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Abstract

Purpose—To investigate how intracellular metabolites diffusion measured in vivo up to very 

high q/b in the mouse brain can be explained in terms of simple geometries.

Methods—10 mice were scanned using our new STE-LASER sequence, at 11.7 T, up to qmax=1 

μm-1 at diffusion time td=63.2 ms, corresponding to bmax=60 ms/µm2.

We model cell fibers as randomly oriented cylinders, with radius a and intracellular diffusivity 

Dintra
cyl, and fit experimental data as a function of q to estimate Dintra

cyl and a.

Results—Randomly oriented cylinders account well for measured attenuation, giving fiber radii 

and Dintra
cyl in the expected ranges (0.5-1.5 µm and 0.30-0.45 µm2/ms, respectively). The only 

exception is NAA (extracted a˜0).

We show that is compatible with a small fraction of the NAA pool being confined in highly 

restricted compartments (with short T2).

Conclusion—The non-monoexponential signal attenuation of intracellular metabolites in the 

mouse brain can be described by diffusion in long and thin cylinders, yielding realistic Dintra and 

fiber diameters. However, this simple model may require small “corrections” for NAA, under the 

form of a small fraction of the NAA signal originating from a highly restricted compartment.
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Introduction

Diffusion-weighted NMR spectroscopy (DW-MRS) is a promising tool which offers the 

unique ability to noninvasively quantify the translational displacement of endogenous 

molecules, such as brain metabolites in vivo (1,2). In contrast to water molecules, which are 

ubiquitous in biological tissues, most brain metabolites are confined into the intracellular 

space and hardly cross biological membranes. Their diffusion properties are thus expected to 

depend mostly on intracellular parameters such as cytosol viscosity, molecular crowding, 

size and shape of the cellular compartment. In addition, some metabolites have a preferential 

cellular compartmentation, which makes these molecules useful cell-specific endogenous 

probes of the intracellular space: N-acetyl-aspartate and glutamate reside essentially in 

neurons, whereas myo-inositol and choline are glial markers, thought to be preferentially 

compartmentalized in astrocytes (3).

Changes in endogenous metabolite apparent diffusivity (ADC) have already been detected in 

pathologies. Alterations in the diffusion of metabolites are observed after global ischemia 

(4–9), in multiple sclerosis (10), in brain tumor (11–13), in lupus erythematosus (14). 

Although alterations of intracellular diffusion during brain pathologies are often thought to 

be associated with cell structural damage; the influence of various parameters (viscosity, 

molecular crowding, cell size and geometry…) on DW-MRS measurement is still unclear, 

and the interpretation of experimental data remains complex.

It has been recently shown that the ADC values of these intracellular metabolites in the 

primate brain and human gray (GM) and white matter (WM) are essentially constant as the 

diffusion time td is increased from a few tens of ms to ~1 sec (15,16). This led us to 

conclude that the vastest fraction of each metabolite pool is not restricted in small 

subcellular domains (cell bodies, organelles…) but is instead “freely” diffusing along cell 

fibers. Going one step further, performing metabolites ADC measurements for the same 

metabolites at ultra-long td (~2 sec.) in vivo in mouse and macaque brains and modeling 

brain cells as long and thin fibers with some finite length and number of successive 

embranchments, we recently extracted brain cell morphology in very good agreement with 

histological data (17), thus consolidating the metabolites cell-specific compartmentalization 

and the view that metabolites are diffusing in fibers.

Above measurements of ADC as a function of td were all performed at relatively low b value 

(~3 ms/µm2, i.e. weak gradient strength), where diffusion attenuation can be considered as 

monoexponential. However, it has been shown in other works that, for the same metabolites, 

diffusion at very high b (i.e. strong gradient strength) exhibits a non-monoexponential 

behavior in the brain (18–20).

In this work, we investigate how diffusion of these metabolites measured in vivo in the 

healthy mouse brain up to very high q (1 µm-1) at relatively short diffusion time (63.2 ms), 

corresponding to very high b = 60 ms/µm2, can be explained by the (admittedly) simplistic 

view of diffusion in cylinders. We model cell fibers as isotropically oriented cylinders of 

infinite length and finite diameter, and show this can account very well for measured non-

monoexponential attenuation. The only exception is NAA, for which the model extracts fiber 
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diameter close to 0. We show that is theoretically and experimentally compatible with a 

small fraction of the NAA pool being confined in highly restricted compartments (with short 

T2), e.g. a mitochondrial or myelin pool.

Methods

Data analyzed here are those recently published in (20). Briefly, acquisitions were 

performed in a large voxel of the mouse brain containing mostly gray matter (~80%), using 

our new STE-LASER sequence, based on a diffusion-weighted stimulated echo block 

followed by a LASER localization block, yielding no cross terms between diffusion and 

selection gradients. 10 mice were scanned at 11.7 T Bruker scanner (gmax=752 mT/m) using 

a cryoprobe, at TE=33.4 ms and td=63.2 ms, up to qmax=1 μm-1 (bmax=60 ms/µm2) (Fig.1a). 

Individual scan phasing was performed and experimental macromolecule spectrum was 

included in LCModel’s basis-set. Signal attenuation could be reliably quantified (Cramér-

Rao lower bound <5% at all b) for NAA, total creatine, choline compounds, myo-inositol, 

glutamate, and taurine (for further details on the acquisition methods, see (20)).

Unlike biological water, metabolites are mainly intracellular, and membranes are nearly 

impermeable to metabolites. Cellular processes can be described in first approximation as a 

collection of long cylinders (Fig.1b) with radius a, and intracellular diffusivity Dintra
cyl. We 

assume cylinders randomly oriented to calculate signal attenuation in the narrow pulse 

approximation. The signal represents the sum of signals from a large number of differently 

oriented fibers. For any given fiber, the axis makes a variable angle θ with the diffusion 

gradient, leading to two diffusion regimes: i) restricted diffusion in the plan perpendicular to 

their axis resulting in an effective gradient strength g sin(θ) and ii) free diffusion in the 

direction parallel to their axis resulting in an effective gradient strength g cos(θ).

When gradient is separated by an angle θ relative to the axis of the cylinder of radius a, the 

echo attenuation is given by the following expressions (21,22):

[1]

with

and g⊥ = gsin(θ); g|| = gcos(θ).

In the above equations, Jn is the Bessel function of integer order n and αnm is the mth 

positive root of the Bessel equation J'n = 0. δn0 is the Kronecker delta symbol and Dintra
cyl is 

the free diffusivity, i.e. the diffusivity along the axis of the cylinder (often even called D//).
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This theoretical attenuation is used to fit experimental data as a function of q = γgδ to 

estimate Dintra
cyl and a by using a nonlinear least-square regression, based on the trust-

region-reflective algorithm implemented in the lsqcurvefit function of MATLAB (The 

MathWorks Inc.). Error on estimated parameters was evaluated using a MonteCarlo (MC) 

approach (N = 2500 draws). For each draw, random noise (whose standard deviation was 

estimated from the difference between the best fit and the experimental data) was generated 

and added to the best fit to generate a new dataset, which could be analyzed using the model.

Results

Extracted model parameters using randomly oriented cylinders

Signal attenuation as a function of q for each metabolite is reported in Fig.2, together with 

best fits, while extracted parameters and corresponding MC estimated errors are reported in 

Table 1. Results show that randomly oriented cylinders account well for measured 

attenuation, giving fiber radii consistent with axons, dendrites and astrocytic processes (a 
ranging from approximately 0.5 to 1.5 µm), and Dintra

cyl in the expected range for brain 

metabolites (0.30-0.45 µm2/ms). Interestingly, the two “neuronal” metabolites, NAA and 

glutamate, have the lowest a (0.024 µm and 0.76 µm, respectively), suggesting that neuronal 

processes are thinner than glial processes. However, this statement should be considered 

with caution at that stage, because radius extracted for NAA appears very close to zero, 

which raises some questions about the validity of the modeling for this metabolite. This 

point will be investigated in deeper details in the Discussion section, together with further 

discussion about the assumption of isotropic fiber orientation in the investigated volume.

Sensitivity to different fiber diameters and intracellular diffusivity

In order to show the sensitivity of DW-MRS signal to different fiber radii, signal 

attenuations as a function of q for two representative metabolites (glutamate, supposedly 

mainly intra-neuronal; and myo-Inositol, supposedly mainly intra-astrocytic) are reported in 

Fig.3, together with best fits (black curves) and theoretical predictions (from Eq.[1]) for 

molecular diffusion in randomly oriented cylinders with Dintra
cyl set to the values reported in 

Table 1, but different a, varying from 0.2 to 2.4 µm (blue curves, left column); and with a set 

to the values reported in Table 1, but different Dintra
cyl, varying from 0.1 to 1.2 µm2/ms (blue 

curves, right column). According to the theoretical predictions reported in Fig. 3, an absolute 

percentage difference in signal attenuation greater than 30% is expected for radius changing 

from 0.2 to 2.4 μm at high q values (Fig. 3 left column, q>0.5 μm-1) while the impact 

remains small at low q; in contrast, for diffusivity changing from 0.1 to 1.2 μm2/ms the same 

absolute percentage difference is also expected at lower q values (Fig. 3 right column, q>0.1 

μm-1).

This demonstrates that DW-MRS signal attenuation changes a lot for fiber radii in the 

reasonable range 0.2-2.4 µm, confirming the high sensitivity of metabolite signal attenuation 

to fiber size under the current experimental conditions (i.e. considering the diffusion time 

and q values used). This is because variations of diffusivity values have a strong impact on 

signal attenuation at all q/b values (i.e. they induce large variations of S/S0), while variations 

of radius values obviously have a much stronger impact on signal attenuation at high 
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weightings, when the remaining signal mostly reflects the restricted diffusion in the plan 

perpendicular to fiber direction, which strongly depends on the diameter. In other words, 

while the radius has almost no effect on the initial points of the signal attenuation (e.g. for 

q<0.3-0.4 µm-1, see Fig. 3), Dintra
cyl has a strong effect on these initial points, so these initial 

points can be modeled to provide a reliable estimate of Dintra
cyl without confounding effect 

from the radius. Then, at sufficiently high q, varying Dintra
cyl only results in an offset of the 

signal attenuation (see on Fig. 3 how all curves are parallel at high q when Dintra
cyl is 

varied), but no change in the slope of the curve. On the contrary, the diameter has a stronger 

effect on the curvature of the signal attenuation at high q, thus carrying the information 

about the radius without confounding effect from Dintra
cyl. In the end, although model 

sensitivity to both parameters is very high, it is possible to disentangle the effect of both 

parameters depending on the range of q considered, and hence fit both of them reliably.

It is important to underline that here the diffusion of metabolites is investigated. In contrast 

to water, metabolites diffusion coefficient is much lower (roughly six times lower in 

physiological conditions), allowing to experimentally probe the finer structures of cells, like 

branch diameter, which are instead less accessible to water diffusion based NMR techniques 

at experimentally achievable values of td and q (or b): td≥20 ms and q≤0.2 µm-1 (or b≤10 

ms/µm2). In fact, assuming a diffusivity of 2.0 µm2/ms for water and 0.4 µm2/ms for 

metabolites, and td=60 ms and a maximum q of 0.2 µm-1 (i.e. lower than used in the present 

study), the absolute percentage difference between the logarithm of the expected diffusion 

weighted NMR signal from randomly oriented cylinders with a=0.2 µm and a=2.4 µm, 

computed by using Eq. [1], is ~14% for water and ~26% for metabolites. This suggests that 

thanks to their slower diffusivity, metabolites' diffusion weighted signal is twice more 

sensitive to branch diameter than water's. Moreover, for metabolites it is possible to increase 

even more this sensitivity, pushing the acquisition up to much higher q and b values, while 

keeping the signal-to-noise ratio relatively high (as shown by spectra in Fig.1a).

Discussion

About the isotropic fiber orientation in the investigated volume

The basic assumption leading to Eq.[1], used to model metabolites diffusion data, is that 

fibers orientation in the considered voxel is isotropic. This may be true, at least in first 

approximation, for the metabolites predominantly compartmentalized in GM and astrocytes, 

but may not be true for those metabolites mainly residing in WM axons. Indeed, the 

orientation of WM fiber bundles within the investigated voxel is not perfectly isotropic. 

However, a deeper analysis, including information from DTI metrics, shows that this can be 

reasonably neglected considering the actual voxel tissue composition: 20% WM and 80% 

GM (see Supporting Information and Supporting Fig. S1). Although the WM fiber 

distribution within the voxel is not isotropic, it contributes to the total signal attenuation for 

a small fraction (i.e. 20%), which leads to estimated a and Dintra
cyl values only ~4% and 

~1% lower than the ones obtained when including the actual angular distribution of fibers in 

WM (see Supporting Information, Supporting Fig. S2 and Supporting Table S1). We thus 

found that, although simplistic, the model in Eq.[1] is a very good approximation for the 

large spectroscopic voxel considered in this study. In fact, the bias on parameters estimation 
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is lower than the uncertainty on their estimation, according to the Monte Carlo study of fit 

stability to experimental noise (see Table 1 and 2).

Possible presence of a slowly diffusing NAA pool

Between all the metabolites investigated, NAA represents an exceptional case, because the 

model extracts a~0. Although a=0 has been used as an assumption to fit NAA diffusion in 

the past (23–26), in papers where only NAA was reported and analyzed, we think this is not 

satisfactory, considering that this does not hold for all the other metabolites (including 

glutamate which is supposed to be, like NAA, predominantly neuronal). Explanations based 

on finer structural features (e.g. spines, leaflets or varicosities) affecting diffusion of the 

cytosolic pool also seem unlikely, because they should apply to other metabolites diffusing 

in the same cells. We should instead primarily seek for a metabolite-specific explanation.

NAA is synthesized in neuronal mitochondria, so it may be significantly present in 

mitochondria (which represent 5-10% of the cytoplasmic volume), resulting in a second 

NAA pool, with limited exchange with cytosolic NAA. As mitochondrial matrix is viscous 

and densely filled with membranes, it is expected that T2 is very short. Hence, mitochondrial 

NAA should become invisible at long TE. Consistently, we have measured that, at longer TE 

(73.4 ms), signal attenuation was slightly but significantly larger for NAA at high q (Fig.4b) 

than at shorter TE (33.4 ms), while TE had not effect on signal attenuation for the other 

metabolites (20). When analyzing NAA signal acquired at longer TE with the randomly 

oriented cylinders model (Fig.4b and Table 2), the model returns a=0.62±0.12 µm (and 

Dintra
cyl=0.335±0.021 µm2/ms), which is now realistic and very close to the radius extracted 

for glutamate, strongly suggesting that a highly restricted NAA pool has become invisible. 

Going one step further, these a and Dintra
cyl values can be injected in a modified model, 

where a log-normal distribution of spherical compartments (accounting for organelles/

mitochondria size distribution in healthy cells (27,28) ) is added to cylinders whose 

properties were determined at long TE, to fit data at short TE (Fig. 4a-b).

[2]

where Esph
r is the echo attenuation for diffusion within a sphere of radius r, in the narrow 

pulse approximation (21,22):

with
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where jn(x) is the spherical Bessel function of the first kind and αnm is the mth positive root 

of the Bessel equation j'n = 0.

New free parameters are the diffusivity inside spheres Dintra
sph, the volume fraction of these 

spheres vsph, and the mean radius μ and s.d. σ of spheres. Best fit of NAA attenuation at 

short TE yields (Table 2): vsph=2.0±1.0 %, Dintra
sph=0.168±0.081 µm2/ms, μ=0.019±0.010 

µm, σ=0.028±0.016 µm. Values of vsph and Dintra
sph are consistent with the known 

mitochondrial volume fraction and the higher viscosity in mitochondria. Extracted radii are 

much smaller than typical mitochondria size, but very consistent with the typical distance 

between cristae, which must cause most of the restriction inside mitochondria (29).

Arguably the modified model adds some complexity and instability to the model, and 

requires additional data acquired at longer TE to “delete” the potential short T2 pool. 

Considering the very small size of the compartments restricting NAA diffusion, estimated by 

using the data at longer and shorter TE, it is reasonable to simplify Eq.[2], considering the 

compartments to be very small and the corresponding signal very close to 1 (basically a pool 

of not-diffusing NAA molecules), thus obtaining:

[3]

where v is now the fraction of not-diffusing NAA. Fitting Eq. [3] to NAA data acquired only 

at TE=33.4 ms gives: Dintra
cyl=0.374±0.023 µm2/ms; a=0.93±0.22 µm and v=8±3 %, which 

are coherent with the previous results obtained by the modified randomly oriented cylinders 

model (Table 2) and with the expected fraction of NAA molecules highly restricted in small 

compartments (e.g. mitochondria).

Note that here we have based our argumentation on a mitochondrial pool, however the 

argumentation remains valid for any highly restricted pool, such as a potential NAA pool 

within myelin layers.

Effect of a slowly diffusing NAA pool on long td data

Diffusivity values reported in Table 1 are in very good agreement with those recently 

extracted from ADC measurements performed at very long td (and low b) in mouse brain 

(Table 1 in (17)). However, the only exception is again NAA, for which the estimated Dintra 

here is significantly higher than that reported in (17). This difference can be well explained 

by considering the effect of a slowly diffusing, highly restricted NAA pool on ADC time 

dependence at long td. Fig. 5 shows the ADC time dependence simulated from a synthetic 

tissue of 2500 cell-graphs generated according to the new modeling paradigm and the 

morphometric statistics reported in (17) for NAA, adding a variable small fraction v of not-

diffusing NAA. When fitting these long td ADCs using the modeling approach described in 

(17), the effect of a small fraction of slowly diffusing NAA pool is to decrease the value of 

the estimated Dintra, while not affecting the evaluation of the morphometric statistics 

describing the NAA compartment morphology, demonstrating the robustness of the 

approach to extract morphometric statistics despite the potential presence of a small 

immobile metabolite fraction. We found that the true Dintra value is underestimated 
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according to the linear relation: Dintra* = Dintra - 0.64 v, where Dintra* is the estimated Dintra 

from ADC time dependence at long td. Using this phenomenological relation to consider the 

effect of slowly diffusing NAA pool, and the estimated Dintra* value reported in (17): 0.306 

µm2/ms, we get Dintra in the range 0.338-0.370 µm2/ms, for v in the expected range 5-10%. 

These values are now in good agreement with the estimated diffusivities using the modified 

randomly oriented cylinders model (Table 2) and Eq.[3].

Conclusions

The non-monoexponential signal attenuation of intracellular metabolites in the mouse brain 

can be essentially described by diffusion in long and thin cylinders, yielding realistic Dintra 

and fiber diameters, thus consolidating the view that metabolites diffusion is characteristic of 

diffusion in long and thin fibers, as previously proposed based on ADC measurements 

performed at long td (and low b) (15–17). However, this simple model seems to require some 

small “corrections” for NAA at very high b, under the form of a small fraction of the NAA 

signal originating from a highly restricted (with short T2) compartment, e.g. a mitochondrial 

or myelin pool.

The extent of axonal and dendrites damage has been suggested to be a key predictor of 

outcome in human central nervous system diseases (30,31). It has also been reported that 

neuronal damage is dependent on axon and dendrites diameter in various neural disorders. 

For example, for acute and chronic lesions in multiple sclerosis, direct axon counting in 

post-mortem tissue has suggested that smaller axons might have a greater susceptibility to 

damage (32). In addition, traumatic brain injury causes significant axonal swelling, and the 

extent of swelling has been reported to be correlated with survival time (33). Moreover, a 

significant decrease in dendrites orientation dispersion and density was observed in 

substantia nigra pars compacta (SNc) and basal ganglia in Parkinson’s disease (34). This 

decrease is thought to reflect a decrease in the SNc neurite density and reduction in dendritic 

length and size. We found that these studies all indicate that axon and dendrites diameter is 

an important metric to evaluate or to predict the progress of different neurological disorders, 

and hence more precise measurements of such diameters have significant potential in many 

clinical applications. In fact, although reaching sufficiently high b values on clinical scanner 

is still very difficult, new techniques are already available to reach b values up to 20 ms/µm2, 

with good SNR for some metabolites (tCho, tCr and NAA) (35), opening the way for 

promising applications of the modeling proposed here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Diffusion-weighted spectra obtained with the STE-LASER sequence described in 

Methods, at different b-values, during a single experiments. The selected voxel in the mouse 

brain is shown as green box. (b) Schematic description of the randomly oriented cylinders 

model used to fit experimental data.
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Figure 2. 
DW signal attenuation (points) and corresponding fitted curves (lines) as a function of q for 

all the investigated metabolites. Error bars stand for s.d. of the mean.
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Figure 3. 
DW signal attenuation (points) and corresponding fitted curves (black lines) as a function of 

q for two representative metabolites. Error bars stand for s.d. of the mean and theoretical 

predictions (from Eq.[1]) for molecular diffusion in random cylinders with Dintra
cyl set to the 

values in Table 1, but different a, varying from 0.2 to 2.4 µm, are reported as blue curves on 

the left column. Theoretical predictions (from Eq.[1]) for molecular diffusion in random 

cylinders with a set to the values in Table 1, but different Dintra
cyl, varying from 0.1 to 1.2 

µm2/ms, are instead reported as blue curves on the right column.
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Figure 4. 
(a) Schematic description of the modified randomly oriented cylinders model. (b) q 

dependence of the NAA DW signal attenuation (points) and corresponding fitted curves 

(randomly oriented cylinders model, black line; modified randomly oriented cylinders 

model, red line) at short (red) and long (black) TE. Error bars stand for s.d. of the mean.
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Figure 5. 
Data points represent the simulated ADC time dependence for a synthetic tissue comprised 

of 2500 cell-graphs mirroring the morphometric statistics for NAA, as extracted in Table1 in 

(17): Nbranch = 4; Lsegment = 60 µm; SDNbranch = 2; SDLsegment= 5 µm, at different v values. 

Curves are the best fits using the simulation-fitting pipeline described in (17). Fitting 

pipeline extracted the same morphometric statistics but different Dintra* values from the true 

imposed one: Dintra = 0.45 µm2/ms.These values are reported in the inset as a function of v, 

with the linear relation: Dintra* = Dintra + A v fitted to the data, giving A = -0.64 µm2/ms.
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Table 1

Estimated model parameters from the fit of the randomly oriented cylinders model to experimental data of 

each metabolite, obtained with the Monte Carlo analysis. Dintra
cyl= intracellular diffusivity and a = cylinders 

radius (mean ± s.d., 2500 Monte Carlo draws).

Metabolite Dintra
cyl (µm2/ms) a (µm)

NAA 0.332 ± 0.011 0.024 ± 0.083

Glutamate 0.439 ± 0.018 0.76 ± 0.16

Creatine 0.369 ± 0.016 1.429 ± 0.087

Taurine 0.416 ± 0.018 1.15 ± 0.10

Choline 0.311 ± 0.015 1.260 ± 0.095

Myo-Inositol 0.328 ± 0.015 1.554 ± 0.080
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Table 2

Estimated model parameters from the fit of the randomly oriented cylinders model to experimental data of 

NAA at TE=73.4 ms and the modified randomly oriented cylinders model to experimental data of NAA at 

TE=33.4 ms (mean ± s.d., 2500 Monte Carlo draws).

Metabolite Dintra
cyl (µm2/ms) a (µm)

NAA (TE=73.4 ms) 0.335 ± 0.021 0.62 ± 0.12

Metabolite Dintra
sph (µm2/ms) μ (µm) σ (µm) vsph (%)

NAA (TE=33.4 ms) 0.168 ± 0.081 0.019 ± 0.010 0.028 ± 0.016 2.0 ± 1.0
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