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ABSTRACT  

Background: We investigated the association between white matter hyperintensity 

(WMH) location and depressive symptoms in a memory-clinic population using lesion-

symptom mapping.  

Methods: We included 680 patients with vascular brain injury from the TRACE-VCI cohort 

(age 67±8;52%F): 168 patients with subjective cognitive decline (SCD), 164 with mild 

cognitive impairment (MCI), and 348 with dementia. Depressive symptoms were assessed 

using the Geriatric Depression Scale (GDS;0-15). We applied assumption-free voxel-

based lesion-symptom mapping (VLSM), adjusted for age, sex, total WMH volume and 

multiple testing. Next, we applied exploratory region of interest (ROI)-based linear 

regression analyses of major white matter tracts with additional adjustment for diagnosis.  

Results: VLSM identified voxel clusters in relation to GDS in the left corticospinal tract 

(CST). ROI-based analyses showed no relation between WMH volume and GDS, but 

revealed an interaction with diagnosis in the forceps minor where larger regional WMH 

volume was associated with more depressive symptoms in SCD (stß=0.26, p<0.05), but 

not in MCI or dementia.  

Limitations: Lack of convergence of findings between VLSM and ROI analyses, which 

may be due to small effect sizes and limited lesion coverage despite the large sample size.  

This warrants replication of our findings and further investigation in other cohorts.   

Conclusions: This lesion-symptom mapping study on depressive symptoms indicates the 

CST and forceps minor as strategic white matter tracts in which WMH are associated with 

depressive symptoms in memory-clinic patients with vascular brain injury. The impact of 

WMH on depressive symptoms is modest, yet appears to be dependent on location of 

WMH and disease severity.  
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1. Introduction 

Late-life depression is highly prevalent in older people and in patients with cognitive 

impairment or dementia (1). Late-life depression has been associated with vascular 

dementia, stroke and white matter hyperintensities (WMH) (2–4). This link between 

vascular disease and late-life depression has led to the ‘vascular depression hypothesis’ 

(5–7). The clinical profile of vascular depression includes loss of interest and motivation, 

executive dysfunctioning and psychomotor retardation (8). 

The vascular depression hypothesis has been investigated intensively in population-based 

studies. Late-life depression is consistently associated with severity of WMH (i.e. visual 

rating scores; Fazekas or Scheltens scale) and larger total WMH volumes in healthy 

elderly (2,9). Meanwhile, studies in memory clinic populations are scarce, while this could 

be a clinically important population considering their generally higher vascular lesion 

burden and the frequent occurrence of depressive symptoms in this group. We recently 

showed that in memory clinic patients with Alzheimer’s disease (AD) severity of WMH 

(measured with the Fazekas scale) was not related to depressive symptoms (10). 

However, we found a borderline significantly increased propensity of depressive symptoms 

in patients with subjective cognitive decline (SCD) with WMH. Apart from severity of WMH, 

recent studies suggest that specific WMH locations could predispose for the occurrence of 

depressive symptoms. The LADIS study found that deep WMH specifically located in the 

frontal and temporal locations were associated with depressive symptoms in non-disabled 

older subjects (11). Frontal WMH have been associated with higher depression scores on 

a questionnaire in patients with dementia (12). Furthermore, prefrontal and temporal WMH 

and WMH in specific white matter tracts as the cingulum bundle, uncinate fasciculus, and 

superior longitudinal fasciculus have been associated with severity of depression in 

patients with major depression (13,14). These results suggest disruption of in particular 

prefrontal-subcortical pathways as an underlying mechanism of late-life depressive 
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symptoms in elderly (5). Identifying specific white matter tracts in which WMH have most 

impact on depressive symptoms would improve our understanding of the consequences of 

cerebral vascular injury.  

Lesion-symptom mapping is frequently used to investigate the relation between lesion 

location and specific clinical symptoms in patients with vascular brain injury such as WMH, 

infarcts and lacunes. Most lesion-symptom mapping studies on WMH have focused on the 

association between WMH location and cognitive functioning (15–17), while psychological 

symptoms of subcortical vascular lesions, such as depression and anxiety have not been 

addressed. In this first-ever lesion-symptom mapping study on depressive symptoms, we 

aimed to determine to what extent specific WMH locations contribute to depressive 

symptoms in memory clinic patients with vascular brain injury on MRI, and identify 

strategic white matter tracts in which WMH have impact on depressive symptoms.  

 

2. Methods and materials 

TRACE-VCI (Utrecht-Amsterdam clinical features and prognosis in VCI) is a prospective 

observational follow-up study of 860 consecutive memory clinic patients from Dutch 

outpatient clinics at two university hospitals (VU University Medical Centre [VUMC] and 

University Medical Centre Utrecht [UMCU]) (18). All patients visited the memory clinic 

between September 2009 and December 2013 and underwent a 1-day standardized 

dementia screening that included medical history, physical and neurological examinations, 

screening laboratory tests, MRI scan of the brain and neuropsychological assessment. 

Patients with cognitive complaints and any burden of vascular brain injury on MRI were 

prospectively included. Further in- and exclusion criteria are described in detail elsewhere 

(18). Patients were divided in three categories related to the extent of cognitive 

impairment: dementia, mild cognitive impairment (MCI) and SCD. Patients with evidence 

of co-occurring neurodegenerative disease or depression were accepted as these are 
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common comorbid etiologies in patients with vascular cognitive impairment (VCI). We did 

exclude patients with nonvascular or nondegenerative primary cause of cognitive 

impairment, such as brain tumour, extensive traumatic head injury, substance or alcohol 

abuse or multiple sclerosis. Patients with primary psychiatric disease, other than 

depression, were excluded. The study was approved by the medical ethics committee of 

VUMC and UMCU. We obtained written informed consent (or from their responsible 

guardians if the participants were incapable of consenting) prior to research-related 

procedures.  

 

2.1 Participants 

A flow chart of patient selection for the present study is presented in Figure 1. Of the total 

of 860 patients in TRACE-VCI, 38 patients were excluded during the vascular lesion 

segmentation process, mostly because of insufficient quality of availability of MRI data or 

technical errors during data processing. Next, 100 of the remaining patients were excluded 

based on presence of nonlacunar infarcts or hemorrhages other than microbleeds on MRI, 

because such large lesions can result in the complete obliteration of white matter tracts 

and could thereby interfere with our analysis in which WMH volume with specific tracts is 

related to depressive symptoms at a group level. One additional patient was excluded due 

to failed lesion registration. Finally, 42 patients were excluded because of no available 

Geriatric Depression Scale (GDS). This resulted in a study sample of 680 patients (168 

SCD, 164 MCI, 348 dementia).  

For all patients, history of depression and the use of antidepressant medication (e.g. 

selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), 

monoamine oxidase inhibitors (MOAIs)) were determined based on self-reported medical 

history and medication use. Presence of hypertension was determined based on self-

reported medical history, medication use or a newly diagnosed hypertension defined as a 
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blood pressure of 140/90 mmHg or more, measured by means of sphygmomanometer. 

Hypercholesterolemia was determined based on self-reported medical history or 

medication use. Diabetes mellitus was determined based on self-reported medical history, 

medication use or a newly diagnosed diabetes mellitus defined as nonfasting glucose of 

≥11.1 mmol/l or an HbA1c ≥48 mmol/mol (or ≥6.5%). Obesity was defined as body mass 

index (BMI) ≥30.  

 

2.2 Evaluation of depressive symptoms 

Depressive symptoms were assessed using the 15-item self-reported GDS, which has a 

maximum score of 15 (19) and higher scores indicate the presence of depressive 

symptoms. The GDS-15 is frequently used in clinical practice and research and is a valid 

and reliable screening instrument for depressive symptoms in older people (19). In our 

study, the GDS was verbally administered to patients by a neuropsychologist. We 

classified patients as having depressive symptoms if their score on the GDS was 5 or 

higher. In our analyses we used the continuous GDS score, because this offers the 

highest power to detect associations.  

 

2.3 AD biomarkers  

Cerebrospinal fluid (CSF) markers amyloid-beta1-42 (Abeta1-42) and total tau (tau) were 

available for 446 patients. CSF biomarkers were assessed using Sandwich ELISAs 

(Fujirebio, Gent, Belgium) (20). CSF biomarkers were considered positive for AD when tau 

/ Abeta1-42 ratio was > 0.52 (21). In the patients selected for this study, CSF biomarkers 

were only measured in patients included at VUMC as standard procedure of the memory 

clinic.  
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2.4 MRI protocol 

Brain MRI scans were performed on 1.5 (n = 39) or 3.0 (n = 641) Tesla MRI scanners. The 

Scans were acquired on GE (n = 527, 77.5%) or Philips (n = 153 (22.5%) MRI scanners 

using a standardized protocol. MRI protocol included 3D T1-weighted, T2-weighted, T2*-

weighted/susceptibility-weighted imaging (SWI) and T2 fluid-attenuated inversion recovery 

(FLAIR) sequences. For some patients, 3D T1 and/or FLAIR sequences were not 

available, therefore 2D T1 or 2D FLAIR sequences were used instead. Slice thickness, 

voxel size and other details for each scanner type are described in detail in Supplementary 

Table 1.  

 

2.5 Lesion segmentation 

Vascular brain injury was rated in accordance with the internationally established STRIVE 

criteria, which provide neuroimaging standards for classification of cerebral SVD (22). 

Ratings were performed by or under supervision of a neuroradiologist. Lesion 

segmentation was performed on T2 FLAIR images, using the T1 modality as a reference 

for proper lesion classification. Automated WMH segmentation was performed using the k 

nearest neighbour classification with tissue type priors (kNN-TTPs) method (23). This 

method showed no systematic errors across different MRI scanners. The resulting WMH 

lesion maps underwent a visual check for accuracy by two independent raters. 

Subsequent manual corrections were required in 6 subjects (0.9%) because of 

segmentation inaccuracies (i.e. missed WMH or incorrect or incomplete WMH 

segmentation). These corrections were performed by a single rater. In addition, presence 

of other lesion types was determined: lacunes were defined as sharply demarcated deep 

lesions with CSF-like signal on all sequences, microbleeds were defined as small dot-like 

hypointense lesions on T2*-weighted or SWI images. Next, manual segmentation of these 
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lesions was performed using in-house developed software based in MeVisLab (MeVis 

Medical Solutions AG, Bremen, Germany) (24,25).  

 

2.6 Generation of lesion maps  

All lesion maps were transformed to the T1 1-mm MNI-152 (Montreal Neurological 

Institute) brain template (26), using an in-house developed image registration pipeline that 

applies the elastix toolbox (27). This standardized pipeline has been recently developed 

and will soon be made publicly available at http://www.metavcimap.org. The registration 

procedure consisted of linear registration followed by nonlinear registration. As an 

intermediate step, registration to an age-specific MRI template was performed (28), which 

has previously shown to result in more successful registration of brains from patients with 

severe atrophy. These registration steps were combined into a single step through which 

the original lesion maps were registered directly to the MNI-152 space, in order to prevent 

intermediate interpolations and thereby improve registration accuracy. Quality checks of all 

registration results were performed by one rater (NAW), who compared the lesion location 

in MNI space with the original scans. One patient (0.14%) had to be excluded because of 

unsuccessful lesion registration.  

 

2.7 Statistical analysis 

PASW Statistics 25.0 for Mac (SPSS Inc., Chicago IL, USA) was used for statistical 

analyses. Analyses of variance (ANOVA) and Pearson χ2 tests were performed to 

compare groups when appropriate. 

Two independent hypothesis-free analysis methods were applied to identify WMH 

locations associations with depressive symptoms: 1) voxel-based lesion-symptom 

mapping (VLSM), which analyses the relation between presence of WMH and depressive 

symptoms for every individual voxel in the brain (29); and 2) exploratory region of interest 

http://www.metavcimap.org/
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(ROI)-based analyses, which analysed the impact of lesion volume in predefined white 

matter tracts on depressive symptoms.  

 

2.7.1 Voxel-based lesion-symptom mapping 

VLSM was performed using Non-parametric Mapping software (NPM, version May 2016; 

settings: univariate analysis, Brunner-Munzel test) (29), which is suitable for non-normally 

distributed data. To ensure that our analyses were not biased by voxels that are only rarely 

affected, we set a minimum number of patients with a lesion in a particular voxel and only 

included voxels in our analysis that were affected by WMH in at least 14 subjects (2%) 

(30). VLSM analyses were performed using a z-score of the GDS as measure for 

depressive symptoms, after individualized correction for age and sex using linear 

regression. The analyses were repeated after additional correction for normalized total 

WMH volume (i.e. calculated from lesion maps after transformation to MNI-152 space). 

False discovery rate control (q<0.05) was applied to correct for multiple testing. We 

performed VLSM in the whole group and subsequently stratified for syndrome diagnosis.   

 

2.7.2 Region of interest-based analysis 

ROIs were created using the John Hopkins University (JHU) diffusion tensor imaging 

(DTI)-based white matter atlas (31) with a probability threshold of 10%. Regional WMH 

volumes were calculated in millilitres for each patient for 20 white matter tracts. Next, 

bilateral white matter tracts were merged to create a single ROI by combining the volumes. 

The GDS was standardized into a z-score. WMH volumes within the resulting 11 ROIs 

were added as independent variables to linear regression models, which included age, sex 

and memory clinic center of inclusion as covariates (Model 1). When we found a significant 

association, we repeated the analysis with additional adjustment for normalized total WMH 

volume (Model 2). In addition, we performed extra analyses with adjustment for 
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antidepressant medication and MRI field strength and vendor (Model 3). To investigate if 

associations with the ROIs differed according to diagnostic group (SCD, MCI or dementia), 

interaction terms (dummy-diagnosis*ROI) were included in the model. When we found an 

interaction between syndrome diagnosis and the ROI (p<0.10), results were subsequently 

stratified for syndrome diagnosis, and the standardized betas (stß) were displayed for 

each diagnostic group separately. When no significant interaction was found, the 

interaction term was removed from the model and the overall stß was reported.  

Finally, we performed an additional linear regression analyses in a subgroup of patients 

with CSF biomarkers (n = 446) to determine whether the impact of WMH location was 

influenced by co-occurring AD pathology. To investigate if associations differed among the 

patients with positive versus negative CSF biomarkers, we used interaction terms (amyloid 

status*ROI).  

 

3. Results 

Demographic data and MRI measures are summarized in Table 1. No differences were 

noted between the original TRACE-VCI cohort and the present study sample (data not 

shown). Patients with SCD were younger compared to patients with MCI or dementia. 

Patients with dementia had lower scores on the GDS than patients with SCD (dementia: 

3.2±2.7 vs. SCD: 4.6±3.5; p<0.001). Patients with MCI or dementia less often used 

antidepressant medication compared to SCD (dementia: 12%; MCI: 11% vs. SCD: 20%; 

p<0.05). Total WMH volume was highest in patients with dementia and MCI, compared to 

SCD (dementia: [median (IQR)] 11.5 (22.8); MCI: 11.6 (18.7) vs. SCD: 5.0 (10.7), 

p<0.001).  

 

3.1 Voxel-based lesion-symptom mapping 

VLSM was used as an assumption-free method to investigate whether presence of WMH 
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in specific voxels in the brain was significantly associated with depressive symptoms on 

the GDS, independent of total WMH volume. The distribution of WMH is illustrated by the 

lesion prevalence map in Figure 2A. WMH showed a symmetrical distribution and were 

most prevalent in periventricular and fronto-parietal regions. 

The results of the VLSM analysis are shown in Figure 2B. We found voxels with a 

significant association between the presence of WMHs and depressive symptoms, after 

correction for age, sex, total WMH volume and multiple testing. These significant voxels 

were almost exclusively located within the corticospinal tract (CST), near the superior 

longitudinal fasciculus (SLF) and the temporal part of the SLF. The exact number of 

significant voxels within each white matter tract is provided in Table 2.  

Subsequently stratification for syndrome diagnosis showed no significant voxels for any 

subgroup.  

 

3.2 Region of interest-based analyses  

We used ROI-based analyses to determine whether WMH volumes within predefined 

white matter tracts were associated with depressive symptoms. Table 3 shows the 

association between total and regional WMH volume and depressive symptoms.  

Both total WMH volume as regional WMH volume in specific tracts were not related to 

depressive symptoms. We found interactions between syndrome diagnosis and regional 

WMH volume in the forceps minor, anterior thalamic radiation, inferior fronto-occipital 

fasciculus and the inferior longitudinal fasciculus, suggesting that the association between 

depressive symptoms and regional WMH volume in these regions is different for SCD, 

MCI and dementia. Subsequent stratification for syndrome diagnosis showed that in 

patients with SCD regional WMH in the forceps minor was associated with more 

depressive symptoms (standardized beta [stß] = 0.16, p<0.05). Additional adjustment for 

normalized total WMH volume resulted in a slightly stronger association (stß = 0.26, 
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p<0.05). There were no significant associations for MCI and dementia. Finally, we 

performed analyses with additional adjustment for antidepressant medication and MRI field 

strength and vendor, and the results were unchanged (data not shown).   

 

3.3 Exploratory region of interest-based analyses in a subgroup of patients with CSF 

biomarkers  

Subsequently, we performed exploratory analyses in a subgroup of patients with CSF 

biomarkers (n = 446; Supplementary Table 1). We did not find significant interactions 

between amyloid status and WMH volume in relation to depressive symptoms in any 

region.  

 

4. Discussion 

This lesion-symptom mapping study on depressive symptoms indicates the CST and 

forceps minor as strategic white matter tracts in which WMH are associated with 

depressive symptoms in a memory clinic cohort of patients with vascular brain injury. The 

overall impact of WMH on these symptoms was modest, but WMH location appeared to be 

particularly important in patients with SCD.  

The analyses (VLSM and ROI-based linear regression) used in this study resulted in 

different strategic WMH locations. We detected an association between regional WMH in 

the CST and depressive symptoms only at the voxel-level and the number of significant 

voxels was limited (only 15 out of 5975 voxels). At the regional level, with the ROI-based 

analyses, we found no congruent correlation with the CST but identified a modest 

association between the forceps minor and GDS only in the subgroup with SCD. The 

statistical power (due to more rigorous correction for multiple testing) for the VLSM 

analyses might have been insufficient. However, a main advantage of VLSM is the very 

high spatial resolution. Meanwhile, our results regarding the forceps minor are consistent 
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with previous findings on the role of WMH in frontal and temporal locations in depression 

(5,11). The lack of convergence of findings from the VLSM and ROI analyses may reflect 

that effect sizes are quite small. Moreover, the exploratory nature of the ROI analysis 

warrant replication of our findings and further investigation in other large memory-clinic 

cohorts with optimal lesion coverage.   

 

The vascular depression hypothesis proposes that WMH caused by cerebrovascular 

disease disrupt the frontostriatal-subcortical circuits and thereby predispose for late-life 

depression (32).  Previous studies on white matter pathways and depressive symptoms 

have primarily employed diffusion tensor imaging (DTI). Most studies examined patients 

with major depressive disorder (MDD) or patients with late-life depression. A recent review 

on white matter alterations in emotional disorders (ranging from MDD to anxiety disorders 

and obsessive compulsive disorders) found reduced fractional anisotropy (FA) as marker 

for white matter integrity) in fronto-temporal and fronto-parietal white matter tracts 

compared to healthy controls (33). The largest clusters of reduced FA incorporated several 

white matter tracts, including the left forceps minor, the anterior thalamic radiation, the 

inferior fronto-occipital fasciculus and the uncinate fasciculus. A study in non-demented 

patients with small vessel disease (SVD) found lower white matter integrity in patients with 

depressive symptoms, in particular in the prefrontal white matter tracts (34). In contrast, a 

previous study in a small group of patients with MDD found increased white matter 

integrity in the CST compared to controls using tractography clustering methods (35). 

Previous research suggests that DTI underestimates fractional anisotropy in regions where 

fasciculi cross. As the CST is located in an area with crossing fasciculi (i.e. the superior 

longitudinal fasciculus), these results measured with DTI may be interpreted with caution 

(36). However, our lesion-symptom mapping analyses in a large cohort of memory clinic 

patients including an adjustment for multiple comparisons using a FDR correction also 
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showed an association between the CST and depressive symptoms. Our results provide 

further evidence for a potential role for the CST in depressive symptoms. The CST is a 

descending tract of the central nervous system, starting in the cortex terminating in the 

spinal cord and is known to be involved in controlling movements of the limbs and trunks. 

It is possible that our findings with the CST are related to psychomotor symptoms in 

depression. It is known that depression comprises many combinations of clinical 

symptoms. Population-based and clinical (in patients with major depression disorder) 

studies have investigated the presence of these depressive ‘subtypes’ and suggest the 

reflection of specific neurobiological biomarkers in particular brain regions between the 

subtypes (37,38). In the present study, we only had access to the total GDS score. Future 

research with different measures for depressive symptoms is needed to identify the 

potential presence of depressive subtypes in a memory clinic population.  

 

Consistent with our previous study we did not find an association between WMH and 

depressive symptoms in patients with dementia (10).  However, our previous results of a 

higher propensity of depressive symptoms in patients with SCD and WMH is consistent 

with the present study, as we found an association between regional WMH in the forceps 

minor and depressive symptoms in patients with SCD. The forceps minor is a commissural 

fibre that connects the medial and lateral surfaces of both frontal lobes. It has previously 

been associated with executive dysfunctioning and reduced psychomotor speed in 

patients with vascular brain injury (15), which are core cognitive deficits in patients with 

late-life depression and VCI. Studies in patients with SCD found subthreshold symptoms 

of depression and anxiety (39). Most of the patients with SCD do not necessarily meet the 

diagnostic criteria for a psychiatric disorder such as MDD. Affective symptoms in SCD 

show increased risk of progression to mild cognitive impairment and dementia suggesting 

the subthreshold symptoms of depression as possible manifestation of preclinical AD in 
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these individuals (40,41). Conversely, our subsequent analyses in a subgroup with CSF 

biomarkers showed that the association between WMH and depressive symptoms is not 

influenced by Alzheimer pathology. To investigate whether factors other than WMH and 

Alzheimer pathology could explain these results, research in other cohorts is needed to 

provide more evidence. In addition, more complex multivariate models (e.g. Bayesian 

network analysis or multivariate lesion-symptom mapping) might be of value.  

Among the limitations of the study is that we used the GDS-15 as measure of depressive 

symptoms. Cognitive impairment in MCI and dementia may affect diagnostic accuracy of 

the GDS (42). However, the design of the GDS with questions structured in a yes/no 

format makes it easy to use, even for patients with cognitive impairment. The level and 

severity of depressive symptoms in this study, in particular in patients with dementia, was 

relatively low, but were consistent with previous studies in memory clinic populations 

(10,43). Yet, this may have reduced the effect sizes and sensitivity to detect associations, 

despite the large sample size. Second, a relatively high number of patients with SCD used 

antidepressant medication (20%) compared to patients with MCI (11%) or dementia (12%). 

The antidepressant medication may have decreased the severity of depressive symptoms 

and led to lower scores on the GDS and thus an underestimation of the association 

between WMH location and depressive symptoms. However, the use of antidepressant 

medication will be more common in those with higher scores on the GDS, but additional 

analyses with adjustment for antidepressant medication showed similar results. Finally, 

inclusion of our patients at tertiary referral centers, and the exclusion of patients with 

cortical infarcts could limit the generalizability of our findings. On the other hand, the 

TRACE-VCI cohort is a large memory clinic cohort of patients with a large spectrum of 

vascular brain injury and different levels of cognitive impairment not limited to specific 

clinical diagnoses such as vascular dementia or Alzheimer’s disease. In addition, the use 

of data from different MRI scanners could have influenced the quality of the WMH 
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segmentations and subsequent analyses. However, we have assessed performance of our 

segmentation method and the method we used showed no systematic errors across MRI 

scanners.  

Nevertheless, additional adjustment for field strength and vendor did not change our 

results. The use of different MRI scanners could also be seen as a strong point of our 

study as this highlights the robustness of our approach and increases the generalizability 

of our results. Moreover, the large lesion coverage, in particular in the fronto-parietal 

regions, allowed us to include a large number of white matter tracts leading to greater 

accuracy and statistical power. Second, we performed two independent hypothesis-free 

statistical analyses (VLSM and ROI-based linear regression models).  

The present study provides further insight into the relationship between WMH location and 

depressive symptoms by performing a large scaled lesion-symptom mapping study on 

depressive symptoms.  

In conclusion, we showed that the impact of WMH on depressive symptoms is modest, but 

appears to be dependent on location of WMH particularly in patients with SCD. Our results 

suggest different etiologies of depressive symptoms within a memory clinic population with 

vascular brain injury. Changes in white matter tracts might underlie the occurrence of 

depressive symptoms in memory clinic patients with vascular brain injury.  
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Figure 1. Flowing chart of patient selection 
NOTE: MRI: magnetic resonance imaging; GDS: Geriatric depression scale.  

Figure 2. Voxel-based lesion-symptom mapping: lesion prevalence map and results  
NOTE: WMH: white matter hyperintensities; FDR: false detection rate; CST: corticospinal tract.  
(A) Voxel-wise lesion prevalence of white matter hyperintensities (WMH) in the study population, projected on the 
Montreal Neurological Institute 152 T1 template. A minimum threshold of 14 subjects with damage in a given voxel was 
applied. Z-coordinates: -5, 5, 15, 25, 35.  
(B-D) Voxel-based lesion-symptom mapping results for the Geriatric Depression Scale score, shown in axial (B), sagittal 
(C) and coronal (D) planes. Significant voxels after correction for multiple comparisons, age, sex and normalized total 
WMH volume are shown in red (settings: Brunner Munzel test; FDR q<0.05). Significant voxels were located in the 
corticospinal tract (CST). Regions of interest were derived from the JHU DTI-based atlas with a probability threshold of 
10%. The JHU-derived CST is shown in blue; the voxels included in the VLSM analysis (i.e. damaged in ≥14 subjects) 
are shown in yellow. Coordinates: sagittal: X= -25; coronal: Y = -32; axial: Z = 33, 38.  
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Table 1. Demographics of the study population 

Demographics  
Study sample  

(n = 680) 

SCD  

(n = 168) 

MCI 

(n = 164) 

Dementia 

(n = 348) 
 Post hoc 

differences1 

 MEAN SD MEAN SD MEAN SD MEAN SD F p  

Age in years  67.1 8.2 62.9 7.5 68.2 8.5 68.6 7.7 31.27 <0.001 S<M=D 

Education2 4.9 1.3 5.1 1.4 5.2 1.2 4.7 1.3 9.47 <0.001 S=M>D 

MMSE 24.3 4.8 27.7 2.2 26.5 2.3 21.7 5 169.15 <0.001 S>M>D 

GDS 3.7 3 4.6 3.5 3.7 2.8 3.2 2.7 12.66 <0.001 S>M=D 

 N % N % N % N % χ2 
 

p  

Sex, female 320 57 83 49 72 44 165 47 1.045 0.593 n.s. 

Presence of depressive symptoms3 200  29 72  42 51  31 77  22 23.750 <0.001 S>M>D 

AD biomarkers4            

AD biomarkers available 446  66 112  67 100  61 234  67 2.054 0.358 n.s. 

AD biomarkers positive 242  54 26  23 52  32 164  70 67.315 <0.001 S<M<D 

History of depression5 86  12 34  20 16  9 36  10 11.673 <0.01 S>M=D 

Use of antidepressant medication5 97  14 35  20 19  11 43  12 7.926 <0.05 S>M=D 

Vascular risk factors5            

Hypertension 577  84 133  79 141  86 303  87 5.717 0.057 n.s. 

Hypercholesterolemia 287  42 66  39 81  49 140  40 4.615 0.100 S<M>D 

Diabetes mellitus 123  18 23  13 39  23 61  17 5.853 0.054 S<M>D 

Obesity (BMI≥30) 144  21 43  25 34  20 67  19 3.687 0.450 n.s. 

Currently smoking 132  19 36  21 32  19 64  18 1.205 0.877 n.s. 

Imaging characteristics             

Patients with at least 1 lacune 124 18 22  13 44  26 58  16 11.675 <0.01 S<M>D 

Patients with at least 1 microbleed6 296 44 62  37 76  46 158 45 4.388 0.111 n.s. 

 MEDIAN IQR MEDIAN IQR MEDIAN IQR MEDIAN IQR F p  

Total WMH volume in ml7 9.1  18.0 5.0  10.7 11.6  18.7 11.5  22.8 15.418 <0.001 S<M=D 

NOTE: SCD: Subjective cognitive decline; MCI: mild cognitive impairment; MMSE: Mini-mental state examination; GDS: Geriatric depression scale; AD: Alzheimer’s disease; BMI: body mass index; 
WMH: white matter hyperintensities; IQR: interquartile range; SD: standard deviation. One-way ANOVA or χ2 were performed, respectively. Data are presented as mean±SD or number (percentage).  
1S=SCD; M=MCI; D=dementia. 2Level of education was classified according to the system of Verhage ranging from 1 to 7 (low to highly educated). 3Presence of depressive symptoms indicates a score of 
≥5 on the GDS. 4AD biomarkers are available as cerebrospinal fluid total tau/amyloid β1-42 (abnormal when >0.52 (21)). 5History of depression, antidepressant use and presence of vascular risk factors 
(i.e. hypertension, hypercholesterolemia and diabetes mellitus) was determined based on self-reported medical history and medication use or newly diagnosed (for hypertension and diabetes mellitus). 
6Data missing in five patients. 7Standardized WMH volumes were calculated from lesion maps after transformation to the MNI-152 standard space.  
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Table 2. Voxel-based lesion-symptom mapping results: significant voxels per anatomical 
region of interest, after correction for age, sex, total WMH volume and multiple testing. 
 

Anatomical regions  

(JHU atlas)  

Region size  

in voxels (n) 

Tested  

voxels (n) 

Significant  

voxels (n) 

Forceps major 22285 9537 0 

Forceps minor 35840 5063 0 

Anterior thalamic radiation 43203 13661 0 

Corticospinal tract 27767 5975 15 

Cingulum 13829 1309 0 

Parahippocampal white matter 5234 0  0 

Inferior fronto-occipital fasciculus 49378 24187 0 

Inferior longitudinal fasciculus 37450 9955 0 

Superior longitudinal fasciculus (SLF) 59703 29336 1 

Temporal part of SLF 22910 12710 1 

Uncinate fasciculus 15662 4371 0 

NOTE: JHU: John Hopkins University (JHU) diffusion tensor imaging (DTI)-based white matter atlas; SLF: Superior longitudinal 
fasciculus. Tested and significant voxels for each anatomical region, after correction for age, sex, total WMH volume and multiple testing 
by applying a false discovery rate (FDR). 
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Table 3. Region of interest-based analyses  

Anatomical regions (JHU atlas)  All 

(n = 680) 

SCD 

(n = 168) 

MCI 

(n = 164) 

Dementia  

(n = 348)  

  stß p stß p stß p stß p 

Total WMH volume Model 1 -0.03 0.47       

Forceps major Model 1 -0.06 0.16       

Forceps minor Model 1¥ 0.05 0.20 0.16 0.04 0.04 0.63 0.03 0.66 

 Model 2¥ -  0.26 0.02 -  -  

Anterior thalamic radiation Model 1¥ -0.01 0.85 0.05 0.55 0.07 0.45 -0.07 0.24 

Corticospinal tract Model 1 0.03 0.46       

Cingulum Model 1 -0.02 0.70       

Inferior fronto-occipital fasciculus Model 1¥ -0.05 0.23 0.05 0.53 -0.02 0.78 -0.10 0.06 

Inferior longitudinal fasciculus  Model 1¥ -0.04 0.30 0.11 0.17 -0.05 0.58 -0.10 0.07 

Superior longitudinal fasciculus Model 1 -0.03 0.42       

SLF, temporal part  Model 1 -0.03 0.46       

Uncinate fasciculus  Model 1 -0.01 0.78       

NOTE: SCD: subjective cognitive decline; MCI: mild cognitive impairment; JHU: John Hopkins University; SLF: Superior longitudinal 
fasciculus.  
¥: Significant interaction term; subsequently stratification for syndrome diagnosis. 
Results are presented as standardized beta (stß). This assumption-free region of interest-based analysis served to identify strategic 
white matter tracts in which WMH volume is correlated with depressive symptoms, independent of total WMH burden. The GDS, as 
measure of depressive symptoms, was standardized into a z-score. We excluded the tract parahippocampal white matter (JHU atlas) 
from our analyses due to the limited WMH in this tract. Age, sex, center and syndrome diagnosis were first entered into a linear 
regression model (Model 1). If regional volumes showed a statistically significant (p<0.05) association in model 1, normalized total WMH 
volume was added to the model (Model 2). To check if associations between depressive symptoms and the anatomical region differed 
according to diagnostic group, interaction terms (dummy diagnosis*anatomical region) were included in the model. When we found an 
interaction between syndrome diagnosis and anatomical region (p<0.10), the results were subsequently stratified for syndrome 
diagnosis and the stß is displayed for each diagnostic group separately. When no significant interaction was found, the interaction term 
was removed from the model and the overall stß is reported.  

  

 
  

 


