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Abstract

We analyse paediatric ophthalmic data from a large sample of children aged between 3 and
8 years. We modify the Bayesian additive conditional bivariate copula regression model of
Klein and Kneib [1] by using sinh-arcsinh marginal densities with location, scale and shape
parameters that depend smoothly on a covariate. We perform Bayesian inference about the
unknown quantities of our model using a specially tailored Markov chain Monte Carlo
algorithm. We gain new insights about the processes which determine transformations in visual
acuity with respect to age, including the nature of joint changes in both eyes as modelled with
the age-related copula dependence parameter. We analyse posterior predictive distributions to
identify children with unusual sight characteristics, distinguishing those who are bivariate, but
not univariate outliers. In this way we provide an innovative tool that enables clinicians to
identify children with unusual sight who may otherwise be missed. We compare our
simultaneous Bayesian method with the two-step frequentist generalized additive modelling
approach of Vatter and Chavez-Demoulin [2].
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1 Introduction

An important aspect of paediatric epidemiology is the construction of age-related standards
referring to the proportion of children who have reached specific developmental milestones at
particular ages, for example smiling for the first time, taking a first step, and menarche. Such
standards are often used as part of screening programmes, whose aim is to identify children at
sufficient risk of a specific disorder who may benefit from further investigation or direct
preventive action to avoid death or disability and to improve their quality of life [3]. In
ophthalmic epidemiology, one is interested in, for instance, changes in visual capacity defined as
the resolving power or the ability to separate objects of the eye. Visual acuity reflects the
spatial resolution of the visual system and is defined by the smallest retinal image which can be
appreciated at a given distance [4].

Monitoring and promptly detecting changes in visual acuity at an early age is particularly
important for the long-term visual health of individuals. Studies of age-related changes in
children developing normally have shown that visual acuity evolves considerably in the first ten
years of life. Visual acuity, as assessed by Snellen optotype charts, is measured on an ordinal
scale, and outcomes of 3/3, 3/4–5, 3/6, 3/9, 3/12, 3/18, 3/24, 3/36 or 3/60 are based on the
assumption that the resolving power, in a healthy adult, is 1 minute of arc. These quotients are
termed Minimum Angle of Resolution (MAR). The numerator of the acuity outcome refers to
the test distance in meters (usually 6 for adults, 3 for children); the denominator is the distance
in meters at which that size of letter would subtend 1 minute of arc. Testing of children takes
place from a distance of 3 meters, so an outcome of 3/3 refers to normal visual acuity and
outcome of 3/4–5 or worse indicates that the person has impaired vision. A Snellen score of 6/6
meters, or 20/20 as commonly expressed in feet, means that the subject can resolve details as
small as 1 minute of visual angle. Usually, visual acuity is measured on the log 10 scale of MAR
and a logMAR value of 0 means adequate vision in this context. For instance, logMAR values
of −0.3 and 0.3 mean that details as small as 1/2 and 2 minutes of visual angle can be resolved.
Thus, negative values of logMAR indicate better visual resolution capacity than positive ones.

Due to the changes in visual acuity in young children, clinicians and researchers advocate
the development of age criteria with monitoring and diagnostic purposes. Sonksen and
colleagues [5] measured linear visual acuity with the Sonksen logMAR test on children from a
population-based normative sample in order to construct age-related standards for children
from 2 years 9 months to 8 years. This test is recognised [6] as superior for measuring visual
acuity as it is better able than the Snellen scale to fit the rapid changes in visual acuity in
children, and is now considered the gold standard [7].

Visual acuity matures through childhood up to about age 7 or 8 years. It is important that
a child who is visually impaired is identified as early as possible in order to start corrective
treatment [8]. The aim of this paper is to model bivariately the age-related changes in
paediatric visual acuity in both eyes together. The only existing reference ranges are for each
eye separately (monocular) or overall (binocular) vision. By contrast, bivariate references can
identify children whose vision, both monocular and binocular, may appear to be normal, but
for whom the difference between the binocular assessment for each eye may indicate a clinical
problem and so may allow particular conditions to be identified. Therefore, our approach
allows children with unusual vision for their age, in either one or both eyes, to be identified.

We considered logMar [9] measurements from each eye of children from the Cambridge city
health district who were tested within the place of recruitment, for example their school,
between January 2000 and June 2001; full details of the data collection process are given in
Wade and colleagues [10]. In particular, we worked with a sample of 2721 children with ages
that range from 3.01 to 7.99 years. The data are shown in Figure 1 with colour being used to
represent age group. Figure 1 was produced using the ggplot2 package [11] running in
version 3.5.1 of R [12]. The YlOrRd sequential colour palette from the RColorBrewer

package [13] was chosen so that the differences between children of different ages are visible.
The expected pattern of lower logMar values (improved visual acuity) in older age groups can
be seen in Figure 1.

In order to gain flexibility, we modify the additive conditional bivariate copula regression
model of Klein and Kneib [1] by using sinh-arcsinh marginal densities with location, scale and
shape parameters that depend smoothly on a covariate. A bivariate copula [14, 15] is a joint
probability density function with uniform marginals on [0, 1]. An example of such a copula
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Figure 1: The values of logMar for 2721 children. A sequential colour palette is used to indicate age
group.

probability density c(u1, u2; ζ), the shape of which is controlled by a parameter ζ, is shown in
the bottom left panel of Figure 2. Copulas allow us to generate a very broad family of bivariate
distributions by separating the dependence structure from the marginal models as illustrated in
the whole of Figure 2. In particular, flexible bivariate probability density functions for the pair
of random variables X1 and X2 can be created by combining c with marginal densities f1(x1)
and f2(x2) (bottom right, top left of Figure 2) to produce a joint density

f(x1, x2; ζ) = c (F1(x1), F2(x2); ζ)× f1(x1)× f2(x2), (1)

as shown in the top right of Figure 2, in which F1 and F2 are the cumulative distribution
functions of X1 and X2. Sklar’s theorem [16] essentially says that almost any joint density can
be constructed in this way.

Copulas have been the modelling tool of many applications in medical statistics and
biostatistics over the last few years. Recent applications include Nikoloulopoulos [17] who used
copula mixed models to capture the negative association between the number of true positives
and true negatives in a bivariate meta-analysis of diagnostic test accuracy studies. Zhong and
Cook [18] analyzed the heritability of chronic diseases, such as psoriatic arthritis, by modelling
the nature and extent of within-family associations through a copula. A Gaussian copula is
applied by Conlon and colleagues [19] to model the joint distribution of variables of interest
given surrogate outcomes in a colorectal cancer clinical trial.

Conditional copula models allow the dependence between variables to vary according to the
values of a covariate. Examples of recent applications of conditional copula models in the
frequentist framework include Acar and colleagues [20], who developed methodology to analyze
the dependence structures between the birth weights of twins arranged by birth order at
different gestational ages. Gijbels and colleagues [21] applied the methodology to two different
problems: understanding the effect of the gross domestic product per capita on the relationship
between life expectancy at birth of males and females and modelling microbial characteristics
of soil samples in terms of the amount of metals contained in the soil. Acar and colleagues [22]
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Figure 2: Bottom left: a bivariate copula probability density function c(u1, u2; ζ), in this case a
basic Gumbel copula, the shape of which is controlled by the parameter ζ. The associated marginal
distributions are uniform on [0, 1]. Bottom right: the marginal probability density function f1 of a
random variable X1. Top left: the marginal probability density function f2 of a random variable X2.
Top right: the marginal probability densities f1 and f2 are combined with the copula model c to form
the joint probability density f(x1, x2; ζ) of (X1, X2).
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developed inference methodology in the conditional copula context to test for an effect of body
mass index on the dependence between pulse pressures measured at two different examination
periods. Bayesian inference in conditional copula models was first proposed by Craiu and
Sabeti [23], who investigated the performance of their approach using simulated data. Sabeti
and colleagues [24] used this methodology to explore how the birth weights of twins depend on
gestational and maternal ages.

In this paper we work with a class of bivariate copula additive models aimed at providing a
full understanding of how left and right eye logMar distributions change with age. As our
marginal model we use the four parameter sinh-arcsinh distribution proposed by Jones [25],
which has the normal distribution as a special case. We allow the location, scale and two shape
parameters of the sinh-arcsinh distribution to be smooth functions of age. In this way our
marginal models are examples of generalized additive models for location, scale and shape
proposed by Rigby and Stasinopoulos [26]. As is now commonplace in statistical inference, we
learn about the unknown parameters of our model in the Bayesian framework using a specially
tailored Markov chain Monte Carlo algorithm (MCMC) [27, 28, 29].

Vatter and Chavez-Demoulin [2] developed a frequentist generalized additive model
framework for conditional bivariate dependence structures. They adopt a two-step estimation
procedure, in which the marginal structures are estimated before the dependence relationships,
and derive a range of valuable asymptotic results about this procedure. In their paper, they
only allow marginal distributions to depend on covariates through a single parameter, although
they state that this is done for the sake of simplicity. We use four-parameter sinh-arcsinh
models to provide rich marginal modelling. In [2] the dependence relationship is estimated by
means of an iteratively reweighted ridge regression algorithm. Vatter and Chavez-Demoulin [2]
estimate smoothing parameters using a generalized cross-validation technique, whilst our
method provides inference about these parameters in the form of their posterior distribution.

An advantage of a two-step estimation procedure, as adopted by Vatter and
Chavez-Demoulin [2] and others, is that it offers a considerable amount of generality. It is
possible, for example, to use the R packages gamlss [26] or mgcv [30] to fit a very broad class of
marginal models, after which the gamCopula package [31] associated with [2] can be employed
for joint modelling. The gamCopula package takes full advantage of the modelling flexibility of
the mgcv package. Because of these considerations, the two-step estimation procedure is more
flexible and easier to use than a simultaneous estimation approach such as ours. A
disadvantage of the two-step estimation procedure is that the uncertainty associated with
marginal estimation does not properly propagate to the estimation of the copula parameters.
Bayesian simultaneous estimation approaches do not suffer from this drawback, although they
introduce an extra layer of computational complexity with which the user has to deal. We will
briefly discuss results obtained from the two-step approach of [2] in Section 4.

Our model is based on the additive conditional bivariate copula regression modelling
framework of Klein and Kneib [1]. Klein and Kneib [1] work with a broad range of predictor
functions, some defined using B-spline basis functions, penalized in a variety of ways. This
allows them to consider spatial and random effects, as well as nonlinear effects of continuous
covariates. In our work, we modify the approach of [1] in two ways. First, Klein and Kneib [1]
use normal or three-parameter Dagum distributions as marginal models, whilst we use
four-parameter sinh-arcsinh distributions. Secondly, we adopt a different way of constructing
the MCMC proposal densities. This is based on numerically approximating full conditional
probability density functions by a Gaussian proposal density that assigns considerable
probability mass to relevant areas of the parameter space. Klein and Kneib [1] also present a
brief discussion about problems with interval coverage rates associated with the two-step
approach. Marra and Radice [32] have recently developed a similar modelling approach, again
in the frequentist framework, but they consider two- and three-parameter marginal
distributions. Although they estimate a global likelihood, they impose smoothing through a
penalty term that can have a Bayesian interpretation. They base some of their inference on a
Bayesian large sample approximation which allows them to obtain reliable point-wise
confidence intervals for linear and non-linear functions of the model coefficients. Although this
approach does not directly account for smoothing parameter uncertainty, Marra and Wood [33],
for example, demonstrate using a careful simulation study that disregarding such uncertainty
may not be problematic and that the Bayesian large sample approximation works well in
practice. However, we prefer to work with an approach that takes full account of all parameter
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uncertainty. Our Bayesian model with its sinh-arcsinh marginal distributions allows us to gain
new insights about the dependence of visual acuity on age and to identify children with unusual
sight for their age who may otherwise be missed in a way that quantifies estimation uncertainty.

The rest of this paper is structured as follows. In Section 2 we present in detail our bivariate
copula additive models for location, scale, shape and dependence, and we introduce a range of
copula families. We describe inference for our model in the Bayesian framework in Section 3.
In Section 4 we discuss how the Watanabe-Akaike Information Criterion (WAIC) can be used
for copula family selection and present a simulation study that confirms the utility of WAIC for
this. We also describe the results of applying our model to the paediatric ophthalmic data
shown in Figure 1, discussing the use of the posterior predictive distribution to identify children
with unusual vision for their age, in either one or both eyes. We also compare our simultaneous
Bayesian method with the two-step frequentist generalized additive modelling approach of
Vatter and Chavez-Demoulin [2]. Finally, in Section 5 we present a short discussion.

2 A bivariate copula additive model for location,

scale, shape and dependence

In this section we present a bivariate copula additive model aimed at providing an
understanding of how left and right logMar distributions change with age. Let (yL

i , y
R
i ) stand

for
(Left logMari,Right logMari)

for child i = 1, . . . , n, where the sample size n = 2721, and let wi = agei. We assume that
(yL
i , y

R
i ) given wi, i = 1, . . . , n, are independent. We saw from Figure 1 that older children tend

to have lower logMar scores (and hence better visual acuity) compared to their younger
counterparts. This effect becomes clearer when we consider marginal scatter plots of left and
right logMar against age, as shown in Figure 3. We can see from the estimate of the location
parameter of the marginal distributions of logMar at each age (middle curve), obtained using
the methodology that we present in this paper, that logMar tends to reduce with age. Here we
model underlying relationships using smooth curves formulated as natural cubic splines, as will
be discussed in Sections 2.1 and 2.3.

As explained in Section 1, a copula-based approach separates marginal from dependence
modelling. As Figure 3 suggests that the distribution of logMar given age has a heavy upper
tail, we adopt a sinh-arcsinh family of distributions [25] as marginal models. This sinh-arcsinh
model has excellent numerical properties and can represent a wide variety of distributional
shapes, as we will see in Section 2.2. We will then discuss marginal modelling in Section 2.3,
dependence modelling and model extensions in Section 2.4, and the copula families that we use
in Section 2.5.

2.1 Natural cubic splines

We shall make use of natural cubic splines in our model, as shown in Figure 3. A natural cubic
spline curve g is defined in terms of K knots ω1 < · · · < ωK . It is cubic between and linear
beyond the knots, with continuous second derivative g′′. It can be shown that g is uniquely
defined by its knot values g = (g1, . . . , gK)T [30, 34, 35]. Green and Silverman [35] discussed
Bayesian inference for natural cubic splines, while Thompson and colleagues [36] extended their
approach to the quantile regression setting. We further discuss natural cubic splines and their
use in Sections 3 and 4.

6
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Figure 3: Scatter plots of the marginal dependence of logMar on age. Data from the left and right
eyes are shown separately. The middle smooth curve, which was obtained using the methodology of
this paper, is an estimate of the location parameter of the marginal distributions of logMar at each
age given by the posterior mean. It is a natural cubic spline. The outer curves provide 95% credible
intervals for this relationship.

2.2 Sinh-arcsinh distributions

Our marginal modelling will be based on a sinh-arcsinh family of distributions [25]. This family
can assume a wide variety of distributional shapes including normal, asymmetric and kurtotic,
the last two of which are particularly relevant when modelling logMar. We parameterize the
associated probability density function using location µ, scale σ > 0, and lower l > 0 and upper
u > 0 tail weight parameters as:

f(y |µ, σ, l, u) =
1√
2πσ

Z1√
1 + z2

exp

(
−Z

2
2

2

)
,

in which

Z1 =
1

2

{
u exp

(
u sinh−1(z)

)
+ l exp

(
−l sinh−1(z)

)}
and

Z2 =
1

2

{
exp

(
u sinh−1(z)

)
− exp

(
−l sinh−1(z)

)}
,

where z = (y − µ)/σ. This sinh-arcsinh family of distributions was discussed in greater depth
by Jones and Pewsey [37] in which a different parameterization was used, and is implemented
in the R gamlss package under the acronym SHASH [26]. Values of l and u less (greater) than
1 correspond to tails heavier (lighter) than normal. It is natural to work with log(l) and log(u)
so that 0 divides tails that are heavier from those that are lighter than normal on this log scale.
Figure 4 presents examples of SHASH probability density functions f , with µ = 0 and σ = 1,
for different values of log(l) and log(u). The standard normal distribution, corresponding to
log(l) = log(u) = 0, is shown in grey. Negative (positive) values of log(l) or log(u) correspond
to a lower or upper tail that is heavier (lighter) than that of the standard normal. It is worth
mentioning that the parameterization of the SHASH distribution that we use is natural and
easy to interpret. Moreover, the adoption of generating distributions that are different from
normal [37] means that the SHASH distribution itself can be extended to have even richer tail
behaviour. We shall use the notation F (y |µ, σ, l, u) for the corresponding SHASH cumulative
distribution function.

7



y
D

en
si

ty
−20 0 10 200.

0
0.

2
0.

4

log(l) = −0.6, log(u) = −0.6

y

D
en

si
ty

−25 −15 −5 0 50.
0

0.
2

0.
4

log(l) = −0.6, log(u) = 0

y

D
en

si
ty

−20 −10 00.
0

0.
3

log(l) = −0.6, log(u) = 0.5

y

D
en

si
ty

−5 0 5 10 15 200.
0

0.
2

0.
4

log(l) = 0, log(u) = −0.6

y

D
en

si
ty

−4 −2 0 2 40.
0

0.
2

0.
4

log(l) = 0, log(u) = 0

y

D
en

si
ty

−4 −2 0 1 20.
0

0.
3

0.
6

log(l) = 0, log(u) = 0.5

y

D
en

si
ty

0 5 10 15 200.
0

0.
3

log(l) = 0.5, log(u) = −0.6

y

D
en

si
ty

−2 0 1 2 3 40.
0

0.
3

0.
6

log(l) = 0.5, log(u) = 0

y

D
en

si
ty

−2 −1 0 1 20.
0

0.
4

log(l) = 0.5, log(u) = 0.5

Figure 4: Examples of sinh-arcsinh probability density functions f(y |µ = 0, σ = 1, l, u) (black curve)
calculated using the dSHASH function of the R gamlss package [26] for different values of log(l) and
log(u), together with the standard normal probability density function (grey curve). Histograms
of 10, 000 random variates generated using the rSHASH function are also shown. The central panel
corresponds to the standard normal distribution with log(l) = log(u) = 0. In the first and third
rows log(l) = −0.6 and 0.5, respectively, while in the first and third columns log(u) = −0.6 and 0.5,
respectively.

2.3 Marginal modelling

As just mentioned, we assume that yL
i and yR

i follow SHASH distributions:

yL
i ∼ f

(
· |µL

i , σ
L
i , l

L
i , u

L
i

)
yR
i ∼ f

(
· |µR

i , σ
R
i , l

R
i , u

R
i

)
, i = 1, . . . , n,

and we model the parameters of these SHASH distributions as smooth functions of age. In
particular, we adopt the following forms for µL

i and µR
i :

µL
i = µL + gL

µ (wi)

µR
i = µR + gR

µ (wi), (2)

where µL (µR) are the overall left (right) logMar locations across all ages, and gL
µ (gR

µ ) are

natural cubic splines uniquely defined by their values gL
µ,1, . . . , g

L
µ,K (gR

µ,1, . . . , g
R
µ,K) at K knots

ω1, . . . , ωK . For identifiability we impose sum-to-zero constraints

K∑
j=1

gL
µ,j =

K∑
j=1

gR
µ,j = 0, (3)

so that the curves gL
µ and gR

µ are centered around zero. This means that it is not possible to

define the model in an equivalent way by adding a constant to µL or µR and subtract it from
gL
µ or gR

µ .
To place the K knots we sort the wi values and select those with equally spaced subscripts

in 1, . . . , n. We use K = 10 in the results that we present in this paper.
Because we perform inference in the Bayesian framework, we follow the usual approach of

working with positive precisions pL
i = 1/σL

i

2
and pR

i = 1/σR
i

2
instead of scale parameters σL

i

8



and σR
i . These precisions are modelled on the log scale as

log
(
pL
i

)
= µL

p + gL
p (wi)

log
(
pR
i

)
= µR

p + gR
p (wi), (4)

where µL
p (µR

p ) are overall log precision levels for left (right) logMar across all ages, and gL
p

(gR
p ) are natural cubic splines subject to sum-to-zero identifiability constraints similar to

equation (3). Because our inference methodology is simulation-based, it is straightforward to
learn about scale parameters from simulated values of precisions using the simple
transformation scale parameter = 1/

√
precision.

We model the lower and upper tail weights lLi , lRi , uL
i and uR

i in a similar way:

log
(
lLi

)
= µL

l + gL
l (wi), log

(
lRi

)
= µR

l + gR
l (wi),

log
(
uL
i

)
= µL

u + gL
u (wi) and log

(
uR
i

)
= µR

u + gR
u (wi). (5)

2.4 Dependence modelling and model extensions

We now define the joint probability density function of yL
i and yR

i based on (1) as:

f
(
yL
i , y

R
i ; ζi

)
=

c
(
F (yL

i |µL
i , σ

L
i , l

L
i , u

L
i ), F (yR

i |µR
i , σ

R
i , l

R
i , u

R
i ) | ζi

)
×

f
(
yL
i |µL

i , σ
L
i , l

L
i , u

L
i

)
× f

(
yR
i |µR

i , σ
R
i , l

R
i , u

R
i

)
,

in which c is a bivariate copula probability density function whose dependence parameter ζi is
allowed to depend on age wi as:

ζi = µ+ g(wi), (6)

where g is a natural cubic spline constrained as in (3). We will discuss the copula families that
we consider for c in Section 2.5 together with the parameter ζ.

Because of the form of (2) and (4) to (6), we think of our model as a bivariate copula
additive model for location, scale, shape and dependence.

Rahi and colleagues [38] discuss bivariate data that comprise spherical equivalence

measurements on both eyes of adults, together with birth weight w
(1)
i , maternal age w

(2)
i and

gender w
(3)
i ∈ {0, 1}. It is not hard to extend the model defined through (2) and (4) to (6) to

deal with their data:

µL
i = µL + gL(1)

µ (w
(1)
i ) + gL(2)

µ (w
(2)
i ) + βLw

(3)
i

µR
i = µR + gR(1)

µ (w
(1)
i ) + gR(2)

µ (w
(2)
i ) + βRw

(3)
i

log
(
pL
i

)
= µL

p + gL
p

(1)
(w

(1)
i ) + gL

p

(2)
(w

(2)
i ) + βL

p w
(3)
i

log
(
pR
i

)
= µR

p + gR
p

(1)
(w

(1)
i ) + gR

p

(2)
(w

(2)
i ) + βR

p w
(3)
i

log
(
lLi

)
= µL

l + gL
l

(1)
(w

(1)
i ) + gL

l

(2)
(w

(2)
i ) + βL

l w
(3)
i

log
(
lRi

)
= µR

l + gR
l

(1)
(w

(1)
i ) + gR

l

(2)
(w

(2)
i ) + βR

l w
(3)
i

log
(
uL
i

)
= µL

u + gL
u

(1)
(w

(1)
i ) + gL

u

(2)
(w

(2)
i ) + βL

u w
(3)
i

log
(
uR
i

)
= µR

u + gR
u

(1)
(w

(1)
i ) + gR

u

(2)
(w

(2)
i ) + βR

u w
(3)
i

ζi = µ+ g(1)(w
(1)
i ) + g(2)(w

(2)
i ) + βw

(3)
i ,
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in which all the µ and β terms are constant, and all the g terms are natural cubic splines
subject to sum-to-zero constraints. In this way our modelling framework can deal with data
with a range of covariates.

2.5 Copula families

There are many different copula families allowing very flexible dependence modelling [14, 15].
We will work with the commonly used Gaussian, t, Clayton, Gumbel and Frank copula
models [14, 39]. This set of copula families defines a broad range of bivariate distributions for
use in modelling. When working with the t copula, we fix the number ν of degrees of freedom,
as it is sometimes difficult to perform inference about ν. We denote the resulting copula t-ν,
and refer to [40, 41, 42, 43] for further discussion. The basic Clayton and Gumbel copulas allow
for positive correlation only. For general modelling we extend these copulas to ‘double copulas’
by including rotated versions, which allow modelling of negative dependence. So the
Gumbel-0-90 double copula, for example, comprises the basic Gumbel copula shown in Figure 2
together with its rotation by 90◦. The Gumbel-0-90 double copula cumulative distribution
function with dependence parameter θ can be written as

CGumbel-0-90(u1, u2; θ) =

{
CGumbel-0(u1, u2; θ) if θ ∈ [1,∞)
CGumbel-90(u1, u2; θ) if θ ∈ (−∞,−1]

where CGumbel-0(u1, u2; θ) is the basic Gumbel copula cumulative distribution function and
CGumbel-90(u1, u2; θ) is the cumulative distribution function of the Gumbel copula rotated by
90◦. The Gumbel-0-90 double copula cumulative distribution function therefore takes the form

CGumbel-0-90(u1, u2; θ) =


exp

[
−
{

(− log(u1))θ + (− log(u2))θ
}1/θ

]
if θ ∈ [1,∞)

u2 − exp

[
−
{

(− log(1− u1))θ + (− log(u2))θ
}1/θ

]
if θ ∈ (−∞,−1].

The Gumbel-180-270 double copula with dependence parameter θ is a 180◦ rotation of the
Gumbel-0-90 copula and has cumulative distribution function

CGumbel-180-270(u1, u2; θ) =

{
CGumbel-180(u1, u2; θ) if θ ∈ [1,∞)
CGumbel-270(u1, u2; θ) if θ ∈ (−∞,−1]

where CGumbel-180(u1, u2; θ) is the cumulative distribution function of the Gumbel copula rotated
by 180◦, often called the ‘survival copula’, and CGumbel-270(u1, u2; θ) is the cumulative
distribution function of the Gumbel copula rotated by 270◦. The Gumbel-180-270 double
copula cumulative distribution function can be expressed as

CGumbel-180-270(u1, u2; θ) =
u1 + u2 − 1 + exp

[
−
{

(− log(1− u1))θ + (− log(1− u2))θ
}1/θ

]
if θ ∈ [1,∞)

u1 − exp

[
−
{

(− log(u1))θ + (− log(1− u2))θ
}1/θ

]
if θ ∈ (−∞,−1].

Since dependence parameters from distinct copula families often have different domains of
definition and interpretations, we parameterized them all in terms of Kendall’s correlation
coefficient τ ∈ (−1, 1), to allow easy comparison. There exists a one-to-one relationship
between the parameter of each copula family and Kendall’s τ . For example, for
CGumbel-0(u1, u2; θ) and CGumbel-180(u1, u2; θ), τ = 1− 1/θ, while for CGumbel-90(u1, u2; θ) and
CGumbel-270(u1, u2; θ), τ = −1− 1/θ. For the corresponding relationships for other copula
families, see [44].

In order to map Kendall’s τ into the real line, following Zhong and Cook [18], Almeida and
colleagues [45] and many other authors, we apply Fisher’s transformation F :

ζ = F {τ(θ)} =
1

2
log

{
1 + τ(θ)

1− τ(θ)

}
= tanh−1 {τ(θ)} ∈ R.

For example, for CGumbel-0(u1, u2; θ) and CGumbel-180(u1, u2; θ), ζ = log(2θ − 1)/2, while for
CGumbel-90(u1, u2; θ) and CGumbel-270(u1, u2; θ), ζ = log {−1/ (2θ + 1)} /2. Then, ζ is allowed to
depend on the covariate as described in equation (6).
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Gumbel Copulas: 0° and 90°
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τ = 0.6, ζ = 0.69
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Gumbel Copulas: 180° and 270°

τ = −0.85, ζ = −1.3
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τ = −0.25, ζ = −0.26
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Figure 5: Top row: examples of Gumbel-0-90 double copulas. Bottom row: examples of
Gumbel-180-270 double copulas.The third and fourth copula probability density functions c on the
top row are examples of the basic Gumbel copula, while the first and second density functions are
examples of basic Gumbel copulas rotated by 90◦ in order to allow for negative correlation. The values
of Kendall’s τ and of ζ = F(τ), where F is Fisher’s transformation, are shown.

Examples of both the Gumbel-0-90 and the Gumbel-180-270 double copulas are shown in
Figure 5. It can be seen, for example, that, when the correlation is large and positive, the
Gumbel-0-90 (Gumbel-180-270) double copula has a wide (thin) lower and a thin (wide) upper
tail. Similarly, the Clayton-0-90 (Clayton-180-270) double copula has a thin (wide) lower and a
wide (thin) upper tail, while the tails of the Frank copula are identical.

3 Prior distributions and Bayesian inference

We discuss prior distributions for the unknown parameters of our model in Section 3.1. We
outline how we simulated values of all the parameters in Section 3.2. In particular, we describe
a way of constructing the MCMC proposal densities for the spline knot values that is related
to, but different from Klein and Kneib [1].

3.1 Prior distributions

As we are performing inference in the Bayesian framework, we need to assign prior
distributions to the unknown quantities about which we wish to make inference. We assume

that, before seeing any data, all parameters in M =
{
µL, µR, µL

p , µ
R
p , µ

L
l , µ

R
l , µ

L
u , µ

R
u , µ

}
are

normally distributed with zero means and low precisions (for example, 0.01). We define the

prior distributions on each element of G =
{
gL
µ , g

R
µ , g

L
p , g

R
p , g

L
l , g

R
l , g

L
u , g

R
u , g

}
as we now explain

for g following [35, 36]. We believe that before seeing any data g should be smooth, so we
model the prior probability density π(g |λ) for g as

π(g |λ) ∝ λ(K−2)/2 exp

(
1

2
λ smoothness of g

)
∝ λ(K−2)/2 exp

(
−1

2
λ

∫
g′′(w)2dw

)
, (7)

so that smooth gs are favoured. Larger values of the positive smoothing parameter λ result in
more probability density being given to smoother curves g.
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Wood [30] presents a very detailed practical and mathematical discussion of smoothers in
his Chapter 5. He explains how natural cubic splines with knots at all n covariate values are
smoothers with somewhat ideal properties (his page 199). In practice, however, the basis
independent roughness term λ

∫
g′′(w)2dw, which leads to our prior probability density π(g |λ)

through (7), yields functions that are much smoother than the n degrees of freedoms suggest,
meaning that natural cubic splines with n knots are wasteful. Our natural cubic splines are
defined at only K = 10 knot values, meaning that the functions in G have an economical
representation, while maintaining good properties. Using K = 20 knot values makes very little
difference to the results, but of course leads to an increase in computational time. Employing a
small number of knots has the consequence that extensions to more than one covariate, as
discussed briefly in Section 2.3, are not computationally burdensome. Moreover, the
parameterization in terms of knot values is easy to understand visually. For further discussion
about natural cubic splines, see [46]. Recent examples of the use of natural cubic splines in the
copula context are given in [2, 47]. Our modelling framework could be modified to work with
different types of splines with prior densities defined using different roughness terms.

Green and Silverman [35] show that

π(g |λ) = π(g |λ) ∝ λ(K−2)/2 exp

(
−1

2
λ gTSg

)
,

in which g = (g1, . . . , gK)T = (g(ω1), . . . , g(ωK))T are the values of g at the knots and S is a
known K ×K symmetric matrix. Finally, a gamma prior is adopted for the positive smoothing
parameter λ such that the mean and standard deviation of λ are 20 and 15, respectively. This
means that the prior on λ gives considerable probability density to a wide range of possible λ
values and so has little influence on the posterior distribution of λ and of the corresponding g.
We found that when the prior standard deviation of λ was considerably reduced, to 1 for
example, the influence of this more concentrated prior on the posterior distribution of λ was

quite strong. Let L =
{
λL, λR, λL

p , λ
R
p , λ

L
l , λ

R
l , λ

L
u , λ

R
u , λ

}
. A similar prior construction applies

for the remaining elements of G and their associated smoothing parameters L. As is standard
practice, we assume that, before seeing any data, the parameters in M, G and L are
independent both within and between these sets.

3.2 Bayesian inference

Inference is now based on the posterior distribution

π
(
M,G,L | (yL

i , y
R
i ), i = 1, . . . , n

)
.

We wrote R code to simulate values of all the parameters according to this posterior
distribution using a Metropolis-within-Gibbs algorithm [27, 28]. We used Gaussian proposals
when updating each element of M.

Klein and Kneib [1] discuss the construction of the proposal densities for each element of G
in their Section 3.1. The basic idea of their approach is to approximate the log full conditional
probability density function of g = (g1, . . . , gK), for example, by a Taylor expansion to achieve
a normal proposal density with mean corresponding to the mode at the current state and
covariance matrix corresponding to the curvature at this mode. In this way the proposal
density puts probability mass on releavant areas of the sampling space. Their technique avoids
the manual tuning of the standard deviation of a random walk proposal and is strongly related
to the iterative weighted least squares algorithm of Gamerman [48] and to Fisher’s scoring;
further discussion is provided in Section 3.1 of [49]. It requires finding mathematical
expressions for the first and second derivitaves of the associated log full conditional
distribution. These can be complicated to find as Section 3.1.2 of Klein and Kneib [1] and
Appendix C of Klein and colleagues (2013) [49] illustrate. Klein and colleagues (2015) [50] state
that, if it is not possible to derive these derivatives analytically, appropriate approximations
can be used to construct the proposal density. This is indeed what we do, as the derivations are
far from straightforward for our model. In particular, we use R [12]’s function optim to find the
maximizing value and curvature of the log full conditional numerically. Using such a numerical
optimization approach means that the algorithm can be applied in the case of a large range of
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models without the need for extensive differentiations. Optimization is, however,
computationally expensive, if it is applied at each iteration of the MCMC algorithm. We found
that very good results were obtained by applying numerical optimization only during the first
five MCMC iterations and every three hundred iterations thereafter. We maintained the
sum-to-zero constraint by thinking of the log full conditional probability density function of g,
for example, as a function of only g1, . . . , gK−1, with gK set to − (g1 + · · ·+ gK−1).

Because of conjugacy, each element of L can be sampled from a gamma distribution with
appropriately defined parameters. It is for this reason that we kept the multiplicative λ(K−2)/2

constant in (7). We ran the resulting MCMC algorithm for 20, 000 iterations, and discarded the
first 5, 000 iterations as burn-in. We employed a thinning interval of 25 iterations.;
see [51, 52, 53] for a discussion of thinning and its possible drawbacks. All our posterior
summaries are based on thinned chain values. Increasing the number of iterations to 100, 000,
for example, and using different thinning intervals or even no thinning led to very little change
in the overall results.

13



4 Results

Copula Used in Model
Copula Used t-4 Gaussian Clayton-1 Clayton-2 Gumbel-1 Gumbel-2 Frank
in Simulation m W̄ m W̄ m W̄ m W̄ m W̄ m W̄ m W̄
t-4 99 −276.8 0 −201.6 0 −152.2 0 −162.2 1 −227.6 0 −226.8 0 −193.2
Gaussian 1 −183.3 93 −215.4 0 −128.5 0 −132.2 1 −185.7 4 −183.9 1 −189.2
Clayton-1 0 −212.5 0 −205.8 98 −325.0 0 −12.9 0 −111.0 2 −302.6 0 −194.9
Clayton-2 0 −218.6 0 −209.2 0 −10.6 89 −324.6 11 −306.5 0 −114.2 0 −197.7
Gumbel-1 0 −233.1 0 −222.1 0 −76.8 2 −251.5 98 −274.4 0 −166.5 0 −203.3
Gumbel-2 0 −236.2 0 −229.7 1 −254.3 0 −84.3 0 −171.1 99 −278.0 0 −208.2
Frank 0 −147.8 0 −176.9 0 −99.6 0 −102.7 0 −150.8 0 −145.9 100 −207.9

Table 1: Results of the simulation study for Bayesian copula model selection. m represents the
number of times out of 100 that the copula used in the model that we propose had the lowest value
of WAIC. W̄ is the sample mean of the hundred WAIC values at each combination of copula families.
Bold is used to indicate the minimum W̄ value across the copulas used in the model (that is, across
rows). Clayton-1, Clayton-2, Gumbel-1 and Gumbel-2 stand for the Clayton-0-90, Clayton-180-270,
Gumbel-0-90 and Gumber-180-270 copula families.

In this section we discuss the results obtained from applying our Bayesian methodology to
simulated and real data. In Section 4.1 we explore the use of two information criteria for model
selection by means of a simulation study. We discuss for our real data how the location, scale,
shape and dependence parameters of our model are related to the covariate age in Section 4.2.
A brief comparison with the two-step frequentist approach of Vatter and Chavez-Demoulin [2]
is provided in Section 4.3, in which model selection is again discussed. In Section 4.4 the
posterior predictive distribution is used to identify children with unusual sight characteristics,
distinguishing those who are bivariate, but not univariate outliers.

4.1 Bayesian copula model selection using WAIC and DIC

We used the Watanabe-Akaike Information Criterion (WAIC) [54, 55] and the Deviance
Information Criterion (DIC) [56, 57] as goodness-of-fit type criteria to choose among Bayesian
models that used the t-ν, ν ∈ {2, . . . , 10, 20, 100}, Gaussian, Clayton-0-90, Clayton-180-270,
Gumbel-0-90, Gumbel-180-270 and Frank copulas.

DIC was proposed in 2002 by Spiegelhalter and colleagues [56] and is defined as

DIC = − 2 log-likelihood at parameter posterior means

+ 2 effective number of parameters.

The precise definition of the effective number of parameters is not important for our purposes,
but is given in [57] where it is also explained how DIC may be calculated from the output of
the MCMC algorithm. DIC is actually a penalized ‘badness-of-fit’ statistic and so models with
a lower DIC should be preferred. A desirable feature of DIC is its invariance under monotone
increasing transformations of the marginal distributions, which makes it suitable for copula
modelling and selection [58].

WAIC was proposed in 2013 [54] and is now preferred over DIC because it provides a more
fully Bayesian approach for estimating the out-of-sample predictive performance of a model
[55]. It is defined as

WAIC = − 2 log-pointwise posterior predictive density

+ 2pW , (8)

where the log pointwise posterior predictive density is defined, for a sample of independently
and identically distributed observations (z1, . . . , zn) and a generic statistical model p(·|θ), as

n∑
i=1

log (E [p(zi|θ)]) . (9)
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The aim of the penalizing correction factor pW is to avoid over-fitting. It can be computed in
two different ways which can be viewed as approximations to cross-validation [55]. Here we
consider

pW =
n∑
i=1

var [log (p(zi|θ))] . (10)

Both the expectation and the variance that appear in (9) and (10) are computed with respect
to the posterior distribution of θ and can be easily calculated from the MCMC output. In fact,
Watanabe’s original definition of WAIC [54] differs from (8) in that it is divided by n and does
not have the factor of 2. The definition (8) used here is on a scale that is comparable with DIC.
As with DIC, models with a lower WAIC should be preferred.

For the models that we consider WAIC and DIC give similar values. For this reason and
because WAIC is now preferred, when we present our simulation study results in Section 4.1.1,
we concentrate on WAIC. When we discuss our real data results, we present the values of
WAIC and DIC so that a comparison can be made.

4.1.1 Simulation study for Bayesian copula model selection

We confirmed the utility of WAIC for Bayesian copula model selection by a simulation study
that we report briefly. For each of the seven copula families t-4, Gaussian, Clayton-0-90,
Clayton-180-270, Gumbel-0-90, Gumbel-180-270 and Frank, we simulated 100 random samples
of size n = 1, 000 from the bivariate copula additive model for location, scale, shape and
dependence that we describe in Section 2. We chose to work with the t-4 copula family because
it performed best in the case of the real data, as we will see in Section 4.2. For each sample,
the values of the covariates w1, . . . , wn were generated uniformly from the minimum to the
maximum ages in the data set. In order to focus attention on copula selection, we set gL

µ , gR
µ ,

gL
p , gR

p , gL
l , gR

l , gL
u and gR

u to be zero. The covariate function ζ = µ+ g(w) was defined to grow
linearly from −0.7 to 0.7 across the covariate range. This meant that our 700 simulated data
sets are based on both negative and positive correlations, so illustrating the use of the double
copula families described in Section 2.5. Bayesian inference based on 10, 000 MCMC iterations
was then performed about the model using each of the seven copula families yielding 4, 900
WAIC values.

Figure 6 shows the 4, 900 values of WAIC from our simulation study. In eah panel the 100
randomly generated data sets have been ordered on the WAIC value for the copula model
corresponding to the family used to simulate the data. It can be seen from the least variable
(because of sorting) lower curves that the copula family employed to simulate the data is the
one that generally has the lowest WAIC value when used in the model. Table 1 presents the
number of times m out of 100 that the copula used in the model has the lowest value of WAIC.
It can be seen by looking at the diagonal elements of the table that the correct copula family is
generally selected. When this does not occur, Figure 6 shows that the correct copula family
almost always yields only a slightly higher value of WAIC than the copula family with the
lowest WAIC value, meaning that the correct family is only just missed. Table 1 also reports
the sample mean W̄ of the hundred WAIC values at each combination of copula families. The
correct combination of copula families, corresponding to the diagonal of the table, always has
the lowest sample mean. All these results from our simulation study confirm the utility of
WAIC for copula selection.
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Truth: Gumbel−0−90 Truth: Gumbel−180−270 Truth: Frank

Truth: t−4 Truth: Gaussian Truth: Clayton−0−90 Truth: Clayton−180−270
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Randomly Generated Data Set (sorted on the WAIC value for the correct copula)

W
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Copula Used in Model

t−4 Gaussian Clayton−0−90 Clayton−180−270

Gumbel−0−90 Gumbel−180−270 Frank

Figure 6: The 4, 900 values of WAIC from our Bayesian copula model simulation study. One hundred
data sets were simulated from the proposed model based on each of the seven copula families. Bayesian
inference was then performed about the model using each of the seven copula families.
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Figure 7: The values of WAIC and of DIC for the t-ν, ν ∈ {2, . . . , 10, 20, 100}, Gaussian, Clayton-0-90,
Clayton-180-270, Gumbel-0-90, Gumbel-180-270 and Frank copula families. Results are shown for
both the full and reduced models. After the Gaussian, the copulas have been arranged in increasing
order of WAIC for the full model.

4.2 Real Data Results

Figure 7 presents the values of WAIC and of DIC for the t-ν, ν ∈ {2, . . . , 10, 20, 100}, Gaussian,
Clayton-0-90, Clayton-180-270, Gumbel-0-90, Gumbel-180-270 and Frank copula families when
our model, which we shall refer to here as the ‘full model’, was applied to the logMar data
shown in Figure 1. It can be seen from Figure 7 that the t-4 is the preferred copula family for
the full model, as it has the lowest value of WAIC. The performance of the t-ν copulas becomes
less good as ν increases from 4, in which case the copulas themselves converge to the Gaussian.
The Gumbel-0-90 copula is the best among the other copula families. We also performed
inference about a ‘reduced model’ defined by setting gL

p , gR
p , gL

l , gR
l , gL

u , gR
u and g to be zero.

Figure 7 also presents the values of WAIC for this reduced model, with the t-4 copula family
again having the lowest value of WAIC. For all copula families, the value of WAIC for the
reduced model is higher than for the full model, indicating that the full model is to be preferred.
Corresponding values of DIC are also shown in Figure 7. These are similar to the values of
WAIC, and so using DIC instead of WAIC would lead to very similar conclusions in this case.

All our code is written entirely in R [12]. The MCMC sampler described above runs in
around 38 minutes for the full model and 15 minutes for the reduced model applied to our real
data on an iMac with operating system High Sierra Version 10.13.5, a 4.2 GHz Intel Core i7
processor and 64 GB 2400 MHz DDR4 memory. The two-step frequentist approach of Vatter
and Chavez-Demoulin [2], implemented through the gamlss [26] and gamCopula [31] R
packages, is considerably faster.

4.2.1 Posterior inference for location, scale and shape

We used the Gelman-Rubin [59] diagnostic statistic to assess MCMC convergence. The
Gelman-Rubin diagnostic involves checking the convergence of the algorithm with an ANOVA
type approach using two or more samples generated in parallel. It yields a shrink factor R̂; see
also [27]. Values of R̂ close to 1 indicate convergence. We used four samples generated from
over dispersed starting points and monitored two quantities for illustration: µ and g8. We
obtained R̂ = 1.004 (upper 95% confidence limit 1.014) for µ and R̂ = 1.000 (1.001) for g8.
Brooks and Gelman’s [60] multivariate version of the Gelman-Rubin diagnostic took the value
1.11. Figure 8 presents Gelman-Rubin-Brooks plots for these parameters and shows the
evolution of R̂ as the number of iterations of the thinned chains increases. Because of their
proximity to 1, none of these R̂s provides us with cause for concern.
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Figure 8: Gelman-Rubin-Brooks plots of the shrink factors R̂ for µ and g8
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Figure 9: Autocorrelation functions for g1, . . . , g10. The top two rows are for the MCMC sampled
values, after burn-in. The bottom two rows are for those values after thinning has been applied.

As a further check of the performance of the algorithm, we looked at autocorrelation
functions. Examples for the values g1, . . . , g10 are shown in Figure 9. The autocorrelation
functions for the sampled values themselves die off quite slowly. However, the autocorrelation
decay is extremely rapid after thinning has been applied. Again we have no cause for concern.

Figure 3 shows the mean of the posterior distribution and associated 95% credible interval
for the marginal location relationships µL + gL

µ (w) and µR + gR
µ (w) when the t-4 copula is used

as our choice for c. It can be seen that the posterior mean of these logMar location quantities
drops from around 0.15 for children aged 3 years to just above −0.15 for those aged 8 years,
with the marginal behaviour in both eyes being rather similar.

Figure 10 shows how the scale parameters σL = 1/
√
pL and σR = 1/

√
pR, in which

pL = exp
{
µL
p + gL

p (w)
}

and pR = exp
{
µR
p + gR

p (w)
}

, depend on age.

Figure 11 shows how the lower and upper log tail weights log(lL), log(lR), log(uL) and
log(uR) depend on age. Values below (above) the horizontal 0 line correspond to tails of the
SHASH distribution that are heavier (lighter) than those of the normal distribution. For both
eyes the distribution of logMar given age has an upper tail that is much heavier than that of
the normal distribution. This is consistent with what we saw in Figure 3.

4.2.2 Posterior inference for dependence

The posterior dependence of Kendall’s τ = F−1 (ζ) = F−1 {µ+ g(w)}, where F−1 is the inverse
of Fisher’s transformation, on age can be seen in the left panel of Figure 12. The posterior
mean of Kendall’s τ tends to increase with age from around τ = 0.5 for children aged 3 years to
around 0.6 for children aged 8 years. This means that the dependence between the eyes
becomes stronger over this age range.
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Figure 10: The dependence of the scale parameters σL and σR on age. The middle smooth curve is
the posterior mean of the scale parameter, while the outer curves provide 95% credible intervals. The
t-4 copula was used as our choice for c.
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Figure 11: The dependence of the lower and upper log tail weights log(lL), log(lR), log(uL) and log(uR)
on age. Values below (above) the horizontal 0 line correspond to tails of the SHASH distribution that
are heavier (lighter) than those of the normal distribution. The middle smooth curve is the posterior
mean of these dependence quantities, while the outer curves provide 95% credible intervals.
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Simultaneous Bayesian Vatter and Chavez−Demoulin Two−Step
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Figure 12: The dependence of Kendall’s τ on age. Left panel: The middle curve is the posterior
mean of τ and the outer curves are 95% credible intervals produced using the proposed simultaneous
Bayesian approach. Right panel: The middle curve is the estimate of τ given by the two-step
frequentist estimation procedure of Vatter and Chavez-Demoulin and the outer curves provide 95%
confidence intervals.

4.3 Comparison with the Frequentist Estimation Procedure of
Vatter and Chavez-Demoulin

For comparison we show the results of the two-step frequentist estimation procedure of Vatter
and Chavez-Demoulin [2] in the right panel of Figure 12. We used the gamlss function of the
gamlss [26] R package to fit SHASH marginal distributions, as discussed in Sections 2.2 and
2.3, to the left yL

i , i = 1, . . . , n, and right yR
i data separately. We then transformed the

associated left and right residuals to follow a U [0, 1] distribution and modelled these jointly
using the gamBiCopFit function from the gamCopula package [31]. Both functions gamlss and
gamBiCopFit allow a broad class of models to be fitted and are fast. At the time of writing the
gamBiCopFit function offers ten copula families, four of which – Gaussian, t, Clayton-0-90 and
Gumbel-0-90 – overlap with the copula families discussed in Section 2.5 that we use. The
gamBiCopFit function also estimates the number of degrees of freedom for the t copula,
treating it as a nuisance parameter that is updated after each iteration. We selected the best
copula using the value of AIC [61] provided by gamBiCopFit. Again, this was a t copula, with
number of degrees of freedom estimated as 4.8. The frequentist procedure of Vatter and
Chavez-Demoulin [2] estimated the dependence of τ on age in a similarly increasing way to our
MCMC based Bayesian approach, although this estimate is considerably smoother. The 95%
credible intervals associated with our simultaneous Bayesian approach are wider than 95%
confidence intervals calculated as part of the second step of the Vatter and Chavez-Demoulin [2]
procedure. In the former approach the uncertainty associated with marginal estimation and the
smoothing parameters propagates to the estimation of the copula parameters.

We performed a simulation study similar to the one described in Section 4.1.1 to confirm
the utility of AIC for frequentist copula model selection when using the Vatter and
Chavez-Demoulin [2] approach. We considered four copula families t-4, Gaussian, Clayton-0-90
and Gumbel-0-90, and simulated data in the same was as in Section 4.1.1. Table 2 presents the
number of times m out of 100 that the copula used in the model had the lowest AIC value. It
can be seen that the Vatter and Chavez-Demoulin [2] method almost always selects the correct
copula using AIC. When the t copula is chosen for data simulated from the Gaussian copula,
the estimated number of degrees of freedom is over 30. A 95% confidence interval for the
number of degrees of freedom of the t copula estimated from data simulated from the t-4
copula is (4.3, 4.6). Table 2 also reports the sample mean Ā of the hundred AIC values at each
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combination of copula families. The diagonal of the table always has the lowest sample mean.
These results strongly confirm the utility of AIC for copula selection in the Vatter and
Chavez-Demoulin [2] approach, and imply that this method has similar efficiency to ours in
terms of chosing the right copula model.

Copula Used in Model
Copula Used t Gaussian Clayton-0-90 Gumbel-0-90
in Simulation m Ā m Ā m Ā m Ā
t-4 100 −421.5 0 −348.9 0 −294.8 0 −368.0
Gaussian 12 −367.3 88 −370.0 0 −262.8 0 −329.7
Clayton-0-90 0 −359.9 0 −342.5 100 −440.5 0 −220.3
Gumbel-0-90 0 −377.1 0 −363.0 0 −166.3 100 −409.5

Table 2: Results of the simulation study for copula model selection with the frequentist estimation
procedure of Vatter and Chavez-Demoulin. m represents the number of times out of 100 that the
copula used in the model had the lowest value of AIC. Ā is the sample mean of the hundred AIC
values at each combination of copula families. Bold is used to indicate the minimum Ā value across
the copulas used in the model (that is, across rows).

4.4 Using the Bayesian posterior predictive distribution to
identify children with unusual vision

The Bayesian posterior predictive distribution can be used as a way of seeing how well our
model corresponds to the data; see Chapter 10 of Ntzoufras [27] for a full discussion. The
predictive distribution is

π
(

(yL, New, yR, New) | (yL
i , y

R
i ), i = 1, . . . , n; age w

)
, (11)

in which (yL, New, yR, New) is a data point from a new child of age w. We can simulate values
from this distribution in a standard way by adding to our MCMC algorithm a step that
samples a value from the data model defined in Section 2 for a fixed value of age w.

In Figure 13 we use coloured hexagons to present points simulated according to the
predictive probability density function (11) at fixed age values w = 3.5, 4.5, 5.5, 6.5 and 7.5
years. These values correspond to the midpoints of the age ranges (3, 4], (4, 5], (5, 6], (6, 7] and
(7, 8] years used in Figure 1. The data points coming from children within these ages ranges are
also shown using black points. We can see that points simulated from the predictive densities
support most of the data well, although there are some outlying data points.

Figure 13 can therefore be used as a diagnostic aid enabling clinicians to identify children
with unusual sight for their age. This can be quantified further as we now describe for the (4, 5]
age group.

We adopt a computationally inexpensive approach. First, using the sample from the
predictive distribution (11) with age w = 4.5, we computed a univariate kernel density

estimate [62, 63], predL say, of the marginal distribution of yL, New; we found the marginal

predictive density predR based on yR, New in a similar way. We also computed a bivariate
kernel density estimate [64], predL, R say, of the joint distribution of (yL, New, yR, New).

Next, we evaluated predL at data values yL
i corresponding to the 687 children in this age

group and declared as ‘unusual left eyes’ those with associated density values that are below a
threshold that cuts off the bottom 5%, say, of these density values. In this way we identified
children with unusual left eyes in terms of the marginal predictive distribution of left eye
logMar values. The data for these 35 children (red squares) tend to take very high or very low
values on the horizontal ‘logMar for Left Eye’ axis of the top left panel of Figure 14.

Next, a similar approach based on predR and yR
i allowed us to identify children with

unusual right eyes, this time in terms of the marginal predictive distribution of right eye
logMar values. The data for these 35 children tend to take very high or very low values on the
vertical ‘logMar for Right Eye’ axis of the top right panel of Figure 14.
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Figure 13: Points simulated from the posterior predictive probability density function (11) for values
of w ∈ {3.5, 4.5, 5.5, 6.5, 7.5} years are shown using coloured hexagons. These values of w are the
midpoints of the age ranges (3, 4], (4, 5], (5, 6], (6, 7] and (7, 8] years. Data points (yL

i , y
R
i ) coming

from children with ages in these age ranges are shown in black.
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Figure 14: logMar values for children in the (4, 5] years age group. Top row: unusual points based on

the marginal predictive distributions predL and predR for left and for right logMar are shown using
red squares. These points correspond to approximately 5% of children in this age group (35 points).
Bottom left: the unusual points are the union of those shown in the top row (56 points). Bottom

right: unusual points based on the joint predictive distribution predL, R for left and right logMar.
Again, these points comprise approximately 5% of those in this age group (35 points). Five points

that are identified as outliers only when based on predL, R are indicated using a triangle.

Finally, eyes that are jointly unusual can be identified by evaluating the joint predictive
density predL, R at the data points (yL

i , y
R
i ) and ordering the resulting predictive density

values. The data for these 35 children tend to take values that are away from the main body of
data points in the bottom right panel of Figure 14.

In the bottom left panel of Figure 14 we highlight the union of the two sets of marginal
outliers shown in the top row of Figure 14. These outlying points corresponds to a larger
number of 56 children with unusual left or right eyes.

The 35 joint outliers shown in the bottom right panel of Figure 14 comprised 30 children
who had already been identified as being unusual, together with 5 additional children (black
triangles) who would not otherwise have been recognized as having potentially problematic
vision. Of course, 26 of the 56 children already declared unusual are not included in the 35
children that are identified as joint outliers.

Future children could be judged against the thresholds obtained in this way. Choosing a
value higher than 5% to define the thresholds would lead to more children being declared as
outliers.

The fact that the bivariate copula approach that we have developed in this paper allows
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Figure 15: logMar values for children in the (3, 4], (4, 5], (5, 6], (6, 7] and (7, 8] years age groups.

Unusual points based on the joint predictive distribution predL, R are shown. These points correspond
to approximately 5% of children in each age group. The points that are identified as outliers only
when based on predL, R are indicated using a black triangle. These are the additional children that
our bivariate copula approach identified as unusual.

additional children to be identified as having unusual sight is an important feature of our
methodology. Figure 15, which presents the equivalent bottom right panel of Figure 14 for all
five age groups (3, 4], (4, 5], (5, 6], (6, 7] and (7, 8] years, shows all the additional children in our
data set that would be identified as unusual (black triangles). These children can then undergo
further examinations to ascertain the exact nature of their unusual sight and can be treated
accordingly.

5 Discussion

Statistical models of ophthalmic data should naturally consider the joint distribution of
outcome variables on both eyes. In this paper we fitted bivariate copula regression models to
logMar measurements from both eyes of 2721 children with dependence parameters conditional
on their ages. In particular, we modelled the dependence parameter of the copula using an
additive term of the child’s age. We did this because the relation between logMar values from
both eyes is an important aspect of the research question.

Our modelling is based on the additive conditional bivariate copula regression approach of
Klein and Kneib [1], which itself offers considerable generality in the specification of the
predictors. As the response is highly asymmetric, we modified their model by adopting
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sinh-arcsinh marginal distributions with location, scale and lower and upper tail shape
parameters also modelled as additive terms of age. Marra and Radice [32] have recently
developed similar frequentist models.

We performed inference about the unknown parameters of our model in the Bayesian
framework, using a Metropolis-within-Gibbs MCMC algorithm. In this algorithm the proposal
densities for the spline parameters were obtained by approximating the associated log full
conditional probability density functions by normal densities. The means and covariances
matrices of these normal densities were found using numerical optimization, so avoiding
complicated mathematics. We worked with the t, Gaussian, Clayton-0-90, Clayton-180-270,
Gumbel-0-90, Gumbel-180-270 and Frank bivariate copula families and performed a simulation
study to confirm the utility of the Watanabe-Akaike Information Criterion as a goodness-of-fit
type statistic to select the copula family.

Our results show that marginally for each eye the location of the logMAR distribution
decreases as child age increases, and this allows us to quantify the rate at which visual acuity
improves. We also found that the dependence between the eyes’ visual resolution tends to
become stronger across the age range. The predictive distribution associated with our model
supports most of the data well and was used to highlight children with unusual sight
characteristics, distinguishing those whose logMar values are bivariate, but not univariate
outliers. This implies that considering bivariate outliers identifies children with unusual sight
who would otherwise be undetected. These children might require further tests or corrective
treatment.

Our Bayesian estimation method and the two-step frequentist procedure of Vatter and
Chavez-Demoulin [2] both use additive models to fit copulas with rich marginal families and
conditional dependence structure. Moreover, simulation studies confirmed similarly useful roles
for AIC in the frequentist setting and WAIC in the Bayesian approach for copula selection.
However, there are some important differences. First, in the Vatter and Chavez-Demoulin [2]
procedure the marginal distributions are found in an initial step, after which the dependence
relationship can be estimated using the R package gamCopula [31]. This gives it the advantages
over our simultaneous procedure of simplicity of implementation, higher generality and
computational speed. Secondly, the uncertainity associated with the estimation of the marginal
distributions and the smoothing parameters does not fully propagate to the estimation of the
copula parameters in the two-step approach. In addition, the Bayesian approach allows us to
easily produce the posterior distribution and the interval estimates of any quantity of interest,
which is a function of the parameters. For example one can be interested in the probability
that a given child will have a visual acuity beyond a given threshold. This is something more
difficult to perform in a frequentist set-up, and this is a bonus coming from the more complex
computation.

Our future plans include extending the model to higher dimensions building on a vine-based
approach [44, 47, 65]. We will also work with two-parameter bivariate copulas, such as BB type
copulas [15, 66, 67] in order to control the behaviours of the two copula tails separately.
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