
Genetic Improvement of Data gives Binary Logarithm from sqrt
W. B. Langdon

Department of Computer Science, UCL
Justyna Petke

Department of Computer Science, UCL

ABSTRACT
Automated search in the form of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), plus manual code changes, trans-
forms 512 Newton-Raphson floating point start numbers from an
open source GNU C library, glibc, table driven square root function
to create a new bespoke custom mathematical implementation of
double precision binary logarithm log2 for C in seconds.

CCS CONCEPTS
• Software engineering→ Search-based software engineer;

KEYWORDS
genetic programming, GI, search based software engineering, SBSE,
software maintenance of empirical constants, data transplantation
ACM Reference Format:
W. B. Langdon and Justyna Petke. 2019. Genetic Improvement of Data
gives Binary Logarithm from sqrt. In Genetic and Evolutionary Computation
Conference Companion (GECCO ’19 Companion), July 13–17, 2019, Prague,
Czech Republic. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3319619.3321954

1 NEW FUNCTIONALITY VIA DATA UPDATE
Despite all the successes of genetic improvement GI [7], [3], [6],
even more than forty years after the advent of software engineering,
we are still faced with an industry which is reliant on human labour.
Indeed there has been relativity little effort in automating non-
coding aspects of software development, such as updating data
values. We wish to find a radically new approach to maintaining
the numeric and data components of software. Such automation we
believe will yield a dramatic increase in human productivity, giving
rise to both cost savings and also significantly reducing delays in
introducing new system components.

We provide how this can be done for converting existing mathe-
matical functions into new ones, and thus, for example, extending
existing mathematical libraries.

Previously we applied Grow and Graft Genetic Programming [4]
to one of the existing implementations of the double precision
square root functionwithin the GNUC library and so converted sqrt
into a double precision cube root function [4] and the normalising
function 1√

x
. We apply search based techniques directly to data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321954

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
M

A
-E

S
 o

u
tp

u
t

CMA-ES seeded from sqrt_t

x
Evolved value

Theory

Figure 1: modification from sqrt table values to give corre-
sponding log2 table value (vertical axis). 512 CMA-ES runs.

values embedded inside the source code, with a view to create new
functionality rather than to improve existing functionality.

In [4] we claimed that the framework could support other double
precision mathematical functions provided there was a suitable
objective function. In the case of sqrt and cbrt the inverse function
(i.e. square and cube) readily provide such an objective. Here we
show log2 can be easily evolved from sqrt using exp2 as the objective
function. It should be pointed out that log is a very well known
function and there are existing computationally efficient ways to
calculate it. Here we use it only as an example.

We have strayed a little from the original motivation with RNA-
fold [5]. Instead of adapting existing programs to new circum-
stances, new hardware, new users or new knowledge, by evolving
empirical constants within them, we show that there is an interest-
ing class of programs that can be created from existing programs
primarily by automatically changing data embedded within them
using search based optimisation techniques. We use evolutionary
computation in the form of CMA-ES. Full details can be found in
technical report RN/18/05 [2].

2 EVOLVING LOG2 DATA TABLE VIA CMA-ES
We use an existing table driven implementation of the square root
function sqrt and mutate the constant values in sqrt’s table to give a
table driven implementation of log2. The open source C implemen-
tation of sqrt is provided by the free software foundation (GNU).
Release glibc-2.27 of the GNU C library was downloaded from
https://www.gnu.org/s/libc/. It contains multiple implementations
of the square root function. One (../powerpc/fpu), which uses table
lookup, was selected for use as a model for a table-based version of
the logarithm to base 2 function (log2). See RN/18/05 [2] for details
of manual code changes.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
https://doi.org/10.1145/3319619.3321954
https://doi.org/10.1145/3319619.3321954
https://doi.org/10.1145/3319619.3321954
https://www.gnu.org/s/libc/

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic W. B. Langdon and Justyna Petke

The __t_sqrt table contains 512 pairs of floats. In sqrt, each pair
is the start point and starting derivative for the fixed iteration (3)
Newton-Raphson algorithm. Notice only float precision is needed
for the start points. Newton-Raphson will convergence rapidly to
double precision accuracy. By exploiting the IEEE754 floating point
representation, the sqrt code converts all input x values into one
of 512 possible starting bins. Each corresponding to an entry in
__t_sqrt. For the new log2 code we do not need start values for the
derivative, so the new table __t_log2 becomes 512 floats, which we
are going to evolve using CMA-ES [1].

The top 256 __t_sqrt pairs correspond to numbers in the range 1
to 2. They become CMA-ES’s initial (seed) value when it evolved
the new table __t_log2. (CMA-ES is run 512 times, see Figure 1).

The Covariance Matrix Adaptation Evolution Strategy algorithm
(CMA-ES [1]) is the state-of-the-art evolutionary strategy tool for
solving continuous domain problems. It was downloaded from
https://github.com/cma-es/c-cmaes/archive/master.zip It was set
up to fill the table of floats one at a time. Each value is initially set
to either the corresponding value in __t_sqrt or the mean of two
adjacent pairs. The initial mutation step size used by CMA-ES was
set to 3.0 times the standard deviation calculated from the first of
each of the 512 pairs of numbers in __t_sqrt.

The CMA-ES defaults (cmaes_initials.par) were used.

2.1 Fitness function
Each time CMA-ES proposes a value, it is converted into a float
and loaded into __t_log2 at the location that CMA-ES is currently
trying to optimise. The fitness function uses three fixed test double
values in the range 1.0 to 2.0. These are: the lowest value for the
__t_log2 entry, the mid point and the top most value. Our log2
function is called (using the updated __t_log2) for each and a sub-
fitness value calculated with each of the three returned doubles.
The sub-fitnesses are combined by adding them.

Each sub-fitness takes the output of our log2, and takes the
absolute difference between this and the GNU log2 library function.
If they are the same, the sub-fitness is 0, otherwise it is positive.
Since when our log2 is working well, the differences are very small,
they are re-scaled for CMA-ES. If the absolute difference is less than
one, its (natural) log is taken, otherwise the absolute value is used.
In both cases (i.e. as long as the difference is not zero), to prevent
the sub-fitness being negative, a constant, 40.0, is added.

In all 512 runs CMA-ES found a value for which all three test
cases passed. (Total run time 6 seconds).

2.2 Testing the evolved log2 function
The results makes plain, that for a function as smooth as logarithm,
no great care is needed and more-or-less any reasonable value
would do. Nonetheless we will continue to show that our evolved
table driven version of the binary logarithm works as well as the
GNU C library’s log2. The glibc-2.27 powerPC IEEE754 table-based
double sqrt function claims to produce answers within one bit of the
correct solution. On 1 536 tests of large integers (≈ 1016) designed to
test each of the 512 bins 3 times (min, max and a randomly chosen
point) our GI log2 always camewithin DBL_EPSILON (i.e. 2.2 10−16)
of the correct answer.

As well as the large positive integer tests mentioned in the pre-
vious paragraph, our log2 was tested with 5120 random numbers
uniformly distributed between 1 and 2 (the largest deviation was in
the least significant part of IEEE 754 double precision corresponding
to 4.44 10−16). It was also tested on 5120 random scientific nota-
tion numbers and 5120 random 64 bit patterns. Half the random
scientific notation numbers were negative and half positive. Half
were smaller than one and half larger. The exponent was chosen
uniformly at random from the range 0 to |308|. In one case a ran-
dom 64 bit pattern corresponded to NAN (Not-A-Number) and our
log2 correctly returned NAN. In all other cases our log2 returned
a double, which when fed into the GNU C library exp2 function
gave its input exactly or gave a number within one bit of the closest
value which could be inverted by exp2 to yield the original value.

3 CONCLUSIONS
Starting with a double precision implementation of sqrt from the
GNU C library, we have used artificial evolution to find data values
which give an accurate double precision implementation of log2.
Modifications to the sqrt source code are needed and were made
by hand, see RN/18/05 [2, sect. 2.1].

We have shown it is possible to use glibc’s Newton-Raphson
approach with the cube root [4], the reciprocal square root x−1/2
and now the binary logarithm, log2. However Newton-Raphson
still requires an objective function. We have chosen to use the GNU
C library exp2.

In very limited computing environments (e.g. tiny, ≈1millimetre,
processors such as smart dust, mote computing) it may be impossi-
ble to host GLIBC and there may be very limited electrical power
for computation. There could still be realtime requirements, which
require a limited maths library. This limitation could take two forms.
1) restrictions on inputs. 2) Only a few combinations of functions
are needed. This approach might be able to create an efficient im-
plementation of such novel composite functions of no more than
the required accuracy and still fit in a small read only memory (e.g.
4K bytes).

Source code and the evolved implementation are available via
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz

REFERENCES
[1] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized Self-

Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (Summer 2001),
159–195. https://doi.org/doi:10.1162/106365601750190398

[2] W. B. Langdon. 2018. Evolving Square Root into Binary Logarithm. Technical
Report RN/18/05. University College, London, London, UK. http://www.cs.ucl.ac.
uk/fileadmin/UCL-CS/research/Research_Notes/RN_18_05.pdf

[3] William B. Langdon and Mark Harman. 2015. Optimising Existing Software with
Genetic Programming. IEEE Transactions on Evolutionary Computation 19, 1 (Feb.
2015), 118–135. https://doi.org/doi:10.1109/TEVC.2013.2281544

[4] William B. Langdon and Justyna Petke. 2018. Evolving Better Software Parameters.
In SSBSE 2018 Hot off the Press Track (LNCS), Thelma Elita Colanzi and Phil McMinn
(Eds.), Vol. 11036. Springer, Montpellier, France, 363–369. https://doi.org/doi:
10.1007/978-3-319-99241-9_22

[5] William B. Langdon, Justyna Petke, and Ronny Lorenz. 2018. Evolving better
RNAfold structure prediction. In EuroGP 2018 (LNCS), Mauro Castelli et al. (Eds.),
Springer Verlag, 220–236. https://doi.org/doi:10.1007/978-3-319-77553-1_14

[6] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
a Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(June 2018), 415–432. https://doi.org/doi:10.1109/TEVC.2017.2693219

[7] David Robert White, Andrea Arcuri, and John A. Clark. 2011. Evolutionary
Improvement of Programs. IEEE TEVC 15, 4 (2011), 515–538.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#C
https://github.com/cma-es/c-cmaes/archive/master.zip
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
https://doi.org/doi:10.1162/106365601750190398
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_18_05.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_18_05.pdf
https://doi.org/doi:10.1109/TEVC.2013.2281544
https://doi.org/doi:10.1007/978-3-319-99241-9_22
https://doi.org/doi:10.1007/978-3-319-99241-9_22
https://doi.org/doi:10.1007/978-3-319-77553-1_14
https://doi.org/doi:10.1109/TEVC.2017.2693219

	Abstract
	1 New Functionality via Data Update
	2 Evolving log2 data table via CMA-ES
	2.1 Fitness function
	2.2 Testing the evolved log2 function

	3 Conclusions
	References

