is formalized as follows:

Given: assumption φ and goal ψ;

Find: additional assumptions ?anti-frame and ?frame such that

φ∗?anti-frame ` ψ∗?frame.

The statement’s specific logical form, the model of the mechanism of

computer-memory use, and the machine-readable nature of computer pro-

grams, all combine to allow automatic generation of potential solutions to

the frame and anti-frame. The result of this synthesis makes bi-abduction ‘an

inference technique to realize the principle of local reasoning’ (Calcagno et al.,

2011, p. 8).

Consider some step-by-step bi-abduction examples. First, consider ascer-

taining pre-conditions in some detail. The following does not assume any

familiarity with C or with programming, so I will also explain the target

program segment in English detail.

Calcagno et al. (2011, p. 8) use this example to explain abduction:

void free_list(struct node *x){

while (x!=0) {

t=x;

x=x->tl;

free(t);

}

}

This example program steps through or traverses all the elements of a list

and removes them. Literally, it frees the memory used to store each element.

6.5 deployable proof theory for separation logic 237

Let’s use the example of a shopping list, for concreteness. Traversing a list is

just to read all the elements in order. For a paper list, this ordering is handled

by the physical layout on the paper. Eggs are first if they are on the first

line. In computer memory, a directly analogous physical layout is difficult

and inefficient for technical reasons. Instead each list element contains two

parts. First, its contents, say ‘eggs’, and second, a pointer to the next element.

Pointers, as discussed in Section 6.2, can cause myriad problems during a

program’s execution. Such linked lists are a common place to find pointers,

and so a common place to find memory management errors.

When reasoning tools encounter a program like free_list, they start off

assuming an empty heap (emp) and that the variable x has some value X.

However, at the line ‘x=x->tl’ the reasoning stalls. There needs to be some

X ′ to which X points. Using abduction, the tool guesses that such an X ′ ex-

ists. Another step is required. In the general case, there is an infinite regress of

assuming ever-more X ′′, X ′′′, and so on. Separation Logic requires an abstrac-

tion step, which Calcagno et al. (2011, p. 9) link to a scientific induction step.

The abstraction step is to posit a list of arbitrary length from X to X ′ and to

assert or abduce that a program that works on lists of length 4 probably works

on lists of length 6. The trick is to encode these heuristics, such as the guess

that an X ′ exists, into formal proof rules that can be applied automatically.

Abduction and abstraction potentially weaken preconditions. Weakening may

be unsound, and must be tested. But such tests can also be automated in

Separation Logic. Calcagno et al. (2011, p. 10) describe perhaps 50 pages of

their article as ‘devoted to filling out this basic idea [of using abduction to

guess what good preconditions might be]’. Consider one further example to

illustrate some of the complications that can arise in the task.

Lists can get more complicated. For example, the last element can link back

to the first. Imagine taping a shopping list into a loop, so that ‘eggs’, the first

element, came on the line after the last element, ‘chocolate’. The C syntax of

a program to handle such a circular list is (Calcagno et al., 2011, p. 53):

void traverse-circ(struct node *c) {

struct node *h;

h=c; c=c->tl;

while (c!=h) { c=c->t1;}

}

238 separation logic as a case study

Human shoppers would not start over and traverse the list again, picking up

a second copy of everything on the list. And then a third, looping through the

list until their cart overflowed. However, free_list would naïvely enter such an

infinite loop. So traverse-circ not only reads an element and goes to the next

one, but remembers where it started so that it can stop after going through

once. Since the program is designed to read circular lists, the logic produces

a circular list as a pre-condition. Specifically, one abduces the precondition

(Calcagno et al., 2011, p. 52)

c 7→ c_ ∗ list(c_, c)

That is, for the program to run safely, the input (c) must be a pointer to a

valid element of memory (c_), and separately there must be a linked list going

from that valid element back to the initial element.

Let us explore in more detail the formal form of this abduction, which is

Algorithm 4 in (Calcagno et al., 2011, p. 37). The algorithm is run (by another

computer program) with the small program of interest as input, along with

a guess at the starting state. The first steps of the algorithm build a logical

model of the program’s interaction with memory. The logical model takes the

form of Hoare triples. How exactly a computer program is soundly conver-

ted into Hoare triples is a matter of shape analysis, or ‘determining “shape

invariants” for programs that perform destructive updating on dynamically

allocated storage’ (Sagiv et al., 2002). There are technical details about con-

verting the program to a logical model that are out of scope here, but note that

the logical model and language are purpose-built tools for this task. Going

back to Hoare’s explicit axiomatization of programs (Hoare, 1969) through

to the definition of 7→ for the function of a stack element pointing to a heap

location, both broad strokes and finer details of the logic are responsive to the

problem at hand.

After constructing the logical model, Algorithm 4 iterates through all of the

Hoare triples and calls AbduceAndAdapt (Calcagno et al., 2011, p. 43). This

function has two main purposes: to do bi-abduction, and to take any successful

results from bi-abduction and ‘perform essential but intricate trickery with

variables’ to maintain precise results. The abduction aspect of the algorithm

is specified in Algorithm 1. This algorithm, in turn, depends upon a set of

6.5 deployable proof theory for separation logic 239

proof rules used in reverse as abduction heuristics (Calcagno et al., 2011,

p. 15-17). The rules are all of a special form,

H ′1 ∗ [M ′] . H ′2 Cond

H1 ∗ [M] . H2

Here Cond is a condition on the application of the rule based on parts of H1

and H2. The proof rules can thus be read backwards to create a recursive

algorithm that will eventually abduce pre- and post-conditions. To read them

in this manner, the algorithm checks that the condition holds. If so, instead of

answering the (harder) question H1∗ ?? ` H2, the algorithm goes on to search

for the answer to the (simpler) abduction question H ′1∗ ?? ` H ′2 (Calcagno

et al., 2011, p. 17).

The example at hand, traverse-circ, will hit the heuristic ‘ls-right’ until the

list loops, generating the precondition that there is a list from c_. The other

precondition is generated by the heuristic ‘ 7→-match’. These are linked in the

‘intricate trickery’ done in the algorithmic step to keep results precise.

The details of which proof rules are chosen as abduction heuristics is im-

portant and non-trivial. The choice is based on decades of prior experience

and empirical results on the effectiveness of different modelling choices. The

logic has been shaped to be a tool to solve the engineering problem at hand

such that the proof rules are chosen empirically.

The postconditions of this example seem less exciting. The program only

reads the list, it does not output any contents nor change it. Therefore, the

abduced post-conditions will be the same as the preconditions. While this

initially seems unenlightening, remember that bi-abduction is on program

segments, not whole stand-alone programs. So if a larger, more realistic pro-

gram runs this traverse-circ process successfully, and it had the necessary

preconditions, then there is a circular linked list in memory. This information

may be very helpful for determining whether another program segment runs

safely. For example, a process that deletes elements of a list one at a time

often has the flaw that it will not check for circular lists. When such a delete

process cycles, it will try to delete the now non-existent first list-element,

causing a memory error that can result in a crash. In such a situation, this

post-condition of a circular linked list would be informative. For more details

on how to abduce postconditions, see Algorithm 6 in Calcagno et al. (2011).

Abduction is automatable in this situation because the problem space in-

vestigated by the engineering/scientific model is quite precisely defined. In-

240 separation logic as a case study

stead one might say that abduction is automatable here because the logical

model sufficiently accurately represents the behaviour of real computer pro-

grams. These two assessments are both true, and amount to the same thing:

effective merging of the features of the logical model and the conceptual model.

Automated abduction is a striking example of the benefits of such a confluence.

The best measure of whether a proof theory is deployable for finding errors

in software is whether programmers in fact fix the errors it finds. For pro-

grammers to fix errors, the tool must provide a combination of timely results,

precise results, and clear explanations. These are part of usefulness require-

ments within the industrial software engineering setting that are essentially

social or organizational (Calcagno et al., 2015a). Therefore, what counts as

a satisfactory fix-rate may change from one organization to another. Infer is

open-source and used by many organizations. Separation Logic is measured

as deployable in some sense because it is deployed in these contexts. For an

account of the social and practical environment necessary to shepherd Infer

to deployment, see Calcagno et al. (2015a).

Section 6.2 detailed why finding memory usage flaws is an important task in

computer programming. Programmers make these errors, and in products that

are widely used. Further, these kinds of errors impact stability and security in

costly ways that are hard to catch and handle during execution. Separation

Logic has been tailored to this problem specifically, through adaptations to

both its semantics (detailed in Section 6.4) and proof theory. This section

detailed how the proof theory has been made deployable, to meet the needs of

industrial application. It is deployable because (1) its reasoning is scalable and

fast, using the compositionality of the Frame Rule; and (2) its generation of

hypothetical pre- and post-conditions is automated using encoded discovery

heuristics and bi-abduction.

While the Infer tool originally grew out of Separation Logic and bi-

abduction, it has evolved to encompass other reasoning methods using a

technique known as abstract interpretation (Cousot and Cousot, 1977). Some

of the ideas from Separation Logic have been transposed into other reasoning

methods, without adopting the syntax of Separation Logic. For instance,

a reasoning technique for finding errors due to conflicts in concurrently

executing activities calculates the accesses or resources used by a program

component, and then composes these with the resources for other program

parts (Blackshear and O’Hearn, 2017). Thus, the ideas of resource-based

reasoning and composition of this reasoning (as in the Frame rule), which

6.6 conclusion 241

were formulated in BI and Separation Logic, appear to be fundamental,

formalism-independent concepts in reasoning about computer programs.

6.6 conclusion

This chapter introduced Separation Logic as a tool for reasoning about com-

puter programs. This case study identified that Separation Logic works be-

cause the logic model overlaps with the conceptual model of a practical prob-

lem and the proof theory is usefully deployable. I view this convergence as

a tactic for model building. Although I have mostly referred to the program-

mer’s model of memory as an engineering model, it is also clearly identifiable

as a mechanistic explanation of memory and thus a sort of general scientific

knowledge. Therefore, the lessons from this case study should be transferable

to any CSIR reasoning task using scientific or engineering knowledge that can

be precisely logically specified.

The type of errors that Separation Logic is currently used to find are con-

strained to a specific, though important, type of catastrophic run-time error.

There are at least two types of run-time errors – memory allocation (Calcagno

et al., 2011) and task scheduling (Xu et al., 2016) – that have been addressed

with Separation Logic. These types of errors arise in a variety of applications,

from hardware synthesis (Winterstein et al., 2016) to computer security (Ap-

pel, 2015) to popular phone apps. Separation Logic is not the solution to all

computer science problems, but it is not so specific as to be uninteresting.

Other specific problems will likely require logics tailored to them. As one

example, Lamport (2002) details temporal logic which is used by Amazon

for its network architecture (Newcombe et al., 2015). Another aspect of as-

suring memory, called shared memory consistency, used yet a different logic

model to address its programming problem (Adve and Gharachorloo, 1996).

These other examples of bringing a programming/engineering model into close

contact with an adequately designed logic model strengthen my conclusion.

The history of Separation Logic, through to its implementation in deployed

verification tools, demonstrates that such overlap is an effective strategy for

reasoning about the behaviour of computer systems. See O’Hearn (2015) and

Calcagno et al. (2015a) for accounts of the software-engineering effort involved

in deploying one such tool.

It is important to understand the extent to which the case of Separation

Logic is relevant to both computer-science models and science more generally.

242 separation logic as a case study

Model-based reasoning in computer science seems to come in at least two

flavours. Some parts of computer science, like human-computer interaction

and usable security, have methodologies that are closely adapted from estab-

lished fields like psychology (Krol et al., 2016). However, in other parts of the

field, computer-science methods are distinctly developed within the discipline.

Hatleback and Spring (2014) argued that experiments and model-building in

computing are not so different from other sciences, after accounting for the

unique challenges of the fields. Separation Logic provides a good example of

this second type; the above examples of temporal logic and shared memory

consistency indicate it is not alone. Both Hatleback and Spring (2014) and

Chapter 4 argued that reasoning about objects that can purposefully change

at the same pace as the observer can interact with them, namely software, is

a particular challenge in computer science. Separation Logic is an example of

how computer scientists overcome this problem. Reasoning at the appropriate

level of abstraction produces stable representations of the phenomenon so that

conclusions are reliable. This stability issue was a common complaint identi-

fied by Chapter 3 in the science of security literature; Separation Logic is thus

a plausible tool for tackling this aspect of challenges to stable knowledge in

incident analysis.

This approach would not get off the ground without a deployable proof the-

ory, no matter how nice the overlap between the model of computer memory

and the logical interpretation of exhaustible resources. In fact, exploiting the

model structure for some practical benefit, such as timely parallel compu-

tation, is perhaps more rare and important than devising a model that is

simultaneously a logic and an engineering model. Verification tools using Sep-

aration Logic reach a deployable proof theory due to a constrained domain

that permits the automation of abduction combined with a composable logic

that permits reuse of results. The main points of this development are (1) the

introduction of the logic of bunched implications, which admits the usual con-

junction with contraction and weakening rules and a different conjunction that

does not; (2) the semantics of a resource as a preordered partial commutative

monoid; (3) a full definition of the connectives ∗ and −∗.

Philosophical logic has a long tradition of analysis of arguments and mean-

ing. One message for logicians is that it can have more clarity and impact when

the model theory is grounded in concrete engineering or scientific problems;

that is, where the elements of the model have a clear reading or interpreta-

tion apart from their role in defining the semantics of sentences. For example,

6.6 conclusion 243

relevant-logicians have admitted to struggles in interpreting the meaning of

the elements in their formal semantics based on ternary relations (Beall et al.,

2012). Their semantics enjoys completeness theorems with respect to their

proof theories, but the subject matter of the models themselves is not evident.

In contrast, this chapter has shown a nearby semantics, not identical, where

the model elements are understood in terms of the structure of computer

memory – and more generally of resources (Pym et al., 2004). In general, when

the semantics of logics meets independently-existing science and engineering,

a feedback cycle can be set up which impacts both to mutual benefit.

Logic, like any other technology, must be designed to specifications for the

task at hand. In concert with design, the logic employed should be empirically

tested as to whether it meets specifications. This sort of feedback loop is not

so different from the tool-building and scientific modelling interaction in other

fields. However, unlike, say, biology whose tools are often of glass and metal,

the tools in computer science are often conceptual or logical tools. Consid-

ering computer science as the field that explores the human-created abstrac-

tions of mathematics and logic, this tooling change makes sense. Moreover,

understanding that when humans build or define some system there is no

automatic guarantee of the properties and behaviours of said system perhaps

elucidates why, as Tedre and Moisseinen (2014) argues, computer science can

often usefully be considered an experimental science.

Separation Logic is also a useful case for communicating salient aspects of

computer science to the broader philosophy of science community. For the

debate on model-based reasoning, Separation Logic is an automatable system

for model-based reasoning, albeit in a tightly constrained environment. Per-

haps such extensive context constraints are necessary to formalize reasoning

to the level of detail necessary for automation. In addition, the case study

provides a starting point from which philosophers may be able to generalize

broader lessons for model-based reasoning.

Part III

A L O G I C O F R E A S O N I N G I N I N C I D E N T

A N A LY S I S

This part, in one chapter, constructs a logic suitable for reas-

oning about Computer Security Incident Response (CSIR).

Chapter 7 begins with a short summary of the design re-

quirements developed in the previous two parts. It then will

define and elaborate the logic. The definition will include

the technical elements of the syntax, semantics, and model.

These elements will include resource and temporal elements,

suitable for reasoning about what an adversary has done in

the past to a system of interest. I will elaborate the logic via

a worked example of how it can be used to reason about an

attack and suggest reasonable predicates. Finally, to speed

along construction of rules for the logic, I will demonstrate

how existing detailed attack knowledge, specifically Net-

work Intrusion Detection and Prevention System (NIDPS)

rules, can be represented in the logic and integrated into

analysis via attack models.

7
LOGIC DEF IN IT ION 1

The previous chapters have drawn out threads from multiple disciplines: the

status of Computer Security Incident Response (CSIR) standards, the debate

on the scientific status of security, how scientists and security practitioners

build general knowledge, examples of reasoning in incident response, and a

history of a successful logic as a scalable reasoning tool. Although these topics

are diverse, and have intrinsic value as pursuits in-themselves, they inform the

decisions on building a logic to capture reasoning in CSIR analysis.

This chapter proceeds as follows. Section 7.1 will distil the preceding philo-

sophical and historical analyses to the key points that need to inform the

design of a logic for incident analysis. Section 7.2 will review some of the

design choices that did not work or that I deemed inadequate. Section 7.3

will define the body of my CSIR logic – its syntax, model, and semantics.

Section 7.4 will elaborate this logic and demonstrate how it can be used for

abduction of attack details through an expression of the kill chain in the logic.

Finally, Section 7.5 makes some benefits and potential impacts of using this

CSIR logic, before Section 7.6 finishes.

7.1 philosophical and historical analyses

I will summarize the contributions to constraints on the logic from each of

the prior chapters individually. The Chapter 2 constrains the question. The

next three chapters constrain what it is the logical tool needs to do to answer

that question. Chapter 6 constrains the logical tools with which to build a

solution.

1 This chapter is based on joint work, the paper: Jonathan M Spring and David Pym

(31st Oct. 2018). ‘Towards Scientific Incident Response’. In: GameSec. LNCS 11199.

Seattle, WA: Springer.

247

248 logic definition

Incident response literature review

Chapter 2 mapped out the gap I want to fill. Specifically, the research ques-

tion is: “how to satisfactorily make clear and explicit the reasoning process

used by individual CSIR analysts while they pursue technical details?” The

philosophical contributions and analysis in Chapters 3, 4, and 5 have already

narrowed this gap. Two related gaps that remain are a distinct lack of any

sort of formally-precise description of reasoning in incident analysis and any

sort of automatable decision support. This remaining gap is the motivation

for designing a logic, in order to provide a language for reasoning in which

analysts could be more precise and more explicit.

Science and security literature review

Chapter 3 placed cybersecurity squarely within a modern understanding of

scientific practice. Of course, what happened in a particular instance in the

past, the topic for incident response, is a matter of forensics or of histori-

ography. But criminal forensics is generally understood as using science in the

service of the law. And historiography, and especially historical sciences like

palaeontology and physical anthropology, very much use general knowledge

and findings from present scientific research to inform and constrain historical

accounts.

Similarly, the type of reasoning in incident analysis is what can be broadly

understood as scientific reasoning. Of course, it will have to be adapted to the

specific challenges and interests of incident analysis. However, conforming the

basic shape and norms of broadly scientific reasoning still provides useful con-

straints and guidelines. In general, this means the logic must support learning

from structured observations of the empirical world, evaluation of evidence,

and intelligible explanations of phenomena. The intellectual system the logic

is a part of should support integrative pluralism, translation of terms, and in-

tegration with engineering needs – this requirement suggests the logic should

avoid dogmatic definitions of security phenomena. Several of these constraints

depend on an adequate representation and use of generalized knowledge, which

was not readily available in the literature.

7.1 philosophical and historical analyses 249

Building generalized knowledge

Chapter 4 synthesized several different philosophical accounts of modelling

and knowledge to fill this gap by constructing a new account of general-

ized knowledge in cybersecurity. The method of building general knowledge

is important in its own right; however, the structure of general knowledge

also provided some heuristics for reasoning with it. For example, Darden

(2006) presented heuristics such as backward-chaining and instantiating en-

tities based on the structure of mechanistic explanation. We have enriched

that structure to identify generalized knowledge as painstakingly built up

from clusters of multi-field mechanism schema on the dimensions of entities

& activities, phenomena, organization, and etiology. The design of the logic

will need to be able to interface with all the parts of this structure in order to

make use of the general knowledge practitioners have built. I will demonstrate

how such general knowledge might be presented within the logic by encoding

one example discussed in Chapter 4, the intrusion kill chain, and representing

it with the CSIR logic.

Examples of incident analysis

Chapter 5 made use of examples to connect scientific models and scientific

reasoning to incident analysis. First, I showed how to improve the kill chain

by considering it as a mechanistic explanation of intrusions and looking for

gaps. Thus, not only is the structure of knowledge put forward by Chapter 4

compatible with incident analysis, but the heuristics (in this case, forward-

and backward-chaining from Darden (2006)) provide an immediate benefit.

The other examples used in Chapter 5 were of the analytic process, rather

than stable models. Stoll (1989) provides a clear case of good incident ana-

lysis that makes use of discovery heuristics from science. Just as clearly, this

convergence was largely an accident of the analyst having trained as a phys-

icist. The logic I intend to build should allow an analyst to capture their

reasoning processes that mitigate the typical challenges of incident analysis

(as described in Chapter 4). Another clear feature of both Stoll and the case

of ARMOR, the second example process, is that the logic will need to support

iterative improvement of hypotheses and explanations.

250 logic definition

History of Separation Logic

Chapter 6 demonstrated that Separation Logic is able to capture important

aspects of decision support for software engineering in the way it automates

abduction. There are other, more common, approaches to decision support in

cybersecurity – largely, machine learning. The choice of building a logic to

fill the remaining gap may be non-obvious. However, as Pearl (2016) argues,

machine learning approaches cannot, in principle, answer “why” or “what

if” questions. The mathematical formalisms of current machine learning ap-

proaches do not permit such reasoning. In order to fix a real-life system, an

incident analyst needs to know why it was compromised; that is, they need an

explanation. Testing whether a proposed fix will be robust given the known

method of compromise is a “what if” question. Pearl (2016) suggests his own

causal reasoning tools as an answer. However, his tools have not demonstrated

the other feature Chapter 6 identifies as necessary: operational deployability.

Additionally, Chapter 6 recounted deployed, scalable implementations of

Separation Logic. The computational properties of Pearl’s causal reasoning

are much less optimistic (Chockler and Halpern, 2004), and it lacks a suffi-

ciently concrete interpretation (Dawid, 2010). So I narrowed down the goal

from designing a logic to fill the gap identified in Chapter 2 to designing a

Separation Logic.

7.1.1 Summary of requirements

The logic design goals are, in no particular order, summarized as follows:

• Fill the gap in incident response by describing and (perhaps) supporting

the decision process of incident analysis.

• Use Separation Logic as a scalable and deployable framework.

• Support hypothesis generation and testing (i.e., abduction).

• Support scientific heuristics and norms – evaluation of evidence, intelli-

gible explanations, and translation among pluralistic fields.

• Support generalized knowledge, conceptualised as clusters of multi-field

mechanism schema on four dimensions.

• Capture traditional instances of attack models (I will use the kill chain

as an example).

7.2 logic design choices 251

• Enable sufficiently precise expression of reasoning so that analysts can

exchange information about how to overcome the challenges typical of

cybersecurity and incident response.

• Capture iterative improvement in the analyst’s model of an incident.

7.2 logic design choices

This section will briefly explain the key logic design choices as well as what

other choices were considered but deemed unsatisfactory. There are a suite of

decisions related to how the temporal and spatial aspects of the logic interact

that focused the work.

In an early effort I attempted a epistemic perspective that captured the

investigator’s beliefs and information directly. However, although my goal is

to help the investigator, epistemic logic or other related modal logics tend

to be about modelling communication among agents. I focus here is on a

single agent’s process in order to simplify the situation. With that decision,

agent-based modal logic just over-complicates the model. The lone investigator

implicitly knows everything captured by the history and the deductions and

abductions based on it.

Related to this was a data-based or information-based approach. Roughly

inspired by Floridi (2011) and guided by Floridi and Illari (2014), I considered

a logic of how the investigator’s model of the incident could or should change.

This approach would have required wading into a debate on what data and

information are, which is not the core concern in CSIR. This thread of thought

led to useful questions about how information relates to both scientific and

logical models. However, just as the investigator is implicit in the logic as

designed, so too is evidence- or information-based learning. However, this is

all implicit in how the history monoid (i.e., the logic’s model) is changed

during the course of an incident to reflect data gathered by the investigator

prompted by abductive heuristics.

Thus, the most important early choice was to have the logical model rep-

resent information systems, not information. This choice follows how Shirey

(2007) define information security (recall I defined cybersecurity as a superset

of information security in Chapter 1). Information has proved notoriously dif-

ficult to define (Zins, 2007) and, in any case, I judge the logic of information

by Floridi (2011) is not designed to be pragmatic or scalable. Therefore I have

252 logic definition

avoided any attempt to model information, and instead focused on modelling

the information systems (as defined by Shirey (2007)).

Another, later, critical decision is using a linear temporal logic model. A

desirable feature seems to flow from this decision, namely the ability to in-

terleave temporal and spatial operators in formulae arbitrarily. Prior work,

such as Espinosa and Brotherston (2017), which all seems to use Concurrent

Time Logic (CTL), was not able to achieve this interleaving. With linear time,

a sensible separation of the history into two disjoint parts is possible. A few

other decisions about handling time and separation are important to ensure

sensibility; namely, the separation of the history must be at every time, from

the start to end of the history. I also considered only separating from “now”

forward, but because formulae might depend on earlier points in time, that

decision fails. This dependence should not be due to including past-tense oper-

ators; as Manna and Pnueli (1992) note, including past-tense operators does

not make a logic more expressive. With branching or concurrent time, there

does not seem to be an appropriate way to handle how to define a separation

into two disjoint histories that also respects branches.

Although the temporal and spatial operators can interleave, other relation-

ships are not likely well defined. For example, (φ1 ∗ φ2)Uφ3 and (φ1Uφ3) ∗

(φ2Uφ3) are not equivalent. The difference is synchronicity. In the former, φ1

and φ2 must hold simultaneously until φ3. In the latter, the time at which

they give way to φ3 may be different. I cannot think of any way to enforce

preservation of this information between the two formulae, and so accept this

as a limitation of the logic as defined.

I also considered defining a process-based temporal transformation, based

on Milner (1989). The idea would have been to define what possible reads and

writes could have occurred within the system, and then reason with that as

the model instead of the history monoid defined in this chapter. Although this

might have the benefit of being more explicit about system transformations,

it has two major drawbacks. First, acquiring that level of detail about system

processes is not generally practical for an incident responder. Information gen-

erally must be collected prior to the incident, and fine-grained traces of every

system are just too voluminous. Second, it would require a notion of absolute

or global time, because transitions need to be tightly sequenced. As mentioned,

I follow Lamport (1983) in the modelling choice that a ‘next’ operator, or tight

sequencing, is unwise to build into a temporal logic. In logics where the goal

is to prove system properties, such conditions on ‘next’ are generally what

7.3 logic definitions 253

needs to be proven. However, here is an important departure point for my

CSIR logic – I am not trying to prove the properties of a program. In incident

response, one just needs to know whether key system states or events were

reached. Therefore, a process-based or transition system is inappropriately

detailed. This realization also guides the use of Hoare triples not to prove the

pre- or post-conditions of a software element C, but rather to reason about

the relevant impacts of these conditions.

Other paths are not reflected in the final product at all. For example, I

briefly considered a defeasible separation logic. In some sense, a defeasible

logic is intuitive because conclusions in incident response are tentative and

subject to revision. However, embedding defeasibility into the valuation of

sentences seemed needlessly complex. This intuition is adequately captured by

the use of bi-abduction for generating heuristic explanations. Given a novel

combination of temporal operators with a separation logic, I wanted to use

reliable or well-understood logical tools where possible.

7.3 logic definitions

This section builds a logical system as a tool for expressing paradigmatic

features of incident analysis. Section 7.4 will use these logical tools to further

elaborate the logic through an example.

A necessary part of a logical system is its model. A model, in this logic

sense, is a mathematical structure with which one can interpret a proposition,

and then determine whether it is satisfied or not. This sense is quite far from

a scientific model. However, as Chapter 6 argues, an effective logic will align

its logic model with the salient features of a scientific model of the represented

phenomenon. Therefore, I develop logical tools with the purpose of incident

analysis in mind at every step. The phenomena of interest are violations of

security policy; that is, a resultant state of a computer system. The logical

model will represent these as histories, where a history is a series of states of

the computer.

I make a variety of choices to adapt the logic to incident analysis. Some are

simple: incident analysis is largely about past events, so I include both past-

tense and future-tense temporal operators. Others are more subtle. For ex-

ample, the model has a separation of network, storage, and processor resources

at a basic level because practitioners think about, monitor, and defend these

things quite differently. I want the logic to reflect this reality. Some choices

254 logic definition

have an eye towards pragmatics of usability and deployable decision-making.

As O’Hearn (2015) describes, the road from formal logic to operational imple-

mentation is long. However, I include the ‘and, separately’ operator to support

composable reasoning and keep an eye towards scalability.

7.3.1 Expressions

The definition of expressions is essentially the same as Ishtiaq and O’Hearn

(2001) and Calcagno et al. (2011). An expression can be an integer, an atom,

or a variable.

E ::= x Variable

| 37 Integer

| nil nil

| a atom

| . . .

The open-ended definition of expressions allows additional expressions so

long as they can be interpreted in the semantic domain specified.

The semantic domains are values, addresses, and content; this domain is

analogous to, and slightly more general than, the values, stacks, and heaps

used in Calcagno et al. (2011):

V al = Int ∪Atoms ∪ Loc

A = V ar ⇀fin V al

C = Loc ⇀fin V al × V al

where Loc = {`, . . . } is an infinite set of locations, V ar = {x, y, . . . } is a set of

variables, Atoms = {nil, a, . . . } is the set of atoms, and finite partial functions

are represented by ⇀fin. Elements of addresses and content are a ∈ A and

c ∈ C, respectively. As customary for stack variables, I do not provide an

explicit operation for allocating address variables.

The domain of an element of addresses is dom (a) for a ∈ A. Similarly,

dom (c) is the domain for an element of contents. Note that English grammar

here may be confusing. An address a is a set of mappings from variables to

values, not a singleton. Likewise, c is a set of content mappings, not a singleton.

7.3 logic definitions 255

Interpretation is independent of the particular computer represented, ana-

logous to heap-independent interpretations in Calcagno et al. (2011): JEK a ∈

V al, so long as dom (a) includes the free variables of E.

7.3.2 Basics and syntax

I will make use of some familiar classical propositional connectives, some per-

haps less-familiar temporal connectives, and a ‘spatial’ connective from a more

recent logic – Separation Logic introduced in Chapter 6. The classical connect-

ives are ‘if, then’, ‘and’, ‘or’, and ‘not’ and the first-order quantifiers are ‘there

exists’ and ‘for all’.

The operators ‘until’ and ‘since’ are both temporal, following the definition

from Manna and Pnueli (1992). ‘Until’ is about the future, and ‘since’ is about

the past, but otherwise they are similar. It is the case that ‘φ until ψ’ when

the first formula φ is true now and into the future, for at least enough time

such that the second formula becomes true at some time later. It is what one

might expect when asking “Hold this cup until I get back.” Though one would

need to be explicit about the social assumption, in classical logic, of “If I

return, then give me the cup.” ‘Since’ is similar. It is the case that ‘φ since ψ’

when at some point in the past ψ occurred, and φ has been occurring from

then up through to the present. As one might expect from “I have been sad

since my cup broke.”

The final connective is ∗ for ‘and, separately’. Recall from Chapter 6 that

classical ‘and’ is collapsible. That is, “I have five coins and I have five coins”

is, in classical logic, the same as “I have five coins.” The connective ‘and,

separately’ is not collapsible.

Computers, like coins, are resources. I use Separation Logic to be able to

express “A computer is compromised and, separately, a computer is comprom-

ised” with the natural meaning, for example. The classical ‘and’ would lose

this information that two computers are compromised, because the formula

would collapse.

Following these intuitions, construct logical formulae inductively:

256 logic definition

φ, ψ ::= α Atomic formulae

| ⊥ Falsity

| φ⇒ ψ Material implication

| emp Empty content

| ∃x.φ Existential quantification

| φUψ Temporal Until

| φSψ Temporal Since

| φ ∗ ψ Spatial conjunction

Atomic formulae include equality, points-to relations, and predicates.

α := E = E′ Equality

| E 7→ E1, E2 Points to

| P ((V al1, E1) , (V al2, E2)) Relational predicate

| . . .

In Ishtiaq and O’Hearn (2001), points-to is defined as a three-place relation,

E 7→ E1, E2. Calcagno et al. (2011) contains both a simple points-to relation,

E 7→ E′ and a higher-order concept of lists that treats the properties of lists

as primary, rather than their contents. My goal is not to analyse details of

doubly-linked lists or higher-order lists. Therefore, the syntax does not treat

lists directly. However, this three-place syntax provides a way to separate a

large data element into arbitrary chunks while preserving ordering. This works

for memory, files on disk, and network packets. This is useful because, for ex-

ample, it can represent malware analysis techniques, such as segment hashing,

by representing properties of a connected series of expressions. However, the

intention is not to be exhaustively faithful to the file-system representation. If

the segments of a large file are not of interest, then elide the details of the file

system block size and the linked list that actually composes the file contents.

The usual classical and temporal symbols are defined from available formu-

lae:

• negation; i.e., ‘not’, is ¬φ def= φ⇒ ⊥

• truth is simply not false; i.e., > def= ¬⊥

7.3 logic definitions 257

• disjunction; i.e., ‘or’ is customarily φ ∨ ψ def= (¬φ)⇒ ψ

• conjunction; i.e., ‘and’ is thus φ ∧ ψ def= ¬ (¬φ ∨ ¬ψ)

• ‘for all’ is in terms of the existential, ∀x.φ def= ¬∃x.¬φ

• ‘at least once in the future’ relates to until, φ
def= >Uφ

• ‘henceforth’ is φ
def= ¬ ¬φ

• analogously, ‘at least once in the past’ is φ
def= >Sφ

• and ‘has always been’ is φ
def= ¬ ¬φ.

Following Lamport (1983), the definition does not have a simple ‘next’

temporal operator. For various reasons Lamport (1983) lays out, and a choice

that is validated by how incident analysts reason in the case studies of prior

chapters, the logic should care about observable changes, not the precise se-

quence that brings those changes about.

7.3.3 Model

My model is designed to support incident response reasoning by embedding

the most important objects of analysis as the basis of the model. The model

keeps the three salient types of computing resources separate, and the series

of resources is indexed by time as a history. Each resource is a partial monoid

with composition operator and unit.

(RM , ·M , eM) for processor and RAM (M for memory)

(RD, ·D, eD) for file storage (D for disk)

(RN , ·N , eN) for network bandwidth (N for network)

where, for i ∈ {M,D,N}, Ri is a set of resource elements of the given type,

·i : Ri × Ri ⇀ Ri is a partial function operating on resources of the given

type, and ei is the unit element of ·i such that for all r ∈ Ri it is the case that

r ·i ei = r = ei ·i r.

More concretely, each RM , RD, RN is composed of (address, content) pairs

analogous to (stack, heap) pairs. I define m ::= s, h for m ∈ RM , d ::= δ, β

for d ∈ RD, and n ::= κ, υ for n ∈ RN . These sub-parts of the resources are

proper subsets of the address and content defined above. The fact that s ∈ S

with S ⊂ A and h ∈ H with H ⊂ C makes the usual stack-heap model of

Separation Logic somehow contained in the address-content model. Further,

define δ ∈ N for N ⊂ A and β ∈ B for B ⊂ C (for inodes and file blocks). For

network host addresses and data units (i.e., packets), κ ∈ K for K ⊂ A and

υ ∈ U for U ⊂ C.

258 logic definition

Formally, these three resource monoids could be considered as one monoid

R = (R, ·,E) where R = RM]RD]RN (the disjoint union of the resources),

composition ·, · : R ×R → R such that

· (r1, r2) ::=


r1 ·i r2 if r1, r2 ∈ Ri

undefined otherwise

and E = {eM , eD, eN}

where E · r ::=


⋃

e∈E r ·i e = {r} =
⋃

e∈E e ·i r if r ∈ Ri

undefined otherwise
The definitions of · and a set of units are adapted from Brotherston and

Villard (2015, def 2.3). These definitions will be used to describe the state

of a computer or a computer network at a given time as a composition of

different programs, files, and network activity.

Incident analysis needs a notion of time and changes. Therefore, I adopt a

linear time model composed of a sequence of states. Each state is represented

by an element r ∈ R. Define a history H ∈ H as a ordered finite set

H ::=
{
r1, r2, . . . , rt, . . . , rT

}
,

with T ∈ N. The pair (H, t) uniquely identifies the state rt ∈ R. The length

of a history is |H| = T . There is no notion of absolute time or a “wall clock.”

The time T indicates a sequence of states without any claims about the time

between transitions.

history monoid Define a monoid, H = (H (R) , ◦, e) where H is the

set of histories H (defined above) that can be constructed using a given re-

source monoid R; ◦ : H×H⇀ H; unit e to be the empty history with |e| = 0.

More specifically, define ◦ as:

(H1 ◦H2, t) ::=



(rt
1 · rt

2, t) for rt
1 ∈ H1 and rt

2 ∈ H2 if |H1| = |H2|

(H2, t) if H1 ≺ H2

(H1, t) if H2 ≺ H1

undefined otherwise

Here H1 ≺ H2 indicates that one history is contained in the other. I define

four conditions that must all be met for this to hold. Specifically, H1 ≺ H2 iff

7.3 logic definitions 259

1. |H1| < |H2|, where |H1| = T , |H2| = T ′; and

2. for all rt
1 ∈ H1, with t ∈ T , there exists some rt′

2 ∈ H2 with t′ ∈ T ′ such

that rt
1 = rt′

2 and t ≤ t′; and

3. for all rt′

2 ∈ H2 and given any rt
1, r

x
1 in H1 with t, x ∈ T , it is the case

that rt′

2 = rt
1 and rt′

2 = rx
1 iff t = x; and

4. for all rt
1, r

x
1 in H1 with t, x ∈ T such that t < x, it is the case that, for

rt′

2 , r
x′

2 ∈ H2 with t′, x′ ∈ T ′, we have rt
1 = rt′

2 and rx
1 = rx′

2 iff t′ < x′.

The intuition for these requirements as expressing the concept of “contained

in” is as follows. A smaller history is contained in a larger one. All the events

of the smaller history appear in the larger one, in the same relative ordering.

The only change permitted is that new events are inserted into the larger

history; such inserted events can be interleaved in any way.

The unit e as the empty history behaves as expected.

H ◦ e = H = e ◦H

To demonstrate this is true, consider a proof of identity by cases. It is given

that |e| = 0, so either

1. |H| = 0, that is H is e, thus need to prove e ◦ e = e

a) This is true, following rt := rt
1 ·rt

2. However, T = 0 so there are no

elements to compose. The result is the history of length 0, namely,

e.

2. |H| ≥ 1

a) Requirement 1 for ≺ holds (0 < 1).

b) Requirement 2 holds vacuously (all rt
1 ∈ e is ∅).

c) Requirement 3 holds vacuously, without rt
1, r

x
1 to compare.

d) Requirement 4 holds vacuously, without rt
1, r

x
1 to compare.

One might think the unit for ◦ could be the history of length 1, containing

just the unit element E (recall E = {eM , eD, eN}). However, if defined thus,

requirement 2 for ≺ might fail if there is no element of H in H ◦ e such

that (H, t) = E. Then H ◦ e could be undefined for |H| > 1, in which case

H ◦ e = H = e ◦H would not hold as required. Every history could start with

the unit element to make this true by construction, but that seems unnatural.

Therefore the unit of ◦ should be the empty history |e| = 0.

260 logic definition

Briefly, the intuition behind this definition is that a history will represent a

hypothesis for the series of events and changes to the resources of a computer

system during the course of the incident. Combining histories needs to be

defined in order for ∗ to behave properly when the hypothesis includes two

parts that happen separately. By adapting proof rules from program verifica-

tion and the style of biabduction introduced in Chapter 6, an analyst should be

able to formally check whether a hypothetical model supports the conclusion

that an incident happened. If the model does not, then either more evidence

is needed (adding or changing states in the history H) or the representation

of CSIR reasoning heuristics is inadequate. The next step in enabling this

reasoning chain is defining semantics and satisfaction relations.

7.3.4 Semantics

The semantics of the atomic expressions are many-sorted operations. To unfold

the truth value of an expression, recall

(H, t) def= [(st, ht) , (δt, βt) , (κt, υt)]. Therefore we have

[(st, ht) , (δt, βt) , (κt, υt)] |= E = E′ iff


JEK st = JE′K st

JEK δt = JE′K δt

JEKκt = JE′Kκt

Abbreviate this as

H, t |= E = E′ iff JEK at = JE′K at

Because these three types of resource are disjoint (namely S ⊂ A; N ⊂ A;

K ⊂ A and S ∩ N = S ∩ K = N ∩ K = ∅), only one of the three interpretations

can be valid. Namely, only one of JEK s or JEK δ or JEKκ can hold for any E,

or they are equivalent. Only one exists because for JEK a to be interpretable,

dom (a) must include the free variables of E. The domains of s, δ, κ are disjoint

by definition. If there are no free variables in E, then JEK s = JEK δ = JEKκ.

7.3 logic definitions 261

Similarly, points-to can be defined over the three disjoint parts of the model

at a given time, and then abbreviated in terms of elements of A and C:

[(st, ht) , (δt, βt) , (κt, υt)] |= E 7→ E1, E2

iff


ht (JEK st) = 〈JE1K st, JE2K st〉 {JEK st} = dom (ht)

βt (JEK δt) = 〈JE1K δt, JE2K δt〉 {JEK δt} = dom (βt)

υt (JEKκt) = 〈JE1Kκt, JE2Kκt〉 {JEKκt} = dom (υt)

Abbreviate this as

H, t |= E 7→ E1, E2 iff {JEK at} = dom (ct)

and ct (JEK at) = 〈JE1K at, JE2K at〉

The element emp actually represents a set of three related elements:{
M

emp,
D

emp,
N

emp
}
. The semantics for emp is defined as

[(st, ht) , (δt, βt) , (κt, υt)] |= M
emp iff ht = []

[(st, ht) , (δt, βt) , (κt, υt)] |= D
emp iff βt = []

[(st, ht) , (δt, βt) , (κt, υt)] |= N
emp iff υt = []

H, t |= emp iff M
emp and D

emp and N
emp

Here, ht = [], βt = [], and υt = [], represent the empty heap, empty file system,

and empty network, respectively.

The semantics for a relational predicate, P , is given by

H, t |= P ((V al1, E1) , (V al2, E2))

iff(H, t) ∈ V [P ((V al1, E1) , (V al2, E2))]

Here V : A → P (States) is the valuation function from the set A of atoms

of P ((V al1, E1) , (V al2, E2)) to the powerset of possible states of the form

(H, t).

262 logic definition

The other semantic clauses are as follows:

H, t |= φ⇒ ψ iff if H, t |= φ then H, t |= ψ

H, t |= ∃x.φ iff for some v ∈ V al. [a|x 7→ v] , c |= φ

H, t |= φUψ iff for some i ∈ T with i ≥ t and (H, i) |= ψ such that
for all j ∈ T with t ≤ j < i it is the case (H, j) |= φ

H, t |= φSψ iff for some i ∈ T with i ≤ t and (H, i) |= ψ such that
for all j ∈ T with i < j ≤ t it is the case (H, j) |= φ

H, t |= φ ∗ ψ iff for some H1, H2 such that H1#H2 and
H1 ◦H2 = H, where H1, t |= φ and H2, t |= ψ

Here H1#H2 indicates the histories are point-wise disjoint. H1#H2 is the case

if and only if the following conditions hold:

1. |H1| = |H2| = T ; and

2. For all [(st
1, h

t
1) , (δt

1, β
t
1) , (κt

1, υ
t
1)] ∈ H1

and [(st
2, h

t
2) , (δt

2, β
t
2) , (κt

2, υ
t
2)] ∈ H2

it is the case that, for all t ∈ T :

a) dom (ht
1) ∩ dom (ht

2) = ∅ and

b) dom (βt
1) ∩ dom (βt

2) = ∅ and

c) dom (υt
1) ∩ dom (υt

2) = ∅.

These semantics are novel in that they allow temporal and spatial operators

to interleave freely. Prior attempts to combine spatial and temporal operators

used CTL with its parallel branching time semantics (Espinosa and Brother-

ston, 2017). These attempts did not achieve the ability to interleave operators

I have achieved here. Otherwise, these semantics are closely related to how

separation logics have usually been defined, as Chapter 6 reviewed, and so

should readily support reasoning with abduction and deduction.

7.3.5 Abduction

As introduced in Chapter 6, this logic model can assist in automating abduc-

tion. Recall that Charles Peirce defines it as:

“Abduction is the process of forming an explanatory hypothesis.

It is the only logical operation which introduces any new idea.”

(Bergman and Paavola, 2016, CP 5.171)

7.3 logic definitions 263

Abduction would naturally be grouped into a trio with deduction and in-

duction. These terms have long, problematic histories of usage. Deduction

requires a proof theory, and because one can justifiably define different proof

theories for different purposes (von Plato, 2016), ‘deduction’ is not just one

thing. But generally ‘deduction’ captures the reasoning from premises to con-

clusions following explicit rules. ‘Induction’ has received voluminous attention,

since Hume in the 1740s (Henderson, 2018). It roughly means concluding

that because something has been the case before, it will be again. A more

fruitful discussion might be had under the topic of how to generalize from

what is known. Generalization methods and general knowledge, as defined in

Chapter 4, are one example of the heuristics that should be encoded into the

logic.

Abduction is neither deduction nor induction. Abduction is the genera-

tion of an explanation, which can then be evaluated against available evid-

ence.More formally, abduction asks what (minimal) formula needs to be ad-

ded to a proposition such that it will be satisfied. As Chapter 6 discussed,

abduction is automatable as long as the problem space is constrained, check-

ing the validity of hypothetical additions is scalable, and human heuristics

for generating additions can be encoded in the logic. Attack ontologies (those

identified in Chapter 2) will serve as the heuristics for incident analysis.

Section 7.4 will endeavour to represent the intrusion kill chain (Hutchins et

al., 2011) in the logic. That section will also demonstrate how to link existing

knowledge bases, such as Snort rules, into this structure. This should allow

a system to be built that instruments a computer network, ingests security-

relevant information, and, given a security incident, uses the logic to assist

in the process of abducing explanations of how an adversary penetrated the

network. Given this decision support, the natural future work is to test and

improve different abduction rules in a scientific manner, recalling the broad

scientific status of CSIR as argued for in Chapter 3. Thus I do not claim the

kill chain as represented is the heuristic, but just a starting point for study

and improvement.

7.3.6 On the metatheory of the security incident analysis logic

Generally, when setting up and explaining a system of logic, one gives a lan-

guage (of propositions) and a semantics specified by a class of models together

with a satisfaction relation which specifies which propositions are true in which

264 logic definition

parts of an arbitrary model. Typically, one also gives a proof system – that

is, a collection of inference rules – which determines which propositions are

provable. The first meta-theoretic challenge is then to establish soundness and

completeness. Soundness means that the provable things are also true in the

models. Completeness means that there is a model for which the notion of

truth specified in the semantics coincides with the notion of provability spe-

cified by the inference rules. This, together with other metatheoretic analyses,

is what assures logicians that a logic makes good sense.

This section has described a logic for analysing security incidents. I have

defined the logic by giving its propositional language together with a semantics

given by a specific model together with a satisfaction relation which determ-

ines which propositions are true in which parts of the given model.

The defined logic is based on a combination of some well-understood con-

structions together with a specific concrete model. In this respect, its definition

resembles that of Separation Logic (see Chapter 6) enough that these import-

ant methatheoretical properties, such as soundness and completeness, should

be the same in both logics. Since Separation Logic is known to be sound and

complete, this is good evidence my logic is on solid footing.

7.4 a worked example

In this section, I return to the ‘kill chain’ model as an example. As situated

in Chapter 2 and touched on in Chapter 4, the kill chain model was intro-

duced by Lockheed Martin to explain an abstract pattern they observed in

attacks targeting their organization (Hutchins et al., 2011). As elaborated in

Chapter 5, it is a useful model of computer network attacks because it helps

inform the incident analyst about expected sorts of activities, targeting which

entities, and how the attack elements are organised so as to be responsible for

the outcome. The abstract nature of the kill chain makes it a good example

to be expressed in this incident analysis logic. It also models a useful unit

of incident analysis: a single attack. Multiple attacks are almost always se-

quenced to achieve an adversary’s overall goal during a campaign. Also, most

attacks do not succeed, so usually many attacks occur in parallel. Therefore,

modelling a single attack should be a fruitful example because analysts can

compositionally build on it to analyse security incidents.

The goal is to turn this conceptual model of the kill chain into a set of

logical statements of pre- and post-conditions that express useful abduction

7.4 a worked example 265

heuristics. This translation requires a realignment of the components of the

model. The logic talks about observable computer activity, and as such the

humans in the kill chain have no explicit representation. Their interests are

represented in the definition of predicates. For example, the truth values of

compromised () will depend on the security policy of the defender.

What counts as malware or an exploit is also dependent on the point of

view of the agents. The logic models only software instructions, computer

systems, and bit-strings. These categories are intention-neutral. Malware, like

all software, is simply an instruction set – what the logic will model as a com-

putation. I shall not dictate how malware is classified. One benefit of the logic

is to express precisely how an analyst determines how to differentiate malware

from benign computations. Descriptions of what behaviours are indicative of

malicious versions of those elements will be contingent.

To define the representation of a computation (i.e., software, functions, etc.),

I adapt Hoare-Floyd logic. Hoare logic is a mainstay of program verification.

Recall from Chapter 6 that Hoare logic is primarily concerned with statements

of the form {φ} C {ψ}, where φ is pre-conditions, ψ is post-conditions, and C

is some specific computation. The goal of Hoare logic is to verify that ψ can

be guaranteed to be satisfied if C executes in an environment that satisfies φ.

The construction of Hoare logic is about the details of C and trying to

demonstrate post-conditions given pre-conditions. I will use Hoare triples dif-

ferently. The incident responder knows a post-condition, usually some security

violation, and wants to understand more about the pre-conditions and soft-

ware. The computation C can be described in various levels of detail. This is an

important benefit. The logic, so defined, permits description of programmatic

details. Malware reverse engineering tries to construct details of an unknown

C. Incident analysis is primarily involved in a higher level task, merely con-

straining the observable traces in the system, not how some C made these

changes. Knowing malware details is helpful because it narrows the potential

pre- and post-conditions. I have jointly made a start at how to describe a

logic of malware in Primiero et al. (2018). However, I leave discussion of how

specifically C works in malware for future work. What incident analysts need

to know about malicious logic is simply a Hoare triple {φ} C {ψ} where φ

and ψ are known. This approach to knowledge is essentially the programming

266 logic definition

principle of encapsulation. If one know what goes in and what comes out, how

it works is irrelevant; only the impacts on the system matter.2

Let’s represent a computer system as σ, taken from the systems known to

the analyst. The full complement of systems is represented by S. At a given

time t, the system is σt. The system σt is shorthand for a cluster of resources

[(st, ht) , (δt, βt) , (κt, υt)]. Therefore, at any given time t, the state of the world

(H, t) might be decomposed into one or more systems σt
1·σt

2·...·σt
n. The concept

of system is therefore merely a shorthand for a cluster of resources that the

incident analyst is interested to treat as a unit of analysis.

The third and final entity, bit-strings are a type of expression E. Usu-

ally programmers represent strings in human-readable form. Human-readable

strings can be represented as integers, so the syntax for E remains unchanged.

I elide the details of local encodings (ASCII vs. unicode vs. hexadecimal, big-

vs. little-endian, etc.) that complicate mapping between strings and integers.

Notating strings as strings instead of expressions is merely a syntactic con-

venience.

Given computations and systems, all the necessary predicates can be

defined as follows:

• compromised (σt)

• hostile (σt)

• malicious (C)

• match (string1, string2)

• trusts
(
σt

1, σ
t′

2

)
(often t = t′)

• vulnerable (σt, C)

• exploited (σt, C)

Compromised, hostile, and malicious have the intuitive meanings. In the

current set of definitions, these have binary truth values. Analysts may be

interested in intermediate values. I leave an extension of the logical definitions

to a many-valued logic as future work.

Note that my intention here is that the compromised system is internal,

under defender ownership, whereas a hostile system is on the Internet, not

owned by the defender. Therefore, a different reasonable definition would be

to define an ownership predicate, and define compromised () in terms of hostile

and owned. There are multiple compatible ways to represent relevant concepts.

I select the above as a viable definition, not the only one.

2 Any given {φ} C {ψ} for a program will be treated as a hypothesis, and one that

given sufficient evidence might be overturned and modified.

7.4 a worked example 267

The predicate trusts
(
σt

1, σ
t′

2

)
is a relationship between two systems. Al-

though it is an oversimplification, for the time the predicate reduces trust to

the ability to communicate. More specifically, receive information. That is,

given an address a1 ∈ A such that a1 ⊂ σt
1 and address a2 ∈ A such that

a2 ⊂ σt
2 and any expression E, it is the case that trusts

(
σt

1, σ
t′

2

)
just in

case that (a1 7→ E) ⇒ (a2 7→ E). I adopt the convention that any similar

predication over a σ must be similarly reducible to a logical formula.

This is an abstract concept of communication. It just says that if some

address in system one points to an expression, somehow eventually an address

in system two comes to point to the same expression. The reason this is

trust, and not chance, is that this relationship holds for any expression. This

definition abstracts away from how that communication is executed. A real

security policy may restrict which expressions are permitted or disallowed. I

leave such definitions of a trust predicate as future work.

The predicate match () represents a common use case in incident analysis

and computer network defence: pattern matching. Tools such as intrusion de-

tection systems, firewall ACLs, and spam email detection all rely on matching

incoming communications to known patterns of interest. These patterns are

signatures or blacklists of malicious behaviour.

Let’s define the semantics of match (string1, string2) such that:

[(
st, ht

)
,
(
δt, βt

)
,
(
κt, υt

)]
|= match (string1, string2)

just in case

in
([(

st, ht
)
,
(
δt, βt

)
,
(
κt, υt

)]
, string2

)
∧ string1 = string2

The in () predicate holds just in case

Jstring2K ∈ dom (st) ∨ Jstring2K ∈ dom (ht) ∨

Jstring2K ∈ dom (δt) ∨ Jstring2K ∈ dom (βt) ∨

Jstring2K ∈ dom (κt) ∨ Jstring2K ∈ dom (νt)

One may abbreviate this as in (σt, string) or in ((H, t) , string). If you wish

to emphasize a certain type of string only occurs in the contents of files, for

example, then elide the other variables and write in (βt, string).

The equality operator is expression equality as defined in Section 7.3.4,

since strings are expressions. Specifically, if strings are understood as integers,

268 logic definition

the expressions will have no free variables and so it becomes the usual integer

equality.

Write σt |= {φ} C {ψ} just in the case that there is some content c ∈ C

and σt |= match (C, c) ⇒ (φ⇒ ψ). This assumes that the computation

C terminates. But analysts are primarily concerned with malware that has

successfully run, so this termination condition should not cause great trouble.

Furthermore, time is defined to be finite, so termination can always be defined

as the state at (H, t) when t = T .

I then propose to define vulnerable (σt, C) to hold iff

σt |= ({φ} C {ψ}) ∧ φ ∧malicious (C). If vulnerable (σt, C) holds, the real-

world impact is a bad security situation. Such a system can be exploited at

the will of the adversary.

To differentiate from the less severe situation where a system is vulnerable

but exploit code is not present, define σt |= vul (φ). This is a syntactic con-

venience; it means only that σt |= φ and that φ is the precondition for the

execution of some malware.

Vulnerability is not the same as exploitation (in the traditional terminology

of computer security). Exploit also requires access, which can be defined in

terms of trusting, execution, etc. However, simply the state of having been

exploited, exploited (σt, C), I define as:

σt |= ({φ} C {ψ}) ∧malicious (C) ∧ ψ.

7.4.1 A logic of the kill chain

The kill chain provides the incident analyst with heuristics for the pre-

conditions that lead to observed post-conditions. It is straightforward to

define expected pre- and post-conditions from each of the seven steps of the

kill chain. If an analyst observes the post-conditions of one, she can abduce

its pre-conditions. To complement this, Section 7.4.2 specifies more specific

conditions for kill chain steps at a level of detail that is compatible with tools

available to practicing incident analysts. The kill chain provides the basic

structure of a single attack. Once I have defined how to reason with single

attacks, Section 7.4.3 groups attacks together into campaigns.

The last step in the kill chain is the first that an incident analyst is likely

to observe. Thus the measure of time starts with t = T , the end of the history,

and works backwards to t = 0. Because the logic has no absolute notion of

time, each discrete phase moves time back one step. In this way, analysis of

7.4 a worked example 269

a single attack will continue to step backwards through the attack from the

end to the beginning:

• Action on Objectives, the final state: the system is under adversary

control

– Post-condition (observed): H, t |= Compromised (σt
1) for t = T .

– Pre-condition: C&C, defined as: there is some σ2 such that

H, t |= trusts (σt
1, σ

t
2) ∧ hostile (σt

2) for t = T − 1.

This does not tell the analyst much, but it importantly identifies that there

must be some hostile system that the defender’s system has come to trust.

Unwinding the next steps backwards would shed light on how.

• Command and control

– Post-condition (observed): C&C, as defined above

– Pre-condition: Installation of malware, that is

σt
1 |=

({
φ̂C1

}
C1

{
ψ̂C1

}
∧ φ̂C1

)
, for t = T − 2. The indicates

that the malware will be able to execute indefinitely into the fu-

ture, not just once.

Where
{
φ̂C1

}
C1

{
ψ̂C1

}
as follows:

ψ̂C1 is a post-condition for the adversary’s objectives, including at minimum

establishing a communication channel; i.e., H, t |= trusts (σt
1, σ

t
2) for

t = T − 1. Discovery of further unobserved objectives is likely one in-

vestigative goal.

φ̂C1 is the pre-conditions for the malware to run. These may simply be the

post-conditions of the installer (i.e., ψ̂C2 , defined below), but may in-

clude what type of system the adversary can or wants to target.

A more flexible definition of the pre-conditions for command and control would

be
({
φ̂C1

}
C1

{
ψ̂C1

})
Uφ, for some φ, instead of({

φ̂C1

}
C1

{
ψ̂C1

})
.

• Installation of C1 (the main malware) by C2 (a downloader, installer,

etc.)

– Post-condition (observed): Installation, captured by

σt
1 |=

{
φ̂C1

}
C1

{
ψ̂C1

}
∧ φ̂C1 , for t = T − 2.

– Pre-condition: Exploitation; i.e., σt
1 |= exploited (σt

1, C2), for

t = T − 3.

270 logic definition

Note that the installation post-condition is weaker than the command and

control pre-condition. The post-condition is what can be observed, but the

pre-condition is abduced. In this context, the analyst should not assume the

malware will stop, but rather that it will continue running indefinitely. Of

course, like all abductions, this hypothesis might be changed by further ob-

servations.

Here
{
φ̂C2

}
C2

{
ψ̂C2

}
is as follows.

ψ̂C2 contains at least that σt
1 |=

({
φ̂C1

}
C1

{
ψ̂C1

})
∧ φ̂C1 , for t = T − 2; i.e.,

system one both stores the malware and is configured such that it can

run.

φ̂C2 is a pre-condition containing at least the transfer of data necessary for

installation; i.e., there is some σ3 such that

H, t |= trusts (σt
1, σ

t
3), for t = T − 4.

• Exploitation of system σ1 by an exploit C3.

– Post-condition (observed): σt
1 |=

{
φ̂C2

}
C2

{
ψ̂C2

}
∧ ψ̂C2 ,

for t = T − 3.

– Pre-condition: σt
1 |= vulnerable (σt

1, C3), for t = T − 5.

Here
{
φ̂C3

}
C3

{
ψ̂C3

}
is as follows:

ψ̂C3 contains at least σt
1 |=

({
φ̂C2

}
C2

{
ψ̂C2

})
∧ φ̂C2 , for t = T − 4. I say “at

least” here because the exploit may or may not delete itself, for example,

so in general additional traces on the system cannot be specified.

φ̂C3 represents the vulnerability to be exploited and targeting conditions de-

signed by the adversary.

• Delivery of an exploit

– Post-condition (observed): There exists content c, c′ ∈ C such that

σt
1 |= match (C2, c) ∗match (C3, c

′), for t = T − 6.

– Pre-condition: There is σ4 such that (H, t) |= trusts (σt
1, σ

t
4), for

t = T − 7.

The delivery phase does not assume the exploit runs, just that it reaches

the defender’s system from somewhere. The rules abduced the existence of

that system, here called σ4.

• Weaponization against an observed vulnerability

7.4 a worked example 271

– Post-condition (explicitly unobserved): This is the creation of the

malware. It also might include all the work the adversary did to

discover the vulnerability, etc.

– Pre-condition: The reconnaissance was successful and the ad-

versary learns that the system σt
1 |= vul (φ) for some φ, for

t = T − 8.

Weaponization is an abduced step. Because it occurs local to the adversary,

the defender almost never observes it, but knows that it must happen.

• Reconnaissance on target systems

– Post-condition: Observable communication between σ5 and σ1.

That is, (H, t) |= trusts (σt
1, σ

t
5) ∧ ψ, for t = T − 9, where ψ rep-

resents the information communicated. In some situations, it may

be possible to learn what vulnerability is likely communicated,

that is ψ ⇒ vul (φ).

– Pre-condition: There exists σ5 with (H, t) |= trusts (σt
1, σ

t
5), for

t = 0. Depending on the communication, it may be possible to

put constraints on what cluster of resources represent σ5.

The adversary-controlled systems σ5, σ4, σ3, σ2 may or may not be the same

real-world system, sharing some combination of resources.

7.4.2 Using more granular knowledge

Chapter 5 used the kill chain as an example of mechanistic explanation and

incorporated a lower (mechanistic) level of explanation via a type of exploit-

ation: drive-by download. In this logic, I can similarly refine expressions. For

example, known exploits would put constraints on
{
φ̂C3

}
C3

{
ψ̂C3

}
.

Integrating specific rules should enable automating the process of finding

likely explanations. The incident analyst might have many thousands of po-

tential specifications of various phases of the kill chain, derived from anti-virus

signatures, blacklists, and so on. The MITRE Adversarial Tactics, Techniques,

and Common Knowledge (ATT&CK) framework is an example attempt at such

structured knowledge. Translating such knowledge into the logic would enable

mechanization of inspection of which details are more likely to be at play in

a given incident based on observations.

272 logic definition

This subsection will demonstrate how existing knowledge bases can be lever-

aged in this way via a Snort rule. An IDS rule, such as Snort rules, is a struc-

tured statement of suspicious network activity. Consider an old, but represent-

ative, example rule from Roesch (1999), which introduced Snort. Translations

from anti-virus rules, etc., should be similarly easy.

alert tcp any any -> 192.168.1.0/24 143 (content:"|E8C0 FFFF

FF|/bin/sh"; msg:"IMAP Buffer Overflow detected!";)

This rule is a specification of the kill chain “Delivery” phase. Some parts are

responses, such as “alert”, which need not be represented in the logic because

response is out of the scope defined in Chapter 2. Similarly, annotation such

as the “msg” field is useful, but would be implemented elsewhere.

This leaves essentially two elements of the rule. The header, which specifies

the matching rules for packet headers, and the payload detection options (here,

“content”). In this case, these aspects map to statements about the network,

namely κ, ν. Specifically, header rules are about κ and content rules are about

ν. This makes translation of such Snort rules relatively straightforward.

The network headers are simply communication between some external

system, σ4, and the defender’s system σ1. System σ4 remains unconstrained,

represented by any any for IP and port matches. However, there are two con-

straints on σ1. Firstly, the system is 255 IP addresses, namely 192.168.1.0/24.

Represent this as the claim that there exists some κ ∈ A such that

σt
1 |= dip (192.168.1.0, κ) ∨ ... ∨ dip (192.168.1.255, κ) ∧ dport (143, κ)

The predicates dip () and dport () use thematch () predicate, defined to match

specific parts of an IP packet header (destination IP and port, respectively).

The content is a string-matching constraint on the communication between

σ4 and σ1. I change the notation for hexadecimal content from |FF |, as Snort

uses, to FF. Then this half of the Snort rule is easily translated; simply assert

there exists some ν ∈ C such that

σt
1 |= match (E8C0FFFFFF/bin/sh, ν) .

This matches with an exploit, represented as C3 in this formulation. The

Snort rule is the conjunction of these two statements.

Recall the broad statement of delivery in the kill chain. Transfer of data,

including C3, from some σ4 to σ1. This example demonstrated how one can

specify greater detail of these aspects. Specifying the specifics of all such

7.4 a worked example 273

attacks is a huge undertaking. For that reason, I have chosen an example –

Snort rules – where much of this undertaking has already been collected and

curated in machine-readable form. Such existing data bases of attack patterns

should be readily leveraged by this incident analysis logic.

Analysts should also propagate specifics forward in the kill chain. This

example finds an attack against email servers. Therefore, the analyst knows

more accurate preconditions for C3. Particularly, whether vulnerable (σ1, C3)

holds. If σ1 is not an email server, then it is not vulnerable. This sort of

reasoning should allow the analyst to reduce the number of systems that need

to be investigated as to whether the exploitation step was successful.

7.4.3 Composition of attacks into a campaign

To model a campaign of many attacks, join attacks together by ∗. This is

particularly important because the compromised system σ1 might be used to

conduct further attacks locally. The postconditions of one attack might be

preconditions for other attacks. It’s important that this is ∗ and not ∧, to

count compromised machines and attacks as individuals.

There are prior attempts at organising general knowledge systematically

out of smaller elements such as attacks. Indeed, Caltagirone et al. (2013)

accomplish something similar by stitching together kill chain instances with

Bayesian belief statements. However, especially in cases where attribution is to

be pursued legally or in public diplomacy, a systematic and explicit campaign

analysis via logic would be preferable. Such logical explanations should also

be easier for incident responders to work with. As Křetínský (2018) discussed,

machine learning may be best used to select among a complicated set of rules

or heuristics in formal methods. I leave such optimization for future work.

Data input is another area in which I will only give examples. Section 7.4.2

provides an example of how existing network tools can be leveraged for data

input. Higher level data, such as device inventories, can similarly be leveraged.

MulVal (Ou et al., 2005), which helps with vulnerability management by

logical discovery of impactful attack graphs, is an example open-source tool.

I will focus here on how to stitch such information together into the logical

analysis of an incident.

A logical description of botnet operations, such as Zeus, should be possible

by composing aspects and instances of the kill chain. Chapter 4 provided a

framework – clusters of mechanism schemas – that provides a workable concep-

274 logic definition

tual definition of how more general knowledge can be built up in cybersecurity.

I will not pursue such an involved example here, but rather will express the

reasoning provided by Stoll (1989), which was introduced in Section 5.3.1.

Stoll’s example is useful because it is more simple and explicit, while still

suggestive of all the steps in modern incident response reasoning.

The first steps in Stoll’s response to the incident of the accounting shortage

are to inventory the system. In the logic, this would be represented as populat-

ing the history monoid. Proofs and abductive rules operate on a given history,

but the process of incident response also includes adding more information

to what is known about the incident. As Stoll accumulates information about

the home-made and UNIX-default accounting systems, this logic would cap-

ture that as disk contents (δ, β) or memory contents (s, h) at a time t. These

additions can follow the defined monoid operations. Recall H = (H (R) , ◦, e).

A history can change by changing the resources known to be in the system or

a history can change by interleaving newly discovered events into the known

sequence. Both of these options are defined for ◦.

As Stoll builds out the details of the existing accounting system, the pro-

grams can be represented as variables, values, and pointers, in the usual way

of program verification. There is a lot of work in how to do that well, as

Calcagno et al. (2011) explains clearly. However, it is well understood that

such structured representations of computer systems can be built well and

automated. I leave such specification for histories as future work. One way

or another, this is the type of information Stoll is gathering. The important

insight is that a given history is essentially a hypothesis about how the system

behaved. If the analyst knows a compromise occurred, but the current history

does not support any explanation for how, more details will need to be added

to the history. The abduction heuristics provided by the kill chain lead to

some structure as to what to look to add.

Stoll knows from the very beginning that something went wrong. He may

not know H, t |= Compromised (σt
1), but perhaps a slightly more general

concept is needed such as H, t |= Error (σt
1) where Error is defined as either

a compromise or a benign fault, but either way it needs to be resolved. The

description in Section 5.3.1 ended when Stoll satisfied himself the system was

in fact compromised.

From here, the analysis process could be captured as follows. Given a his-

tory, run an abduction and verification process with the available incident

analysis heuristics. Stoll (1989) goes on to describe how he discovers the com-

7.4 a worked example 275

mand and control system of remote communications. Within the logic, this is

adding more resources and events to the model of the system history. Note that

my use of model here is in both the formal logical sense and the mechanistic

sense. The process for Stoll was quite human; in a modern case some aspects

are well established and can be automated. Network sensors, for example,

have various open-source options, including Snort. But even so, a mechanistic

model should help guide the human interaction and inform what information

is most valuable to seek out. The logical model can inspect the collected data

and see if it matches any heuristics for attack patterns, including by abducing

some steps to fill in minor gaps that are rarely observed. Stoll goes on to do

this, tracing back from the C2 structure to what program was exploited, and

so on. Here, the analyst has used the kill chain to analyse a single attack, and

has a fair amount of structured information.

After Stoll understood the single attack on his system, he turns to a bigger

question. He sought to understand the campaign the adversaries conducted.

He seeks to understand their overall objectives by who else they are attacking,

what their tactics and operating procedures are, and what other infrastruc-

ture they use to achieve these goals. This is captured in modern clarity by

the diamond model of intrusion analysis (Caltagirone et al., 2013), the com-

plementary de facto standard to the kill chain situated by Chapter 2.

The diamond model takes the kill chain as a model of individual attacks

and stitches multiple attacks into an intrusion campaign on four dimensions.

I propose to capture these connections logically. The four points of connection

proposed by the diamond model are:

• Adversary

• Infrastructure

• Tools, tactics, and procedures (TTPs)

• Victim

The goal of CSIR may vary in relation to these four elements of the campaign.

For example, the analyst’s goal may be attribution of the adversary’s identity.

However, any of the four points may be the goal. For example, Stoll enu-

merates other victims in order to notify them as well as to understand what

adversary might want to attack that collection of victims. As another example,

infrastructure and TTPs are good candidates to share with other defenders to

improve collective defence, or to create IDS rules.

276 logic definition

One example of a logical abduction heuristic would be to look for other sys-

tems within defender control that are also compromised. One simple but often

effective method here is to look for other systems communicating with a known

C2 server. In the kill chain example, the C2 server was σt
2 and the defender

system known to be compromised was σt
1. So, given H, t |= trusts (σt

1, σ
t
2), the

investigator might abduce that there exists at least one defender systems σt
x

such that H, t |= trusts (σt
x, σ

t
2). If this abduction can be verified within the

network traffic, then an additional compromised system has been found to

remediate in addition to σt
1. There are various other elements of an attack

as noted by the kill chain that an analyst can pivot on to find additional

attacks within defender systems. For example, malicious software (C1, C2, or

C3), adversary-controlled systems for exploit delivery or installation (σt
3 or

σt
4), or system vulnerabilities (vul (φ)).

Expanding on attacks internally, on defender-owned systems, is one method.

An incident responder can also use what I have called indicator expansion

(Spring, 2013a) to find systems believed to be controlled by the adversary.

This technique looks to connect up different elements of adversary infrastruc-

ture. One example application is finding fast-flux networks (Metcalf et al.,

2017). However, logic may be better for capturing rules-based relations among

adversary infrastructure. For example, if the system used to conduct recon-

naissance is not the same as that used to deliver the exploit, then there must

be a communication channel between those systems.

Capturing TTPs at a useful level of detail is a challenge. Other attack onto-

logies have also struggled with this. There is not a ready source to translate

into logical statements. But I expect categories of attacks such as ransomware

can be adequately described by their pre- and post-conditions
{
φ̂C

}
C
{
ψ̂C

}
.

Specifically, ψ̂C would describe a system where, for all files, the file is en-

crypted. These predicates could be ground out by system observables rather

straightforwardly. The benefit would be that, if the tactic of ransomware is

detected or known, it limits both what sorts of malicious software are likely,

as well as what adversaries are likely and what their goals are.

Creating an adequate repository of heuristics and definitions for matching

the elements of the diamond model will be a challenge. However, incident

responders know much of this information, albeit less precisely (see, for ex-

ample, ATT&CK). I leave capturing the catalogue of adversary TTPs for future

work. My goal in this subsection has been to demonstrate it is possible to take

7.5 benefits of this logic 277

granular knowledge about specific attacks and plausibly inform campaign-level

analysis.

7.5 benefits of this logic

I believe that this logic could represent the reasoning in Section 5.3.1 and

Section 5.3.2. With some work, the logic can even represent the reasoning in

all of Stoll (1989), which is a large – but finite – collection of observations, reas-

oning heuristics, hypothetical explanations, and deduced conclusions. Stoll’s

reasoning is cited by CSIR standards as a model of good reasoning, so if it

can be represented there is reason to believe that my logic is applicable to

practical CSIR reasoning tasks. I have only sketched these usage patterns, but

this logic should work similarly to Separation Logic, which has these features.

This logic satisfies the task within the research plan laid out in Section 2.7.1

to describe the reasoning with CSIR. Formal reasoning begins to fill two gaps

identified in Section 2.7: strategic selection of tactics and what information to

report. The logic is just a beginning to a full solution. The logical tools make

headway in these gaps in the following areas:

• Communication

• Clarification

• Decision-support potential

– Explanations

– Automation

A logic such as this aids communication between analysts. In general, logical

tools aid communication by reducing ambiguity. If one analyst describes their

process in this logic, it will help other analysts understand and reproduce that

process. This clarity and abstraction should assist analysts to overcome the

challenge of justified secrecy among allies that Chapter 4 discussed. A logic al-

lows the analyst to abstract out some sensitive system details, thus increasing

shareability. These aspects both provide guidance on what to report.

Clarification of an analyst’s own thinking is another benefit. Expressing

one’s reasoning in such a logical language forces an analyst to be precise.

The process of clarification likely will surface analysis errors. Such errors are

common; as Heuer (1999) identifies, human cognitive biases often subtly insert

themselves into analytic thinking. By specifying reasoning explicitly, one can

examine the reasoning process for such instances of bias and work to reduce it.

278 logic definition

This aspect improves report clarity as well as providing guidance on analytic

strategy.

Decision-support is an ultimate aim that would require significant software

development. Logics are a better tool for explanations than machine learning.

And explanations are ultimately what scientists seek to make the unknown

intelligible (Dear, 2006). The components of a scientific explanation are out-

lined in Chapter 3 and fleshed out in Chapter 4. Logical tools move us towards

a scientific incident analysis in part because they can represent such explana-

tions and the justifications for them. The point of going through the pain of

specifying a logic, rather than remaining in the realm of philosophy of science

and natural language descriptions of incident analysis, is that logics are auto-

matable. Automation is a clear prerequisite for any decision-support in a field

like incident analysis, where data volumes are so large. At the same time, I

have adapted logical tools that have demonstrated scalable reasoning in other

contexts, temporal (Lamport, 2002) and Separation Logic (Chapter 6). The

logic design is not just tailored to incident analysis, but, insofar as is possible

at this stage, tailored to a scalable automated support for analytic strategy.

7.6 conclusions

Based on analyst accounts and case studies, I have developed logical tools

for incident analysis. My goal is both descriptive and prescriptive. On the

one hand, this chapter enhanced useful and accurate descriptions of what

analysts do. At the same time, analysts should emulate these descriptions

and build on them, to express their process methodically. This process will be

gradual. Logical tools provide a new paradigm which helps enable this gradual

advancement, alongside existing incident management and forensics practices.

This work lays out the beginning of an approach to decision support for

incident analysts. It also serves to highlight where additional formal defini-

tions are appropriate (e.g., see Section 7.3.6). And of course, as with Sep-

aration Logic, the devil will be in the details of implementing such formal

definitions (O’Hearn, 2015). Although the core sense-making and goal-setting

aspects likely will remain a distinctly human endeavour, these logical develop-

ments provide hope that tools tailored to incident analysis could reduce the

analyst’s workload.

Part IV

C O N S O L I DAT I O N

In the following part, I will review the arguments made

so far, consolidate my position, and conclude. Chapter 8

highlights the important aspects of the argument. Chapter 9

indicates the impacts and potential uses of my results.

8
SUMMARY

Chapter 2 argued that the incident response literature and standards do not

contain a usable description of decision-making during evidence collection,

analysis, and reporting stages of incident analysis.

Chapter 3 introduced the basics of relevant philosophy of science and sur-

veyed the science of security literature. Contrary to the prevailing literature, I

argue strongly that security is a science. This conclusion supports my strategy

to adapt decision-making systems from other scientific fields and apply them

to incident analysis, via philosophy of science.

Chapter 4 attacked the problem of building general knowledge head-on. It

explored the current state of understanding about generality in philosophy

of science. I found the state-of-the-art here to be lacking a coherent present-

ation. However, I presented a novel synthesis of the philosophical literature,

developing a coherent picture of building general knowledge in cybersecurity. I

identified three significant barriers to applying the synthesis to cybersecurity,

namely the cybersecurity challenges of:

• Conflict with intelligent adversaries

• Changeable nature of computer software

• Justified secrecy among friendly parties

I argued that despite these challenges, cybersecurity professionals manage

to build general knowledge. Although cybersecurity professionals do not call

it mechanistic knowledge, cybersecurity is readily recognizable as mechanism

discovery—just as described in the philosophical literature on building general

knowledge. I suggested incident analysis would therefore benefit by applying

the generalization strategies synthesized from the philosophical literature.

Chapter 5 applied mechanism discovery, mechanistic explanation, and gen-

eralization to a key incident analysis framework, the intrusion kill chain. There

are no obvious barriers to casting the kill chain as a form of mechanistic know-

ledge; specifically general knowledge as hard-fought descriptions of important

and importantly-stable features of adversary activity. I saw how such know-

ledge is qualitatively applied to evidence collection, analysis, and reporting.

281

282 summary

Chapter 6 examined what makes for a good logical formalism in computer

science. My literature review identified evidence collection, analysis, and re-

porting as the most human-intensive aspects of incident response. Scalability

is one barrier to incident analysis. To the end of automating some decision

support, Chapter 6 examined Separation Logic as a case study of successfully

deployed large-scale automated decision support. I focused on the technical

aspects that enabled interpretable, scalable, and useful logical support. Three

features seem to be critical:

• A logical model that substantively matches the scientific model of the

phenomenon of interest

• Scalability via parallelization thanks to the Frame Rule

• Automated reasoning through formalized abduction heuristics

The final part took these various insights and used them to construct a logic

to support incident analysis decision-making. Chapter 7 provided the formal

definition of the logic. Returning to the example of the kill chain, I then

translated the reasoning demonstrated qualitatively in Chapter 5 into formal

logical reasoning. The other examples of mechanistic explanation touched on

should be similarly translatable. Chapter 9 will describe the various benefits

of this result, how it might be used, and where future work would be best

directed.

9
CONCLUS IONS

I have achieved some success in answering the research question “how to sat-

isfactorily make clear and explicit the reasoning process used by individual

Computer Security Incident Response (CSIR) analysts while they pursue tech-

nical details?”

Specifically, in response to the three component questions of the research

question, I can answer:

• What heuristics should an incident analyst use to construct general

knowledge and analyse attacks?

– Where cybersecurity is like other sciences (per Chapter 3), use

similar heuristics.

– Where cybersecurity faces a unique combination of challenges,

build according to the norms Chapter 4 established.

• Is it possible to construct formal tools that enable automated decision

support for the analyst with such heuristics and knowledge?

– It seems likely, given the successful construction of a logic to cap-

ture CSIR analysis in Chapter 7.

• How can an incident analyst apply general knowledge to improve ana-

lysis of specific incidents?

– Chapter 5 demonstrated how the kill chain can be applied by an

analyst, and how common examples of analysis (Stoll, Assistant

for Randomized Monitoring Over Routes (ARMOR)) applied gen-

eral knowledge.

– Chapter 6 demonstrated how abduction can be automated to ap-

ply general knowledge, properly codified, to program verification.

Chapter 7 suggests automated abduction may be successful in

CSIR as well.

There are three areas where I expect the tools and ideas developed will

have impact: benefits to practising CSIR analysts; enabling future research

directions; and training for new incident analysts.

283

284 conclusions

Improvements to practising incident response will take some significant ef-

fort to transition, not least because the attention of such personnel is a scarce

resource. The learning curve on scientific knowledge generation heuristics will

also be steep. Nonetheless, I have provided two specific improvements that

can impact CSIR presently:

• norms for what general knowledge in cybersecurity should look like

• a logical language to communicate reasoning steps without revealing

sensitive data

The first item is intimately linked to the argument that cybersecurity is a

type of science. Creating general knowledge requires adequate design of struc-

tured observations, as touched on in Chapter 3.1 Chapter 4 and Chapter 5

expanded on what form the resulting general knowledge should take. These

advances also open up potential benefits by applying the heuristics identified

from the philosophy of science literature in Chapter 3. One could also view

this contribution as adapting how Heuer (1999) recommends analysts avoid

cognitive biases to CSIR, and perhaps Computer Network Defense (CND) more

generally.

Although future development of the logic defined in Chapter 7 will expand

its usefulness, it can provide some practical benefit even in its current form.

Based on Chapter 7, a practitioner could write out an analytic process by

hand. This might be justified for sensitive but important processes in which

communicating the details is vital but when sharing a script or code that per-

forms the analysis includes system details and would reveal too much sensitive

data to be permissible.

The work presented here will enable further research and development. I

have charted out new fields of philosophy of cybersecurity in general and

of computer security incident response in particular, providing a framework

for this research. The three research or development areas that appear most

fruitful going forwards are: automated decision support for incident response;

meta-logical analysis of the properties of the logic defined; and to extend the

account of explanation and mechanism discovery both into cybersecurity and

back into the philosophical literature on scientific explanation generally.

The most pragmatic area of future work is how the logic presented here

can provide decision support via some automation. To do this, one would

likely need to build prototype systems that can ingest both large databases of

1 I have discussed structured-observation design in other work (Hatleback and Spring,

2014; Krol et al., 2016).

conclusions 285

attacks, such as intrusion detection system (IDS) signatures, as well as a set of

more human-driven heuristics such as attack ontologies like the kill chain. The

Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) frame-

work may be useful in this effort. Such a prototype would also need to ingest

incident data, such as packet capture (pcap), IPFIX (i.e., netflow), or anti-

virus alerts. By leveraging well-supported open-source tools on both the net-

work forensics (e.g., System for Internet-level Knowledge (SiLK) and Bro) and

program verification (e.g., Infer) halves of this direction, it may be possible

to jump start progress in this area.

The trick will be to figure out whether the discovery heuristics can reliably

find new suspicious behaviour. With a suitable language fixed, sociological

research into cataloguing different incident analyst’s heuristics and models

would also be enabled. If a suitable prototype can be built and such heurist-

ics gathered, then the interesting work of evaluating which proof rules and

heuristics lead to better outcomes can begin. However, the success of this

endeavour is related to further work on the logic itself.

Meta-logical analysis was touched on in Section 7.3.6. A formal proof that

this CSIR logic is sound and complete is one area of future work. This work

would include some other useful steps, such as specifying the proof theory

in detail, which would help the decision support project. Other meta-logical

studies are also available, such as formalizing the expressivity and complexity

of the incident analysis logic.

Perhaps the most wide-ranging future work I have opened up is in the

history and philosophy of science. My contributions have been varied and so

are the areas opened for future work. Two of these contributions can be seen

as historical. The historical account of the science of security community’s

interaction with logical empiricism in Section 3.3 opens future work to un-

derstand why that community gravitated towards those beliefs. This work

also contributed to the debate on demarcation criteria of science (Chapter 3).

This invites comparison between cybersecurity sciences and other sciences.

The historical analysis of Separation Logic to extract why the logic work so

well for program verification (Chapter 6) opens future work in logic, program

verification, and philosophy. For example, whether or not Separation Logic

works for the same reasons as another successful logic, Temporal Logic of

Actions (TLA) and its implementation within TLA+.

Chapter 4 provided a nuanced account of how cybersecurity practitioners

create generalized knowledge. However, this account is largely derived from

286 conclusions

the philosophy of life sciences literature. The natural question for future work

is what similarities there are between cybersecurity and life-science practi-

tioners. My hypothesis is that other scientists, from biology to astronomy,

actually construct general knowledge analogously to the description provided

in Chapter 4. Testing the extent to which this account of generalized know-

ledge generalizes to other disciplines is thus promising future work. Related

to the discrediting of laws in logical empiricism, philosophers currently lack

a good account of how knowledge becomes general. If the account does in

fact generalize, it would fill a gap that has been sitting uncomfortably in the

philosophy of science literature.

The third area for impact for future work is in how to train new incident

analysts. There are at least four ways this impact might be realized. First,

standards bodies could work to fill the gap Chapter 2 identifies in existing

standards. Secondly, both Chapter 3 and Chapter 4 identify likely challenges;

future work on pedagogy could focus on how to best enable analysts to over-

come them. Chapters 4, 5, and 7 offered qualitative progress on some norms

and expectations for analytic steps. Integrating these ideas into training and

measuring results is future work. Finally, further work is necessary on the

structure for hypothesis generation via mechanism discovery, based on mech-

anistic general knowledge. Both theoretical work to integrate mechanism dis-

covery heuristics with incident analysis thought processes and empirical work

to measure what improvement to quality of hypotheses a structured set of

heuristics may provide.

I have brought together several fields to help fill the gaps within CSIR. In

order to align these fields to the problems at hand, I have contributed to those

fields as well as incident analysis. Philosophy of science did not have an account

of how general knowledge can be built up out of mechanistic understanding of

particulars; cybersecurity may prove a better arena for that discussion than

biology, since general knowledge is so hard-fought in cybersecurity. Logic and

program verification did not have a perspective on why certain logics might

work better than others; I have provided a plausible case. The logic I built

in Chapter 7 is not just a logic suited to incident analysis, but a new kind

of logic: a separable linear-time logic (SLTL, let’s say) in which the temporal

and spatial operators are fully commutable.

The goal of improving incident analysis and charting out a philosophy of

cybersecurity is far from over. This work has laid foundations for a scientific

incident analysis.

Part V

B AC K M AT T E R

Mostly just the bibliography, this part also contains acknow-

ledgements and the colophon.

ACKNOWLEDGEMENTS

I gratefully acknowledge the support of University College London’s Overseas
Research Scholarship and Graduate Research Scholarship for funding my PhD
studies.

I have a lot of people to thank for their help with improving this document.
Any remaining errors are my own.

Thanks to David Pym for his foresight and for taking a chance with me
and and carrying through on this endeavour together.

Thanks to Phyllis Illari for her intellectual curiosity and agreeing to help
me in this endeavour.

Thanks to Emiliano De Cristofaro for his support in this project.
Thanks to Eric Hatleback for his curiosity, patience, and collaboration on

prior projects that inspired this work.
Thanks to Tyler Moore and Peter O’Hearn for their generous time in col-

laborating on work that because Chapters 3 and 6, respectively.
Various people have provided feedback on prior versions of the papers that

have been adapted for the thesis. Besides my co-authors and supervisors, I’d
like to thank Wolter Pieters, Karl Levitt, Marie Vasek, and all the NSPW
2017 attendees for comments on what became Chapter 3; Inge de Bal, Gi-
useppe Primiero, Dingmar van Eck, Stuart Glennan, and Stewart Garrick
for discussions about what would become Chapter 4; my colleagues at the
CERT Division of the SEI for feedback on what became Chapter 5; Simon
Docherty for comments on what would become Chapter 6 and Chapter 7;
Pavle Subotic for advice on Chapter 7; and finally to Claudia Cristalli for her
advice on Peirce.

The various groups at UCL have been welcoming places to grow intellectu-
ally. Thanks to the STS department for adopting me; thanks to the informa-
tion security and usable security groups for engaging with me; and thanks to
the PPLV group for being patient with me while I learned logics.

Other co-authors during my time at UCL, even though our shared work is
not adapted into this thesis, have shaped my work and my thinking. Thanks
to Angela Sasse, Simon Parkin, Albesa Demjaha, Ingolf Becker, Giuseppe
Primiero, Leigh Metcalf, and Eric Hatleback (again).

Thanks to Michael Spring for his generous advice on IT standards as well
as generous and thorough proof reading.

Thanks to Sebastian Meiser and Alex Mittos for general feedback and en-
gagement with this project.

Thanks to Paul Vixie for his initial encouragement and support.
Thanks to anonymous reviewers from WEIS 2016, HotSoS 2016, LASER

2016, USEC 2018, Data Science for Cybersecurity 2017, Security Protocols
Workshop 2017, A Conference on Defense 2017, Philosophy & Technology
(repeatedly), the European Journal for Philosophy of Science, the Journal of
Cybersecurity, and NSPW – 2016, 2017, and 2018. Comments from these
various people who volunteered their time have improved my thinking and
my expression of ideas in the various papers that have been adapted for this
thesis.

A final thank you to all my friends and loved ones, for various kinds of vital
support.

289

BIBL IOGRAPHY

Abraham, Renchie et al. (June 2015). Common Vulnerability Scoring
System v3.0: Specification Document. Tech. rep. Forum of Incident
Response and Security Teams.

Addis, Benedict and Stewart Garrick (3rd Dec. 2014). ‘Botnet take-
downs – our GameOver Zeus experience’. In: Botconf. AILB-IBFA.
Nancy, France.

Adve, Sarita V. and Kourosh Gharachorloo (1996). ‘Shared memory
consistency models: A tutorial’. In: Computer 29.12, pp. 66–76.

Alberts, Chris, Audrey Dorofee, Georgia Killcrece, Robin Ruefle and
Mark Zajicek (2004). Defining Incident Management Processes for
CSIRTs: A Work in Progress. Tech. rep. CMU/SEI-2004-TR-015.
Software Engineering Institute, Carnegie Mellon University.

Alberts, Christopher, Audrey Dorofee, Robin Ruefle and Mark Zajicek
(2014). An Introduction to the Mission Risk Diagnostic for Incident
Management Capabilities (MRD-IMC). Tech. rep. CMU/SEI-2014-
TN-005. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

Alpcan, Tansu and Tamer Başar (2011). Network security: A decision
and game-theoretic approach. Cambridge, UK: Cambridge University
Press.

Amann, Bernhard, Robin Sommer, Aashish Sharma and Seth Hall
(2012). ‘A lone wolf no more: supporting network intrusion detection
with real-time intelligence’. In: Research in Attacks, Intrusions, and
Defenses, pp. 314–333.

Andersen, Holly (2017). ‘What Would Hume Say? Regularities, Laws,
and Mechanisms’. In: Handbook of Mechanisms and the Mechanical
Philosophy. Ed. by Stuart Glennan and Phyllis Illari. London: Rout-
ledge.

Anderson, Gabrielle and David Pym (21st Sept. 2015). ‘Substructural
modal logic for optimal resource allocation’. In: 3rd International
Workshop on Strategic Reasoning. Ed. by Julian Gutierrez, Fabio
Mogavero, Aniello Murano and Michael Wooldridge, pp. 1–11.

Anderson, Gabrielle, Guy McCusker and David Pym (Nov. 2016). ‘A
logic for the compliance budget’. In: International Conference on
Decision and Game Theory for Security. Vol. 9996. LNCS. Springer.
New York, pp. 370–381.

Anderson, Philip (25th Mar. 2015). Electronic evidence – A basic
guide for first responders. Tech. rep. 10.2824/068545. Heraklion, GR:
European Union Agency for Network and Information Security. url:
https://www.enisa.europa.eu/publications/electronic-evidence-a-basic-
guide-for-first-responders/at_download/fullReport.

Anderson, R. J. (2008). Security Engineering: A guide to building de-
pendable distributed systems. second. Indianapolis: Wiley.

291

https://www.enisa.europa.eu/publications/electronic-evidence-a-basic-guide-for-first-responders/at_download/fullReport
https://www.enisa.europa.eu/publications/electronic-evidence-a-basic-guide-for-first-responders/at_download/fullReport

292 bibliography

Anderson, Ross J. (Dec. 2001). ‘Why information security is hard: an
economic perspective’. In: Computer Security Applications Confer-
ence. IEEE. New Orleans, LA, pp. 358–365.

Anderson, Ross J. and Tyler Moore (2006). ‘The Economics of Inform-
ation Security’. In: Science 314.5799, pp. 610–613. doi: 10 . 1126/
science.1130992.

Anderson, Ross, Chris Barton, Rainer Böhme, Richard Clayton, Michel
JG Van Eeten, Michael Levi, Tyler Moore and Stefan Savage
(26th June 2012). ‘Measuring the cost of cybercrime’. In: Workshop
on the Economics of Information Security. Berlin.

Angius, Nicola and Guglielmo Tamburrini (2017). ‘Explaining Engin-
eered Computing Systems’ Behaviour: the Role of Abstraction and
Idealization’. In: Philosophy & Technology 30.2, pp. 239–258.

Anti-Phishing Working Group (2016). APWG Phishing Attack Trends
Reports. accessed Jan 2016. url: https://apwg.org/resources/apwg-
reports/.

Antonakakis, M., R. Perdisci, W. Lee, N. Vasiloglou II and D. Dagon
(2011). ‘Detecting Malware Domains at the Upper DNS Hierarchy’.
In: 20th Usenix Security Symposium. San Francisco, CA.

Appel, Andrew W (2015). ‘Verification of a cryptographic primitive:
SHA-256’. In: Transactions on Programming Languages and Systems
(TOPLAS) 37.2, p. 7.

Appel, Andrew W, Robert Dockins, Aquinas Hobor, Lennart Beringer,
Josiah Dodds, Gordon Stewart, Sandrine Blazy and Xavier Leroy
(2014). Program logics for certified compilers. New York: Cambridge
University Press.

Apt, Krzysztof R. (1981). ‘Ten years of Hoare’s logic: a survey—Part
I’. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 3.4, pp. 431–483.

Avancha, Sasikanth, Amit Baxi and David Kotz (Dec. 2012). ‘Privacy
in Mobile Technology for Personal Healthcare’. In: ACM Comput.
Surv. 45.1, 3:1–3:54.

Avgerinos, Thanassis, Sang Kil Cha, Alexandre Rebert, Edward J
Schwartz, Maverick Woo and David Brumley (2014). ‘Automatic ex-
ploit generation’. In: Communications of the ACM 57.2, pp. 74–84.

Axelsson, Stefan (2000). ‘The base-rate fallacy and the difficulty of in-
trusion detection’. In: ACM Transactions on Information and System
Security (TISSEC) 3.3, pp. 186–205.

Baader, Franz (2003). The description logic handbook: Theory, imple-
mentation and applications. Cambridge, UK: Cambridge University
Press.

Bace, Rebecca and Peter Mell (2001). Intrusion detection systems.
Tech. rep. SP 800-31. Gaithersburg, MD: U.S. National Institute
of Standards and Technology.

Ballou, Susan et al. (2001). Electronic Crime Scene Investigation: a
Guide for First Responders. Ed. by Technical Working Group for
Electronic Crime Scene Investigation. Washington, D.C.: US De-
partment of Justice, Office of Justice Programs, National Instit. of
Justice.

https://doi.org/10.1126/science.1130992
https://doi.org/10.1126/science.1130992
https://apwg.org/resources/apwg-reports/
https://apwg.org/resources/apwg-reports/

bibliography 293

Balmer, Brian (2013). Secrecy and science: A historical sociology of
biological and chemical warfare. Ashgate Publishing, Ltd.

Bartholomew, Brian and Juan Andres Guerrero-Saade (5th Oct. 2016).
Wave your false flags! Deception tactics muddying attribution in tar-
geted attacks. Tech. rep. Presented at Virus Bulletin 2016. Woburn,
MA: Kaspersky Lab USA.

Barwise, Jon and Jerry Seligman (1997). Information flow: the
logic of distributed systems. Cambridge University Press. isbn:
9780511895968.

Beall, Jc et al. (2012). ‘On the ternary relation and conditionality’. In:
Journal of Philosophical Logic 41.3, pp. 595–612.

Bechtel, William (2007). Mental mechanisms: Philosophical perspect-
ives on cognitive neuroscience. 1st ed. London: Routledge.

Bechtel, William and Robert C. Richardson (1993). Discovering com-
plexity: Decomposition and localization as strategies in scientific re-
search. 1st. Princeton, NJ: Princeton University Press.

Beebe, Nicole Lang and Jan Guynes Clark (2005). ‘A hierarchical,
objectives-based framework for the digital investigations process’. In:
Digital Investigation 2.2, pp. 147–167.

Bejtlich, Richard (2004). The Tao of network security monitoring: bey-
ond intrusion detection. Pearson Education.

Bell, D.E. and L.J. LaPadula (Nov. 1973). Secure Computer Systems:
Mathematical Foundations. Tech. rep. ESD-TR-73-278. Bedford,
MA: MITRE Corporation. url: http : / / www . dtic . mil / cgi - bin /
GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0770768.

Bellovin, Steve (Sept. 1992). ‘There Be Dragons’. In: USENIX Security
Symposium. Baltimore, MD.

Bergman, Mats and Sami Paavola (14th July 2016). ‘Abduction’: term
in The Commens Dictionary: Peirce’s Terms in His Own Words. New
Edition. http://www.commens.org/dictionary/term/abduction.

Bickle, John (2008). ‘Real reduction in real neuroscience: metascience,
not philosophy of science (and certainly not metaphysics!)’ In: Being
reduced: New essays on reduction, explanation, and causation. Ed. by
Jakob Hohwy and Jesper Kalestrup. Oxford University Press, pp. 34–
51.

Biddle, Robert, Sonia Chiasson and P.C. Van Oorschot (Sept. 2012a).
‘Graphical Passwords: Learning from the First Twelve Years’. In:
ACM Comput. Surv. 44.4, 19:1–19:41.

– (Sept. 2012b). ‘Graphical Passwords: Learning from the First Twelve
Years’. In: ACM Comput. Surv. 44.4, 19:1–19:41.

Blackshear, Sam and Peter W. O’Hearn (19th Oct. 2017). Open-
sourcing RacerD: Fast static race detection at scale. url: https :
//code.facebook.com/posts/293371094514305/open-sourcing-racerd-
fast-static-race-detection-at-scale/.

Bogen, James and James Woodward (1988). ‘Saving the phenomena’.
In: The Philosophical Review XCVII.3, pp. 303–352.

Boolos, George S., John P. Burgess and Richard C. Jeffrey (2002).
Computability and logic. 4th. Cambridge: Cambridge University
Press.

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0770768
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0770768
http://www.commens.org/dictionary/term/abduction
https://code.facebook.com/posts/293371094514305/open-sourcing-racerd-fast-static-race-detection-at-scale/
https://code.facebook.com/posts/293371094514305/open-sourcing-racerd-fast-static-race-detection-at-scale/
https://code.facebook.com/posts/293371094514305/open-sourcing-racerd-fast-static-race-detection-at-scale/

294 bibliography

Bornat, Richard (2000). ‘Proving pointer programs in Hoare logic’.
In: Mathematics of Program Construction. LNCS 1837. Springer,
pp. 102–126.

Brand, S.L. (1985). DoD 5200.28-STD Department of Defense Trusted
Computer System Evaluation Criteria (Orange Book). Tech. rep.

Brenner, Susan W (2002). ‘Organized cybercrime: How cyberspace
may affect the structure of criminal relationships’. In: North Carolina
Journal of Law & Technology 4, p. 1.

Brooks Jr, Frederick P (1995). The Mythical Man-Month: Essays on
Software Engineering. 2nd. Boston, MA: Addison Wesley.

Brookson, Charles et al. (Dec. 2015). Definition of Cybersecurity: Gaps
and overlaps in standardisation. Tech. rep. v1.0. Heraklion, GR: EN-
ISA.

Brotherston, James and Jules Villard (2015). ‘Sub-Classical Boolean
Bunched Logics and the Meaning of Par’. In: Proceedings of CSL-24.
LIPIcs. Dagstuhl, pp. 325–342.

Brownlee, N. and E. Guttman (June 1998). Expectations for Computer
Security Incident Response. RFC 2350 (Best Current Practice). RFC.
Fremont, CA, USA: RFC Editor.

CERT/CC (2017). "Basic Fuzzing Framework (BFF)". https://www.
cert.org/vulnerability-analysis/tools/bff.cfm. accessed Feb 6, 2017.

Cain, P. and D. Jevans (July 2010). Extensions to the IODEF-
Document Class for Reporting Phishing. RFC 5901 (Proposed Stand-
ard). RFC. Fremont, CA, USA: RFC Editor.

Calcagno, Cristiano, Peter W. O’Hearn and Hongseok Yang (2007).
‘Local action and abstract separation logic’. In: Logic in Computer
Science. IEEE, pp. 366–378.

Calcagno, Cristiano, Dino Distefano, Peter W. O’Hearn and Hong-
seok Yang (2011). ‘Compositional shape analysis by means of bi-
abduction’. In: J. ACM 58.6, 26:1–26:66.

Calcagno, Cristiano et al. (2015a). ‘Moving fast with software verifica-
tion’. In: NASA Formal Methods. LNCS 9058. Springer, pp. 3–11.

Calcagno, Cristiano, Dino Distefano and Peter W. O’Hearn (11th June
2015b). Open-sourcing Facebook Infer: Identify bugs before you
ship. https://code.facebook.com/posts/1648953042007882/open-
sourcing-facebook-infer-identify-bugs-before-you-ship/.

Caltagirone, Sergio (2005). Evolving active defense strategies. Tech. rep.
CSDS-DF-TR-05-27. Moscow, ID, USA: University of Idaho.

Caltagirone, Sergio and Deborah Frincke (2005). ‘ADAM: Active de-
fense algorithm and model’. In: Aggressive Network Self-Defense,
pp. 287–311.

Caltagirone, Sergio, Andrew Pendergast and Christopher Betz (2013).
The Diamond Model of Intrusion Analysis. Tech. rep. http://www.
threatconnect . com /methodology / diamond _model _ of _ intrusion _
analysis. Center for Cyber Intelligence Analysis and Threat Research.

Calzavara, Stefano, Riccardo Focardi, Marco Squarcina and Mauro
Tempesta (Mar. 2017). ‘Surviving the Web: A Journey into Web
Session Security’. In: ACM Comput. Surv. 50.1, 13:1–13:34.

https://www.cert.org/vulnerability-analysis/tools/bff.cfm
https://www.cert.org/vulnerability-analysis/tools/bff.cfm
https://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
http://www.threatconnect.com/methodology/diamond_model_of_intrusion_analysis
http://www.threatconnect.com/methodology/diamond_model_of_intrusion_analysis
http://www.threatconnect.com/methodology/diamond_model_of_intrusion_analysis

bibliography 295

Caralli, Richard, James Stevens, Lisa Young and William Wilson
(2007). Introducing OCTAVE Allegro: Improving the Information Se-
curity Risk Assessment Process. Tech. rep. CMU/SEI-2007-TR-012.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University.

Carrier, Brian and Eugene H Spafford (2003). ‘Getting physical with
the digital investigation process’. In: International Journal of digital
evidence 2.2, pp. 1–20.

– (Aug. 2004). ‘An event-based digital forensic investigation frame-
work’. In: Digital forensic research workshop. Baltimore, MD, pp. 1–
12.

Cartwright, Nancy (1983). How the Laws of Physics Lie. Oxford: Clar-
endon Press.

– (1991). ‘Replicability, reproducibility, and robustness: Comments on
Harry Collins’. In: History of Political Economy 23.1, pp. 143–155.

– (2012). ‘RCTs, Evidence, and Predicting Policy Effectiveness’. In: ed.
by Harold Kincaid. Oxford: Oxford University Press, pp. 298–318.

Cartwright, Nancy and Jeremy Hardie (2012). Evidence-based policy: a
practical guide to doing it better. New York: Oxford University Press.

Casey, Eoghan (2010). Handbook of digital forensics and investigation.
Elsevier.

Caulfield, Tristan and David Pym (2015a). ‘Improving Security Policy
Decisions with Models’. In: IEEE Security & Privacy 13.5, pp. 34–41.
issn: 1540-7993. doi: doi.ieeecomputersociety.org/10.1109/MSP.2015.
97.

– (2015b). ‘Modelling and simulating systems security policy’. In:
Proceedings of the 8th International Conference on Simulation Tools
and Techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), pp. 9–18.

Chandola, Varun, Arindam Banerjee and Vipin Kumar (July 2009).
‘Anomaly Detection: A Survey’. In: ACM Comput. Surv. 41.3, 15:1–
15:58.

Chen, Haogang, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek and Nickolai Zeldovich (4th Oct. 2015). ‘Using Crash
Hoare logic for certifying the FSCQ file system’. In: 25th Symposium
on Operating Systems Principles. ACM. Monterey, CA, pp. 18–37.

Cheswick, Bill (Jan. 1992). ‘An Evening with Berferd: In which a
cracker is Lured, Endured, and Studied’. In: USENIX Winter Tech-
nical Conference. San Francisco, pp. 20–24.

Cheswick, W.R., S.M. Bellovin and A.D. Rubin (2003). Firewalls and
Internet security: repelling the wily hacker. 2nd ed. Addison-Wesley
Professional.

Chiang, Tung Ju, Jen Shiang Kouh and Ray-I Chang (2009). ‘Ontology-
based risk control for the incident management’. In: International
Journal of Computer Science and Network Security 9.11, p. 181.

Chismon, David and Martyn Ruks (2015). Threat Intelligence: Collect-
ing, Analysing, Evaluating. Tech. rep. London: MWR InfoSecurity.

https://doi.org/doi.ieeecomputersociety.org/10.1109/MSP.2015.97
https://doi.org/doi.ieeecomputersociety.org/10.1109/MSP.2015.97

296 bibliography

Chockler, Hana and Joseph Y. Halpern (2004). ‘Responsibility and
blame: A structural-model approach’. In: Journal of Artificial Intel-
ligence Research 22, pp. 93–115.

Ciardhuáin, Séamus Ó (2004). ‘An extended model of cybercrime in-
vestigations’. In: International Journal of Digital Evidence 3.1, pp. 1–
22.

Cichonski, Paul, Tom Millar, Tim Grance and Karen Scarfone (Aug.
2012). Computer Security Incident Handling Guide. Tech. rep. SP
800-61r2. Gaithersburg, MD: US Dept of Commerce, National Insti-
tute of Standards and Technology.

Clarke, Brendan, Donald Gillies, Phyllis Illari, Federica Russo and
Jon Williamson (2014). ‘Mechanisms and the evidence hierarchy’.
In: Topoi 33.2, pp. 339–360.

Cohen, Fred, Julie Lowrie and Charles Preston (Feb. 2011). ‘The state
of the science of digital evidence examination’. In: ed. by Gilbert
Peterson and Sujeet Shenoi. Orlando, FL: IFIP, pp. 3–21.

Cohen, Frederick B (1995). Protection and security on the information
superhighway. John Wiley & Sons, Inc.

Cohen, Frederick B. (2010). ‘Fundamentals of Digital Forensic Evid-
ence’. In: Handbook of information and communication security. Ed.
by Peter Stavroulakis and Mark Stamp. New York: Springer, pp. 790–
808.

Collinson, M., B. Monahan and D. Pym (2012a). A Discipline of
Math.Systems Modelling. College Publns.

Collinson, Matthew, Brian Monahan and David J. Pym (2012b). A dis-
cipline of mathematical systems modelling. Vol. 2. Systems Thinking
and Systems Engineering. London: College Publications.

Cormack, Andrew (2015). JANET Suggested Charter for System Ad-
ministrators. Tech. rep. Bristol, UK: Jisc.

Cousot, Patrick and Radhia Cousot (Jan. 1977). ‘Abstract Interpret-
ation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints’. In: Conference Record
of the Fourth ACM Symposium on Principles of Programming Lan-
guages. Los Angeles, CA, pp. 238–252. doi: 10.1145/512950.512973.

Craver, Carl F. (2006). ‘When mechanistic models explain’. In: Syn-
these 153.3, pp. 355–376.

– (2007). Explaining the brain: mechanisms and the mosaic of unity
of neuroscience. Oxford: Oxford University Press.

Craver, Carl and James Tabery (2017). ‘Mechanisms in Science’. In:
The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta.
Spring 2017. Metaphysics Research Lab, Stanford University.

Creath, Richard (2014). ‘Logical Empiricism’. In: The Stanford Encyc-
lopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2014. Meta-
physics Research Lab, Stanford University.

Danyliw, R. (Nov. 2016). The Incident Object Description Exchange
Format Version 2. RFC 7970 (Proposed Standard). RFC. Fremont,
CA, USA: RFC Editor.

Danyliw, R., J. Meijer and Y. Demchenko (Dec. 2007). The Incident
Object Description Exchange Format. RFC 5070 (Proposed Stand-

https://doi.org/10.1145/512950.512973

bibliography 297

ard). RFC. Obsoleted by RFC 7970, updated by RFC 6685. Fremont,
CA, USA: RFC Editor. url: https://www.rfc-editor.org/rfc/rfc5070.
txt.

Darden, Lindley (2006). Reasoning in Biological Discoveries: Essays
on Mechanisms, Interfield Relations, and Anomaly Resolution. Cam-
bridge, UK: Cambridge University Press.

Darden, Lindley and Carl Craver (2002). ‘Strategies in the interfield
discovery of the mechanism of protein synthesis’. In: Studies in His-
tory and Philosophy of Biological and Biomedical Sciences 33.1, pp. 1–
28.

Darden, Lindley and Nancy Maull (1977). ‘Interfield theories’. In: Philo-
sophy of science 44, pp. 43–64.

Das, Anupam, Joseph Bonneau, Matthew Caesar, Nikita Borisov and
XiaoFeng Wang (2014). ‘The Tangled Web of Password Reuse’. In:
21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The
Internet Society. url: http://www.internetsociety.org/doc/tangled-
web-password-reuse.

Dawid, A Philip (2010). ‘Beware of the DAG!’ In: NIPS Causality:
Objectives and Assessment 6, pp. 59–86.

De Millo, Richard A, Richard J Upton and Alan J Perlis (1979). ‘Social
processes and proofs of theorems and programs’. In: Communications
22.5, pp. 271–280. doi: 10.1145/359104.359106.

Dear, Peter (2006). The intelligibility of nature: How science makes
sense of the world. Chicago and London: University of Chicago Press.

Demjaha, Albese, Jonathan M Spring, Ingolf F Becker, Simon Parkin
and M Angela Sasse (18th Feb. 2018). ‘Metaphors considered harm-
ful? An exploratory study of the effectiveness of functional metaphors
for end-to-end encryption’. In: Workshop on Usable Security (USEC).
San Diego, CA: ISOC.

Devlin, Keith (1995). Logic and information. Cambridge University
Press.

Ditmarsch, Hans van, Joeseph Y. Halpern, Wiebe van der Hoek and
Barteld Kooi, eds. (2015). Handbook of epistemic logic. London: Col-
lege Publications.

Dittrich, David and Erin Kenneally (Aug. 2012). The Menlo Report:
Ethical Principles Guiding Information and Communication Tech-
nology Research. Tech. rep. U.S. Department of Homeland Security.
url: http://www.caida.org/publications/papers/2012/menlo_report_
actual_formatted/.

Drummond, David (12th Jan. 2010). A new approach to China. http:
//googleblog.blogspot.com/2010/01/new-approach-to-china.html.

Dunn, J. Michael and Greg Restall (2002). ‘Relevance Logic’. In: Hand-
book of philosophical logic. Ed. by Dov M. Gabbay and F. Guenther.
Vol. 6. Dordrecht: Springer Netherlands, pp. 1–128.

Dupré, John (2012). Processes of life: essays in the philosophy of bio-
logy. Oxford: Oxford University Press.

https://www.rfc-editor.org/rfc/rfc5070.txt
https://www.rfc-editor.org/rfc/rfc5070.txt
http://www.internetsociety.org/doc/tangled-web-password-reuse
http://www.internetsociety.org/doc/tangled-web-password-reuse
https://doi.org/10.1145/359104.359106
http://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
http://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
http://googleblog.blogspot.com/2010/01/new-approach-to-china.html
http://googleblog.blogspot.com/2010/01/new-approach-to-china.html

298 bibliography

Duran, Felicia, Stephen H Conrad, Gregory N Conrad, David P Dug-
gan and Edward Bruce Held (2009). ‘Building a system for insider
security’. In: IEEE Security & Privacy 7.6, pp. 30–38.

Dykstra, Josiah (2015). Essential cybersecurity science: build, test, and
evaluate secure systems. "O’Reilly Media, Inc."

ENISA (2006). A Step-by-step Approach on How to Set Up a CSIRT.
Tech. rep. WP2006/5.1. Heraklion, Greece.

ETSI (June 2014). Key Performance Security Indicators (KPSI) to
evaluate the maturity of security event detection. Tech. rep. GS ISI
003 V1.1.2. Cedex, France: ETSI Information Security Indicators
(ISI).

Edwards, Harry T. et al. (2009). Strengthening forensic science in the
United States: a path forward. Washington, D.C.: National Academies
Press.

Edwards, Matthew, Awais Rashid and Paul Rayson (Sept. 2015). ‘A
Systematic Survey of Online Data Mining Technology Intended for
Law Enforcement’. In: ACM Comput. Surv. 48.1, 15:1–15:54.

Egele, Manuel, Theodoor Scholte, Engin Kirda and Christopher Krue-
gel (Mar. 2008). ‘A Survey on Automated Dynamic Malware-
analysis Techniques and Tools’. In: ACM Comput. Surv. 44.2, 6:1–
6:42.

Egelman, Serge, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin
Beznosov and Cormac Herley (2013). ‘Does My Password Go Up to
Eleven?: The Impact of Password Meters on Password Selection’. In:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. Paris, France: ACM, pp. 2379–2388. doi: 10.1145/
2470654.2481329.

Ekelhart, Andreas, Stefan Fenz, Markus Klemen and Edgar Weippl
(6th Jan. 2007). ‘Security ontologies: Improving quantitative risk
analysis’. In: Hawaii International Conference on System Sciences.
IEEE. Waikoloa, HI, 156a.

Elster, Jon (1983). Explaining technical change: A case study in the
philosophy of science. Cambridge, UK: Cambridge Univ Press.

– (1989). Nuts and bolts for the social sciences. Cambridge, UK: Cam-
bridge Univ Press.

Ensmenger, Nathan (2015). ‘Beards, Sandals, and Other Signs of
Rugged Individualism: Masculine Culture within the Computing
Professions’. In: Osiris 30, pp. 38–65.

Espinosa, Gadi Tellez and James Brotherston (2017). ‘Automatically
Verifying Temporal Properties of Programs with Cyclic Proof’. In:
CADE-26. Vol. 10395. LNAI. Springer, pp. 491–508.

Evans, David and Sal Stolfo (2011). ‘The Science of Security: Guest
editors’ introduction’. In: Security & Privacy 9.3, pp. 16–17.

Evron, Gadi (25th Jan. 2017). Art into Science: A conference on de-
fense. http://artintoscience.com/. accessed Apr 2017.

FIRST (26th June 2003). FIRST Vision and Mission Statement. https:
//first.org/about/mission. accessed Jun 2017.

– (2017). Security Reference Index. https://first.org/resources/guides/
reference. accessed Feb 4, 2017.

https://doi.org/10.1145/2470654.2481329
https://doi.org/10.1145/2470654.2481329
http://artintoscience.com/
https://first.org/about/mission
https://first.org/about/mission
https://first.org/resources/guides/reference
https://first.org/resources/guides/reference

bibliography 299

Federal Aviation Administration (17th Aug. 2015). FAA Statement on
Automation Problems at Washington Center. https://www.faa.gov/
news/press_releases/news_story.cfm?newsId=19354.

Feitelson, Dror G (2015). ‘From repeatability to reproducibility and
corroboration’. In: ACM SIGOPS Operating Systems Review 49.1,
pp. 3–11.

Fenz, Stefan and Andreas Ekelhart (12th Mar. 2009). ‘Formalizing
information security knowledge’. In: Symposium on information,
Computer, and Communications Security. ACM. Sydney, Australia,
pp. 183–194.

Ferguson, P. and D. Senie (May 2000). Network Ingress Filtering: De-
feating Denial of Service Attacks which employ IP Source Address
Spoofing. RFC 2827 (Best Current Practice). RFC. Updated by RFC
3704. Fremont, CA, USA: RFC Editor. url: https://www.rfc-editor.
org/rfc/rfc2827.txt.

Fetzer, James H (1988). ‘Program verification: the very idea’. In: Com-
munications of the ACM 31.9, pp. 1048–1063.

Fisher, Sir Ronald Aylmer (1971). The design of experiments. 8th. First
published 1935. New York: Hafner Publishing Company.

Flechais, Ivan, Jens Riegelsberger and M. Angela Sasse (2005). ‘Di-
vide and Conquer: The Role of Trust and Assurance in the Design
of Secure Socio-technical Systems’. In: Workshop on New Security
Paradigms. NSPW. Lake Arrowhead, California: ACM, pp. 33–41.

Floridi, Luciano (2011). The philosophy of information. Oxford: Oxford
University Press.

Floridi, Luciano and Phyllis Illari (2014). The Philosophy of Informa-
tion Quality. Vol. 358. Synthese Library. Springer. isbn: 978-3-319-
07121-3.

Floridi, Luciano, Nir Fresco and Giuseppe Primiero (2015). ‘On mal-
functioning software’. In: Synthese 192.4, pp. 1199–1220.

Fraser, B. (Sept. 1997). Site Security Handbook. RFC 2196 (Informa-
tional). RFC. Fremont, CA, USA: RFC Editor.

Friedman, Michael (1974). ‘Explanation and scientific understanding’.
In: Journal of Philosophy 71.1, pp. 5–19.

Frigg, Roman and Stephan Hartmann (2012). ‘Models in science’. In:
The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta.
Fall 2012. Metaphysics Research Lab, Stanford University.

Gal-Or, Esther and Anindya Ghose (2005). ‘The Economic Incentives
for Sharing Security Information’. In: Information Systems Research
16.2, pp. 186–208.

Galison, Peter (1999). ‘Trading zone: Coordinating action and belief’.
In: The Science Studies Reader, pp. 137–160.

– (2010). ‘Trading with the enemy’. In: Trading zones and interac-
tional expertise. Creating new kinds of collaboration. Ed. by Michael
E. Gorman. Cambridge, MA: MIT Press. Chap. 3.

– (29th Nov. 2012). ‘Augustinian and Manichaean Science’. In: Sym-
posium on the Science of Security. National Harbor, MD: CPS-VO.

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=19354
https://www.faa.gov/news/press_releases/news_story.cfm?newsId=19354
https://www.rfc-editor.org/rfc/rfc2827.txt
https://www.rfc-editor.org/rfc/rfc2827.txt

300 bibliography

Galmiche, Didier, Daniel Méry and David Pym (2005). ‘The semantics
of BI and resource tableaux’. In: Mathematical Structures in Com-
puter Science 15.06, pp. 1033–1088.

Garfinkel, Simson, Paul Farrell, Vassil Roussev and George Dinolt
(2009). ‘Bringing science to digital forensics with standardized
forensic corpora’. In: digital investigation 6, S2–S11.

Gaw, Shirley and Edward W. Felten (2006). ‘Password Management
Strategies for Online Accounts’. In: Symposium on Usable Privacy
and Security. Pittsburgh, PA, USA: ACM, pp. 44–55. doi: 10.1145/
1143120.1143127.

Geer, Dan (6th Aug. 2014). ‘Cybersecurity as Realpolitik’. In: Black
Hat USA 2014. Las Vegas, Nevada: UBM. url: http://geer.tinho.net/
geer.blackhat.6viii14.txt.

– (6th Jan. 2015). ‘T.S. Kuhn revisited’. In: NSF Secure and Trust-
worthy Cyberspace Principal Investigators’ Meeting. Arlington, VA.
url: http://geer.tinho.net/geer.nsf.6i15.txt.

Girard, Jean-Yves (1987). ‘Linear logic’. In: Theoretical Computer Sci-
ence 50.1, pp. 1–101.

Given, Lisa M, ed. (2008). The Sage encyclopedia of qualitative research
methods. Thousand Oaks, CA: Sage.

Glennan, Stuart (1997). ‘Capacities, Universality, and Singularity’. In:
Philosophy of Science 64.4, pp. 605–626.

– (2005). ‘Modeling mechanisms’. In: Studies in History and Philo-
sophy of Biological and Biomedical Sciences 36.2, pp. 443–464.

– (2010). ‘Ephemeral Mechanisms and Historical Explanation’. In:
Erkenntnis 72, pp. 251–266.

– (2011). ‘Singular and general causal relations: A mechanist per-
spective’. In: Causality in the Sciences. Ed. by Phyllis Illari, Fed-
erica Russo and Jon Williamson. Oxford: Oxford University Press,
pp. 789–817.

– (Aug. 2015). ‘Mechanisms and Mechanical Philosophy’. In: The Ox-
ford Handbook of Philosophy of Science. Ed. by Paul Humphreys.
Oxford University Press.

– (2017). The new mechanical philosophy. Oxford, UK: Oxford Univer-
sity Press. isbn: 9780198779711.

Glennan, Stuart and Phyllis Illari, eds. (2017). The Routledge Handbook
of Mechanisms and Mechanical Philosophy. Handbooks in Philosophy.
London, UK: Routledge.

Gorzelak, Katarzyna, Tomasz Grudziecki, Paweł Jacewicz, Przemysław
Jaroszewski, Łukasz Juszczyk and Piotr Kijewski (2011). Proact-
ive Detection of Network Security Incidents. Tech. rep. 2011-12-07.
Heraklion, Greece: CERT Polska / NASK.

Grance, Tim, Tamara Nolan, Kristin Burke, Rich Dudley, Gregory
White and Travis Good (Sept. 2006). Guide to Test, Training, and
Exercise Programs for IT Plans and Capabilities. Tech. rep. SP 800-
84. Gaithersburg, MD: US Dept of Commerce, National Institute of
Standards and Technology.

Grier, Chris et al. (2012). ‘Manufacturing Compromise: The Emer-
gence of Exploit-as-a-service’. In: ACM Conference on Computer and

https://doi.org/10.1145/1143120.1143127
https://doi.org/10.1145/1143120.1143127
http://geer.tinho.net/geer.blackhat.6viii14.txt
http://geer.tinho.net/geer.blackhat.6viii14.txt
http://geer.tinho.net/geer.nsf.6i15.txt

bibliography 301

Communications Security. CCS ’12. Raleigh, North Carolina, USA,
pp. 821–832.

Guttman, E., L. Leong and G. Malkin (Feb. 1999). Users’ Security
Handbook. RFC 2504 (Informational). RFC. Fremont, CA, USA:
RFC Editor.

Hafner, Katie and Matthew Lyon (1998). Where wizards stay up late:
The origins of the Internet. Simon and Schuster.

Hallenbeck, Chris, Chris King, Jonathan M Spring and Paul Vixie
(7th Aug. 2014). ‘Abuse of Customer Premise Equipment and Re-
commended Actions’. In: Black Hat USA 2014. Las Vegas, Nevada:
UBM.

Halpern, Joseph Y. and Judea Pearl (2005a). ‘Causes and explanations:
A structural-model approach. Part I: Causes’. In: The British Journal
for the Philosophy of Science 56.4, pp. 843–887.

– (2005b). ‘Causes and explanations: A structural-model approach.
Part II: Explanations’. In: The British Journal for the Philosophy
of Science 56.4, pp. 889–911.

Hankins, Ryan, Tetsutaroh Uehara and Jigang Liu (July 2009). ‘A com-
parative study of forensic science and computer forensics’. In: Secure
Software Integration and Reliability Improvement. IEEE. Shanghai,
pp. 230–239.

Hatleback, Eric N (2017). ‘The protoscience of cybersecurity’. In: The
Journal of Defense Modeling and Simulation, pp. 1–8.

Hatleback, Eric and Jonathan M Spring (2014). ‘Exploring a mechan-
istic approach to experimentation in computing’. In: Philosophy &
Technology 27.3, pp. 441–459.

– (2018). ‘A Refinement to the General Mechanistic Account’. In:
European Journal for Philosophy of Science.

Hawkins, Douglas M (2004). ‘The problem of overfitting’. In: Journal
of chemical information and computer sciences 44.1, pp. 1–12.

Hayes, LTC Ashton (2008). ‘Defending Against the Unknown: Anti-
terrorism and the Terrorist Planning Cycle’. In: The Guardian 10.1,
pp. 32–36.

Hempel, Carl G. (1942). ‘The function of general laws in history’. In:
Journal of Philosophy 39, pp. 35–48.

– (1965). Aspects of Scientific Explanation. New York: Free Press.
Henderson, Leah (2018). ‘The Problem of Induction’. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2018.
Metaphysics Research Lab, Stanford University.

Herley, Cormac and P.C. van Oorschot (23rd May 2017). ‘SoK: Science,
Security, and the Elusive Goal of Security as a Scientific Pursuit’. In:
Symposium on Security and Privacy (Oakland). San Jose, CA: IEEE.

Heuer Jr., Richards J (1999). Psychology of intelligence analysis. US
Central Intelligence Agency.

Heule, Marijn J. H. and Oliver Kullmann (2017). ‘The science of brute
force’. In: Commun. ACM 60.8, pp. 70–79. doi: 10.1145/3107239.

Hoare, Charles Antony Richard (1969). ‘An axiomatic basis for
computer programming’. In: Communications of the ACM 12.10,
pp. 576–580.

https://doi.org/10.1145/3107239

302 bibliography

Hodgson, J.P.E. (1st Mar. 1999). Project "Contraintes" Prolog Web
Pages: The ISO Standard. url: http ://http ://www.deransart . fr/
/prolog/overview.html.

Homer, John, Ashok Varikuti, Xinming Ou and Miles A McQueen
(2008). ‘Improving attack graph visualization through data reduc-
tion and attack grouping’. In: Visualization for computer security.
Springer, pp. 68–79.

Hoogstraaten, Hans (13th Aug. 2012). Black Tulip: Report of the in-
vestigation into the DigiNotar Certificate Authority breach. Tech. rep.
Fox-IT.

Hopkins, Stefan (2009). ‘From Snort to Sourcefire to Nasdaq’. In:
Clarkson University Magazine Summer. url: http://www.clarkson.
edu/alumni_magazine/summer2009/cybersecurity_roesch.html.

Howard, John D and Thomas A Longstaff (Oct. 1998). A common
language for computer security incidents. Tech. rep. SAND98-8667.
Sandia National Laboratories.

Hutchins, Eric M, Michael J Cloppert and Rohan M Amin (2011).
‘Intelligence-driven computer network defense informed by analysis
of adversary campaigns and intrusion kill chains’. In: Leading Issues
in Information Warfare & Security Research 1, p. 80.

ISO/IEC (June 1996).Open Systems Interconnection – Basic Reference
Model: The Basic Model. Tech. rep. 7498-1:1994(E). International
Organization for Standardization and International Electrotechnical
Commission.

ISO/IEC (Oct. 2012). Information technology – Security techniques
– Guidelines for identification, collection, acquisition and preserva-
tion of digital evidence. Tech. rep. 27037:2012. Geneva: International
Organization for Standardization and International Electrotechnical
Commission.

– (June 2015a). Information technology – Security techniques – Guid-
ance on assuring suitability and adequacy of incident investigative
method. Tech. rep. 27041:2015. Geneva: International Organization
for Standardization and International Electrotechnical Commission.

– (June 2015b). Information technology – Security techniques – Guide-
lines for the analysis and interpretation of digital evidence. Tech. rep.
27042:2015. Geneva: International Organization for Standardization
and International Electrotechnical Commission.

– (Mar. 2015c). Information technology – Security techniques – In-
cident investigation principles and processes. Tech. rep. 27043:2015.
Geneva: International Organization for Standardization and Interna-
tional Electrotechnical Commission.

– (Nov. 2016). Information technology – Security techniques – Inform-
ation security incident management – Part 1: Principles of incident
management. Tech. rep. 27035-1:2016. Geneva: International Organ-
ization for Standardization and International Electrotechnical Com-
mission.

Illari, Phyllis McKay (2011). ‘Mechanistic evidence: disambiguating the
Russo–Williamson thesis’. In: International Studies in the Philosophy
of Science 25.2, pp. 139–157.

http://http://www.deransart.fr//prolog/overview.html
http://http://www.deransart.fr//prolog/overview.html
http://www.clarkson.edu/alumni_magazine/summer2009/cybersecurity_roesch.html
http://www.clarkson.edu/alumni_magazine/summer2009/cybersecurity_roesch.html

bibliography 303

Illari, Phyllis McKay and Jon Williamson (2012). ‘What is a mechan-
ism? Thinking about mechanisms across the sciences’. In: European
Journal for Philosophy of Science 2.1, pp. 119–135.

Illari, Phyllis (2013). ‘Mechanistic explanation: Integrating the ontic
and epistemic’. In: Erkenntnis 78.2, pp. 237–255.

Illari, Phyllis and Jon Williamson (2013). ‘In Defence of Activities’. In:
Journal for General Philosophy of Science 44.1, pp. 69–83.

Inacio, C. and D. Miyamoto (May 2017). Management Incident Light-
weight Exchange (MILE) Implementation Report. RFC 8134 (Inform-
ational). RFC. Fremont, CA, USA: RFC Editor.

Ishtiaq, Samin S. and Peter W. O’Hearn (2001). ‘BI As an Assertion
Language for Mutable Data Structures’. In: Principles of Program-
ming Languages. London, UK: ACM, pp. 14–26. isbn: 1-58113-336-7.

Jain, R. (1991). The Art of Computer Systems Performance Analysis.
Wiley & Sons.

Jasanoff, Sheila (1990). The fifth branch: Science advisers as policy-
makers. Cambridge, MA, USA: Harvard University Press.

Jha, Somesh, Oleg Sheyner and Jeannette Wing (June 2002). ‘Two
formal analyses of attack graphs’. In: Computer Security Foundations
Workshop. IEEE. Cape Brenton, Nova Scotia, pp. 49–63.

Jhaveri, Mohammad Hanif, Orcun Cetin, Carlos Gañán, Tyler Moore
and Michel Van Eeten (Jan. 2017). ‘Abuse Reporting and the Fight
Against Cybercrime’. In: ACM Comput. Surv. 49.4, 68:1–68:27.

Jiang, Wenjun, Guojun Wang, Md Zakirul Alam Bhuiyan and Jie Wu
(May 2016). ‘Understanding Graph-Based Trust Evaluation in On-
line Social Networks: Methodologies and Challenges’. In: ACM Com-
put. Surv. 49.1, 10:1–10:35.

John, Wolfgang and Tomas Olovsson (2008). ‘Detection of malicious
traffic on back-bone links via packet header analysis’. In: Campus-
Wide Information Systems 25.5, pp. 342–358.

Johnson, Arnold, Kelley Dempsey, Ron Ross, Sarbari Gupta and Den-
nis Bailey (Aug. 2011). Guide for Security-Focused Configuration
Management of Information Systems. Tech. rep. SP 800-128. Gaith-
ersburg, MD: US Dept of Commerce, National Institute of Standards
and Technology.

Joint Chiefs of Staff (31st Jan. 2013). Joint Targeting. Tech. rep. JP
3-60. Washington, D.C.: U.S. Dept of Defense.

– (20th Nov. 2014a). Information Operations. Tech. rep. JP 3-13.
Washington, D.C.: U.S. Dept of Defense.

– (2014b). Information Operations. Tech. rep. JP 3-13. United States
Armed Forces. url: www.dtic.mil/doctrine/new_pubs/jp3_13.pdf.

– (21st May 2014c). Joint Intelligence Preparation of the Operational
Environment. Tech. rep. JP 2-01.3. Washington, D.C.: U.S. Dept of
Defense.

Kadane, Joseph B (2011). Principles of uncertainty. Chapman & Hall.
Kahneman, Daniel, Paul Slovic and Amos Tversky, eds. (1982). Judg-
ment under Uncertainty. Cambridge University Press.

Kaiser, Marie I (2011). ‘The limits of reductionism in the life sciences’.
In: History and philosophy of the life sciences 33.4, pp. 453–476.

www.dtic.mil/doctrine/new_pubs/jp3_13.pdf

304 bibliography

Kanich, C. et al. (2011). ‘Show Me the Money: Characterizing Spam-
advertised Revenue’. In: 20th USENIX Security Symposium. San
Francisco, CA. url: https ://www.usenix .org/ legacy/event/sec11/
tech/full_papers/Kanich.pdf.

Katz, Jonathan (Dec. 2016). Call for Papers: Hot Topics in the Science
of Security (HoTSoS). http://cps-vo.org/group/hotsos/cfp.

Kent, Karen and Murugiah Souppaya (Sept. 2006). Guide to Computer
Security Log Management. Tech. rep. SP 800-92. Gaithersburg, MD:
US Dept of Commerce, National Institute of Standards and Techno-
logy.

Kent, Karen, Suzanne Chevalier, Tim Grance and Hung Dang (Aug.
2006). Guide to Integrating Forensic Techniques into Incident Re-
sponse. Tech. rep. SP 800-86. Gaithersburg, MD: US Dept of Com-
merce, National Institute of Standards and Technology.

Kernighan, Brian W. and Dennis M. Ritchie (1988). The C Program-
ming Language. 2nd. Upper Saddle River, NJ: Prentice Hall.

Khan, Suleman, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Mus-
tapha Aminu Bagiwa, Muhammad Shiraz, Samee U. Khan, Rajku-
mar Buyya and Albert Y. Zomaya (May 2016). ‘Cloud Log Forensics:
Foundations, State of the Art, and Future Directions’. In: ACM Com-
put. Surv. 49.1, 7:1–7:42.

Killourhy, K.S. and R.A. Maxion (2009). ‘Comparing anomaly-
detection algorithms for keystroke dynamics’. In: Dependable Sys-
tems & Networks, 2009. DSN’09. IEEE/IFIP International Confer-
ence on. IEEE, pp. 125–134.

Kincaid, Harold (2011). ‘Causal modelling, mechanism, and probability
in epidemiology’. In: Causality in the Sciences. Ed. by Phyllis Illari,
Federica Russo and JonWilliamson. Oxford: Oxford University Press,
pp. 70–90.

Kitcher, Phillip (1981). ‘Explanatory unification’. In: Philosophy of Sci-
ence 48.4, pp. 507–531.

Koen, Billy Vaughn (2003). Discussion of the method: Conducting the
engineer’s approach to problem solving. New York: Oxford University
Press.

Kossakowski, Klaus-Peter et al. (Feb. 1999). Responding to Intrusions.
Tech. rep. CMU/SEI-99-SIM-006. Pittsburgh, PA: Software Engin-
eering Institute, Carnegie Mellon University.

Kott, Alexander (2014). ‘Towards Fundamental Science of Cyber Se-
curity’. In: Network Science and Cybersecurity. Ed. by Robinson E.
Pino. New York, NY: Springer, pp. 1–13.

Krebs, Brian (5th Feb. 2014). Target Hackers Broke in Via HVAC
Company. http://krebsonsecurity.com/2014/02/target-hackers-broke-
in-via-hvac-company/. accessed Mar 2017.

Křetínský, Jan (12th Jan. 2018). ‘Learning small strategies fast’. In:
Logic and Learning. London, UK. url: https://logic- data- science.
github.io/Slides/Kretinsky.pdf.

Kripke, Saul A. (1965). ‘Semantical analysis of intuitionistic logic I’. In:
Studies in Logic and the Foundations of Mathematics 40, pp. 92–130.

https://www.usenix.org/legacy/event/sec11/tech/full_papers/Kanich.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Kanich.pdf
http://cps-vo.org/group/hotsos/cfp
http://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
http://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
https://logic-data-science.github.io/Slides/Kretinsky.pdf
https://logic-data-science.github.io/Slides/Kretinsky.pdf

bibliography 305

Krol, Kat, Jonathan M Spring, Simon Parkin and M. Angela Sasse
(26th May 2016). ‘Towards robust experimental design for user stud-
ies in security and privacy’. In: Learning from Authoritative Security
Experiment Results (LASER). IEEE. San Jose, CA, pp. 21–31.

Kuhlmann, Dirk, Liqun Chen and Christopher J. Mitchell (29th Mar.–
1st Apr. 2016). ‘Trust and Legitimacy in Security Standardization – a
new Management Issue?’ In: Interoperability for Enterprise Systems
and Applications (I-ESA 16). Guimaraes, Portugal: ISTE Publica-
tions.

Kuhn, Thomas S. (2012). The structure of scientific revolutions. 4th.
Introductory essay by Ian Hacking. Chicago and London: University
of Chicago Press.

Kührer, Marc, Christian Rossow and Thorsten Holz (June 2014). Paint
it Black: Evaluating the Effectiveness of Malware Blacklists. Tech. rep.
TR-HGI-2014-002. Ruhr-Universität Bochum, Horst Görtz Institute
for IT Security.

Labati, Ruggero Donida, Angelo Genovese, Enrique Muñoz, Vincenzo
Piuri, Fabio Scotti and Gianluca Sforza (June 2016). ‘Biometric Re-
cognition in Automated Border Control: A Survey’. In: ACM Com-
put. Surv. 49.2, 24:1–24:39.

Lamport, Leslie (1983). ‘What good is temporal logic?’ In: IFIP Con-
gress. Ed. by R.E.A. Mason. Elsevier, pp. 657–668.

– (2002). Specifying systems: the TLA+ language and tools for hard-
ware and software engineers. Boston, MA, USA: Addison-Wesley.

Larman, Craig (2004). Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and the Unified Process. 3rd.
Upper Saddle River, NJ: Prentice Hall.

Laszka, Aron, Mark Felegyhazi and Levente Buttyan (Aug. 2014). ‘A
Survey of Interdependent Information Security Games’. In: ACM
Comput. Surv. 47.2, 23:1–23:38.

Lawrence Livermore National Laboratory (2016). ROSE compiler in-
frastructure. http://rosecompiler.org/.

Leech, M. (Sept. 2003). Chinese Lottery Cryptanalysis Revisited: The
Internet as a Codebreaking Tool. RFC 3607 (Informational). RFC.
Fremont, CA, USA: RFC Editor.

Leigland, Ryan and Axel W Krings (2004). ‘A formalization of digital
forensics’. In: International Journal of Digital Evidence 3.2, pp. 1–32.

Leonelli, Sabina (2009). ‘Understanding in biology: The impure nature
of biological knowledge’. In: Scientific understanding: Philosophical
perspectives. Ed. by HenkWDe Regt, Sabina Leonelli and Kai Eigner.
Pittsburgh, PA, USA: University of Pittsburgh Press, pp. 189–209.

Letier, Emmanuel, David Stefan and Earl T. Barr (2014). ‘Uncertainty,
Risk, and Information Value in Software Requirements and Architec-
ture’. In: Proceedings of the 36th International Conference on Soft-
ware Engineering. ICSE 2014. Hyderabad, India: ACM, pp. 883–894.
isbn: 978-1-4503-2756-5. url: http://doi.acm.org/10.1145/2568225.
2568239.

Lewis, James A (1st Apr. 2008). ‘Holistic Approaches to Cybersec-
urity to Enable Network Centric Operations’. In: Statement before

http://rosecompiler.org/
http://doi.acm.org/10.1145/2568225.2568239
http://doi.acm.org/10.1145/2568225.2568239

306 bibliography

Armed Services Committee, Subcommittee on Terrorism, Unconven-
tional Threats and Capabilities, 110th Cong., 2nd sess. Vol. 1. Center
for Strategic and International Studies.

Li, Tao, Chunqiu Zeng, Yexi Jiang, Wubai Zhou, Liang Tang, Zheng Liu
and Yue Huang (July 2017a). ‘Data-Driven Techniques in Computing
System Management’. In: ACM Comput. Surv. 50.3, 45:1–45:43.

Li, Tao et al. (Mar. 2017b). ‘Data-Driven Techniques in Disaster In-
formation Management’. In: ACM Comput. Surv. 50.1, 1:1–1:45.

Lin, Pei-Hung, Chunhua Liao, Daniel J. Quinlan and Stephen Guzik
(Oct. 2015). ‘Experiences of Using the OpenMP Accelerator Model
to Port DOE Stencil Applications’. In: 11th International Workshop
on OpenMP (IWOMP). Aachen, Germany, pp. 45–59.

Lippmann, Richard Paul and Kyle William Ingols (31st Mar. 2005).
An annotated review of past papers on attack graphs. Tech. rep. ESC-
TR-2005-054. Lexington, MA: MIT/LL.

Liu, Huan and Hiroshi Motoda (1998). Feature selection for knowledge
discovery and data mining. New York: Springer Science & Business
Media.

Liu, Peng, Wanyu Zang and Meng Yu (2005). ‘Incentive-based mod-
eling and inference of attacker intent, objectives, and strategies’. In:
ACM Transactions on Information and System Security (TISSEC)
8.1, pp. 78–118.

Lucas Jr., Robert E. (1976). ‘Econometric policy evaluation: A critique’.
In: Carnegie-Rochester conference series on public policy. Vol. 1. El-
sevier, pp. 19–46.

Lyon, G.F. (2011). Nmap Network Scanning: The Official Nmap Project
Guide To Network Discovery And Security Scanning. Nmap Project.

M3AAWG (Nov. 2014). M3AAWG email metrics report. https://www.
m3aawg.org/for-the-industry/email-metrics-report. accessed Jun 2017.

MITRE Corporation (19th Nov. 2010). Science of Cyber-Security. Tech.
rep. JSR-10-102. McLean, VA: JASON Office.

– (2012). Common Vulnerability Enumeration. http://cve.mitre .org.
last access Apr 2, 2012.

– (Dec. 2015). Common Weakness Enumeration: A community-
developed dictionary of software weakness types v2.9. http : / / cwe .
mitre.org.

MacKenzie, Donald A (2004). Mechanizing proof: computing, risk, and
trust. MIT Press.

Machamer, Peter, Lindley Darden and Carl F. Craver (Mar. 2000).
‘Thinking about mechanisms’. In: Philosophy of science 67, pp. 1–25.

Magklaras, GB and SM Furnell (2001). ‘Insider threat prediction tool:
Evaluating the probability of IT misuse’. In: Computers & Security
21.1, pp. 62–73.

Manadhata, Pratyusa K. and Jeannette M. Wing (2011). ‘An attack sur-
face metric’. In: Transactions on Software Engineering 37.3, pp. 371–
386.

Mandiant (2013). APT1: Exposing One of China’s Cyber Espionage
Units. Tech. rep.

https://www.m3aawg.org/for-the-industry/email-metrics-report
https://www.m3aawg.org/for-the-industry/email-metrics-report
http://cve.mitre.org
http://cwe.mitre.org
http://cwe.mitre.org

bibliography 307

Mann, David (24th July 2008). An introduction to the Common Con-
figuration Enumeration. Tech. rep. v1.7. McLean, VA: MITRE Cor-
poration.

Manna, Zohar and Amir Pnueli (1992). The temporal logic of reactive
and concurrent systems. New York: Springer-Verlag.

Maxion, Roy (Jan. 2015). ‘Structure as an Aid to Good Science’. In:
Workshop on the Science of Cyber Security. IFIPWorking Group 10.4.
Bristol, UK. url: http://webhost.laas.fr/TSF/IFIPWG/Workshops&
Meetings/67/Workshop-regularPapers/Maxion-Bristol_012315.pdf.

McClure, Stuart, Joel Scambray and George Kurtz (2005). Hacking
Exposed: Network Security Secrets & Solutions. 5th. McGraw-Hill
Osborne.

Meijers, Anthonie, ed. (2009). Philosophy of Technology and Engineer-
ing Sciences. Vol. 9. Handbook of the Philosophy of Science. Ams-
terdam: North-Holland.

Meng, Guozhu, Yang Liu, Jie Zhang, Alexander Pokluda and Raouf
Boutaba (July 2015). ‘Collaborative Security: A Survey and Tax-
onomy’. In: ACM Comput. Surv. 48.1, 1:1–1:42.

Metcalf, Leigh B and Jonathan M Spring (Sept. 2013). Everything you
wanted to know about blacklists but were afraid to ask. Tech. rep.
CERTCC-2013-39. Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

– (12th Oct. 2015). ‘Blacklist Ecosystem Analysis: Spanning Jan 2012
to Jun 2014’. In: The 2nd ACM Workshop on Information Sharing
and Collaborative Security. Denver, pp. 13–22.

Metcalf, Leigh B, Dan Ruef and Jonathan M Spring (18th Oct. 2017).
‘Open-source measurement of fast-flux networks while considering
domain-name parking’. In: Learning from Authoritative Security Ex-
periment Results (LASER). USENIX. Arlington, VA, USA, pp. 13–
24.

Metcalf, Leigh and William Casey (2016). Cybersecurity and Applied
Mathematics. Cambridge, MA, USA: Syngress.

Meushaw, Robert, ed. (2012a). Developing a blueprint for a science
of cybersecurity. Vol. 19:2. The Next Wave. Fort Meade, MD: U.S.
National Security Agency. url: https : //www.nsa . gov/ resources/
everyone/digital-media-center/publications/the-next-wave/assets/files/
TNW-19-2.pdf.

– (19th Dec. 2012b). What is Security Science? http://cps- vo.org/
node/6041.

Milenkoski, Aleksandar, Marco Vieira, Samuel Kounev, Alberto Av-
ritzer and Bryan D. Payne (Sept. 2015). ‘Evaluating Computer In-
trusion Detection Systems: A Survey of Common Practices’. In: ACM
Comput. Surv. 48.1, 12:1–12:41.

Miller, George A (1956). ‘The magical number seven, plus or minus
two: some limits on our capacity for processing information.’ In: Psy-
chological review 63.2, p. 81.

Milner, Robin (1989). Communication and concurrency. New York:
Prentice hall.

http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/67/Workshop-regularPapers/Maxion-Bristol_012315.pdf
http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/67/Workshop-regularPapers/Maxion-Bristol_012315.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/the-next-wave/assets/files/TNW-19-2.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/the-next-wave/assets/files/TNW-19-2.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/the-next-wave/assets/files/TNW-19-2.pdf
http://cps-vo.org/node/6041
http://cps-vo.org/node/6041

308 bibliography

Mitchell, Sandra D. (1997). ‘Pragmatic laws’. In: Philosophy of Science
64, S468–S479.

– (2003). Biological Complexity and Integrative Pluralism. Cambridge,
UK: Cambridge University Press.

– (2009). Unsimple truths: Science, complexity, and policy. Chicago,
IL: University of Chicago Press.

Mitropoulos, Sarandis, Dimitrios Patsos and Christos Douligeris
(2006). ‘On Incident Handling and Response: A state-of-the-art
approach’. In: Computers & Security 25.5, pp. 351–370.

Moore, Tyler W. and Richard Clayton (Mar. 2011). ‘The impact of pub-
lic information on phishing attack and defense’. In: Communications
and Strategies 81, pp. 45–68.

Morgan, Mary S. (2013). ‘Nature’s experiments and natural experi-
ments in the social sciences’. In: Philosophy of the Social Sciences
43.3, pp. 341–357.

– (2014). ‘Resituating Knowledge: Generic Strategies and Case Stud-
ies’. In: Philosophy of Science 81.5, pp. 1012–1024.

Morgan, Ruth M and Peter A Bull (2007). ‘The philosophy, nature
and practice of forensic sediment analysis’. In: Progress in Physical
Geography 31.1, pp. 43–58.

Moriarty, K. (Nov. 2010). Real-time Inter-network Defense (RID).
RFC 6045 (Informational). RFC. Obsoleted by RFC 6545. Fremont,
CA, USA: RFC Editor. url: https://www.rfc-editor.org/rfc/rfc6045.
txt.

– (Apr. 2012). Real-time Inter-network Defense (RID). RFC 6545
(Proposed Standard). RFC. Fremont, CA, USA: RFC Editor.

Moriarty, K. and B. Trammell (Nov. 2010). Transport of Real-time
Inter-network Defense (RID) Messages. RFC 6046 (Informational).
RFC. Obsoleted by RFC 6546. Fremont, CA, USA: RFC Editor. url:
https://www.rfc-editor.org/rfc/rfc6046.txt.

Mundie, David A and Robin Ruefle (24th Aug. 2012). ‘Building an
incident management body of knowledge’. In: Availability, Reliability
and Security (ARES). IEEE. Prague, pp. 507–513.

Mundie, David A, Robin Ruefle, Audrey J Dorofee, Samuel J Perl,
John McCloud and Matthew Collins (20th Nov. 2014). ‘An Incid-
ent Management Ontology’. In: Semantic Technology for Intelligence,
Defense, and Security. C4I. Fairfax, VA, pp. 62–71.

Muniz, Joseph and Aamir Lakhani (2013). Web Penetration Testing
with Kali Linux. Birmingham, UK: Packt Publishing Ltd.

Nagel, Ernest (1979). The structure of science: Problems in the logic
of scientific explanation. 2nd. London: Routledge & Kegan Paul.

National Academies of Sciences, Engineering, and Medicine (2017).
Foundational Cybersecurity Research: Improving Science, Engineer-
ing, and Institutions. Ed. by Lynette I. Millett, Baruch Fischhoff
and Peter J. Weinberger. Washington, DC: The National Academies
Press. isbn: 978-0-309-45529-9. doi: 10.17226/24676.

National Cyber Security Centre (UK) (2017). Password Guidance: Sim-
plifying Your Approach. https://www.ncsc.gov.uk/guidance/password-
guidance-simplifying-your-approach.

https://www.rfc-editor.org/rfc/rfc6045.txt
https://www.rfc-editor.org/rfc/rfc6045.txt
https://www.rfc-editor.org/rfc/rfc6046.txt
https://doi.org/10.17226/24676
https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach
https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach

bibliography 309

National Science Foundation (2001). Federal Cyber Service: Scholarship
for Service (SFS). A Federal Cyber Service Training and Education
Initiative. Tech. rep. NSF 01-167. Arlington, VA: NSF, Directorate
for education and human resources, Division of undergraduate edu-
cation.

Newcombe, Chris, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker and Michael Deardeuff (2015). ‘How Amazon web services
uses formal methods’. In: Communications of the ACM 58.4, pp. 66–
73.

Nightingale, Paul (2009). ‘Tacit Knowledge and Engineering Design’.
In: Philosophy of Technology and Engineering Sciences. Ed. by An-
thonie Meijers. Handbook of the Philosophy of Science. Amsterdam:
North-Holland, pp. 351 –374.

Norton, John D. (Dec. 2010). ‘There Are No Universal Rules for Induc-
tion’. In: Philosophy of Science 77.5, pp. 765–777.

Norton, John D (2015). ‘Replicability of Experiment’. In: Theoria 30.2,
pp. 229–248.

O’Hearn, Peter W. (2007). ‘Resources, concurrency, and local reason-
ing’. In: Theoretical Computer Science 375.1, pp. 271–307.

– (2015). ‘From Categorical Logic to Facebook Engineering’. In: Logic
in Computer Science (LICS). IEEE, pp. 17–20.

O’Hearn, Peter W. and David J. Pym (1999). ‘The Logic of Bunched
Implications’. In: Bulletin of Symbolic Logic 5.2, pp. 215–244.

O’Hearn, Peter W. and Hongseok Yang (2002). ‘A Semantic Basis for
Local Reasoning’. In: Proceedings of the 5th FoSSaCS. LNCS 2303.
Springer, pp. 402–416.

O’Meara, Kyle, Deana Shick, Jonathan M Spring and Edward Stoner
(Feb. 2016). Malware Capability Development Patterns Respond to
Defenses: Two Case Studies. Tech. rep. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Obrst, Leo, Penny Chase and Richard Markeloff (25th Oct. 2012). ‘De-
veloping an Ontology of the Cyber Security Domain.’ In: Semantic
Technologies for Intelligence, Defense, and Security. Fairfax, VA:
George Mason University, pp. 49–56.

Oksala, Steven, Anthony Rutkowski, Michael Spring and Jon O’Donnell
(Mar. 1996). ‘The structure of IT standardization’. In: StandardView
4.1, pp. 9–22.

Oltramari, Alessandro, Lorrie Faith Cranor, Robert J Walls and Patrick
D McDaniel (Nov. 2014). ‘Building an Ontology of Cyber Security’.
In: Semantic Technology for Intelligence, Defense, and Security. Fair-
fax, VA, USA, pp. 54–61.

Open Science Collaboration (2015). ‘Estimating the reproducibility of
psychological science’. In: Science 349.6251, aac4716.

Oram, Andy and Greg Wilson (2010). Making software: What really
works, and why we believe it. "O’Reilly Media, Inc."

Osorno, Marcos, Thomas Millar and Danielle Rager (June 2011). Co-
ordinated Cybersecurity Incident Handling: Roles, Processes, and Co-
ordination Networks for Crosscutting Incidents. Tech. rep. Laurel,
MD: Johns Hopkins Univ, Applied Physics Laboratory.

310 bibliography

Ou, Xinming, Sudhakar Govindavajhala and Andrew W Appel
(4th Aug. 2005). ‘MulVAL: A Logic-based Network Security Ana-
lyzer.’ In: USENIX Security Symposium. Baltimore, MD.

Palmer, Dave (10th Mar. 2016). ‘Self learning immune systems in the-
ory and in practice’. In: Statistical Aspects of Cyber-Security. Royal
Statistical Society. London.

Palmer, Gary (2001). ‘A road map for digital forensic research’. In:
First Digital Forensic Research Workshop. Utica, NY, pp. 27–30.

‘Crime pattern analysis: an investigative tool’ (1988). In: Critical issues
in criminal investigation. Ed. by Michael J Palmiotto. 2nd. Pilgrim-
age. Chap. 2, pp. 59–69.

Pang, Min-Seok and Huseyin Tanriverdi (26th June 2017). ‘Security
Breaches in the U.S. Federal Government’. In: WEIS. La Jolla, CA.

Pasman, Hans J (2011). ‘History of Dutch process equipment failure
frequencies and the Purple Book’. In: Journal of Loss Prevention in
the Process Industries 24.3, pp. 208–213.

Pearce, Michael, Sherali Zeadally and Ray Hunt (Mar. 2013). ‘Virtual-
ization: Issues, Security Threats, and Solutions’. In: ACM Comput.
Surv. 45.2, 17:1–17:39.

Pearl, Judea (2009). Causality. Cambridge, UK: Cambridge University
Press.

– (Nov. 2016). ‘Theoretical Impediments to Machine Learning: A pos-
ition paper’. In:

Pendleton, Marcus, Richard Garcia-Lebron, Jin-Hee Cho and Shouhuai
Xu (Dec. 2016). ‘A Survey on Systems Security Metrics’. In: ACM
Comput. Surv. 49.4, 62:1–62:35.

Peng, Tao, Christopher Leckie and Kotagiri Ramamohanarao (Apr.
2007). ‘Survey of Network-based Defense Mechanisms Countering
the DoS and DDoS Problems’. In: ACM Comput. Surv. 39.1.

Petricek, Tomas (2017). ‘Miscomputation in software: Learning to live
with errors’. In: The Art, Science, and Engineering of Programming
1.2, p. 14.

– (Mar. 2018). ‘What we talk about when we talk about monads’. In:
The Art, Science, and Engineering of Programming 2.3.

Pfleeger, Shari and Robert Cunningham (2010). ‘Why measuring se-
curity is hard’. In: IEEE Security & Privacy 8.4, pp. 46–54.

Piccinini, Gualtiero (2007). ‘Computing Mechanisms’. In: Philosophy
of Science 74.4, pp. 501–526.

Pita, James et al. (2011). ‘Deployed ARMOR Protection: The Applic-
ation of a Game-Theoretic Model for Security at the Los Angeles
International Airport’. In: Security and game theory: algorithms, de-
ployed systems, lessons learned. Ed. by Milind Tambe. Cambridge
University Press. Chap. 4.

Pollitt, Mark (2008). ‘Applying traditional forensic taxonomy to digital
forensics’. In: Advances in Digital Forensics IV. Ed. by Indrajit Ray
and Sujeet Shenoi. IFIP TC 11.9. Boston, MA, pp. 17–26.

Popper, Karl R. (1959). The logic of scientific discovery. London:
Hutchinson.

bibliography 311

Preimesberger, Chris (22nd Mar. 2015). Why ’Malvertising’ Has Be-
come a Pervasive Security Risk. url: http : / / www . eweek . com /
security/why-malvertising-has-become-a-pervasive-security-risk.html.

Primiero, Giuseppe, Frida J Solheim and Jonathan M Spring (2018).
‘On Malfunction, Mechanisms, and Malware Classification’. In: Philo-
sophy & Technology Online First.

Pritchett, Willie L and David De Smet (2013). Kali Linux Cookbook.
Birmingham, UK: Packt Publishing Ltd.

Puvathingal, Bess J and Donald A Hantula (2012). ‘Revisiting the
psychology of intelligence analysis: From rational actors to adaptive
thinkers’. In: American Psychologist 67.3, pp. 199–210.

Pym, David J., Peter W. O’Hearn and Hongseok Yang (2004). ‘Possible
worlds and resources: The semantics of BI’. In: Theoretical Computer
Science 315.1, pp. 257–305.

Pym, David. ‘The origins of cyberspace’. In: Oxford handbook of cyber
security.

Pym, David, Jonathan M Spring and Peter O’Hearn (2018). ‘Why sep-
aration logic works’. In: Philosophy & Technology. doi: 10 . 1007 /
s13347-018-0312-8.

Radder, Hans (Aug. 2017). ‘Which Scientific Knowledge is a Common
Good?’ In: Social Epistemology 31, pp. 431–450.

Rapoport, Anatol (1966). Two-person game theory: The essential ideas.
Mineola, New York: Courier Dover Publications.

Rasmussen, R. and G. Aaron (Sept. 2012). Global phishing survey:
trends and domain name use in 2Q2012. Tech. rep. Anti-Phishing
Working Group.

Read, Stephen (1988). Relevant Logic: A Philosophical Examination of
Inference. Basil Blackwells. url: https://www.st-andrews.ac.uk/~slr/
Relevant_Logic.pdf.

Reith, Mark, Clint Carr and Gregg Gunsch (2002). ‘An examination of
digital forensic models’. In: Int. J. of Digital Evidence 1.3, pp. 1–12.

Research Institute in Science of Cyber Security (2016). Annual Report.
Tech. rep. London, UK: University College London.

Reynolds, John C. (2002). ‘Separation Logic: A Logic for Shared Mut-
able Data Structures’. In: Logic in Computer Science. IEEE, pp. 55–
74.

Robinson, J. A. (1965). ‘A Machine-Oriented Logic Based on the Res-
olution Principle’. In: J. ACM 12.1, pp. 23–41.

Roesch, Martin (Nov. 1999). ‘Snort: Lightweight intrusion detection
for networks’. In: Large Installation Systems Admin. Seattle, WA:
USENIX, pp. 229–238.

Roesch, Martin, Chris Green and Sourcefire (2013). ‘SNORT Users
Manual 2.9.4’. In: Sourcefire, Inc. Chap. 3 – Writing Snort Rules.
url: http://manual.snort.org/node27.html.

Ross, Don (2018). ‘Game Theory’. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta. Fall 2018. Metaphysics Re-
search Lab, Stanford University.

Ross, Ron et al. (Apr. 2013). Security and Privacy Controls for Fed-
eral Information Systems and Organizations. Tech. rep. SP 800-53r4.

http://www.eweek.com/security/why-malvertising-has-become-a-pervasive-security-risk.html
http://www.eweek.com/security/why-malvertising-has-become-a-pervasive-security-risk.html
https://doi.org/10.1007/s13347-018-0312-8
https://doi.org/10.1007/s13347-018-0312-8
https://www.st-andrews.ac.uk/~slr/Relevant_Logic.pdf
https://www.st-andrews.ac.uk/~slr/Relevant_Logic.pdf
http://manual.snort.org/node27.html

312 bibliography

Gaithersburg, MD: US Dept of Commerce, National Institute of
Standards and Technology.

Ross, Ron, Michael McEvilley and Janet Carrier Oren (Nov. 2016).
Systems Security Engineering: Considerations for a Multidisciplinary
Approach in the Engineering of Trustworthy Secure Systems. Tech.
rep. SP 800-160. Gaithersburg, MD: U.S. National Institute of Stand-
ards and Technology.

Rossow, Christian, Christian J Dietrich, Chris Grier, Christian Kreibich,
Vern Paxson, Norbert Pohlmann, Herbert Bos and Maarten Van
Steen (2012). ‘Prudent practices for designing malware experiments:
Status quo and outlook’. In: Security and Privacy (S&P), IEEE
Symposium on, pp. 65–79.

Rowlingson, Robert (2004). ‘A ten step process for forensic readiness’.
In: International Journal of Digital Evidence 2.3, pp. 1–28.

Roy, Arpan, Santonu Sarkar, Rajeshwari Ganesan and Geetika Goel
(Feb. 2015). ‘Secure the Cloud: From the Perspective of a Service-
Oriented Organization’. In: ACM Comput. Surv. 47.3, 41:1–41:30.

Royal Society (July 2016). Progress and research in cybersecurity:
Supporting a resilient and trustworthy system for the UK. Tech.
rep. ISBN: 978-1-78252-215-7. London, UK. url: royalsociety.org/
cybersecurity.

SPSP (2017). Society for Philosophy of Science in Practice: Mission
statement. accessed Jul 2017. url: http://www.philosophy- science-
practice.org/en/mission-statement/.

SWGDE (17th Sept. 2009). Position on the National Research Council
Report to Congress Strengthening Forensic Science in the United
States: A Path Forward. https : / / www . swgde . org / documents /
Current % 20Documents / SWGDE % 20Position % 20on % 20the %
20NAS%20Report.

Sagiv, Mooly, Thomas Reps and Reinhard Wilhelm (2002). ‘Paramet-
ric shape analysis via 3-valued logic’. In: ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 24.3, pp. 217–298.

Scarfone, Karen and Peter Mell (Feb. 2007). Guide to Intrusion Detec-
tion and Prevention Systems (IDPS). Tech. rep. SP 800-94. Gaith-
ersburg, MD: US Dept of Commerce, National Institute of Standards
and Technology.

– (Oct. 2009). ‘An analysis of CVSS version 2 vulnerability scoring’.
In: International Symposium on Empirical Software Engineering and
Measurement. IEEE. Lake Buena Vista, FL, pp. 516–525.

Scarfone, Karen, Murugiah Souppaya, Amanda Cody and Angela Ore-
baugh (Sept. 2008). Technical Guide to Information Security Testing
and Assessment. Tech. rep. SP 800-115. Gaithersburg, MD: US Dept
of Commerce, National Institute of Standards and Technology.

Schneier, Bruce (1999). ‘Attack trees’. In: Dr. Dobb’s journal 24.12,
pp. 21–29.

Seacord, Robert C (2005). Secure Coding in C and C++. Upper Saddle
Ridge, NJ: Pearson Education.

royalsociety.org/cybersecurity
royalsociety.org/cybersecurity
http://www.philosophy-science-practice.org/en/mission-statement/
http://www.philosophy-science-practice.org/en/mission-statement/
https://www.swgde.org/documents/Current%20Documents/SWGDE%20Position%20on%20the%20NAS%20Report
https://www.swgde.org/documents/Current%20Documents/SWGDE%20Position%20on%20the%20NAS%20Report
https://www.swgde.org/documents/Current%20Documents/SWGDE%20Position%20on%20the%20NAS%20Report

bibliography 313

Segura, Jérôme (5th Nov. 2014). The Proof is in the Cookie. https :
//blog.malwarebytes.org/malvertising-2/2014/11/the-proof-is-in-the-
cookie/.

Shannon, Gregory et al. (Feb. 2016). Federal cybersecurity research and
development strategic plan: Ensuring prosperity and national secur-
ity. Tech. rep. Washington, DC: National Science and Technology
Council.

Shimeall, Timothy and Jonathan M Spring (Jan. 2014). Introduction
to Information Security: A Strategic-based Approach. Waltham, MA:
Elsevier.

Shirey, R. (Aug. 2007). Internet Security Glossary, Version 2. RFC
4949 (Informational). RFC. Fremont, CA, USA: RFC Editor.

Shostack, Adam and Andrew Stewart (2008). The new school of in-
formation security. Pearson Education.

Simon, Herbert A. (1996). The sciences of the artificial. 3rd. Cam-
bridge, MA: MIT press.

Sood, Aditya K and Richard J Enbody (2013). ‘Crimeware-as-a-service:
A survey of commoditized crimeware in the underground market’.
In: International Journal of Critical Infrastructure Protection 6.1,
pp. 28–38.

Souppaya, Muragiah and Karen Scarfone (July 2013). Guide to Mal-
ware Incident Prevention and Handling for Desktops and Laptops.
Tech. rep. SP 800-83r1. Gaithersburg, MD: US Dept of Commerce,
National Institute of Standards and Technology.

Southers, Erroll G. (2011). ‘LAX – Terror Target: The History, the
Reason, the Countermeasure’. In: Security and game theory: al-
gorithms, deployed systems, lessons learned. Ed. by Milind Tambe.
Cambridge University Press. Chap. 2.

Spring, Jonathan M (2011a). ‘Monitoring cloud computing by layer,
part 1’. In: Security & Privacy 9.2, pp. 66–68.

– (2011b). ‘Monitoring cloud computing by layer, part 2’. In: Security
& Privacy 9.3, pp. 52–55.

– (Sept. 2013a). ‘A notation for describing the steps in indicator ex-
pansion’. In: eCrime Researchers Summit (eCRS), 2013. IEEE. San
Francisco.

– (Sept. 2013b). ‘Modeling malicious domain name take-down dynam-
ics: Why eCrime pays’. In: eCrime Researchers Summit (eCRS).
IEEE. San Francisco.

– (Sept. 2014). ‘Toward realistic modeling criteria of games in internet
security’. In: Journal of Cyber Security & Information Systems 2.2,
pp. 2–11.

Spring, Jonathan M and Eric Hatleback (Jan. 2017). ‘Thinking about
intrusion kill chains as mechanisms’. In: Journal of Cybersecurity 3.3,
pp. 185–197.

Spring, Jonathan M and Phyllis Illari (2018a). ‘Building General Know-
ledge of Mechanisms in Information Security’. In: Philosophy & Tech-
nology. doi: 10.1007/s13347-018-0329-z.

https://blog.malwarebytes.org/malvertising-2/2014/11/the-proof-is-in-the-cookie/
https://blog.malwarebytes.org/malvertising-2/2014/11/the-proof-is-in-the-cookie/
https://blog.malwarebytes.org/malvertising-2/2014/11/the-proof-is-in-the-cookie/
https://doi.org/10.1007/s13347-018-0329-z

314 bibliography

Spring, Jonathan M and Phyllis Illari (Apr. 2018b). ‘Review of Hu-
man Decision-making during Incident Analysis’. In: arXiv preprint
1903.10080.

Spring, Jonathan M and David Pym (31st Oct. 2018). ‘Towards Sci-
entific Incident Response’. In: GameSec. LNCS 11199. Seattle, WA:
Springer.

Spring, Jonathan M and Edward Stoner (July 2015). CND Equities
Strategy. Tech. rep. CERTCC-2015-40. Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University.

Spring, Jonathan M, Sarah Kern and Alec Summers (27th May 2015).
‘Global adversarial capability modeling’. In: APWG Symposium on
Electronic Crime Research (eCrime). IEEE. Barcelona.

Spring, Jonathan M, Tyler Moore and David Pym (2nd Oct. 2017).
‘Practicing a Science of Security: A philosophy of science perspective’.
In: New Security Paradigms Workshop. Santa Cruz, CA, USA.

Spring, Michael B. (2011c). ‘What Have We Learned about Standards
and Standardization?’ In: Homo Oeconomicus 27.4, pp. 501–517.

Stake, Robert E (1995). The art of case study research. Thousand Oaks,
CA: Sage.

Stamos, Alex (17th Feb. 2010). "Aurora" Response Recommendations.
Tech. rep. iSec Partners.

Star, Susan Leigh and James R. Griesemer (1989). ‘Institutional
Ecology, ‘Translations’ and Boundary Objects: Amateurs and Pro-
fessionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39’.
In: Social Studies of Science 19.3, pp. 387–420. doi: 10 . 1177 /
030631289019003001.

Steel, Daniel (2008). Across the boundaries: Extrapolation in biology
and social science. Oxford: Oxford University Press.

Stodden, Victoria (2015). ‘Reproducing statistical results’. In: Annual
Review of Statistics and Its Application 2, pp. 1–19.

Stoll, Clifford (1988). ‘Stalking the wily hacker’. In: Communications
of the ACM 31.5, pp. 484–497.

– (1989). The cuckoo’s egg: tracking a spy through the maze of com-
puter espionage. London: Pan Books.

Suárez, Mauricio (2010). ‘Scientific representation’. In: Philosophy
Compass 5.1, pp. 91–101.

Sundaramurthy, Sathya Chandran, John McHugh, Xinming Simon Ou,
S Raj Rajagopalan and Michael Wesch (2014). ‘An anthropological
approach to studying CSIRTs’. In: IEEE Security & Privacy 5,
pp. 52–60.

Swoyer, Chris (June 1991). ‘Structural representation and surrogative
reasoning’. In: Synthese 87.3, pp. 449–508.

Szurdi, Janos, Balazs Kocso, Gabor Cseh, Jonathan M Spring, Mark
Felegyhazi and Chris Kanich (Aug. 2014). ‘The long “taile” of ty-
posquatting domain names’. In: 23rd USENIX Security Symposium.
USENIX Association. San Diego, pp. 191–206.

Takahashi, T., K. Landfield and Y. Kadobayashi (Apr. 2014). An In-
cident Object Description Exchange Format (IODEF) Extension for

https://doi.org/10.1177/030631289019003001
https://doi.org/10.1177/030631289019003001

bibliography 315

Structured Cybersecurity Information. RFC 7203 (Proposed Stand-
ard). RFC. Fremont, CA, USA: RFC Editor.

Tambe, Milind (2011). Security and game theory: algorithms, deployed
systems, lessons learned. Cambridge University Press.

Tang, Jun, Yong Cui, Qi Li, Kui Ren, Jiangchuan Liu and Rajkumar
Buyya (June 2016). ‘Ensuring Security and Privacy Preservation for
Cloud Data Services’. In: ACM Comput. Surv. 49.1, 13:1–13:39.

Taylor, Matthew E., Christopher Kiekintveld and Milind Tambe (2011).
‘Evaluating Deployed Decision-Support Systems for Security: Chal-
lenges, Analysis, and Approaches’. In: Security and game theory: al-
gorithms, deployed systems, lessons learned. Ed. by Milind Tambe.
Cambridge University Press. Chap. 13.

Tedre, Matti (2011). ‘Computing as a science: A survey of competing
viewpoints’. In: Minds and Machines 21.3, pp. 361–387.

Tedre, Matti and Nella Moisseinen (2014). ‘Experiments in computing:
A survey’. In: The Scientific World Journal 2014, pp. 1–11.

Tempini, Niccol’o and Sabina Leonelli (May 2018). ‘Concealment and
discovery: the role of information security in biomedical data re-use’.
In: Social Studies of Science In press.

The Economist (24th Dec. 2016). The City of the Century: How Vienna
produced ideas that shaped the West. http://www.economist .com/
news/christmas-specials/21712044-city-century-how-vienna-produced-
ideas-shaped-west.

Thomas, Mark, Leigh Metcalf, Jonathan M Spring, Paul Krystosek and
Katherine Prevost (1st July 2014). ‘SiLK: A tool suite for unsampled
network flow analysis at scale’. In: IEEE BigData Congress. Anchor-
age, pp. 184–191.

Thompson, Ken (Aug. 1984). ‘Reflections on Trusting Trust’. In: Com-
mun. ACM 27.8, pp. 761–763.

Tirpak, John A (2000). ‘Find, fix, track, target, engage, assess:
F2T2EA is shorthand for the operational goal the Air Force will
pursue into the 21st century’. In: Air Force Magazine 83.7, pp. 24–
29.

Trammell, B. (July 2012a). Guidelines and Template for Defining
Extensions to the Incident Object Description Exchange Format
(IODEF). RFC 6684 (Informational). RFC. Fremont, CA, USA:
RFC Editor.

– (Apr. 2012b). Transport of Real-time Inter-network Defense (RID)
Messages over HTTP/TLS. RFC 6546 (Proposed Standard). RFC.
Fremont, CA, USA: RFC Editor.

Trost, Ryan (7th Aug. 2014). ‘Threat Intelligence Library - A New
Revolutionary Technology to Enhance the SOC Battle Rhythm!’ In:
Black Hat USA 2014. Las Vegas, Nevada: UBM.

Turing, Alan Mathison (Nov. 1936). ‘On computable numbers, with
an application to the Entscheidungsproblem’. In: Proceedings of the
London mathematical society 2.1, pp. 230–265.

Turner, Raymond and Nicola Angius (2017). ‘The Philosophy of Com-
puter Science’. In: The Stanford Encyclopedia of Philosophy. Ed. by

http://www.economist.com/news/christmas-specials/21712044-city-century-how-vienna-produced-ideas-shaped-west
http://www.economist.com/news/christmas-specials/21712044-city-century-how-vienna-produced-ideas-shaped-west
http://www.economist.com/news/christmas-specials/21712044-city-century-how-vienna-produced-ideas-shaped-west

316 bibliography

Edward N. Zalta. Spring 2017. Metaphysics Research Lab, Stanford
University.

U.S. Dept of Commerce (26th Jan. 2017). NIST Mission, Vision, Core
Competencies, and Core Values. https://www.nist.gov/about-nist/
our-organization/mission-vision-values. accessed Jun 2017.

Uebel, Thomas (2016). ‘Vienna Circle’. In: The Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Spring 2016. Metaphysics
Research Lab, Stanford University.

Uijt de Haag, P. A. M. and B. J. M. Ale (1999). The ‘Purple
Book’: Guideline for Quantitative Risk Assessment. Tech. rep. PGS3.
Amsterdam: Netherlands Ministerie van Binnenlandse Zaken en
Koninkrijksrelaties.

University College London (2017). "The Research Institute in Science
of Cyber Security (RISCS)". https://www.riscs.org.uk/. accessed Mar
6, 2017.

Ur, Blase et al. (2012). ‘How does your password measure up? The effect
of strength meters on password creation’. In: USENIX Conference on
Security Symposium. Bellevue, WA: USENIX Association, pp. 65–
80.

Valjarevic, Aleksandar and Hein S. Venter (Aug. 2012a). ‘Harmonised
digital forensic investigation process model’. In: Information Security
for South Africa (ISSA). IEEE, pp. 1–10.

Valjarevic, Aleksandar and Heini S. Venter (2nd–5th Sept. 2012b).
‘Analyses of the State-of-the-art Digital Forensic Investigation Pro-
cess Models’. In: Southern Africa Telecommunication Networks and
Applications Conference (SATNAC). Ed. by Stefan Scriba. 11. Fan-
court, South Africa.

Van Dalen, Dirk (2004). Logic and structure. 4th. Springer-Verlag.
Van Eck, Wim (1985). ‘Electromagnetic radiation from video dis-
play units: An eavesdropping risk?’ In: Computers & Security 4.4,
pp. 269–286.

Van Emden, Maarten H. and Robert A. Kowalski (1976). ‘The se-
mantics of predicate logic as a programming language’. In: J. ACM
23.4, pp. 733–742.

Verizon (2015). 2015 Data Breach Investigations Report (DBIR). Tech.
rep. url: http://www.verizonenterprise.com/DBIR/2015/.

– (2016). 2016 Data Breach Investigations Report (DBIR). Tech. rep.
url: http ://www.verizonenterprise .com/verizon- insights - lab/dbir/
2016/.

Vincenti, Walter G. (1990). What engineers know and how they know
it: Analytical studies from aeronautical history. Ed. by Merritt Roe
Smith. Johns Hopkins Studies in the History of Technlogy. Baltimore
and London: Johns Hopkins University Press.

Vuillard, Jules (17th Mar. 2016). Blog post on Infer-Spotify Collabor-
ation. http : / / fbinfer . com/blog /2016 /03/ 17 / collaboration - with -
spotify.html. Facebook.

Wang, Ju An and Minzhe Guo (15th Apr. 2009). ‘OVM: An ontology
for vulnerability management’. In: Workshop on Cyber Security and
Information Intelligence Research. 34. ACM. Oak Ridge, TN.

https://www.nist.gov/about-nist/our-organization/mission-vision-values
https://www.nist.gov/about-nist/our-organization/mission-vision-values
https://www.riscs.org.uk/
http://www.verizonenterprise.com/DBIR/2015/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/
http://fbinfer.com/blog/2016/03/17/collaboration-with-spotify.html
http://fbinfer.com/blog/2016/03/17/collaboration-with-spotify.html

bibliography 317

Wash, Rick (2010). ‘Folk Models of Home Computer Security’. In: Sym-
posium on Usable Privacy and Security. Redmond, WA, USA: ACM,
11:1–11:16.

Williams, Janet (Mar. 2012). Good Practice Guide for Digital Evidence.
Tech. rep. London: Association of Chief Police Officers.

Williamson, Jon (1st June 2015). Evaluating evidence in medicine.
https : / / blogs . kent . ac . uk / jonw/ projects / evaluating - evidence - in -
medicine/.

Willison, Robert and Mikko Siponen (2009). ‘Overcoming the insider:
reducing employee computer crime through Situational Crime Pre-
vention’. In: Communications of the ACM 52.9, pp. 133–137.

Winn, Jane K. (2004). ‘Should vulnerability be actionable? Improving
critical infrastructure Computer security with trade practices law’.
In: George Mason Univ. Critical Infrastructure Protection Project
Papers Vol. II.

Winskel, Glynn (1993). The formal semantics of programming lan-
guages: an introduction. Cambridge, MA: MIT press.

Winterstein, Felix J, Samuel R Bayliss and George A Constantinides
(2016). ‘Separation logic for high-level synthesis’. In: Transactions
on Reconfigurable Technology and Systems (TRETS) 9.2, p. 10.

Woodward, James (2003). Making things happen: A theory of causal
explanation. Oxford, UK: Oxford University Press.

Xu, Fengwei, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang and
Zhaohui Li (July 2016). ‘A Practical Verification Framework for Pree-
mptive OS Kernels’. In: Computer Aided Verification (CAV). LNCS
9780. Springer. Toronto, Ontario, pp. 59–79.

Yakdan, Khaled, Sergej Dechand, Elmar Gerhards-Padilla and Mat-
thew Smith (23rd May 2016). ‘Helping Johnny to Analyze Malware’.
In: IEEE Security & Privacy (Oakland). San Jose, CA.

Ye, Yanfang, Tao Li, Donald Adjeroh and S. Sitharama Iyengar (June
2017). ‘A Survey on Malware Detection Using Data Mining Tech-
niques’. In: ACM Comput. Surv. 50.3, 41:1–41:40.

Younan, Yves, Wouter Joosen and Frank Piessens (June 2012).
‘Runtime Countermeasures for Code Injection Attacks Against C
and C++ Programs’. In: ACM Comput. Surv. 44.3, 17:1–17:28.

Zins, Chaim (2007). ‘Conceptual approaches for defining data, inform-
ation, and knowledge’. In: Journal of the American society for in-
formation science and technology 58.4, pp. 479–493.

von Plato, Jan (2016). ‘The Development of Proof Theory’. In: The
Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter
2016. Metaphysics Research Lab, Stanford University.

https://blogs.kent.ac.uk/jonw/projects/evaluating-evidence-in-medicine/
https://blogs.kent.ac.uk/jonw/projects/evaluating-evidence-in-medicine/

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The style was
inspired by Robert Bringhurst’s seminal book on typography “The Elements
of Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a
collection of postcards received so far is featured here:

http://postcards.miede.de/

Thank you very much for your feedback and contribution.

Final Version as of 10th May 2019 (classicthesis version 1.1).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Declaration
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction and Motivation
	1.1 Summary of the argument
	1.2 Impact
	1.3 Important definitions
	1.4 Publications and submissions adapted for thesis
	1.5 Publications not adapted in thesis
	1.6 Disclaimer

	 Background
	2 Literature review – Incident Response
	2.1 Introduction
	2.2 Scope
	2.2.1 Scope—Topic
	2.2.2 Scope—Publication Venues

	2.3 Related literature reviews
	2.4 Methods
	2.4.1 Search strategy
	2.4.2 Appraisal strategy
	2.4.3 Synthesis methods
	2.4.4 Limitations

	2.5 Results
	2.5.1 IETF
	2.5.2 ISO
	2.5.3 FIRST
	2.5.4 Intelligence community
	2.5.5 Referenced Documents

	2.6 Discussion
	2.6.1 Comments and clarifications on Table 2.12
	2.6.2 Note on case studies

	2.7 Gaps and Work Plan
	2.7.1 Research question

	2.8 Related work
	2.8.1 Interdisciplinary overlaps
	2.8.2 Parts of information and computer science

	2.9 Conclusion

	3 Literature review – Science and Security
	3.1 Purported impediments to a science of security
	3.2 Philosophy of science – historical background
	3.3 Existing statements of science and security
	3.3.1 Prepositions: `of' or `for' security

	3.4 Practicing Science of Security
	3.4.1 Scientific methods
	3.4.2 Evaluating Results
	3.4.3 The nature of scientific inquiry
	3.4.4 Scientific Language(s)
	3.4.5 Engineering or Science?

	3.5 A Science of Security very much exists
	3.6 Research plan

	 Generalising, Applying, and Formalising Knowledge
	4 General knowledge of mechanisms
	4.1 Introduction
	4.2 Generality in philosophy of science
	4.2.1 Turning away from laws
	4.2.2 Generality and mechanisms

	4.3 Building mechanistic knowledge in cybersecurity
	4.3.1 The three challenges for cybersecurity
	4.3.2 Three examples of cybersecurity mechanisms

	4.4 Building general knowledge in cybersecurity
	4.4.1 Constraining: On improving coordination in cybersecurity

	4.5 Conclusion

	5 The intrusion kill chain as a case study
	5.1 Introduction
	5.2 Reasoning with the kill chain as a mechanism
	5.2.1 Higher-level mechanisms
	5.2.2 On lower-level mechanisms

	5.3 Examples of Incident Analysis
	5.3.1 Example 1: The Cuckoo's Egg
	5.3.2 Example 2: Airport Security

	5.4 Conclusions

	6 Separation logic as a case study
	6.1 Introduction to Separation Logic
	6.2 Solving a Hard Problem
	6.3 Why Separation Logic Works
	6.3.1 The separating conjunction
	6.3.2 Hoare triples
	6.3.3 Frame Rule
	6.3.4 Automatable abduction

	6.4 The Semantics of Separation Logic
	6.4.1 Bunched Logic
	6.4.2 The Semantics of Bunched Logic
	6.4.3 The Resource Semantics of Separation Logic

	6.5 Deployable Proof Theory for Separation Logic
	6.5.1 Separation Logic and the Frame Rule
	6.5.2 Deployability via Contextual Refinement
	6.5.3 Bi-abduction

	6.6 Conclusion

	 A logic of reasoning in incident analysis
	7 Logic definition
	7.1 Philosophical and historical analyses
	7.1.1 Summary of requirements

	7.2 Logic design choices
	7.3 Logic Definitions
	7.3.1 Expressions
	7.3.2 Basics and syntax
	7.3.3 Model
	7.3.4 Semantics
	7.3.5 Abduction
	7.3.6 On the metatheory of the security incident analysis logic

	7.4 A worked example
	7.4.1 A logic of the kill chain
	7.4.2 Using more granular knowledge
	7.4.3 Composition of attacks into a campaign

	7.5 Benefits of this logic
	7.6 Conclusions

	 Consolidation
	8 Summary
	9 Conclusions

	 Backmatter
	 Bibliography
	Colophon

