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Abstract 
 

Wilms' tumour 1 (WT1) is a transcription factor encoding a zinc finger protein that controls 

podocyte differentiation and is highly expressed in mature podocytes. WT1 mutations 

can lead to renal failure due to glomerular scarring, the underlying mechanisms, of which, 

are poorly understood. This project explored the mechanisms of glomerulosclerosis by 

using a tamoxifen-inducible Cre-LoxP system to delete Wt1 in adult mice. Following the 

fourth day post-induction with Tamoxifen, podocyte apoptosis was evident and increased 

as the disease progressed, highlighting Wt1’s key role in mature podocyte survival. At 

disease onset, increased podocyte Notch1 transcript and its downstream targets, 

including Nrarp and Hey2 were observed. Decreased expression of podocyte FoxC2 

transcript at the same time-point was noted, thereby supporting previous findings in lower 

vertebrates for a transcriptional relationship between Wt1/FoxC2/Notch in podocyte 

function. Podocyte Notch1 and Hes1 protein expression was observed in mutant mouse 

glomeruli at the onset of glomerulosclerosis. Induced podocyte Hes1 expression was 

associated with an upregulation of Snai1 and Slug transcripts, genes associated with 

epithelial to mesenchymal transition (EMT), thus proposing a role for Hes1 in mediating 

podocyte EMT. Moreover, early pharmacological inhibition of Notch, with gamma 

secretase inhibitors, ameliorated glomerulosclerosis and albuminuria. This data provides 

evidence that Wt1 deletion modulates podocyte Notch signalling in mature podocytes, 

leading to early events in WT1-related glomerulosclerosis. 
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Impact Statement 
 

Nephrotic syndrome is characterised by excessive protein in the urine (proteinuria) and 

glomerulosclerosis, where children progress towards end-stage kidney disease. The 

Wilms’ tumour 1 (WT1) gene is expressed during kidney development and in mature 

podocytes. WT1 mutations have been associated with Denys-Drash Syndrome (DDS) 

and Frasier Syndrome (FS), disorders associated with glomerulosclerosis. 

 

This project aims to explore whether the Notch pathway is implicated in mammalian Wt1 

glomerulopathy, to add further literature on this subject, and to enable future treatments 

to be found for kidney disease. Mutant murine and patient tissue has been utilised in this 

project to explore the expression of Notch pathway components during the evolution of 

glomerulosclerosis. This project achieved its main objectives through the identification of 

increased expression of Notch transcripts and protein at disease manifestation in mice 

and provided the rationale for early therapeutic blockade by administration of gamma 

secretase inhibitors to repress Notch signalling. Harvesting of primary podocytes proved 

to be valuable in the identification of a Notch-specific signature at disease onset as we 

were able to investigate a homogeneous population of cells. 

 

The research, described herein, has provided me with the opportunity to present my 

findings at local, national and international meetings which afforded me the opportunity 

to network with fellow researchers in related fields of research. Future funding has been 

secured to investigate the role of Notch in mice carrying mutations relevant to human 

disease. My research, reported herein, is now published in a well-regarded scientific 

journal, and provides the foundation for future work to examine Notch as a new 

therapeutic strategy for WT1-related glomerular disease. This project provides a basis 

for early intervention for treating kidney disease and possible future treatments to 

prevent disease manifestation. 
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Chapter 1 - Introduction 

 

The mammalian kidney plays a crucial role in fluid homeostasis by preserving pH and 

electrolyte balance. Each human kidney comprises about one million nephrons, 

consisting of a glomerulus which filters plasma to the proximal nephron (Figure 1.1) 

(Quaggin and Kreidberg, 2008). 

 

 

 
Figure 1.1. The kidney glomerulus 

(A) Sagittal section demonstrating the gross structure of the mammalian kidney. (B) Cortex: the 

nephron, showing the glomerulus, along with the Bowman’s capsule (BC), Proximal tubule (PT), 

Distal tubule (DT). Medulla: loop of Henle, collecting duct and ureter. (C) Kidney glomerulus: 

Endothelial cells (E). glomerular basement membrane (GBM), BC, capillary loops (CL), mesangial 

cells (M), podocytes (P), Bowman’s space (BS), PT. Adapted from (Mimura and Nangaku, 2010, 

Quaggin and Kreidberg, 2008) 

 

1.1 Glomerular development  
 

1.1.1 Podocyte morphology and maintenance of the glomerular filtration barrier 

(GFB)  
 

Podocytes are terminally differentiated specialised epithelial cells that comprise the outer 

layer of the GFB (Figure 1.2) (Quaggin and Kreidberg, 2008, Asanuma, 2015). They 

exert their function through a unique architecture consisting of a cell body from which 

cytoplasmic processes (primary) extend and further branch into secondary and tertiary 

foot processes (FPs), which then interdigitate with adjacent FPs of neighbouring cells 

(Figure 1.3A, B, D). 
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Figure 1.2. The glomerular filtration barrier (GFB) 
(A) The GFB is comprised of the podocytes, endothelial cells, and GBM. The slit diaphragm (SD) 

between the interdigitating podocyte FPs control plasma filtration. The glomerular capillaries filter 

blood through the endothelium and GBM into the SD to produce primary urinary filtrate. (B) TEM 

demonstrating the layers of the GFB: The GBM lies between the podocytes and endothelium. The 

endothelial cells are fenestrated (black arrows) and line the capillary lumen. The glomerulus also 

contains parietal epithelial cells (PECs), which line the Bowman’s capsule and the mesangium. 

Adapted from (Miner, 2012). 

 

Primary processes are composed of predominantly intermediate filaments and 

microtubules, while a tightly regulated actin cytoskeleton underlies the architecture of 

secondary and tertiary FPs (Reiser et al., 2000, Schell and Huber, 2017). The podocytes 

encase the glomerular basement membrane (GBM) with their FPs through integrins and 

dystroglycans, namely α and β-dystroglycan, giving them structural support (Jefferson et 

al., 2011). The podocyte slit diaphragms (SDs), along with the endothelia and GBM, 

allow filtration of small solutes and plasma water, whilst retaining larger molecules in the 

plasma. Figure 1.3C illustrates a 3-dimensional reconstitution of the podocyte SD. Under 

normal conditions, cell membranes extend as cross-strands to form pores, preventing 

large proteins from entering the urine. 

 

Loss of glomerular permselectivity is associated with leakage of plasma proteins into the 

urine (proteinuria) (Schell et al., 2014, Greka and Mundel, 2012, Jefferson et al., 2011, 

Scott and Quaggin, 2015). Proteinuric diseases are associated with a loss of podocyte 

interdigitations (effacement), (Figure 1.3D), which are morphologically considered to 

represent a reversal to an immature cellular phenotype. (Grahammer et al., 2013).  
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Figure 1.3. Podocyte morphology  
(A, B) Transmission Electron Micrograph (TEM) representing FPs enwrapping the glomerular 

basement membrane (GBM); (B) Highlighting the FP, with the SD. (C) Electron tomography 

displaying a 3D reconstitution of the SD (blue) spanning the filtration slit between FPs (green). 

The podocyte cell membranes extend as cross-strands (white arrows), forming lateral pores and 

merge centrally into a longitudinal central density (CD), preventing proteins larger than the pores 

to enter the urine. (D) Scanning electron micrograph (SEM) of normal podocyte structure in mice; 

primary and secondary processes interdigitate forming FPs, which cover the GBM and capillaries, 

allowing filtration to take place. (E) SEM displaying FP effacement due to podocyte injury (Waters 

et al., 2008, Wartiovaara et al., 2004)  

 

1.1.2 Overview of podocytes in kidney development 
 

Podocyte precursors are cuboidal in shape and are first identified within the S-shaped 

body at the onset of glomerulogenesis. A series of morphological events occurs during 

kidney development, following induction of the metanephric mesenchyme (MM) 

(Costantini and Kopan, 2010, Seely, 2017). Condensation of the MM around each UB 

tip ensues forming the pretubular aggregate (PTA) (Saxen and Sariola, 1987, Kreidberg 

et al., 1993, Stark et al., 1994, Carroll et al., 2005) (Figure 1.4). The PTAs undergo 

mesenchymal-to-epithelial-transition (MET) to develop into the epithelial renal vesicle 

(RV), subsequently morphing into the comma-shaped bodies, developing a cleft at their 

distal end to form S-shaped bodies. Cells which proximate to the S-shape cleft give rise 

to the podocyte cells, while cells in the caudal region are specified towards the proximal 

tubule. The S-shaped body vascularises at the proximal end to form a single capillary 

loop, eventually forming a network of capillary loops to become the glomerulus, assisted 

by endothelial and mesangial cells (Figure 1.4) (Stark et al., 1994, Saxen and Sariola, 



 

Page 18 of 214 

 

1987). The distal RV develops into proximal and distal tubules; proximal polarity 

establishes the proximal tubule segments and loop of Henle, distal segments form the 

distal tubules, which connect to the collecting duct (Kreidberg, 2010, Kreidberg et al., 

1993, Saxen and Sariola, 1987, Quaggin and Kreidberg, 2008). 

 

 
Figure 1.4. Kidney development 
Condensation of the metanephric mesenchyme (MM) leads to the formation of the renal vesicle, 

eventually becoming the comma- and S-shaped bodies. The podocyte precursors are expressed 

in the proximal medial region of the S-shaped body cleft (asterisk). Vascularisation of the S-

shaped body leads to a single capillary loop, ultimately forming a mature glomerulus through a 

network of capillaries. Adapted from (Saxen and Sariola, 1987). 

 

1.1.3 Podocyte differentiation 
 

The primitive podocytes are located within the inner aspect of the proximal cleft of the S-

shaped body (Figure 1.4). Columnar in shape, they are connected to each other at their 

lateral margins by tight junctions (Kreidberg, 2003, Quaggin and Kreidberg, 2008) 

(Figure 1.4, Figure 1.5) (Kreidberg, 2003, Quaggin and Kreidberg, 2008, Brunskill et al., 

2011). As the glomerular capillary loops develop, the podocyte precursors develop 

primary FPs which are anchored to the underlying GBM (Kreidberg, 2003) (Figure 1.5). 

Primary processes develop into secondary and tertiary FPs and become interdigitated 

with FPs of neighbouring podocytes (Figure 1.5C). 
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Figure 1.5. Podocyte differentiation  
(A) Podocyte progenitors (purple) begin as columnar epithelial cells adhered at their lateral 

margins, lying on the underlying developing glomerular capillary loop (blue). (B) Podocyte 

differentiation involves the dissociation of the podocyte cell bodies from one another, with 

cytoplasmic extensions arising from the basal aspect of the cell bodies. (C) Neighbouring foot 

processes become interdigitated with each other, wrapping around the capillary loops and forming 

the mature glomerulus. (D-F) Representative images showing corresponding stages of 

glomerular development. Adapted from (Quaggin and Kreidberg, 2008). 

 

1.1.4 The glomerular filtration barrier 
 

The formation of the GFB involves coordinated reciprocal interactions between the 

podocyte precursors and the developing capillary vasculature with interposition of the 

GBM. A single capillary loop is initiated in the glomerular cleft of proximal S-shaped body 

following the secretion of vascular endothelial growth factor-A (VEGF-A) by the podocyte 

precursors (Quaggin and Kreidberg, 2008, Eremina et al., 2003). The capillary loop 

further develops into six to eight loops whilst the podocytes produce structural 

components of the underlying GBM, which provides support to the developing glomerular 

vasculature. Platelet-derived growth factor- α and β (PDGF), produced by mesangial 

cells, also contributes to mesangial interposition in between developing capillary loops 

during glomerular development (Jefferson et al., 2011). Ultimately, the GBM lies 

interposed between the underlying fenestrated endothelium and an epithelial sheet 

composed of interdigitating podocyte FPs. 

 

Interaction between podocyte α3-β1 integrin and GBM β2 laminin mediates the 

attachment of the podocytes to the GBM (Foster et al., 2003, Eremina and Quaggin, 

2004, Sir Elkhatim et al., 2014, Eremina et al., 2007) (Figure 1.2). Podocyte precursors 

produce and secrete laminin-1 (α1β1γ1) and collagen IV (α1 and α2). As the GBM 

develops, the β1 chain of laminin is progressively lost and there is a shift to laminin 11 

(α5β2γ1) and collagen IV subunits (α3, α4, α5) at the capillary loop stage (Miner and 

Sanes, 1994, Abrahamson and St John, 1993, Miner, 1998). The α6 chain of collagen 
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IV is located in the Bowman’s capsule basement membrane. Mutations in collagen IV α3 

and α4 chains lead to Alport syndrome, a proteinuric kidney disease that arises from a 

defective GBM (Hudson et al., 1992). Mutations in LAMB2 are associated with Pierson 

syndrome, a proteinuric kidney disease which presents in the first year of life and is 

associated with glomerulosclerosis and defective GBM (Liapis, 2008).  
 

The podocyte SD comprises the size-selective layer of the GFB. Lying between the 

connecting FPs, SDs are composed of proteins such as nephrin (NPHS1), podocin 

(NPHS2) and CD2-associated protein (CD2AP) (Figure 1.6). 

 

 
Figure 1.6. Components of the podocyte foot process associated with proteinuria 
Proteinuria is a heterogenous disease which can be associated with mutations in genes encoding 

transcription factors involved in podocyte differentiation, cytoskeletal proteins important for FP 

integrity and SD function. Adapted from (Preston et al., 2017). 

 

1.1.4.1 Composition and function of podocyte foot processes 

 

Tertiary podocyte FPs play a critical role in the maintenance of glomerular 

permselectivity. In podocyte injury, proteinuria is associated with a broadening and 

flattening of podocyte FP, known as FP effacement (Ronco, 2007, Kerjaschki, 1994, 

Salant, 1994). FP morphology is regulated by a tightly structured intracytoplasmic 

network of cytoskeletal proteins such as actin, synaptopodin and myosin. Integrins, 

heterodimeric transmembrane receptors connect the FP actin cytoskeleton to the 

extracellular matrix of the GBM (Kikkawa et al., 1998, Kreidberg, 2000, Hynes, 2002). 

The main integrins that bind laminins are integrins α3β1 and α6β1, whereas integrins 

that bind to collagen are integrins α1β1 and α2β1. Deletion of integrin α3 in transgenic 

mice is associated with proteinuria and FP effacement in their first week of life (Sachs et 
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al., 2006). Moreover, deletion of integrin α3 and α5 laminin in mice leads to an inability 

to form FPs (Kreidberg et al., 1996). 

 

1.1.4.2 Development of the slit diaphragm (SD) 

 

SDs are located at the basolateral region of the podocyte FPs and prevent large 

molecular weight proteins such as albumin [MW 50kDa] from entering the urinary filtrate 

in Bowman’s capsule. SDs initiate as junctional complexes at the apical region of 

podocyte precursors within the proximal region of the S-shaped body. During podocyte 

maturation, these cell-cell junctions migrate to the basal aspect of the cell where the 

composition changes from that of a tight junction to a modified adherens junction at the 

basolateral aspects of the FPs. Numerous proteins participate in the formation of the SD, 

giving it its unique structure (Fukasawa et al., 2009). 

 

Nephrin 

 

Nephrin (encoded by NPHS1) is one of the structural components of the SD. A member 

of the immunoglobulin superfamily, nephrin, consists of a short intracellular domain, a 

transmembrane domain and a long extracellular domain with a proximal fibronectin type 

III-like motif (Tryggvason et al., 2006, Martin and Jones, 2018). The nephrin extracellular 

domain forms the main outline of the SD by forming homo and heterodimers with itself 

and NEPH1 to maintain SD integrity (Gerke et al., 2003, Sellin et al., 2003). NEPH1 has 

shown to impact podocyte integrity; earlier work revealed that in murine models, Neph1 

deficiency resulted in proteinuria and loss of kidney function (Donoviel et al., 2001). 

Tyrosine phosphorylation of the intracellular domain of nephrin regulates its interaction 

with the adaptor proteins, NCK1 and NCK2, which interact with the actin cytoskeleton 

and regulate FP morphology (Verma et al., 2006, Qin et al., 2009). Mutations in NPHS1 

causes congenital nephrotic syndrome (CNS), characterised by proteinuria in the first 3 

months of life and progressive kidney failure (Kestila et al., 1998, Ruotsalainen et al., 

1999, Holthofer et al., 1999, Holzman et al., 1999). CNS is a heterogenous condition 

associated with mutations in a variety of genes such as NPHS2, which encodes podocin, 

a known interactor of nephrin (Boute et al., 2000). 

 

Podocin 

 

Podocin (NPHS2) is a hairpin-like integral membrane 42kDa protein localised at the SD 

(Boute et al., 2000). It forms oligomers with the intracellular domains of nephrin and 

NEPH1, as well as with CD2AP (Schwarz et al., 2001, Huber et al., 2003b). Around 10-
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28% of all non-familial childhood recessive mutations of NPHS2 exhibit proteinuria and 

result in postnatal death (Roselli et al., 2002). Steroid-resistant nephrotic syndrome 

(SRNS) has been associated with the missense mutation, R138Q in NPHS2. 

Nphs2R140x/R140x transgenic mice exhibit proteinuria by postnatal day 10 and represent a 

useful mouse model of CNS (Philippe et al., 2008). 

 

CD2AP 

 

CD2AP, an intracellular protein that interacts with the C-terminus of nephrin, forms a 

network with both nephrin and podocin to connect the actin cytoskeleton to the SD (Shih 

et al., 2001, Schwarz et al., 2001). Structurally, it consists of a coiled coil domain and 3 

Src homology 3 domains (SH3). CD2AP interacts with p85, an intermediary protein and 

prevents podocyte apoptosis through Nephrin-induced AKT signalling (Huber et al., 

2003a, Dustin et al., 1998, Welsch et al., 2001). New-born Cd2ap-/- mice develop 

proteinuria and FP effacement during their first week of life (Shih et al., 1999). 
 

Other SD proteins 

 

SD maintenance is further supported by additional proteins, including membrane-

associated guanylate kinase inverted 2 (MAGI-2), calcium/calmodulin-dependent serine 

protein kinase (CASK), α-actinin, ZO-1 (Patrakka and Tryggvason, 2007). Large 

transmembrane proteins, FAT1 and FAT2, are also necessary for SD structure (Inoue et 

al., 2001). Fat1-/- mice lack assembled FPs and SDs and suffer from proteinuria. Fat2-/- 

mice also develop proteinuria (Ciani et al., 2003). Myosin 1E (MYO1E), a protein which 

binds actin during podocyte synthesis, is required for the filtration barrier. Mutations in 

this gene in both humans and mouse knockout models cause FP effacement and 

proteinuria (Krendel et al., 2009, Chase et al., 2012). SD proteins implicated in human 

proteinuric conditions are highlighted in Table 1.1. 

 

1.2 Podocyte injury 
 

Podocyte injury plays a major role in glomerulosclerosis (GS), the scarring of the 

glomerulus (Marshall and Shankland, 2006, Liapis et al., 2013, Dimke et al., 2015). GS 

is a leading global cause of end-stage renal disease (ESRD) and accounts for 5% to 

10% of paediatric and adult ESRD. GS can recur in 30% to 50% of kidney transplants 

and therefore, represents a major economic health burden (Saran et al., 2016). Podocyte 

injury results in proteinuria (specifically albuminuria) which, when associated with 

oedema and hypoalbuminaemia, manifests as nephrotic syndrome (NS). 
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1.2.1 Nephrotic syndrome (NS) 
 
NS is a clinical entity characterised by albuminuria, oedema, hypoalbuminaemia, and 

hyperlipidaemia. It affects 1-2 per 100,000 children (Liebeskind, 2014, McKinney et al., 

2001). Classification is often based on clinical response to steroid therapy; NS can either 

be steroid-sensitive or steroid-resistant (SRNS). SRNS is more typically associated with 

GS which is a progressive kidney disease for which there are no specific treatments 

available (Tasic et al., 2015, Hostetter, 2001). Four genes (NPHS1, NPHS2, LAMB2, 

WT1) have been linked to 85% of SRNS in patients aged less than 3 months and 66% 

1-year olds (Sadowski et al., 2015). Table 1.1 outlines genes encoding podocyte proteins 

identified in human NS. 

 
Table 1.1. Genes implicated in human NS 

Gene Protein Expression 
pattern 

Phenotype-associated 
mutations 

Reference 

SLIT DIAPHRAGM 

NPHS1 Nephrin Podocyte SD Autosomal recessive NS at birth 

or early life, congenital NS of the 

Finnish type, NPHS2 knockdown: 

FP effacement, mild proteinuria, 

narrowing of filtration slit 

(Kestila et al., 

1998, 

Bierzynska et 

al., 2014, Xu 

et al., 2014, Li 

et al., 2015)    

NPHS2 Podocin Podocyte FP Autosomal recessive NS, SRNS, 

minimal glomerular disease, 

familial FSGS 

(Relle et al., 

2011) 

PLCE1 Phospholipase 

CE1 

S-shape, cap 

loop, 

Cytoplasm of 

podocyte cell 

body 

Proteinuria, truncating mutations: 

DMS, missense mutations: FSGS 

(Jefferson 

and 

Shankland, 

2007, Hinkes 

et al., 2006) 

CD2AP CD2-

associated 

protein 

Anchors SD 

to actin 

cytoskeleton 

Familial FSGS, progressive renal 

failure leading to death  

(Tolvanen et 

al., 2015, 

Yaddanapudi 

et al., 2011, 

Perico et al., 

2016) 

TRPC6 Short transient 

receptor 

channel 6 

Podocyte 

membrane 

Familial FSGS, failed SD 

formation, proteinuria, GS 

Overexpression of TRPC6: 

podocyte injury, glomerular 

lesions 

(Dattilo et al., 

2008, 

Abkhezr and 

Dryer, 2014, 

Krall et al., 

2010) 
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Gene Protein Expression 
pattern 

Phenotype-associated 
mutations 

Reference 

ZO-1 Zonula 

Occludens-1 

SD Human diabetic kidney disease, 

global GS 

(Itoh et al., 

2014) 

LMX1B LIM homeobox 

TF 1β 

Regulates FP 

& SD 

development 

Nail patella syndrome (NPS) 

Low no. glomeruli and 

glomerulosclerosis, over 

thickening of GBM & abnormal 

podocytes lacking FP & SD 

(Zhou and 

Qin, 2012, 

Burghardt et 

al., 2013) 

CYTOSKELETAL 

SYNPO Synaptopodin Actin 

filaments in 

podocyte FP 

FSGS, HIV-associated 

nephropathy, idiopathic NS, DMS 

hypercellularity, MCD 

(Barisoni et 

al., 1999, Yu 

et al., 2016) 

ACTN4 α-actinin-4 Podocyte FP, 

bundling actin 

filaments 

AD Familial FSGS (Kaplan et al., 

2000, 

Dandapani et 

al., 2007, 

Khurana et 

al., 2012) 

MYO1E Myosin IE SD & FP Proteinuria, FP effacement, 

delamination of GBM, autosomal 

recessive SRNS, FSGS 

(Bi et al., 

2013, Sanna-

Cherchi et al., 

2011, Krendel 

et al., 2009, 

Chase et al., 

2012) 

INF2 Inverted formin 

2 

Actin 

filaments 

AD FSGS (Subramanian 

et al., 2016) 

KANK2 KN motif and 

Ankyrin repeat 

domain-

containing 

protein 2 

Basement 

membrane 

FSGS (Gee et al., 

2015) 

MYH9 Myosin-9 Podocyte 

primary FP 

Severe glomerular disease, 

cytoskeletal damage & podocyte 

detachment 

(Miura et al., 

2013, Yuan et 

al., 2016) 

*MET, Mesenchymal-epithelial transition; DDS, Denys-Drash syndrome; FS, Frasier syndrome; 

MM, metanephric mesenchyme, UB, ureteric bud; FSGS, Focal segmental glomerulosclerosis; 

DMS, Diffuse mesangial sclerosis; GBM, Glomerular basement membrane; FP, Foot process; 

SD, Slit diaphragm; SRNS, Steroid-resistant nephrotic syndrome; MCD, Minimal change disease; 

AD, Autosomal dominant 
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1.2.2 Phenotypes of podocyte injury 
 

Histological characterisation of podocyte injury based on light microscopy and 

ultrastructural analysis by electron microscopy includes minimal change disease (MCD), 

focal segmental glomerulosclerosis (FSGS), diffuse mesangial sclerosis (DMS), and 

collapsing glomerulopathy (CG) (Waldman et al., 2007, D'Agati, 2008). 

 

1.2.2.1 Minimal change disease (MCD) 

 

MCD is a condition where NS occurs in the context of normal kidney histology as 

assessed by light microscopy. Ultrastructurally, however, FP effacement is evident by 

electron microscopy. 90% of paediatric patients are steroid responsive and are 

considered to have MCD (Braden et al., 2000, Bahiense-Oliveira et al., 2004). Several 

studies have supported an immunological basis for MCD. In particular, the efficacy of 

rituximab in steroid-dependent NS points to a central role for B-lymphocytes in mediating 

podocyte dysfunction in MCD (Vivarelli et al., 2017) 

 

1.2.2.2 Focal segmental glomerulosclerosis (FSGS) 

 

FSGS is characterised by a segmental scar within the glomerulus, occurring in a focal 

part of the kidney cortex. Around 5-10% of children and adults with FSGS progress to 

ESRD (Malaga-Dieguez et al., 2015). Other features include hyalinosis, podocyte 

hyperplasia/hypertrophy, apoptosis and capillary tuft collapse (Figure 1.7). 

 

 
Figure 1.7. Focal segmental glomerulosclerosis  
Periodic acid-Schiff (PAS)-stained kidney biopsies demonstrating (A) Normal glomerulus with 

normal thin capillary loops and tubular epithelium (Ramidi et al., 2011); (B) FSGS tip variant.  

 

Five histologic variants of FSGS have been proposed: collapsing, tip, cellular, perihilar 

and non-specific (D'Agati et al., 2004). Collapsing variant includes global mesangial 

expansion and extracapillary epithelial proliferation/hypertrophy. Tip lesions affect the 

glomerular tuft region, showing abnormal cell adhesion to the Bowman’s capsule and tip; 
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sclerosis and hypercellularity are also displayed in this phenotype. Cellular lesions are 

present as segmental endocapillary hypercellularity (Meehan et al., 2013). Peri-hilar 

variants are characterised by segmental sclerosis of the capillary loops with matrix 

expansion near the hilum (Rosenberg and Kopp, 2017). 

 

1.2.2.3 Diffuse mesangial sclerosis (DMS) 

 

DMS is characterised by global expansion of the mesangial matrix, hypertrophic capillary 

walls and podocyte hyperplasia and involving all glomeruli (Figure 1.8). DMS can be 

isolated or part of a WT1-mutation syndrome, Denys-Drash syndrome (DDS), a SRNS 

with severe proteinuria, gonadal dysgenesis with male pseudohermaphroditism 

(Kucinskas et al., 2005, Patek et al., 1999). DDS patients have a tendency to develop 

Wilm’s tumour, leading to renal failure during the first three years of life. 

 

 
Figure 1.8. Diffuse mesangial sclerosis 
Periodic acid-Schiff (PAS)-stained kidney biopsies demonstrating (A) Normal glomerulus with 

normal thin capillary loops and tubular epithelium (Ramidi et al., 2011); (B) Mesangial sclerosis 

with capillary lumen obliteration and patent Bowman’s space.  

 

1.2.3 Mechanisms of podocyte injury 
 

Several mechanisms of podocyte injury exist and include apoptosis, dedifferentiation, 

detachment, epithelial-to-mesenchymal-transition (EMT) and occasionally cell cycle re-

entry with proliferation, all of which can lead to GS (Marshall and Shankland, 2006). 

 

1.2.3.1 Podocyte apoptosis 

 

Podocyte apoptosis plays a central role in the pathogenesis of FSGS (Niranjan et al., 

2008). High doses of diphtheria toxin administered to rats expressing the diphtheria toxin 

receptor in podocytes leads to podocyte loss (Wharram et al., 2005). A 20-40% reduction 

in podocyte number results in FSGS, highlighting a crucial role for podocyte number in 

the pathogenesis of FSGS (Wharram et al., 2005). Podocytopenia has also been 
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associated with diabetic nephropathy (Meyer et al., 1999, Steffes et al., 2001). Over-

expression of TGF-β1 in podocytes results in podocyte apoptosis and FSGS, implying 

that podocyte apoptosis is mediated by TGF-β1 activation (Schiffer et al., 2001). Several 

mouse models of GS show increased expression of podocyte TGF-β1 such as CD2AP-

deficient mice as well as streptozotocin-induced (STZ) murine diabetic nephropathy 

(Schiffer et al., 2004, Niranjan et al., 2008). Podocyte apoptosis has also been observed 

in animal models of type 1 and type 2 diabetes following AngII and TGF-β1 treatment 

(Jia et al., 2008). Mouse models of diabetes show a correlation between podocyte 

apoptosis and the onset of albuminuria (Susztak et al., 2006). Increased podocyte 

apoptosis was demonstrated in ROS/NADPH oxidase induced rat models of diabetes, 

where p38-MAPK and caspase-3 were activated to stimulate podocyte apoptosis. TGF-

β1 exerts its function through p38-MAPK and caspase-3, inducing podocyte apoptosis 

(Susztak et al., 2006) (Figure 1.9). 

 

 
Figure 1.9. Signalling pathways for induction of podocyte apoptosis 
Reactive oxygen species (ROS) generated from NADHP can induce podocyte apoptosis by 

activating signalling pathways via TGF-β, including p38-MAPK and Caspase-3. Podocyte 

apoptosis is also triggered through TGF-β facilitated p21. Adapted from (Fakhruddin et al., 2017). 

 

Streptozotocin (STZ)-induced rat models of diabetes, and high glucose podocyte 

cultures with increased podocyte apoptosis, express high levels of Vegfa, Ap1 and Bcl-

2. Inhibition of Vegfa regulated Ap1 and Bcl-2 expression, ameliorating podocyte 

apoptosis (Bai et al., 2014). Collagen 4a3-deficient mouse models of Alport nephropathy 

show increased expression of tumour necrosis factor-α (TNF-α) in the podocytes and 

other glomerular cells, with podocyte apoptosis (Ryu et al., 2011). 

 

Podocyte apoptosis is a feature of adriamycin (ADR) and puromycin aminonucleoside 

(PAN) nephropathy; treatment with a selective cAMP/PKA activator reduces podocyte 

apoptosis and caspase-3 activation (Li et al., 2014). Patients with membranous 

nephropathy show reduced miR-186 with elevated levels of caspase-3 (Sha et al., 2015). 

Coactivator-associated arginine methyltransferase 1 (CARM1) degradation via 
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ubiquitination has been shown to promote podocyte apoptosis through Notch1 activation 

in diabetes, and preservation of this enzyme may prevent podocyte apoptosis (Kim et 

al., 2014). 

 

1.2.3.2 Epithelial to mesenchymal transition (EMT) 

 

EMT is a process by which epithelial cells lose their epithelial features and gain 

mesenchymal characteristics. Podocytes are visceral epithelial cells which retain 

mesenchymal features (spindle shape morphology, vimentin), therefore they may not 

necessarily undergo EMT in a diseased state unless it is extremely severe (Figure 1.10). 

Podocyte EMT results in loss of epithelial polarity and altered SD, along with a 

rearrangement in the actin cytoskeleton (Valcourt et al., 2005). A key feature of podocyte 

EMT is represented by loss of the SD and effaced FP in diseased podocytes.  

 

 
Figure 1.10. Epithelial and mesenchymal features of podocytes 
Podocytes exhibit both epithelial and mesenchymal characteristics, as highlighted above. 

Adapted from (May et al., 2014). 

 

TGF-β1 triggers podocyte EMT in human immortalised podocytes, increasing levels of 

α-smooth muscle actin (α-SMA), causing a switch of P-cadherin to N-cadherin, and 

upregulating the EMT transcription factors SNAIL and SLUG (Ghiggeri et al., 2013). 

Mouse podocytes in vitro demonstrate the same phenotypic transformations when 

exposed to TGF-β1, showing suppressed P-cadherin, Zo-1, and Nphs1 expression and 

an upregulation of Desmin, along with Collagen I and Fibronectin, which may contribute 

to GBM thickening, a distinct feature of diabetic nephropathy (Li et al., 2008, Jefferson 

et al., 2008). The mesenchymal marker, Desmin, has also been observed in podocytes 

of glomerular diseases associated with podocyte injury (Zou et al., 2006). 
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1.2.3.3 Podocyte proliferation 

 

Podocyte cell cycle re-entry has been reported in both human and murine tissue sections 

characterised by GS (Barisoni et al., 2000, Wang et al., 2004, Srivastava et al., 2003). 

Cyclins are regulatory subunits that mediate kinase activity by partnering with cyclin-

dependent kinases (CDKs). There are 20 members of the CDK family and they consist 

of a serine/threonine-specific catalytic core, allowing them to associate themselves with 

cyclins (Lim and Kaldis, 2013). Histological analysis of kidney sections of collapsing 

FSGS has revealed increased podocyte cyclin A expression (Barisoni et al., 2000, Wang 

et al., 2004). Cyclin D expression has also been observed in podocytes of FSGS biopsies 

(Srivastava et al., 2003). Upregulation of cyclin-dependent kinase inhibitors (CKI) has 

been seen in patients and in in vivo models of glomerulopathy, suggesting a role for 

podocytes to maintain cell cycle quiescence. CKI upregulation of p21 and p27 was 

observed in podocytes of Zucker diabetic fatty (ZDF) rats (Hoshi et al., 2002). Moreover, 

patients with collapsing glomerulopathy (CG), FSGS, and MCD all had altered p27 and 

p21 expression (Srivastava et al., 2003). 

 

1.2.3.4 Circulating factors associated with podocyte injury 

 

Mechanisms of podocyte injury can also be associated with circulating factors, resulting 

in specific phenotypes, including primary FSGS (Rosenberg and Kopp, 2017). Recurrent 

FSGS with FP effacement and proteinuria was demonstrated in a patient with primary 

FSGS receiving a kidney transplant, whilst another patient with ESRD receiving the 

paired kidney did not develop the same phenotype (Gallon et al., 2012). Recurrent FSGS 

has been linked to circulating factors, cardiotrophin-like cytokine factor 1 (Savin et al., 

2015), apoA1b (Lopez-Hellin et al., 2013), anti-CD40 antibody (Delville et al., 2014), and 

suPAR (serum urine-type plasminogen activator receptor) (Wei et al., 2011). 

 

1.3 Molecular regulation of podocyte differentiation 
 

Transcriptional regulation of podocyte differentiation requires a complex interplay of 

several genes (highlighted in Table 1.2). 
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Table 1.2. Genes regulating early podocyte differentiation 

Gene Protein Expression 
pattern 

Phenotype-associated 
mutations 

Reference 

WT1 Wilms’ 

tumour 1 

MET, comma 

and S-shape, 

mature 

podocytes 

DDS, FS, WAGR syndrome 

Null Wt1: MM degeneration, no 

kidneys 

Truncated zinc finger 3: DDS 

Intron 9 splice donor site 

mutation: lack of +KTS – FS 

Homozygous mice lacking – 

KTS isoform: small kidneys 

FSGS, DMS 

(Kreidberg et 

al., 1993, 

Miller-Hodges 

and 

Hohenstein, 

2012) 

POD1 

(capsulin, 

epicardin) 

Podocyte-

expressed 1 

Condensing 

MM, 

reappears in 

S-shape 

Arrested glomerular 

development at capillary loop, 

hypoplastic kidneys 

(Quaggin et 

al., 1999, 

Sadl et al., 

2002, Schell 

et al., 2014) 

Kreisler 

(MAFB2) 

Kreisler MAF-

related 

leucine zipper 

homolog 

Capillary loop Arrested glomerular 

development at capillary loop 

stage 

Podocytes remain columnar 

shaped 

(Chugh, 2007, 

Quaggin, 

2002, Sadl et 

al., 2002) 

FOXC2/MF2 Mesenchyme/

mesoderm 

forkhead 2, 

Forkhead Box 

C2 

Condensed 

mesenchyme 

Late S-shape 

Renal defects, no abnormal 

podocytes   

Foxc2 mutations mouse: FPs 

are absent  

(Kreidberg, 

2003, 

Quaggin, 

2002), 

(Takemoto et 

al., 2006) 

HES, HEY1 bHLH TF S-shape Ectopic expression in mature & 

differentiated podocytes: DMS, 

FSGS 

(Niranjan et 

al., 2008) 

PAX2 Paired Box 2 Renal vesicle  FP effacement and proteinuria, 

FSGS 

(Wagner et 

al., 2006, 

Chugh, 2007, 

Dressler et 

al., 1993) 

OSR1 Odd-Skipped 

Related TF 

Patterning of 

MM and 

podocyte 

development 

Osr1 knockout – lack of MM (Tomar et al., 

2014) 

*MET, Mesenchymal-epithelial transition; DDS, Denys-Drash syndrome; FS, Frasier syndrome; 

WAGR, Wilms tumour aniridia syndrome; MM, Metanephric mesenchyme; FSGS, Focal 

segmental glomerulosclerosis; DMS, Diffuse mesangial sclerosis; FP, Foot process 
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1.3.1 Wilms’ tumour-1 (WT1) 
 

WT1 was initially discovered in 1990 as a predisposition gene for Wilms’ tumour (Call et 

al., 1990, Gessler et al., 1990); a paediatric cancer affecting 1 in 10,000 children 

(Charlton and Pritchard-Jones, 2016). Around 15-20% of Wilms’ tumour-associated 

diseases have been linked to mutations in WT1 (Charlton and Pritchard-Jones, 2016). 

While WT1 classically behaves as a tumour suppressor gene, collective research has 

revealed WT1 to be active in specific types of cancer, suggesting its role as an oncogene 

(Miller-Hodges and Hohenstein, 2012, Hastie, 2017). Extensive research has revealed 

WT1’s critical role in development, homeostasis, and disease (Kreidberg et al., 1993, 

Pelletier et al., 1991, Wagner et al., 2002, Kreidberg, 2010, Parenti et al., 2015, Hastie, 

2017). Moreover, its alternative isoforms allow WT1 to participate in diverse activities. 

 

1.3.1.1 WT1 structure and isoforms  

 

WT1 spans approximately 50KB on chromosome 11p13 with 10 exons, encoding a 

transcript of about 3KB. The mammalian WT1 is composed of at least 36 isoforms, all of 

which carry four carboxy-terminal Kruppel- type (Cys2-His2) zinc fingers on their C-

terminus that bind to both RNA and DNA (Call et al., 1990, Gessler et al., 1990, Hastie, 

2017) (Figure 1.11). WT1 has numerous isoforms, however the main focus has been on 

3 different amino acids: lysine, threonine, and serine (KTS) at the end of exon 9 that may 

be included or excluded and as a consequence determine function in relation to RNA 

(+KTS) or DNA binding (-KTS and +KTS). WT1 protein usually exists at an approximately 

2:1 ratio of +KTS:-KTS in humans (Dong et al., 2015a). Mutations in +KTS and –KTS 

isoforms, resulting in an imbalanced +KTS/-KTS ratio, were identified in patients with 

Frasier syndrome; a syndrome associated with FSGS and male-to-female sex reversal, 

highlighting the importance of the KTS isoforms (Barbaux et al., 1997). 

 

The alternatively spliced exon 5, resulting in proteins with or without the central 17 amino 

acids, and the upstream CTG start codon in exon 1 have also been explored. No 

phenotypes were identified in these murine models and further research in this area is 

required to assess the function of these isoforms (Ozdemir and Hohenstein, 2014, Natoli 

et al., 2002b). Likewise, phenotypes were not observed in mice lacking WT1 extended 

isoforms, including the alternative translation start site (Miles et al., 2003). 
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Figure 1.11. Structure of WT1 and its isoforms 
(A) WT1 comprises 10 exons, which generate a 3Kb mRNA. There are at least 36 isoforms 

derived from alternative splicing, RNA editing and alternative start translation sites. Two major 

splice site forms include proteins having/or lacking 17 amino acids at exon 5, and proteins 

including or lacking the three amino acids +/-KTS between zinc fingers 3 and 4, encoded by exons 

7 to 10. (B) WT1 protein highlighting the N-terminus containing proline- and glutamine- rich 

domains involved in transcriptional regulation, self-association and RNA recognition. Zinc finger 

domains show the KTS sites at the C-terminal. Two alternative splice sites: +17aa in the trans-

regulatory domain and +/- KTS between the third and fourth zinc fingers (brown triangles).  

Adapted from (Brown and Malik, 2001). 

 

1.3.1.2 Wt1 expression during kidney development 

 

Wt1 is first detected at low levels in the undifferentiated mesenchyme of the intermediate 

mesoderm at E9 in mice, and dramatically increases in the condensed mesenchyme 

before MET (Mundlos et al., 1993). Expression levels remain high during nephrogenesis, 

becoming restricted to the proximal region of the S-shaped body after the RV morphs 

into the comma- and S-shaped bodies. Wt1 expression is sustained in the podocytes 

throughout adult life (Kreidberg et al., 1993, Armstrong et al., 1993, Guo et al., 2002, 

Hastie, 2017) (Figure 1.12). 
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Figure 1.12. WT1 expression during kidney development 
(A) At the early stages of development, WT1 is highly expressed in the condensing metanephric 

mesenchyme, along with other transcription factors. WT1 expression is increased in the epithelial 

cells and is continually expressed in the mature kidneys. (B) Stages of podocyte maturation 

highlighting WT1 presence. (C) Podocyte morphology at each stage of development. Adapted 

from (Dong et al., 2015a, Schell et al., 2014, Saxen and Sariola, 1987). 

 

WT1 is crucial for the survival and proliferation of the mesenchyme and MET by 

activating genes, including Wnt4, forming the nephron from the cap mesenchyme 

(Davies et al., 2004, Essafi et al., 2011). It is upstream of transcription factors, Pax2, 

Sal1, which are required for MM proliferation and self-renewal, along with Six2 and 

Hoxd1. Moreover, WT1 regulates Bmper, an inhibitor of BMP-pSMAD signalling that 

promotes apoptosis in the mesenchyme and activates FGF signalling by regulating 

Fgf16/20 and Gas1; this permits MM survival. Wnt signalling is also increased via Wnt9 

expression, localised beneath the ureteric tip near the MM; at this stage, the β-catenin-

LEF/TCF complex collaborates with Six2 and Wt1 to activate Fgf8 and Wnt4, inducing 

PTA formation (Dong et al., 2015a). 
 

1.3.1.3 Human WT1-associated disorders 

 

WT1 mutations result in a wide range of renal manifestations, which eventually lead to 

ESRD. The renal disorders associated with WT1 mutations include DDS, FS, WAGR 

(Wilms’ tumour, Aniridia, Genitourinary malformation and mental retardation), and 

SRNS, all of which are congenital mutations (Bielinska et al., 2017). As previously stated, 

WT1 +KTS and –KTS isoforms are expressed at a ratio of around 2:1 in healthy human 
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kidneys (Hohenstein and Hastie, 2006). Mutations of this gene in humans have been 

associated with urogenital abnormalities. FS and DDS are rare inherited diseases 

characterised by SRNS, resulting in kidney failure, gonadal tumour and male 

pseudohermaphroditism (Ezaki et al., 2015). 

 

DDS is a rapidly progressive glomerular disease with renal failure that may occur before 

the age of 1. It is caused by WT1 point mutations, typically missense mutations within 

exons 8 or 9, which encode zinc fingers 2 or 3, resulting in an abnormal WT1 protein 

(Saylam and Simon, 2003, Miller-Hodges and Hohenstein, 2012, Drash et al., 1970). It 

is characterised by DMS. Phenotypes associated with this syndrome include 

genitourinary abnormalities, specifically male pseudohermaphroditism. DDS has also 

been linked to mutations in WT1 DNA-binding domains, affecting its function as a 

transcription factor and resulting in DDS phenotypes (Little et al., 1995). Histological 

analysis of DDS kidneys reveals effaced podocytes with regions of continued 

proliferation, where there is reduced WT1 protein expression, as well as increased 

expression of PDGFA and TGF-β1 (Yang et al., 2004a). Furthermore, subsequent data 

has revealed that DDS podocytes do not fully differentiate; they continue to express 

VEGF-A, a component which induces glomerular endothelial cell proliferation and 

differentiation, and is only expressed at the S-shaped body stage. Mature podocytes 

normally express the inhibitory isoform VEGF165b during podocyte differentiation. DDS 

patient biopsies completely lack this isoform, resulting in a delay in podocyte maturation 

with expression of the early podocyte S-shaped body components, including collagen IV 

and laminin B1 (Schumacher et al., 2007). 

 

FS is characterised by male pseudohermaphroditism and FSGS, leading to NS and renal 

failure by the age of 20. It is caused by splice-site point mutations in exon 9 of WT1, 

where patients develop gonadoblastoma (Barbosa et al., 1999). FS KTS isoforms are 

imbalanced, resulting in a lower expression of the +KTS isoform and a higher expression 

of the –KTS isoform, affecting the post-transcriptional regulation of WT1 and its binding 

partners and subsequently leading to gonadal and renal abnormalities (Hammes et al., 

2001, Hastie, 2001, Larsson et al., 1995, Barbaux et al., 1997, Koziell and Grundy, 1999, 

Klamt et al., 1998) (Figure 1.11). 

 

WAGR syndrome was the first disease linked to WT1, resulting from 11p13 deletions 

and leading to the loss of WT1 and PAX6 (Fischbach et al., 2005). WAGR patients 

commonly show FSGS in their biopsies, and around 50% develop Wilms’ tumour 

(Fischbach et al., 2005, Muto et al., 2002). Patients with FSGS who do not develop 
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Wilms’ tumour do not display proteinuria or NS, suggesting that the absence of one WT1 

allele may promote FSGS (Iijima et al., 2012). 

 

1.3.1.4 Transgenic mouse models highlighting the role of Wt1 during podocyte 

development 

 

WT1-associated kidney disease has been extensively investigated in vivo and in vitro, 

highlighting WT1’s relevance during podocyte differentiation and its role in kidney 

development and disease.  

 

A model for urogenital abnormalities was developed by Kreidberg by generating mice 

carrying a targeted mutation of the Wt1 gene (Kreidberg et al., 1993). Homozygotes of 

Wt1 mutation led to embryonic lethality. Furthermore, the UB ceased to develop at day 

11 gestation due to apoptosis of the metanephric blastemal. A later study performed 

RNAi experiments in culture to repress Wt1 expression at different stages during kidney 

development; early inhibition of Wt1 mimicked the Wt1-/- mouse of Kreidberg’s team. 

When Wt1 was ablated at a later stage, nephrons were incapable of differentiating and 

instead, proliferated aberrantly (Davies et al., 2004). Moreover, a gain of function study 

performed by another group examined the significance of Wt1 during the condensed 

mesenchyme stage in early kidney development; microinjection and electroporation of 

Wt1 in null murine kidney organ cultures resulted in normal nephron growth, highlighting 

Wt1’s importance during nephrogenesis (Gao et al., 2005).  

 

More recently, Kreidberg’s team examined Wt1 and fibroblast growth factor (FGF) 

signalling in nephron progenitor cells (NPC); they concluded that Wt1 controls FGF 

signalling by triggering a downstream target of Wt1, growth arrest-specific 1 (Gas1). 

ChIP-on-chip and ChIP-qPCR analysis revealed that Wt1 binds directly to a conserved 

DNA binding motif within the Gas1 promoter. In situ hybridisation (ISH) showed reduced 

Gas1 expression following oligonucleotide morpholino (MO) inhibition of Wt1. Loss of 

Gas1 expression in vivo resulted in hypoplastic kidneys with decreased nephron number, 

highlighting the requirement of Wt1 for Gas1 expression in the kidneys and its 

significance during kidney development (Kann et al., 2015a). 

 

ChIP and high-throughput sequencing using DNA from mouse glomeruli was performed 

to identify targets of Wt1 during podocyte differentiation. Deletion of Wt1 in a podocyte-

specific Cre-inducible mouse resulted in kidney haemorrhage and death 24 hours post-

birth (Dong et al., 2015b). Functional zebrafish studies identified wt1 targets, including 

nphs2, mafb and magi2 that were necessary for podocyte development (Dong et al., 
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2015b). Moreover, Kreidberg’s team investigated podocyte development and viability by 

performing RNA and ChIP sequencing; WT1 was found to regulate the podocyte 

transcriptome through binding to enhancers and promoters of target genes. Additionally, 

a podocyte transcriptional network between Wt1, Lmx1b, Tcf21, Fox-c and Mafb was 

identified, controlling podocyte gene expression (Kann et al., 2015b). 

 

Three different Cre-inducible systems to knockout Wt1 in transgenic mice were analysed 

before and after MET: 1) Nes-Cre;Wt1co/co ; Nes encodes the intermediate filament 

protein Nestin and is a transcriptional target of Wt1, 2) Pax8+/Cre;Wt1co/co; Pax8  encodes 

the paired box gene 8, which is initially expressed at the renal vesicle stage and 

maintained until the end of nephrogenesis (Bouchard et al., 2004), 3) Cre-GFP fusion 

construct inserted into the endogenous Wnt4 locus (Wnt4-Cre;Wt1co/co) (Shan et al., 

2010); Wnt4 is expressed in epithelial progenitors in the developing kidney. The loss of 

Wt1 at each stage of kidney development resulted in disrupted kidneys and post-natal 

death within 24 hours (Berry et al., 2015). Wt1 transcriptionally activates Wnt4 to induce 

MET, leading to nephron differentiation (Davies et al., 2004, Essafi et al., 2011), and 

deletion of Wt1 prior to MET results in the formation of aberrant kidneys that resemble 

human Wilms’ tumours, emerging from WT1 mutations (Berry et al., 2015). 

 

Mosaic and somatic ablation of Wt1 with constitutive expression of Igf2 were studied in 

mice to mimic a set of human Wilms tumours. H19 and Igf2 are closely linked and are 

from a large group of imprinted genes, located on chromosome 7 (Zemel et al., 1992). 

Their monoallelic expression patterns are conserved between humans and mice. In this 

study, a truncated form of WT1 was produced following Cre-knockout of the endogenous 

gene; mice also contained an H19- allele, resulting in the upregulation of the normally 

silenced copy of the maternal Igf2 known to be a target of WT1 activity (CreERTM;Wt1-

/fH19+/-m). Ablation of Wt1 blocked kidney development, with the formation of Wilms 

tumours at E13.5 following tamoxifen induction in experimental animals, but not controls 

(CreERTM;Wt1+/fH19+/-m, Wt1+/fH19-/-m;Wt1+/fH19+/-m). At E19, mutant kidneys displayed 

complete lack of nephron development with no glomeruli in comparison to the controls 

(Hu et al., 2011). In vivo mouse studies on Wt1 during early nephrogenesis and late 

nephrogenesis are summarised below (Table 1.3). 
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Table 1.3. Early nephrogenesis in transgenic mouse models of Wt1 gene manipulation 

Mouse strain Phenotype Reference 

Wt1-/-  Bilateral renal agenesis, embryonic 

lethality  

(Kreidberg et al., 

1993) 

Wt1R362X/+  DDS: 

Abnormally large capillaries, few 

capillary loops, present but irregular 

FP shape – no adverse effect on 

kidney development (E18) 

(Natoli et al., 2002a) 

Nes-Cre;Wt1Co/Co 
 

Disturbed nephron development, 

inhibited ureteric branching, reduced 

MM condensation; Intermediate cortex: 

reduced formation of RV, comma and 

S-shaped bodies; Inner cortex: 

reduced glomerulogenesis, 

tubulogenesis (E18.5) 

(Essafi et al., 2011, 

Berry et al., 2015) 

Wnt4+/creGFP;Wt1co/co 

 

 
Pax8+/Cre;Wt1co/co 

MET stage reduced, mesenchyme 

expansion; lack of glomerulogenesis 

and tubular maturation (E18.5); 

Normal levels of condensation, 

epithelisation; lack of 

glomerulogenesis and early 

tubulogenesis (E18.5) 

(Berry et al., 2015) 

 

CreERTM;Wt1-/flH19+/m No glomeruli, no differentiation of 

condensed mesenchyme after comma-

shaped body, block in nephron 

development (E19) 

(Hu et al., 2011) 

*DDS, Denys-Drash syndrome; MM, Metanephric mesenchyme; FP, Foot process; RV, Renal 

vesicle; MET, Mesenchymal to epithelial transition 

 

Hammes et al. studied the KTS domain between zinc fingers 3 and 4 (Hammes et al., 

2001). Heterozygous mutants of the +KTS isoform (+KTS+/-) developed GS and died 3 

months after birth. Homozygous mutants of both +KTS(-/-) and –KTS(-/-) did not survive 

longer than 24 hours post-birth due to a low number of glomeruli, reduced kidney size 

and haemorrhage. Conversely, Natoli et al. showed that no phenotypes were observed 

in mice lacking the 17 amino acid domain of exon 5 (Natoli et al., 2002b). 

 

An early study generated mice with amino acid substitution S395R, within exon 9. This 

resulted in a premature termination within zinc finger 3 of the WT1 protein, where a stop 

codon was introduced at 396, Wt1tmT396 (Patek et al., 1999). The truncated protein lacked 

the KTS insertion and zinc finger 4. Heterozygous mice exhibited global sclerosis and 
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protein casts within the tubules at four months of age compared to the wildtypes (Patek 

et al., 1999). A later study generated transgenic mice that carried the mutant form of Wt1 

in podocytes, where zinc fingers 3 and 4 were deleted (R362X truncation), and the 

constructs either contained or omitted exon 5 (Ex5/or Ex5-). Mice with the mutant form 

of Wt1, lacking exon 5 at E18, demonstrated abnormally large capillaries in the glomeruli 

with irregular shaped FPs (Natoli et al., 2002a). A subsequent study developed a mouse 

strain carrying the missense mutation Wt1 R394W (Wt1+/R394W) to recapitulate the genetic 

defect seen in DDS patients (Gao et al., 2004). By four months of age, all male 

heterozygotes exhibited proteinuria and GS compared to the wildtypes (Wt1+/+). The 

podocyte-specific genes and proteins, nephrin, podocin and podocalyxin were also 

reduced in the mutants compared to the wildtypes, with increased TGFβ1 and IGF1 

expression (Gao et al., 2004). 

 

Induced FSGS was reported in transgenic mice overexpressing the micro-RNA, miR-

193a. Doxycycline induction in 2-month old mice increased the expression of the miRNA 

by ten-fold, which repressed Wt1 expression resulting in FP effacement, glomerular 

lesions and albuminuria at 10 weeks of age. Rapidly progressive FSGS and death was 

observed at 12 weeks of age (Gebeshuber et al., 2013). Next, the investigators deleted 

Wt1 to test whether this excision would result in the same FSGS phenotype as the 

increased miR-193a. A Wt1 floxed gene (flanking exons 2 and 3, resulting in a premature 

stop) was combined with a podocyte-specific doxycycline inducible transcriptional 

activator (rtTA) and an rtTA-inducible Cre (LC1) in the transgenic mice, where Wt1 

deletion was induced by doxycycline treatment (Wt1fl/fl;Nphs2rtTA;LC1). Wt1 deletion at 

12 weeks post-doxycycline led to a downregulation of its target genes, Podxl and Nphs1 

as well as other podocyte-specific genes, and an FSGS phenotype with progressive 

albuminuria similar to that caused by miR-193a overexpression in comparison to the 

controls (Wt1fl/+) (Gebeshuber et al., 2013). Thus, WT1 is a master regulator of podocyte 

differentiation and targeting miR-193a might be a potential therapeutic target in FSGS. 

 

WT1 targets have been investigated in differentiating podocytes by ChIPseq, exon 

arrays and genetic studies in mice (Lefebvre et al., 2015), where FOXC1 (Forkhead box 

C1), a transcriptional activator of WT1, was revealed to possess binding sites in a large 

section of WT1-bound regions. The SD protein, membrane-associated guanylate kinase 

(MAGI2), was also only seen when the +KTS isoform was predominant. Mice lacking this 

isoform resulted in glomerular injury (Lefebvre et al., 2015). This highlights the 

importance of WT1 KTS isoforms in podocyte differentiation and maintenance. In vivo 

mouse studies on Wt1 during late nephrogenesis are summarised below (Table 1.4). 
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Table 1.4. Late nephrogenesis in transgenic mouse models of Wt1 gene manipulation 

Mouse strain Phenotype Reference 
WT1(+KTS+/-) 
Frasier heterozygote 
 
 
WT1 (+KTS-/-) 
Frasier homozygote 
 
 
 
WT1 (-KTS+/-)  
KTS heterozygote 
 

WT1 (-KTS) 
KTS homozygote 

Severe mesangial sclerosis, proximal 

tubule dilation, protein casts, death 3 

months after birth 

 

Mildly reduced kidney size, local 

haemorrhage within kidney, less 

developed glomerular tufts, death within 

24hrs after birth 

 

Normal kidneys 

 

 

Severely reduced kidney size, reduced 

number of glomeruli, severe glomerular 

contraction, death within 24hrs after birth 

(Hammes et al., 

2001, Lefebvre et 

al., 2015) 

Wt1ex5n/ex5n No phenotypes reported in adult mice (Natoli et al., 

2002b) 

Nphs2-Cre; Wt1fl/fl Reduced glomeruli, kidney haemorrhage 

and death (24h post-birth) 

(Dong et al., 

2015b) 

Wt1+/R394W Proteinuria and GS (4 months old) (Gao et al., 2004) 

Wt1fl/fl;Nphs2rtTA;LC1 FSGS, albuminuria FP effacement (2 

weeks post-doxycycline) 

(Gebeshuber et al., 

2013) 

Wt1tmT396/+ Global sclerosis, podocyte hyperplasia, 

protein casts in dilated tubules (4 months) 

(Patek et al., 1999) 

Cre-ERTM+/-;Wt1f/f GS, protein casts in tubules, proteinuria, 

gonadal dysgenesis 

(Chau et al., 2011) 

* GS, Glomerulosclerosis; FSGS, Focal segmental glomerulosclerosis; FP, Foot process;  

 

1.3.1.5 Molecular mechanisms of WT1 action  

 

While WT1 acts as a transcriptional regulator by enabling the activation or repression of 

genes, reports have revealed an additional role as a post-transcriptional regulator where 

it can interact with RNA (Morrison et al., 2008). Most research proposes that the WT1  

-KTS isoforms are linked to DNA binding, whilst the +KTS isoforms interact with RNA 

(Toska and Roberts, 2014, Ullmark et al., 2018). That being said, DNA binding has also 

been associated with the +KTS isoforms, and –KTS isoforms can interact with RNA.  
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WT1 transcription and chromatin 

 

WT1 contains both transrepression and transactivation domains, which can repress or 

activate certain gene targets via WT1 dimerisation at the promoters (Toska and Roberts, 

2014) (Figure 1.13A). Wang et al. found that WT1 functioned as a repressor of a PDGFA 

promoter reporter when binding to elements both upstream and downstream of the 

transcription start site (TSS), whereas when it bound to only one of the sites it acted as 

an activator (Wang et al., 1993). WT1 not only self-interacts at its C-terminal region but 

has also been shown to bind via its N-terminus. 

 

 
Figure 1.13. Roles of WT1 in transcriptional and post-transcriptional regulation 
(A) WT1 can either transcriptionally activate or repress target genes depending on its binding 

partners. (B) Post-transcriptional regulation; WT1 can directly bind to mRNA 3’UTR regions, 

regulating RNA stability.  

 

Recent ChIP-ChIP and ChIP-sequencing data have revealed a number of WT1 

transcriptional target genes that interact with its –KTS isoform during kidney 

development, including Mafb, Nphs1, Nphs2 (Motamedi et al., 2014, Kann et al., 2015b, 

Lefebvre et al., 2015, Dong et al., 2015b, Hastie, 2017). Specific domains of WT1 can 

mediate transcriptional regulation or repression by interacting with transcriptional co-

regulators. One example is BASP1, which is expressed during kidney development. The 

interaction of BASP1 with the activator domain of WT1 leads to the formation of a 

repressor complex (Toska and Roberts, 2014). Additionally, WT1 has been shown to be 

sumoylated within its N-terminus, within its transcriptional repression domain. Small 

ubiquitin-related modifier-1 (SUMO-1) and ubiquitin-conjugating enzyme 9 (Ubc9) have 

been shown to interact with WT1. Phosphorylation of WT1 by protein kinase A and C 

(PKA, PKC) have also been identified in zinc fingers 2 and 3, affecting the ability of WT1 

to bind to DNA. WT1 phosphorylation can also influence the localisation pattern of WT1 
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from the nucleus to the cytoplasm, suggesting that WT1 transcriptional regulation can 

be negatively regulated by phosphorylation (Toska and Roberts, 2014). 

 

RNA binding and post-transcriptional regulation 

 

Early studies have shown that the WT1 +KTS isoform can bind to certain RNA 

sequences. Zinc fingers 1 and 4 have been associated with RNA binding. In particular, 

Igf2 has been found to bind to zinc finger 1 (Caricasole et al., 1996) as has Actinin alpha 

1 (Actn1) (Ladomery et al., 2003, Caricasole et al., 1996, Nurmemmedov et al., 2010, 

Bardeesy and Pelletier, 1998). During olfactory development, the proneural transcription 

factor, achaete-scute complex homologue-1 (Ascl1) mRNA is upregulated by WT1 +KTS 

(Wagner et al., 2005), highlighting the role of WT1 +KTS in mRNA regulation. 

Furthermore, the WT1-associated protein, WTAP and RBM4 (RNA binding motif protein 

4) interact with +KTS (Little et al., 2000, Ortega et al., 2003, Markus et al., 2006). UV 

crosslinking and sequencing in M15 kidney cells revealed a group of endogenous mRNA 

binding sites that are regulated by WT1 during kidney and cardiovascular development 

(Bharathavikru et al., 2017) (Figure 1.13B). 

 

1.3.2 Forkhead-box C1/2 (FOXC1/2)  
 

The mesenchyme/mesoderm forkhead 2-transcription factor/Forkhead box protein 2 

(MF2/FOXC2) is a member of the forkhead/winged helix family expressed in various 

embryo tissues (Kume et al., 2000). It is highly expressed during mesenchyme 

condensation and persists within podocytes at the late S-shaped body stage, and 

overlaps with FoxC1 (Kume et al., 2000). 

 

FOXC1 and FOXC2 transcription factors play critical roles in non-renal tissues, including 

the lymphatic system, eye and cardiovascular system (Motojima et al., 2017). 

 

1.3.2.1 Transgenic models of FoxC1/2 mutations 

 

Earlier studies revealed the involvement of FOXC2 in podocyte differentiation and GBM 

development (Takemoto et al., 2006). Former research in Xenopus uncovered a network 

of transcription factors involved in podocyte specification, including foxc2, wt1, hey1, 

tcf21 (pod1), lmx1b and mafb (Carroll and Vize, 1996, Ishibashi and Yasuda, 2001, 

Haldin et al., 2003, Simrick et al., 2005, Taelman et al., 2006). One particular study 

investigated the role of wt1 and foxc2 during podocyte development in Xenopus (White 

et al., 2010). Combined knockdown of wt1 and foxc2 using morpholinos resulted in 
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reduced podocyte gene expression and notch signalling during podocyte development 

was necessary for the accurate spatiotemporal arrangement of podocyte gene 

expression. Glomerular abnormalities have been associated with FoxC2 in FoxC2-null 

murine models (Motojima et al., 2016b). Reduced podocyte number was associated with 

double knockdown of either wt1a/rbpj or wt1a/foxc1a in zebrafish, when compared to 

just single knockdown of the respective genes (O'Brien et al., 2011), demonstrating the 

importance of their interactions in podocyte maintenance. Conditional knockout of Foxc2 

using Pax2-Cre mice results in kidney hypoplasia and glomerular cysts (Motojima et al., 

2016a). While reduced expression of Foxc2 leads to injured podocytes, overexpression 

of the gene results in disrupted SD protein markers, including ZO-1, as well as increased 

β-catenin activity, a pathway related to podocyte dysfunction (Datta et al., 2016). Mice 

carrying null-FoxC1 mutations, where both Foxc1 alleles (Foxc1ch/ch) lead to a truncated 

form FOXC1 protein, displayed hypoplastic kidneys with fewer glomeruli than controls 

(Komaki et al., 2013). Furthermore, increased FoxC2 expression induces EMT within the 

kidney tubular cells (Hader et al., 2010). Deletion of FoxC1/2 in adult mice leads to 

podocyte injury and glomerular sclerosis associated with increased proteinuria, 

proteinaceous casts and dilated tubules (Motojima et al., 2017). Table 1.5 summarises 

nephrogenesis in transgenic models of FoxC gene manipulation. 

 
Table 1.5. Nephrogenesis in transgenic models of FoxC gene manipulation 

Mouse model Phenotype Reference 

Foxc2-/-  Abnormal glomerular 

tufts 

(Takemoto et al., 2006) 

Foxc1ch/ch null  Ectopic budding and 

kidney hypoplasia  

(Komaki et al., 2013) 

Pax2-Cre;FoxC2flox/flox Glomerular cysts and 

kidney hypoplasia 

(Motojima et al., 2016a) 

Foxc1+/-;FoxC2+/- 
Foxc1-/-  

Duplex urinary system 

Hydronephrosis 

megaureter 

(Motojima et al., 2016b) 

ROSA26-
CreER;Foxc1fl/fl;Foxc2fl/fl 
 
 
Nphs1-Cre;Foxc1fl/fl;Foxc2fl/fl 

Albuminuria and 

segmental sclerosis 

Massive non-selective 

proteinuria 

Proteinaceous casts 

Mild tubular dilation 

Died before weaning 

(Motojima et al., 2017) 
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1.3.3 Other genes associated with podocyte development 
 

1.3.3.1 PAX2 

 

PAX2 (Paired Box 2) is a transcription factor member of the paired box family present in 

the mesoderm, giving rise to the metanephros. Pax2 expression is strong in the nephric 

duct before and during MM induction (Patel et al., 2014). Pax2 is expressed at the RV 

stage, and downregulated at the S-shaped body stage (Eccles, 1998, Sharma et al., 

2015, Dong et al., 2015a, Dressler and Woolf, 1999). 

 

Transgenic mice ubiquitously expressing Pax2 under the control of the cytomegalovirus 

(CMV) promoter show FP effacement and proteinuria (Dressler et al., 1993). 

Homozygous mutants of Pax2 results in a lack of UB development, eventually leading to 

renal agenesis (Patel et al., 2014). Human PAX2 mutations have also been linked to 

kidney abnormalities, including CAKUT (Congenital anomalies of the kidney and urinary 

tract) (Harshman and Brophy, 2012). Frameshift mutations of PAX2 can lead to 

papillorenal syndrome (PRS), an autosomal dominant disorder caused by a truncated 

PAX2 protein. This syndrome results in reduced nephrons and UB branching, leading to 

renal hypoplasia (Dureau et al., 2001). 

 

Both Pax2 and WT1 are believed to regulate one another following induction of the 

condensing MM. This relationship was assessed using mice carrying heterozygous 

mutations in both genes. Hypoplastic kidneys were observed in the compound 

heterozygotes compared to the wildtypes and fewer nephrons developed. Pelletier’s 

group discovered that the compound heterozygous mice, as well as Wt1-null mice, 

resulted in Pax2 phenotypes, suggesting that Wt1 and Pax2 interact with one another to 

form a molecular complex and the Wt1 alleles may be one of the modifiers of Pax2 alleles 

(Discenza et al., 2003). Earlier in vitro work showed that Pax2 contains WT1 binding 

sites and during kidney development, it may be a potential target of WT1 negative 

regulation (Dehbi et al., 1996, McConnell et al., 1997). 

 

1.3.3.2 POD1 

 

The basic-loop-helix-loop (bHLH) proteins are another family of transcriptional regulators 

of podocyte development. POD1 (capsulin/epicardin/Tcf21) was the first bHLH protein 

found in the developing kidney (Lu et al., 1998, Robb et al., 1998, Quaggin et al., 1999). 

POD1 is highly expressed during MM condensation and is downregulated in the renal 

vesicles during epithelialisation. It is re-expressed at the S-shaped stage within the 
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podocyte precursors. This gene is continuously expressed in fully differentiated 

podocytes in the adult kidney (Quaggin et al., 1998). Pod1-null mice have major renal 

abnormalities with arrested glomerular differentiation at the capillary loop stage and die 

at birth due to lung and cardiac defects (Quaggin et al., 1999). Selective knockout of 

Pod1 using the Cre-loxP system in mature podocytes in mice results in underdeveloped 

glomerulus with proteinuria and FSGS (Maezawa et al., 2014). 

 

1.3.3.3  Kreisler  

 

Kreisler (MAF-1, MAFB), a member of the basic domain leucine zipper family of 

transcription factors, is significantly expressed in the developing and mature podocytes 

at the capillary loop stage (Imaki et al., 2000). Mice homozygous for Maf1 mutation 

exhibit proteinuria and podocyte FP effacement with reduced Nphs1 and Nphs2 

expression (Sadl et al., 2002). Mafb has been found to be significant for podocyte 

differentiation and FP development (Moriguchi et al., 2006). An in vivo experiment 

overexpressing Mafb in podocytes of mice with diabetic nephropathy ameliorated 

albuminuria and protected podocyte number (Morito et al., 2014). Furthermore, 

transcriptomic analyses identified mafb to be a target gene of wt1 in zebrafish models 

(Dong et al., 2015b). ChIP sequencing data has also revealed strong WT1-associated 

peaks at Mafb, highlighting WT1’s importance in regulating Mafb (Lefebvre et al., 2015, 

Bharathavikru et al., 2017). 

 

1.3.3.4 LMX1B 

 

LMX1B, a member of the LIM-homeodomain family, is limited to differentiating podocytes 

from the capillary loop stage onwards. It is important during GBM development by 

regulating the type IV collagen gene as well as regulating other genes during podocyte 

maintenance (Morello and Lee, 2002). LMX1B mutations result in nail patella syndrome 

with 30-50% of patients developing kidney disease and around 5% developing ESRD 

(Sweeney et al., 2003). Chen et al. examined Lmx1b’s function in mouse limb and 

kidney, as dorsal-ventral limb patterning is known to be controlled by this gene. They 

showed that Lmx1b is necessary for dorsal limb fate specification and targeted disruption 

of this gene leads to nail and patellae absence, with glomerular proteinuria, GBM 

thickening and convoluted proximal tubules (Chen et al., 1998). LMX1B can interact with 

other podocyte genes to maintain normal podocytes; double knockdown of lmx1b and 

foxc using morpholinos in zebrafish interrupts podocyte development and co-

overexpression of both genes induces nphs2 expression in podocytes, emphasising 

LMX1B’s importance in podocyte integrity (He et al., 2014). 



 

Page 45 of 214 

 

1.4 Notch Signalling and glomerulogenesis 
 

The Notch pathway is a highly conserved cell-signalling pathway essential for the spatial 

patterning and homeostasis in embryonic and adult tissues and is important during renal 

organogenesis and podocyte differentiation (Bray, 2006, Bray, 2016). 

 

1.4.1.1 Notch components  

 

In mammals, there are four Notch receptors NOTCH 1-4 (N1-4) which are 

transmembrane type 1 proteins (Kovall and Blacklow, 2010, Kopan and Ilagan, 2009); in 

contrast only one Notch homolog exists in Drosophila (Figure 1.14). The extracellular 

domain of the Notch receptors (NECD) contains around 29-36 EGF-like tandem repeats 

(epidermal growth factor) and is glycosylated by glycosyltransferases in the endoplasmic 

reticulum (ER) post-cleavage of the N-terminus (Rana and Haltiwanger, 2011). Sugar 

modifications include O-fucosylation by Ofut1 (Pofut1 in mammals) followed by Fringe 

elongation with O-GlcNAc in the Golgi complex (Munro and Freeman, 2000, Moloney et 

al., 2000, Bruckner et al., 2000) (Figure 1.15). Receptor activation occurs in the ER by 

Rumi O-glycosylation (Poglut in mammals) (Acar et al., 2008). C-terminal to the ECD is 

a negative regulatory region (NRR) consisting of the Lin-12 Notch repeats (LNR) and HD 

(heterodimeric) motifs (Figure 1.14). The EGF domain of the receptor allows ligand 

interaction to take place between neighbouring cells (trans) and within the same cell 

(cis). 

 

Both proteolytic cleavage sites, S1 and S2, reside in the cysteine-rich LNR within the 

negative regulatory region (NRR). In the absence of the Notch ligand, the proteolytic 

cleavage site (S2) of the receptor is masked by the NRR, preventing activation of the 

Notch pathway (Weinmaster and Fischer, 2011). Cleavage of the S3 site takes place in 

the transmembrane domain (TMD) (Figure 1.14). The intracellular domain of the Notch 

receptor (NICD) consists of the RBPj association module (RAM), and nuclear localising 

sequence (NLS), which links the RAM to seven ankyrin repeats (ANK). Another NLS 

(NLS2) is located after the ANK repeats, followed by a transactivation domain (TAD) 

(Figure 1.14). The stability of the NICD is controlled by proline/glutamic acid/serine/ 

threonine-rich motifs (PEST), located at the C-terminus (Kopan and Ilagan, 2009, 

Yamamoto et al., 2014). The NICD also contains numerous post-translational 

modification sites for phosphorylation and ubiquitination (Fryer et al., 2004). The 

Drosophila NICD contains a poly-glutamine (Q)-rich domain, OPA domain, within the 

TAD (Wharton et al., 1985). 
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Figure 1.14. Notch pathway components 
Notch receptors contain Intracellular (NICD) and extracellular (NECD) domains. NICD: PEST 

(proline, glutamate, serine, threonine rich degradation motif), essential for proteasome-facilitated 

degradation of NICD; OPA (opa repeats); TAD (transactivation domain), involved in recruiting 

additional coactivators; NLS (nuclear localisation signals), ANK, seven ankyrin repeats and RAM, 

RAM domain, which interact with CSL (CBF, suppressor of Hairless, Lag-1) and Mam 

(Mastermind). NECD: NRR (Negative regulatory region) contains three LNR domains and a HD 

motif, where the S1 and S2 cleavage sites reside; TMD (transmembrane domain) is the S3 

cleavage site; EGF (epidermal growth factor) repeats, EGF 11-12 are essential for ligand binding, 

EGF 8 is associated with ligand selectivity, EGF 24-29 (Abruptex domain) negatively regulate 

signalling. The receiving cell contains Notch receptors that bind to Notch ligands. Notch ligands 

also contain EGF repeats; DSL (Delta-serrate-Lag2 domain); CR (cysteine rich region), TMD. 

Adapted from (Schwanbeck et al., 2011, Yamamoto et al., 2014). 

 

The Notch pathway consists of two families of ligands; the Delta-like family members, 

Delta-like 1, 3 and 4 (Dll1, Dll3, Dll4), and Jagged/serrate family members Jagged 1 and 

2 (Jag1, Jag2). The Notch ligands are also transmembrane type 1 proteins, which 

contain a DSL (Delta/serrate/LAG-2) motif at their N-terminus, the DOS domain (Delta 

and OSM-11) and EGF repeats (Kopan and Ilagan, 2009, D'Souza et al., 2010) (Figure 

1.14). Both ligands contain a PDZ (PSD-95/Dlg/ZO-1) binding domain at their C-

terminus, apart from Jag2 and Dll3 (Adam et al., 2013). Jagged ligands contain more 

EGF-like repeats than Delta-like ligands, and a cysteine-rich domain near the 

transmembrane domain (Sjoqvist and Andersson, 2017). 
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1.4.2 Notch signalling activation 
 

The Notch pathway is activated by inter-cellular cross-talk between a signal-sending cell 

and a signal-receiving cell, resulting from initiation of signalling in the Golgi Apparatus 

with eventual translation of Notch to the nucleus (Figure 1.15). The EGF domains of the 

NECD receptors undergo glycosylation by fucosyltransferases, including POFUT1 

(protein o-fucosyltransferase), subsequently followed by Fringe modification in the Golgi 

complex, where specific Fringes (Manic Fringe [Mfng], Lunatic Fringe [Lfng] and Radical 

Fringe [Rfng]) elongate the o-fucose chains, modifying the Notch receptors and allowing 

them to bind their ligands. 

 

 
Figure 1.15. The Notch pathway 

(1) Notch signalling is initiated in the Golgi apparatus where the receptor undergoes proteolytic 

cleavage at its S1 site, facilitated by furin proteases. (2) It is then transported to the cell surface 

membrane, where its extracellular domain binds with Notch ligands from the adjacent cell. (3) The 

Notch receptor is then proteolytically cleaved by ADAM metalloproteases, leading to endocytosis 

of the ECD into the ligand-expressing cell, followed by the release of the NICD with a hitched 

membrane. (4) NICD undergoes cleavage by gamma-secretase, leading to an active NICD. (5) 
Activated NICD translocates to the nucleus, interacting with CSL, forming a complex with MAML, 

RBPJ. (6) The active complex releases canonical Notch targets HES and HEY. Lack of NICD 

binding leads to CSL interacting with co-repressor. Adapted from (Suresh and Irvine, 2015). 

 

The NECD undergoes its first proteolytic cleavage (S1) in the Golgi complex, where the 

LNR is cleaved by furin-like proteases and a heterodimeric receptor with the NECD is 
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formed in the HD (Lake et al., 2009, Gordon et al., 2009) (Figure 1.15). The Notch ligands 

are translated in the ER and travel to the cell surface through the Golgi complex. 

Following Fringe modification, the Notch receptor transfers to the cell surface where it 

interacts with the ligand, and trans-endocytosis is activated into the signal-sending cell. 

Trans-endocytosis is triggered by E3 ubiquitin ligases, Neuralized (Neu), recognising 

delta-ligands or Mindbomb (Mib), recognising jagged ligands, which are necessary for 

ligand endocytosis (Yamamoto et al., 2014). This process creates a conformational 

change in the Notch receptor and reveals its S2 cleavage site, normally masked by NRR, 

which is cleaved by ADAM proteases. This allows Notch extracellular truncation (NEXT) 

to enter the active site where S3, within the TMD, is sequentially cleaved by γ-secretase 

(Jorissen and De Strooper, 2010). This cleavage releases the NICD, which translocates 

into the nucleus and forms a complex with the DNA-binding transcription factor CSL 

(RBP-jk in mammals, Su(H) in Drosophila) and coactivator mastermind (MAML1, 

MAML2, MAML3 in mammals, Mam in Drosophila) through its domains, RAM and ANK  

(Borggrefe and Liefke, 2012, Tanigaki and Honjo, 2010). Downstream canonical 

transcription factors, including Hairy/enhancer of split (HES and HEY) genes are then 

activated (Kopan and Ilagan, 2009, Liu et al., 2013, van Tetering and Vooijs, 2011, 

Yamamoto et al., 2014) (Figure 1.15). NICD absence results in the binding of CSL to its 

analogous sequence, leading to a recruitment of transcription corepressors, including 

Hairless, CtBP (C-terminal Binding Protein), and Groucho. These corepressors 

negatively regulate Notch target gene expression. 

 

Notch receptors are initially cleaved during exocytosis at site 1 (S1), regulating signal 

activity (Figure 1.15). Ubiquitination of the ligand takes place in the ICD and is controlled 

by E3 ubiquitin ligases including Mindbomb and Neuralized (Kopan and Ilagan, 2009). 

Lateral patterning during Notch signalling depends on positive (lateral induction) or 

negative (lateral inhibition) feedback. 

 

1.4.2.1 Notch glycosylation  

 

Notch modification by glycosyltransferases takes place in the Golgi complex where 

glycans are added to the EGF domains of NECD. The addition of glycans can either 

reduce or potentiate Ligand-mediated Notch signalling, depending on which EGF domain 

is being modified (Taylor et al., 2014). Table 1.6 highlights the glycosyltransferases that 

modify the ECD of Notch1. 
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Table 1.6. List of glycosyltransferases that modify Notch ECD  

Glycosyltransferase 
(drosophila/ 
mammals) 

Function EGF modification 

Ofut1/Pofut1 O-fucosyltransferase/ 

Chaperon activity 

Adds fucose to EGF 11-12 

Fringe/ 
Lunatic,Manic, 
Radical Fringe 

N-acetylglucosaminyl-

transferase 

Adds GlcNAc to 3’-OH groups of O-fucose 

EGF 11-12 

Rumi (Ogut1)/ 
Poglut1 

O-glycosyltransferase Add glucose to EGF 16-20 

Shams/ 
(GXYLT)1, 
(GXYLT)2 

O-xylosyltransferase Adds first xylose to xylose on O-glucose 

*EGF, epidermal growth factor; GlcNAc, N-acetylglucosamine. Adapted from (Rana and 

Haltiwanger, 2011) 

 

Notch O-fucosylation 

 

Notch modification involves addition of O-fucose or O-glucose to the EGF repeats within 

the extracellular domain of the receptor. Enzymes involved in this process include 

POFUT1 (Protein O-Fucosyltransferase 1), which are located and function within the 

Golgi complex (Figure 1.15, Table 1.6). O-glucose addition is carried out by the enzyme 

O-glucosyltransferase, POGLUT, encoded by Rumi, and finally, O-GlcNAc, a type of O-

glycosylation occurring on hydroxyl amino acids of the EGF repeat, is added by Fringe. 

(Rana and Haltiwanger, 2011). O-fucosylation can occur on EGF12 as well as other EGF 

repeats, which may play a vital role in Notch activation (Ge and Stanley, 2008). Amongst 

the 36 EGF repeats of the Notch receptors, 20 of them have O-fucosylation sites, thus 

Fringe modifications can take place in any of these residues. 

 

The Fringe proteins (β3-N-acetylglucosaminyltransferases) 

 

Fringes are β3-N-acetylglucosaminyltransferases that transfer a GlcNAc to O-fucose 

residues in the Golgi complex, and play a crucial role in activating the Notch pathway 

through specific ligand binding (Okajima et al., 2003, Moloney et al., 2000, Taylor et al., 

2014, Bruckner et al., 2000). There are three Fringe proteins that mediate Notch 

signalling; Lunatic (LFNG), Manic (MFNG) and Radical Fringe (RFNG), all of which 

elongate the O-fucose chain of the Notch transmembranes (Table 1.6, Table 1.7). 
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Table 1.7. Fringe-mediated glycosylation of Notch 1 

Fringe 
proteins 

Notch 1 EGF domains 
EGF6 EGF8 EGF12 EGF26 EGF36 

Lfng - Jag1 + Dll1 +Dll1, +Jag1 -Dll1, -Jag1 - Jag1 

Mfng - Jag1 + Dll1 + Dll1, 

+Jag1 

-Dll1, -Jag1 - Jag1 

Rfng NM 

 (+Jag1, 

+Dll1) 

+ Dll1 + Dll1 +Dll1, +Jag1 NM 

(+Jag1, + 

Dll1) 

*NM, not modified by Fringe; +/-, ligand binds/ligand does not bind. Adapted from (Kakuda and 

Haltiwanger, 2017) 

 

1.4.3 Ligand-independent Notch signalling 
 

1.4.3.1 Deltex-induced Notch activation  

 

Notch ligand-independent signalling is activated through the binding of Notch ICD and 

Deltex (Dx), promoting Notch endocytosis (Baron, 2012) (Figure 1.16). Notch 

endocytosis can be blocked by an early endosome component, RAB5, downregulating 

Notch signalling. Dx-induced Notch activation requires assistance of particular 

components to allow Notch trafficking into the late endosome. These components are 

the Adaptor-protein-3 (AP-3) complex and the HOPS (Homotypic fusion and vacuole 

protein sorting); AP-3 transfer NICD to the late endosomal and lysosomal vesicle 

membranes (Peden et al., 2004), HOPS is involved in late endosome maturation and 

fusion to the lysosome (Rink et al., 2005). With the help of these complexes, Notch is 

co-expressed with a constitutively active form of RAB7, allowing Notch to relocate to the 

late endosomes and upregulating Notch activity (Wilkin et al., 2008, Morohashi and 

Tomita, 2013, Baron, 2012). 
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Figure 1.16. Ligand-independent Notch activation 
The Notch pathway can be triggered through ligand-receptor binding (left) or ligand-independent 

activation (right). Ligand-independent activation of Notch involves the binding of Deltex (Dx) with 

NICD, inducing endocytosis of NICD from the early endosome (RAB5) to the late endosome 

(RAB7), promoted by HOPS and AP-3, regulating endosome maturity. The interaction of Dx with 

Su(Dx), Kurtz (Krz), and Shrub localises Notch into internal vesicles of the multivesicular bodies, 

downregulating Notch activity. Notch activity can also be triggered by S3 cleavage by presenilin 

post-NECD removal, where Notch is sorted to the late endosome, further requiring Rab7 and 

HOPs-fusion to the lysosome. During late endosomal maturation, ESCRT complexes are required 

to transfer Notch into multivesicular bodies, downregulating Notch signalling. 

 

1.4.3.2 Notch trafficking destinations associated with up or downregulation of signalling 

 

When Notch is no longer required for cell-to-cell signalling, it is marked for degradation. 

Coexpression of Dx with the suppressor of Deltex (Su(dx)) relocalises Notch into the 

multivesicular body and results in a downregulation of Notch activity (Wilkin et al., 2008). 

Without Su(dx), Dx induces Notch endocytosis and allows it to remain at the periphery 

of the late endosome, preventing it from relocalising to the multivesicular bodies (MVB) 

(Wilkin et al., 2008). Kurtz (Kz) is another protein that downregulates Notch activity 

through its co-expression with Dx. This stimulates receptor poly-ubiquitination of Notch 

and decreases the activity of the ESCRTIII (endosomal sorting complex required for 

transport) complex named Shrub, resulting in Notch downregulation (Mukherjee et al., 

2005). Polyubiquitinated proteins are recognised by the ESCRT complexes, which are 

known to regulate numerous membrane-bound receptors (Palmer and Deng, 2015). The 

distinct ESCRT complexes function in a serial manner to sort Notch into intraluminal 

vesicles (ILVs) of the MVB. Here, the MVB lumen cargo is transported to the lysosome 

lumen, where it becomes degraded (Palmer and Deng, 2015, Hori et al., 2012). 
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1.4.4 Expression of Notch pathway components during kidney development 
 

Notch plays a crucial role in podocyte cell fate induction and is involved in the initial 

patterning of the nephron, determining proximal versus distal fates in both mouse and 

Xenopus (White et al., 2010, Hartwig et al., 2010). 

 

Notch pathway components including NOTCH1-4, HES1 and HEY1 are expressed in 

podocyte progenitors at the S-shaped body stage. All components are no longer 

detected in terminally-differentiated podocytes (McCright et al., 2001) (Figure 1.17). 

Notch homologues and ligands involved in podocyte differentiation are highlighted in 

Table 1.8. 

 
Figure 1.17. Notch expression during podocyte differentiation 

At the S-shaped body of glomerulogenesis, Notch components Notch1 (N1), Notch2 (N2), Hes1, 

Hey1 are expressed. At the capillary loop stage of the differentiating podocytes, N1 and HES1 

become downregulated, while N2 and Hey1 expression remains. When the podocytes are 

terminally differentiated, all Notch components are downregulated. Adapted from (Aoife Waters, 

2009). 

 

During glomerulogenesis, numerous Notch components are expressed, including 

NOTCH1, NOTCH2 and the Notch ligands, DLL1 and JAG1. HES1 and HEY1 are 

expressed in the proximal domain of the S-shaped body and become increasingly 

reduced during terminal podocyte differentiation. NOTCH3 is mainly present in the major 

kidney blood vessels and glomerular tuft, whilst NOTCH4 is found in the vascular 

endothelia. JAG1 is seen in the proximal part of the S-shaped body along with DLL1, 

which is usually restricted to the middle segment (Table 1.8). Notch2 mRNA has also 

been detected in the comma-shaped bodies and tubules (McCright et al., 2001) and 

earlier work revealed that Notch2 was essential for proximal tubule fate during 

nephrogenesis (Cheng et al., 2007). 
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Table 1.8. Expression of the Notch components during glomerulogenesis 
Notch 
component 

S-shaped body Podocyte 
progenitors 

Endothelial 
progenitors 

Mesangial 
progenitors 

Notch 1 Middle + + - 

Notch 2 Proximal + - - 

Notch 3 Proximal - + + 

Notch 4 - - + - 

Jag1 Middle - +  + 

Jag2 - - + - 

Dll1 Middle - + - 

Dll3 - - - - 

Dll4 - - + - 

Hes 1 Middle + + - 

Hes 5 Middle - - - 

Hes 6 - - - - 

Hey 1 Middle + + - 

Hey 2 - - - - 

HeyL Middle - + - 

Lfng Middle - - - 
*Adapted from (Leimeister et al., 2003, Piscione et al., 2004, Chen and Al-Awqati, 2005)  

 

1.4.5 The role of Notch in kidney development 
 

1.4.5.1 Transgenic mouse models of Notch in kidney development and disease 

 

Numerous studies have investigated the role of the Notch pathway in mouse models 

during early (summarised in Table 1.9) and late nephrogenesis (summarised in Table 

1.10). 

 

Cheng et al., demonstrated the significance of Notch expression in the comma- and S-

shaped bodies (Cheng et al., 2003) by blocking the Notch pathway with a  γ-secretase 

inhibitor; UB branching, renal epithelial structures, glomerular podocytes and proximal 

tubules were reduced. Likewise, targeted deletion of the EGF repeat 14 in Notch2 

homozygotes (Notch2del1/Notch2del1) from the MM stage resulted in hypoplastic kidneys 

with no comma- nor S-shaped bodies and lack of mature glomeruli at E16.5 compared 

to wildtype glomeruli (McCright et al., 2001). Subsequent research revealed that 

NOTCH1 and NOTCH2 (N1 and N2) displayed differential expression patterns in the 

developing kidney; NOTCH1 was mainly expressed in the endothelial cells whilst 
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NOTCH2 was largely expressed in the MM, UB and vascular smooth muscle cells (Liu 

et al., 2013). By switching the NICD genomic sequences, new mice were generated 

carrying the genes N12 (N1 locus carrying N2ICD) and N21 (N2 locus carrying N1ICD), 

where they discovered that the ICDs were interchangeable and their ECDs were more 

responsible for the abundance of NOTCH2 during nephrogenesis. NOTCH2 binding 

affinity was higher than NOTCH1 at the cell surface and NOTCH2 ECD produced more 

NICD than NOTCH1 ECD. Heterozygous mice N1+/-;N221/- and homozygous N221/21 

carrying the N2 locus and lacking the N2ICD, still developed nephrons that were 

functional, however, Pax3-Cre;N2f/f;N112/12 mice lacking the N2 locus altogether did not 

develop nephrons and died within 24 hours of birth, suggesting a role for the ECD’s 

rather than ICDs during kidney development (Liu et al., 2013). Notch1 and 2 cleavage 

were further assessed using a Cre reporter mouse line (N1;CreLo and N2;CreLo), where 

the release of Cre depended on the release of the Notch ECD. Epithelial cells in the S-

shaped bodies and RV were detected in N2;CreLo;RosaCAG-EYFP mice, but not seen in 

N1;CreLo;RosaCAG-EYFP mice, indicating that Notch2 ECD is released more efficiently than 

Notch1 in developing nephrons. 

 

Additionally, Tomino’s team investigated the role of NOTCH2 during nephrogenesis in 

ADR-treated mice, representing models of NS and GS. NOTCH2 agonistic monoclonal 

antibody (mAB), NOTCH1 agonistic mAB and JAG1 antagonistic mAB were 

administered independently in mice post-ADR-induction. Proteinuria and GS were both 

improved following Notch2 activation by the mAB but no improvement was seen using 

the NOTCH1 agonistic mAB or JAG1 antagonistic mAB. Likewise, when NOTCH2 

activation was decreased in vitro, apoptosis was increased in the podocytes (Tanaka et 

al., 2014). Similarly, an increase in Notch2 activation has been linked with enhanced 

activation of the transcription factor Mafb (essential for podocyte differentiation), which 

has been shown to ameliorate albuminuria and phenotypes associated with diabetic 

diseases (Morito et al., 2014). NOTCH3 has also been detected in podocyte nuclei of 

patients with FSGS or lupus nephritis (Lasagni et al., 2010). Mice injected with 

nephrotoxic sheep serum (NTS) develop a rapid progressive glomerulonephritis (RPGN) 

with increased expression of Notch3 and its canonical targets. NTS-induced mice lacking 

Notch3 (Notch3-/-) resulted in reduced renal inflammation, proteinuria and uremia 

compared to the NTS/Wildtype mice (El Machhour et al., 2015). 

 

Presenilins (PSEN1 and PSEN2) are transmembrane proteins that are catalytic 

components of γ-secretase, which proteolytically cleave the Notch receptors to regulate 

Notch signalling. Psen1-deletion in mice leads to pre- or perinatal death, with somite 

segmentation defects associated with Notch1 (Wong et al., 1997). Mice with a double 
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knockout of Psen1 and Psen2 die at E9.5, with absence of somite patterning, similar to 

the Notch1 loss of function model and Notch1 and Notch4 double knockout mouse 

phenotypes (Conlon et al., 1995, Donoviel et al., 1999, Herreman et al., 1999, Krebs et 

al., 2000). Double knockout of Psen1 and Psen2 with a human PSEN1 transgene 

introduced into mice (Psen1-/-;Psen2-/-;PSEN1) supported the survival of the null 

embryos up until the perinatal stage, however, the mutant embryos were slightly smaller 

in size. Moreover, no S- or comma-shaped bodies were observed in E13.5 mutant 

kidneys compared to their littermate controls, suggesting that presenilins may play a role 

in the progression of pretubular aggregates towards the S- and comma-shaped bodies. 

By P0, kidneys lacked glomeruli and mice died within 24 hours (Wang et al., 2003). Notch 

signalling is also activated by E3 ubiquitin ligases. Mindbomb is an E3 ubiquitin ligase 

known to promote endocytosis of the Notch ligands during Notch signalling. Inactivation 

of the Mindbomb gene (Mib1) was induced specifically in the renal collecting duct by 

crossing Hoxb7-Cre mice, where Cre recombinase was expressed only in the UB, and 

exons 2 and 3 of Mib1 were floxed (Hoxb7-Cre;Mibf/f). P17 mice showed disrupted Notch 

activation with unilateral or bilateral hydronephrosis that had become more evident at 

P30 (Jeong et al., 2009). 

 

A former study analysed Notch1 and Notch2 function during nephron development and 

showed that Notch2 was more essential than Notch1 for proximal tubule fate (Cheng et 

al., 2007). Cre-mediated knockout of Notch2 in the kidney mesenchyme using a Pax3-

Cre mouse line was used to study the formation of proximal tubules (Pax3-

cretg/+;Notch2f/f). The mutant mice died 48 hours after birth, with smaller kidneys 

compared to the control heterozygote littermates (Pax3-cretg/+;Notch2f/+). Haemorrhage 

was detected in the interstitial spaces of the mutant kidneys, as well as a collapsed renal 

pelvis and flattened papilla. Furthermore, the Notch2-deficient kidneys formed distal 

tubules without developing podocytes or proximal tubules. To examine whether Notch2 

was adequate for nephron segmentation, without Notch1, a mouse model to delete 

Notch1 was generated, using a Pax2-cre;Notchf/∆1 line (where ∆1 represents a null allele). 

Notch1-deficient mice contained normally developed proximal tubules, suggesting that 

Notch1 is not required for proximal patterning of the nephron. Furthermore, Rbpj 

knockouts (Pax2-cre;Rbpjf/f) lacked glomeruli and proximal patterning, mimicking the 

Notch2-deficient mice. Constitutive expression of Notch1 ICD in undifferentiated nephron 

progenitors using Six2GFPcre line, at the cap stage before RV formation 

(RosaNotch/+;Six2-GFP:Cretg/+), was used to test whether Notch1 was able to compensate 

for the loss of Notch2 in the kidneys. Although proximal tubules developed, mice at E17.5 

displayed severely hypoplastic kidneys, with reduced UB branching and repressed distal 

tubule formation (Cheng et al., 2007). Subsequent research was performed on models 
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of DKD to identify the roles of Notch1 and Notch2 during the development of diabetic 

nephropathy (Sweetwyne et al., 2015). Conditional deletion of Notch1 in podocytes of 

NPHS2cre;Notch1fl/f mice protected the kidneys from streptozotocin-induced DKD with 

reduced podocyte dedifferentiation, whereas controls only carrying the Notch1 floxed 

gene (Notch1fl/f) and Notch2 knockout did not rescue DKD (NPHS2cre;Notch2fl/f), 

suggesting a distinctive role for Notch1 in podocytes during DKD progression. This was 

also supported by in vitro deletion of Notch1, resulting in reduced podocyte apoptosis 

and dedifferentiation. Notch1 deletion led to an increase in Notch2 expression, 

highlighting an interaction between both receptors (Sweetwyne et al., 2015). 

 

Recent research reported that the Notch pathway is not only important for proximal 

tubule formation but necessary for proximal-distal segmentation of the nephron (Chung 

et al., 2017). Chung et al. carefully examined the Notch pathway during the late stages 

of nephrogenesis by deleting both exon 1 of Notch1 (Notch1c/c) and exon 3 of Notch2 

(Notch2c/c) using a Wnt4GFPcre-activated Rosa EYFP reporter. The loss of function 

(LOF) experiment revealed a reduction in nephron markers, including the podocyte 

marker, Podocin, and proximal tubule marker, SLC34A1, and all nephron segments 

failed to develop. Although loss of Notch signalling still allowed epithelial cell transition, 

S-shaped bodies were not able to form compared to the controls. Transcription factors, 

LHX1 and HNF1B, both important for correct nephron segmentation, were expressed in 

lower amounts in the LOF mutant cells compared to the controls. A gain of function 

(GOF) experiment was subsequently carried out using the Six2GFPcre-activated Rosa 

EYFP/b-gal where NICD1 was constitutively activated. Following up on this study, Park’s 

team (Chung et al., 2017) used the same reporter line to see whether the nephron 

progenitors would only convert to proximal tubules and no other nephron segment. GOF 

Notch activated SIX2 progenitor cells not only developed into proximal cells, but a 

heterogeneous population of cells, including podocyte marker positive cells (WT1+ and 

MAFB+) were observed. Lhx1 and Hnf1b were ectopically expressed following GOF 

Notch expression, highlighting the importance of Notch signalling for the differentiation 

of nephron progenitors. To conclude, Notch is not only important for proximal tubule 

formation, but is required for the segmentation of the nephron. 

 

Hairy/enhancer of split (HES) play a significant role during early nephrogenesis; they are 

expressed in UB tips, condensed mesenchyme, and the comma- and S-shaped bodies. 

Haematoxylin/PAS-stained kidneys of Hes1 and Hes5 mutant mice (Hes1-/-, Hes5-/-, 

Hes1-/-;Hes5+/-, Hes5-/-;Hes1+/-, Hes5+/-;Hes1+/-) at E15-E17.5 showed no morphological 

difference in the kidneys compared to the wildtype mice. LTA-stained proximal tubules 

and E-cadherin-stained distal tubules/collecting ducts in all the mutants were similar to 
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the wildtypes. Double knockouts (Hes1-/-;Hes5-/-) were not analysed as they did not 

survive past E11.5, i.e. before nephron formation (Chen and Al-Awqati, 2005). 

 
Table 1.9. Early nephrogenesis in transgenic mouse models of Notch gene manipulation  

Mouse model Phenotype  Reference 

Notch2del1/Notch2del1  - UB branching with formation of 

metanephric vesicles (E13.5) 

- Arrested glomerular differentiation, 

absent capillary tuft and disorganised 

clumped cells, capillary tuft replaced by 

capillary aneurysm structure within 

Bowman’s capsule (E16.5) 

(McCright et 

al., 2001) 

Psen1-/-;Psen2-/-;PSEN1 
 

- Normal induction of UB and condensed 

mesenchyme (E12.5) 

- S- and comma-shaped bodies absent, 

only PTA/RV present (E13.5) 

- Absent mature glomeruli (E15.5-P0). 

Death within 2hrs of birth 

(Wang et al., 

2003) 

Hes1+/-;Hes5-/-,  
Hes1-/-;Hes5+/- 

Hes1-/-, Hes5-/-, Hes1+/-;Hes+/-  

No obvious morphological difference; 

smaller kidneys (E15-E17.5) 

(Chen and Al-

Awqati, 2005) 

Pax2-cretg/+;N1f/∆1  

 
Pax2-cretg/+;Rbp-jf/f 
 

RosaNotch/+;Six2-GFP;Cretg/+ 
 

- No impact on proximal fates; 

histologically normal (E12.5) 

- Failure to produce proximal tubules, 

death (E13.5) 

- Hypoplastic kidneys, reduced UB 

branching  

(Cheng et al., 

2007) 

N1I2/I2;N221/21 
 
N2-CreLo;RosaCAG-EYFP 
 
N1-CreLo;RosaCAG-EYFP 

- Normal RV, SSB, endothelial cells 

(E17.5) 

- Normal RV and SSB development 

(E17.5) 

- Reduced RV and SSB cell expression 

(E17.5) 

(Liu et al., 

2013) 

R26EYFP/+;N1c/c;N2c/c;Wnt4Cre  Failed nephron segment formation, both 

proximal and distal, failed S-shaped 

body formation (E16.5)  

(Chung et al., 

2017, Yang et 

al., 2004b, 

McCright et al., 

2006) 

* UB, Ureteric bud; PTA, Pretubular aggregate; RV, Renal vesicle; SSB, S-shaped body 
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Table 1.10. Late nephrogenesis in transgenic mouse models of Notch gene manipulation 
Mouse model Phenotype Reference 
Notch2del1/Notch2del1 

 
Notch2del1/Jag1dDSL 

- Perinatal death, hypoplastic kidneys, 

capillary aneurysms (P0) 

- Hypoplastic kidneys, reduced number of 

glomeruli, absent capillary tufts, capillary 

aneurysms (P6) 

(McCright et al., 

2001) 

Pax3-cretg/+;Notch2f/f Glomeruli and proximal tubules lost. Distal 

tubules lacking podocytes, spotty 

haemorrhage in interstitial space, collapsed 

renal pelvis, flattened papilla (P2) 

(Cheng et al., 

2007) 

NPHS2-rtTA; tetO-ICN1 Podocyte apoptosis, FSGS, proteinuria, 

advanced stage of tubular dilation (4weeks 
old) 

(Niranjan et al., 

2008) 

Nphs1-Cre(+);Notch-IC  

 
DMS, podocyte proliferation, FP 

effacement, reduced podocyte gene and 

protein expression (P0-P42) 

(Waters et al., 

2008) 

Hoxb7-Cre;Mibf/f Unilateral and bilateral hydronephrosis, 

distal renal tubular defects (P17) 

(Jeong et al., 

2009) 

Pax8-rtTA;tetO-ICN1 Sever tubule degeneration, dilation, 

interstitial fibrosis (10 weeks old) 

(Bielesz et al., 

2010) 

N1+/-;N221/- & N221/21 

Pax3-Cre;N2f/f;N112/12 
- Normal nephron formation (P0) 

- No nephron development, death within 

24hrs of birth 

(Liu et al., 2013) 

Notch3-/- NTS-induced 
nephropathy 

Significant decrease in proteinuria and 

uremia, decreased crescentic glomeruli and 

fibrin deposits, reduced renal inflammation 

(El Machhour et 

al., 2015) 

NPHS2cre;Notch1fl/fl vs 
NPHS2cre;Notch2fl/fl 
STZ-induced DKD 
 

-N1 reduction leads to podocyte apoptosis 

and dedifferentiation reduced, mesangial 

expansion ameliorated (20 weeks old) 

- Proteinuria and increased mesangial 

expansion (20 weeks old) 

(Sweetwyne et 

al., 2015) 

 

* FSGS, Focal segmental glomerulosclerosis; DMS, Diffuse mesangial sclerosis; FP, Foot 

process; NTS, nephrotoxic sheep serum; STZ, streptozotocin 

 

Overexpression of Notch activity is associated with renal disorders 

 

Ectopically activating Notch in developing and terminally differentiated podocytes in 

murine models can lead to proteinuria and GS (Niranjan et al., 2008, Waters et al., 2008). 

Tubulointerstitial fibrosis has been demonstrated in Pax8rtTA;tetOICN1 doxycycline 
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induced mice, where NOTCH1 ICD was overexpressed in mature tubular epithelial cells. 

Histological analysis revealed severe tubular dilation and degeneration with interstitial 

fibrosis, similar to that of patient TIF phenotypes (Bielesz et al., 2010). Genetic and 

pharmacological inhibition of the Notch pathway has been tested in several models of 

kidney disease (summarised in Table 1.11). 

 

Pharmacological inhibition of the Notch pathway using a γ-secretase inhibitor in PAN-

induced NS rats prevents podocyte apoptosis and albuminuria (Niranjan et al., 2008). 

Additional research however, revealed that γ-secretase inhibition exacerbated GS in 

ADR-induced FSGS mice (Lasagni et al., 2010) instead of ameliorating the disease. 

Niranjan et al. also deleted the canonical Notch target, Rbpj in DN mice and revealed a 

reduction in podocyte injury with less proteinuria (Niranjan et al., 2008). 

 

Immunohistochemistry of human kidney biopsies with proteinuric nephropathy show 

expression of NOTCH1, NOTCH2 and JAG1 expression in the podocytes (Murea et al., 

2010). Patients with HIVAN show an increase in NOTCH1 and NOTCH4 in their kidney, 

and γ-secretase inhibition of this pathway ameliorates kidney injury and hinders podocyte 

proliferation in a Tg26 mouse model of HIVAN (Sharma et al., 2013). Xiao et al. used γ-

secretase inhibition with Dibenzazepine (DBZ) in unilateral ureteral obstructed (UUO) 

C57/Bl6 mice, where upregulation of Notch1, 3, 4, Nicd and the downstream targets 

Hes1 and HeyL were observed (Xiao et al., 2014). DBZ treatment post-UUO significantly 

reduced Notch expression, ameliorated renal fibrosis and inhibited the TGF-β pathway. 

A more recent study conditionally-deleted podocyte-specific Notch1 in mice with DKD 

induced by uninephrectomy and STZ injection. Notch1 deletion protected the mice from 

DKD. Podocyte dedifferentiation was prevented by maintaining Nphs1, as well as 

reducing levels of snai1 observed post-TGFβ1 treatment. Notch2-deleted mice did not 

show improved podocyte dedifferentiation nor apoptosis; on the contrary, Notch2 

deletion enhanced podocyte apoptosis. These results revealed that Notch1 plays a non-

redundant role in podocytes during DKD progression (Sweetwyne et al., 2015). Likewise, 

constitutive activation of Notch1 in the podocytes resulted in albuminuria and GS 

(Niranjan et al., 2008). 
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Table 1.11. Inhibition of Notch signalling in murine glomerular disease 
Treatment Outcome Reference 
Tg(NPHS2-cre);Rbpjfl/fl STZ-
induced 
 
 
GSIXX-treated PAN-rats 

- Reduced albuminuria, 

mild mesangial expansion, 

reduced diabetic kidney 

injury 

- Reduced albuminuria, 

effaced FPs rescued, 

reduced GS 

(Niranjan et al., 2008) 

GSIXX-treated TG mice 
 

- Improved glomerular 

lesions, reduced scarred 

glomeruli and cystic 

dilatations, improved 

tubulointerstitial disease, 

reduced proteinuria 

(Sharma et al., 2013) 

Nphs1-Cre/ROSA26-
loxP/NEP25 (cFSGS)  
DBZ-treated  

- Urinary casts in cortex, 

tubulointerstitial damage, 

increased histological 

damage- worse than 

vehicle 

(Ueno et al., 2013) 

DBZ treatment on UUO-
induced C57BL6  

- Collagen deposition 

decreased in kidney 

tissues; renal fibrosis 

prevented 

(Xiao et al., 2014) 

DBZ treatment on FA- 
induced TIF  
DBZ treatment on UUO- 
induced TIF  
PEPCKcr;Rbpjfl/fl genetic 
deletion in FA-induced  

- Reduced tubular 

dilatation and TIF  

- Less severe fibrosis, 

attenuated TIF 

- Reduced TIF 

(Bielesz et al., 2010) 

 

ADR- induced nephropathy  

J1 antagonistic mAb and N1, 
N2 agonistic mAb 

- Reduced proteinuria, 

glomerulosclerosis, and 

podocyte apoptosis 

(Tanaka et al., 2014) 

* FP, Foot process; GS, Glomerulosclerosis; TIF, Tubulointerstitial fibrosis; FA, Folic acid; ADR, 

Adriamycin; PAN, Puromycin aminonucleoside; STZ, Streptozotocin; DBZ, Dibenzazepine; GSI, 

γ-secretase inhibitor; UUO, Unilateral ureteral obstruction 

 

Morrissey et al. showed an upregulation of Jag1/Notch1 in CKD and fibrosis through 

early gene expression profiling in mice (Morrissey et al., 2002). Folic Acid (FA) 

administration into mice causes acute renal failure and tubulointerstitial fibrosis (Bielesz 

et al., 2010). Jag1 and Notch1 transcripts were upregulated in FA-treated mice. Notch 
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target, HeyL, was reduced following  γ-secretase inhibition using DBZ. To validate the 

effect of DBZ, another tubulointerstitial model was tested UUO, resulting in increased 

Notch pathway transcript levels. DBZ again reduced Notch target expression and 

tubulointerstitial fibrosis. They followed this up by looking at tubular epithelial cell (TEC)-

specific Rbpj deletion, where floxed Rbpj mice were crossed with PEPCK Cre mice in 

order to knockout Rbpj in TECs (PEPCKcr;Rbpjfl/fl). After FA treatment, tubulointerstitial 

fibrosis was ameliorated in Rbpj knockout mice compared to FA-treated wildtype controls 

(Bielesz et al., 2010). Further research discovered that NOTCH1 expression was 

amplified in hyperplastic parietal epithelial cells (PECs) of human collapsing FSGS 

(cFSGS) and in mouse models of cFSGS (Nphs1-Cre/ROSA26loxp/NEP25). Transgenic 

mice expressing human CD25 on the podocyte (NEP25) develop progressive proteinuria 

and GS following administration of the immunotoxin (LMB2). Pharmacological inhibition 

of Notch with γ-secretase inhibitors did not influence disease (Ueno et al., 2013). 
 

1.5 Interplay between WT1 and Notch in vertebrate nephrogenesis 
 

Notch and WT1 both play a vital role during spatiotemporal kidney development and 

temporal deletion of these genes can severely impact the kidney. The expression of the 

Notch signalling genes, notch1, serrate1, and delta1 has been examined in developing 

pronephros of Xenopus (McLaughlin et al., 2000). Overexpression of Notch signalling in 

the pronephric anlage disrupts tubule formation and results in an increase of both pax2 

and wt1 expression (McLaughlin et al., 2000), highlighting the relationship between 

Notch signalling and WT1 expression. 

 

Davidson’s team (O'Brien et al., 2011) examined the correlation between transcription 

factors wt1 and hes1 during podocyte differentiation in the zebrafish pronephros. Whole 

mount in situ revealed an expression pattern of both genes at different stages of 

development; an increase in wt1 was associated with a downregulation of hey1 (O'Brien 

et al., 2011). Moreover, the significance of Notch during early kidney development was 

demonstrated in the Xenopus pronephros. Xenopus hairy-related transcription factor 

(xhrt) and xhes genes had distinct dynamic patterns during glomerulus development. 

xwt1 antisense morpholinos (MO) in the Xenopus resulted in reduced levels of xhrt1 

expression in the pronephros, highlighting the relationship between WT1 and Notch 

signalling during glomerular development (Taelman et al., 2006). Furthermore, as 

previously cited, earlier work in mice investigated the role of Notch in podocytes at 

various stages of development by inducing the Notch1 ICD in mature and embryonic 

podocytes at the capillary loop stage (NPHS2-rtTA;tetO-ICN1 and Nphs1-Cre(+);Notch-

IC). Depending on the time-point, either FSGS (mature podocytes) or DMS (capillary 
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loop) manifested in the kidney, which was caused by podocyte apoptosis or 

dedifferentiation (Niranjan et al., 2008, Waters et al., 2008). These mice also showed a 

downregulation of podocyte genes, Wt1, Nphs1 and Nphs2. Wt1 knockdown in 

embryonic mouse kidney explants results in a significant reduction of HeyL transcript, 

highlighting the association between Wt1 and the Notch pathway (Hartwig et al., 2010). 

Xenopus morpholino studies demonstrating spatiotemporal expression through the 

systemic elimination of podocyte transcription factors (wt1, foxc2, hey1, mafb, lmx1b) 

discovered that podocyte maturation required three main participators, wt1, foxc2 and 

Notch signalling (White et al., 2010). Likewise, WT1 and the Notch homologue, along 

with sonic hedgehog (SHH) and Wnt pathways, have been shown to function as part of 

a molecular network during nephrogenesis (Dormoy et al., 2012). Figure 1.18 illustrates 

the interplay between the Notch pathway and WT1 during podocyte differentiation. 

 

 
Figure 1.18. Transcriptional regulation of podocyte development 
Podocyte progenitors express high levels of Notch signalling components including Rbpj and 

NICD, as well as Wt1 and FoxC1/2, which induce Hey expression. Notch signalling decreases as 

podocytes mature, whilst Wt1 expression levels increase. Higher levels of Wt1 complexing with 

FoxC1/2 trigger the activation of Podocalyxin. Wt1 expression may regulate the Notch pathway 

by sequestering Rbpj, inhibiting downstream expression of Notch signalling. Adapted from 

(O'Brien et al., 2011). 

 

Valsartan, an angiotensin II type 1 receptor antagonist, was investigated on STZ-induced 

diabetic mice, where Notch signalling was upregulated (Gao et al., 2016). Following 

Valsartan treatment, podocyte injury was ameliorated with reduced expression of the 

Notch signalling genes and increased Wt1 gene expression (Gao et al., 2016). Opposing 

findings recently revealed that overexpression of Notch activity during pronephros 

development in Xenopus increased wt1 expression (Katada and Sakurai, 2016). Further 

research examined Notch signalling during zebrafish kidney development and identified 
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that jag1b, rbpj, jag2b, notch1a and notch3 are necessary to control the separation of 

wt1 expressing podocytes and interrenal cells (Chou et al., 2017). 

 

1.6 Scope of the thesis 
 

Reciprocal interaction between WT1 and Notch has been documented during kidney 

development. Moreover, specific mutations in the WT1 gene cause SRNS in humans 

and manifest as glomerular damage characterised by two distinct histological patterns – 

FSGS and DMS. Studies have also shown that ectopic activation of Notch in both mature 

and differentiating podocytes can also lead to FSGS and DMS in animal models.  

 

As such, the aim of this study was to investigate whether podocyte Notch activation 

participates in Wt1 glomerulopathy in both early and late stages of glomerulosclerosis. 

An inducible mouse model whereby podocyte-specific deletion of Wt1 occurred following 

Tamoxifen administration was used for experiments. 

 

The objectives were to:  

 

• Establish and characterise the histological and biochemical phenotype of a Wt1-

deleted model at different stages of disease; 

• Functionally characterise Notch pathway expression in the inducible model of 

glomerulosclerosis; 

• Determine the underlying mechanisms of podocyte injury; 

• Determine whether pharmacological inhibition of Notch could abrogate GS in the 

inducible Wt1-floxed model; and 

• Characterise Notch activation in human NS. 

 



 

Page 64 of 214 

 

Chapter 2 – Materials and Methods 

2.1 Transgenic mouse strains 
 

Breeding and maintenance 
 

Breeding pairs were set up once mice reached sexual maturity; females at 6 weeks of 

age and males at 8 weeks. Pups were then ear clipped 10 days post-birth and 

genotyped. 

 

CAGG promoter-driven Cre-ERT2TM mice (Cre-ERTM+/-, MGI 2182767) were crossed with 

homozygous Wt1 conditional mice, where the first exon of Wt1 is flanked by loxP sites 

(Wt1loxp/loxp, MGI 4849364) (Chau et al., 2011). Following tamoxifen induction, the Wt1 

gene is excised through the Cre-recombinase mechanism and the kidneys are 

examined. 

 

Frozen embryos were sent from Professor Hohenstein’s group and were re-derived at 

the Kathleen Lonsdale Building (KLB), UCL. Cre-ERT2;Wt1 mice were from a C57Bl/6j 

background. 

 

Nphs2;rtTA transgenic mice were used for primary podocyte cultures and Hes1 

overexpression experiments. These mice carry the reversed tetracycline transactivator 

under the human Podocin (NPHS2) promoter, which targets expression in the podocytes 

of the kidney. Nphs2;rtTA transgenic mice (MGI 3629962) were given to us from Dr. 

David Long’s group in the Nephro-Urology Unit, Institute of Child Health, Great Ormond 

Street Hospital. 

 

Nphs2;rtTA mice were also crossed with the transgenic mice carrying the tetracycline-

responsive promoter element (tetO) achaete-scute family BHLH Transcription Factor 

(Ascl1), which was kindly sent to us from Professor Thomas Reh’s group, University of 

Washington (Ueki et al., 2015). 

 

All animal work was carried out under the permission of the Home Office project license 

2518, PIL 70/23192. After the mice were re-derived at the KLB, UCL, Mice were housed 

and bred in the animal facilities at the Western Labs, UCL Institute of Child Health, Great 

Ormond Street. 
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Wt1 deletion in Cre-ERTM+/-;Wt1loxp/loxp transgenic mice 
 

In vivo Wt1 deletion was achieved through tamoxifen induction (1mg/40g body weight 

for 3 days; Sigma) using 21G syringe needles in 5-week-old mice. Following tamoxifen 

induction, Cre-recombinase induced site-specific recombination between the loxP sites 

of the Wt1 gene, resulting in a ubiquitous Wt1 null allele. Recombination PCR was 

carried out in order to confirm successful Wt1 deletion (Figure 2.1). Mice were sacrificed 

at days (D) 4, 5, 6, 8 and 12 post-tamoxifen induction (P.I.) and both kidneys were 

removed under sterile conditions. Mice were injected for three consecutive days with a 

low dose of tamoxifen in order to facilitate recombination of Wt1 and to minimise 

tamoxifen toxicity and maximise survival. This time-course was established following a 

careful examination of the phenotype at every time-point until D12 P.I. Mice were too 

sick to be examined after D12 P.I., therefore were sacrificed at this time-point for humane 

reasons. Urine was collected at each time-point in order to measure albumin/creatinine 

protein levels at the pre-proteinuric, proteinuric and GS stages. 

 

 
Figure 2.1. Wt1 exon 1 deletion. 
Following tamoxifen I.P., the floxed Wt1 exon 1 is deleted by Cre-recombinase binding with loxP 

sites, resulting in a 400bp fragment. Primers F2 and R4 span loxP at 5’ site of the conditional Wt1 

exon 1, giving a 327bp size. Pre-Tamoxifen, F2 and R1 display the full 2110bp. Post-tamoxifen, 

F2 and R1 result in 400bp. 
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GSI-IX treatments in Cre-ERTM+/-;Wt1loxp/loxp transgenic mice 

 

In this study, podocyte Notch activation has been shown to be a feature of early disease, 

therefore, γ-secretase inhibitor was introduced to mice to prevent Notch signalling at the 

onset of GS. IP treatments of γ-secretase inhibitor, GSI IX (N-[N-(3,5-difluorophen-

acetyl-L-alanyl)]-S-Phenylglycine t-butyl ester (DAPT) (Sigma-Aldrich D5942) were 

given late D4 P.I. in 5-week old Cre-ERTM+/-;Wt1loxp/loxp (Cre-ER+/-;Wt1f/f) mutants as a 

prophylactic intervention (100μg GSI IX/40g body weight) and again the next morning 

(16 hours later). Vehicle controls were treated with Dimethyl sulfoxide (DMSO, W387520 

Sigma-Aldrich) administered by IP (100μg GSI IX/40g body weight) at the same time 

point (D4 P.I.) to Cre-ER+/-;Wt1f/f mutants as controls. For late treatments, an IP injection 

with the γ-secretase inhibitor-GSI-IX DAPT was given to Cre-ER+/-;Wt1f/f mutants 

(100μg/40g mouse body weight) on the evening of day 7 post-tamoxifen induction (D7 

P.I.) and treated again with DAPT the next morning (16hrs later). Urine was collected 

from the metabolic cages at least 8 hours post-second DAPT treatment and mice were 

then sacrificed. PAS-stained specimens were scored for severity of glomerulosclerosis 

following nephrectomy. GSI-DAPT and vehicle-treated Cre-ER+/-;Wt1f/f transgenic mice 

were compared. 

 

Overexpression of Ascl1 in TetOAscl1;NPHS2;rtTA transgenic mice 
 

Doxycycline treatment was achieved orally by either water or chow (2mg/ml in 5% 

sucrose water, 4mg in chow) in 4 week-old mice. The aim was to overexpress Ascl1 in 

the podocytes (podocin-specific) by using a nuclear mCherry reporter under the 

tetracycline-responsive element (tetO-Ascl1-ires-mCherry) (Ueki et al., 2015) to 

investigate whether overexpression of Ascl1 induces a glomerular phenotype. Following 

doxycycline treatment, the NPHS2-rtTA system stimulates Ascl1 expression in the 

podocytes. Mice were treated with 2mg/ml doxycycline in 5% sucrose water for 2 weeks 

and sacrificed. Urine and nephrectomies were collected to examine the phenotype. 

Furthermore, 4 week-old mice were treated with 4mg doxycycline in chow for 2, 4 and 6 

weeks and then sacrificed. It was hard to control the amount of doxycycline intake in 

each mouse, however, to ensure that all mice were receiving doxycycline, levels of water 

and chow were checked daily and replaced every other day. Urine and kidneys were 

then collected and examined for a phenotype. Ex vivo experiments were also performed 

where podocytes from the doxycycline-treated mice were isolated following kidney 

harvest (described later in this chapter). Following 6 days of podocytes in culture, cells 

were treated with doxycycline (4µg/ml) to overexpress Ascl1. RNA and protein analyses 
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were performed to confirm overexpression. The schematic of the experiment is 

presented in Figure 2.2. 

 

 

 
Figure 2.2. Transgenic TetOAscl1;Nphs2;rtTA experiment outline 

 

2.2 Genotyping 
 

To confirm Wt1 floxed genotypes, mice were ear-clipped 10 days post-birth and earclips 

were incubated in tail lysis buffer (Table 2.1) + 400 µg/ml proteinase K (Sigma P6556-

500mg) overnight at 56ºC, followed by enzyme inactivation at 95°C for 5 minutes. 

Isopropanol was then added at equal volumes for precipitation and centrifuged at 4°C 

for 25 minutes at 16,000xg. The supernatant was discarded and 70% ice-cold ethanol 

was added to each sample and centrifuged at 4°C for 5 minutes at 16,000xg. The 

supernatant was carefully removed and the DNA were air-dried for one hour at room 

temperature (RT) upside down. 150µl Milli-Q H2O was added to each pellet. Samples 

were genotyped using polymerase chain reaction (PCR). The remaining samples were 

stored at 4˚C. 

 

Genotyping post- in vivo treatments 
 

Mouse tail tips were collected and lysed (Table 2.1) to determine recombination and Wt1 

deletion using the genomic primers (Table 2.2) and the same PCR programme as 

genotyping (Table 2.3). A combination of 3 primers were used to amplify the floxed region 

of Wt1 and to highlight Cre-recombination and Wt1 excision following tamoxifen 

induction (Figure 2.1). 
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Table 2.1. Tail lysis buffer 
Tail lysis buffer Total 500ml Final conc. 
1M Tris pH 8.0 5ml 10mM 

5M NaCl 10ml 100mM 

0.5M EDTA pH 8.0 10ml 10mM 

10% SDS 25ml 0.5% 

ddH2O 450ml 450ml 

 500ml  

 

Polymerase Chain Reaction (PCR) and genotyping 
 

The Illustra beads kit (GE Healthcare; 27-9559-01) was used to genotype the conditional 

Wt1 floxed alleles (Table 2.2) with a final concentration of 1µM primers and <100ng 

genomic DNA in a total volume of 25µl. Primers were used to amplify CreERT2 DNA 

sequence using the BIOTAQ DNA polymerase kit (Bioline, BIO-21040) containing 

<100ng genomic DNA, 0.4µM primers, 1XNH4 buffer, 1.5mM MgCl2, 0.8mM dNTP, 

0.2µ/µl Taq DNA polymerase in a total volume of 25µl. PCR reactions were run using a 

thermocycler with the programme shown in Table 2.3 and products were run on a 2% 

agarose gel to identify their sizes. TetOAscl1;rtTANPHS2 mice were genotyped using 

genomic primers amplifying Nphs2rtTA and IRES-Ascl1 (Table 2.2) and the PCR 

programme shown in Table 2.4. 

 
Table 2.2. Genomic primers for genotyping 

Gene Primer Sequence (5’-3’) Target Size (bp) 
Cre_F GCATTACCGGTCGATGCAACGAGTGATGAG  Cre expressing 

300 Cre_R GAGTGAACGAACCTGGTCGAAATCAGTGCG  

Nphs2;rtTA F CGCACTTCAGTTACTTCAGGTCCTC  455 

Nphs2;rtTA R GCTTATGCCTGATGTTGATGATGC  

hAscl1 F CATCTCCCCCAACTACTCCA  Ascl1 IRES 400 

IRES R GAGGAACTGCTTCCTTCACG  

Wt1_F  TGGGCATTTCTGCTAAGCG   

Wt1_R4 AGCTGCGGGGTCACTTTAG Wt1_F + 

Wt1_R4 

spanning 

5’ loxP 

Wildtype 299 

Mutant 327 

Wt1_R1 TAAGAGTCAACGCCTGGTG Wt1_F + 

Wt1_R1 

Wildtype 2000 

Mutant 2110 

Recombination 

400 
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Table 2.3. PCR programme for genotyping Cre-ERT2 and Wt1 floxed alleles 

Cycle Step Temp Time No. cycles 
Initial denature 94°C 2 minutes 1 

Denaturation 

Annealing 

Extension 

94°C 

58°C 

72°C 

15 seconds 

30 seconds 

1 minute 

 

35 

Final Extension 72°C 

4°C 

5 minutes 

Hold 

1 

 
Table 2.4. PCR Programme for genotyping TetOAscl1;rtTANPHS2 transgenic mice 

Cycle Step Temp Time No. cycles 
Initial denature 94°C 1 minute 1 

Denaturation 

Annealing 

Extension 

94°C 

58°C 

72°C 

30 seconds 

30 seconds 

30 seconds 

 

35 

Final Extension 72°C 10 minutes 1 

 

2.3 Glomerular isolation 
 

Four week-old mice, both male and female from available litters (controls, heterozygotes 

and mutants), were sacrificed. Dissected fresh kidney cortices were decapsulated and 

minced in ice-cold Hank’s balanced salt solution (HBSS; Gibco/Invitrogen 24020-133). 

Following a thorough rinse with fresh HBSS, they were filtered through a 100μm cell 

strainer (BD Falcon 352360) into a chilled 50ml falcon tube in order to remove any large 

tubular fragments from passing through. HBSS was added to a total of 6mls, which was 

then divided amongst 2 chilled 15ml falcon tubes. Each tube contained 2.2ml Percoll 

(Amersham 17-0891-02) and was mixed thoroughly. Glomeruli were separated across 

the Percoll gradient by centrifugation at 200xg for 10 minutes at 4°C (Johns et al., 1987). 

The top layer of the gradient contained glomeruli, which was verified microscopically. 

The top 1-2mls of the gradient was passed again through a 100μm cell strainer to prevent 

any large tubule fragments from filtering through in order to achieve pure glomeruli. The 

filtrate was then passed through a 40μm cell strainer (BD Falcon 352340) to trap the 

glomeruli. Glomeruli were either lysed on the cell strainer to collect RNA and protein, or 

used to isolate primary podocytes. 
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2.4 Primary podocyte culture 
 

For podocyte culture, minced cortices were digested in 1mg/ml collagenase A (Sigma 

C2674) in HBSS medium for 30 minutes at 37°C. Glomeruli were obtained following the 

above protocol. Harvested glomeruli were placed onto culture dishes coated with 

Matrigel (Corning; 35423) Culture medium was RPMI 1640 containing 15% foetal bovine 

serum (FBS; Atlanta Bio), 1% penicillin/streptomycin (P/S), 1% Insulin, transferrin, 

selenium (I/T/S) and amphotericin B. On day 3 of culture, unattached glomeruli were 

washed away and fresh medium was added. Podocytes were examined on day 6 of 

culture post-harvest and were verified by immunofluorescence using the podocyte 

marker, Nestin. 

 

2.5 RNA extraction  
 

RNA was extracted using the RNeasy mini kit for cells or RNeasy Micro Kit for glomerular 

isolates (Qiagen; 74104). Total RNA was isolated following the manufacturer’s 

instructions. Podocyte cell RNA concentrations from both kidneys/mouse gave a good 

yield of around 100-300ng/µl whilst glomerular isolates (from two kidneys) gave between 

20-100ng/µl eluted in 50µl water and an optical density of 1.8-2.0, measured by the 

Nanodrop spectrophotometer ND1000 (Lab Tech). 

 

2.6 Real-time qPCR 
 

cDNA synthesis 
 

cDNA was generated from the total RNA using the high capacity cDNA synthesis kit 

(Thermo Fisher 4387406). RNA was normalised before synthesising cDNA, where 

approximately 1µg RNA was added to the 2X RT buffer and 20X RT enzyme in a total 

volume of 20µl. cDNA synthesis ran for one hour at 37°C followed by 95°C incubation 

for 5 minutes. 

 

Real-time qPCR 
 

Real-time qPCR primers were designed using the NCBI primer blast website 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). To ensure pure cDNA amplification, 

primers designed spanned the exon-exon junction, and product size was set to a 
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maximum 150bp. Primers for qPCR were also taken from published papers, where their 

efficiency had been tested. 

 

To ensure maximum efficiency of the primers designed, a relative standard curve method 

was carried out where all the cDNA samples were pooled together and diluted in a 10-

fold dilution series to generate the standard curve (y=mx+c). The efficiencies of each 

primer were analysed relative to GAPDH. This particular method is useful as the 

housekeeping control gene, (GAPDH in this case), is only required once if running 

multiple plates and the efficiency of the primers is measured relative to GAPDH. Due to 

low yields of cDNA and already optimised primers, the ΔΔCT Livak method was also 

used to analyse qPCR data. In this case, the efficiency is approximately 100% between 

the genes and the housekeeping control gene, and the control gene is required each 

time a plate is run. 

 

Real-time qPCR was carried out using the SYBR Green PCR mix (BIORAD 1708882) 

on the CFX96 touch thermal cycler (BIORAD) machine. Samples were analysed on a 

96-well plate in the SYBR Green Master Mix volumes (Table 2.5) using the programme 

illustrated in Figure 2.3. Real-time qPCR primers are summarised in Table 2.6. Primers 

that are not referenced in the table were designed in-house using Ensembl blast, 

Primer3Plus or the NCBI primer design tool, primer-BLAST. These were tested for 

efficiency using the standard curve method. 

 
Table 2.5. qPCR reagents 

SYBR Green Mastermix Total 24µl 

cDNA 2μl 

20uM Primer F 1μl 

20uM Primer R 1μl 

SybrGreen 12.5μl 

ddH2O 7.5μl 
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Figure 2.3. Real-time qPCR protocol 

 
Table 2.6. Real-time qPCR primers 

Gene Primer sequence (5’-3’) Reference 
Apaf1 F GGGTGGGTCACCATCTATGG (Niranjan et al., 2008) 

Apaf1 R TTCCGCAGCTAACACAGACTTG 

Bax F CCAAGAAGCTGAGCGAGTGTCT 

Bax R AGCTCCATATTGCTGTCCAGTTC 

Bcl2 F TGGGATGCCTTTGTGGAACT 

Bcl2 R CAGCCAGGAGAAATCAAACAGA 

Cdkn1c F CAATCAGCCAGCAGAACAGC 

Cdkn1c R CAGCTCCTCGTGGTCTACAG 

Dll1 F CATGAACAACCTAGCCAATTGC 

Dll1 R GCCCCAATGATGCTAACAGAA 

Dll4 F GACCTGCGGCCAGAGACTT 

Dll4 R GAGCCTTGGATGATGATTTGG 

Hes1 F CCCCAGCCAGTGTCAACAC 

Hes1 R TGTGCTCAGAGGCCGTCTT 

Hes3 F AAGGGAGCAGAAAAGCATCA 

Hes3 R CTATGGCAGGGAGCTTTGAG 

Hes5 F TGGGCACATTTGCCTTTTGT 

Hes5 R CAGGCTGAGTGCTTTCCTATGA 

Hes6 F GAAGTGGCCAATCTTGAGACTGA 

Hes6 R GGATTGCTGTGGCCTGTGT 

Hey1 F GGGAGGGTCAGCAAAGCA 

Hey1 R GCTGCGCATCTGATTTGTCA 

Hey2 F CACATCAGAGTCAACCCCATGT 

Hey2 R GTGAGGAGAGCAGAGCCATGA 

HeyL F AGATGCAAGCCCGGAAGAA 

HeyL R CGCAATTCAGAAAGGCTACTGTT 

Jag1 F ACACAGGGATTGCCCACTTC 
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Gene Primer sequence (5’-3’) Reference 
Jag1 R AGCCAAAGCCATAGTAGTGGTCAT (Niranjan et al., 2008) 

Jag2 F CGACTCACACTGCGCTTCA 

Jag2 R TCGGATTCCAGAGCAGATAGC 

Notch1 F CCAGCAGATGATCTTCCCGTAC 

Notch1 R TAGACAATGGAGCCACGGATGT 

Notch2 F TCTATCCCCCGTCGATTCG 

Notch2 R GATGTGATCATGGGAGAGGATGT 

Notch3 F CCAGGGAATTTCAGGTGCAT 

Notch3 R GCCGTCGAGGCAAGAACA 

Nphs1 F GCCAATCAATGACAGGAGGT 

Nphs1 R GTCAGGTTGTTGGGCTTGTT 

Nphs2 F AGGGATGACAAGAAGGCAAA 

Nphs2 R ACCTCGTCCACGTCCACTAC 

p53 F CTCTCCCCCGCAAAAGAAA 

p53 R CGCCCGCGGATCTTG 

Rbpsuh F GCGGATAAAGGTCATCTCCA 

Rbpsuh R TTCCTGAAGCAATGCACAAG 

Trp53 F AGCGCTGCTCCGATGGT 

Trp53 R TTCCTTCCACCCGGATAAGA 

Wt1 F GGTGGCACAGTTGTCAGAAA 

Wt1 R GGTGAGTGGGAGGAATTTCA 

Ascl1/Mash1 

F 

CCAACTACTCCAACGACTTGAAC Designed in house 

Ascl1/Mash1 

R 

TCCTGCCATCCTGCTTCCAAAG 

Gapdh F AGGTCGGTGTGAACGGATT 

Gapdh R TCTAGACCATGTAGTTGAGGTCA 

Lfg F CGAGCACAAAGTGAGACCTG 

Lfg R TGCCGTGCTCATGAAGTGTC 

Mfg F AGACTACCTGGGCCTTCCAT 

Mfg R TGAATGTCTGTTGCCTGATCCT 

Mib2 F CTAGGATGGCAGAGATGGGC 

Mib2 R ACCCAGAAGCTGTTGTGCTT 

Neurb1 F AATCGTCTCTGGTGACAGCC 

Neurb1 R GTGCACTCTCCATTCCTGCT 
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2.7 Phenotype analysis 
 

2.7.1 Renal histology 
 

Histomorphometrical semi-quantitative analysis of glomerulosclerosis from 0-3 was 

achieved (Score 0-3, 0, < 25%, 1, 25-50%, 2, 50-75%, 3,>75% sclerosis) by scoring the 

severity of 30 PAS-stained glomeruli/sample where Cre-ERTM-/-;Wt1fl/fl and Cre-ERTM+/-

;Wt1fl/+ controls were compared to Cre-ERTM+/-;Wt1fl/fl mutants. Scoring was based on 

formed adhesions, mesangial expansion and capillary obliteration in one segment. 

 

2.7.1.1 Paraffin and cryo- tissue preparation 

 

Mouse kidneys were dissected, cut in half lengthwise, and fixed overnight in 4% 

paraformaldehyde (PFA, Sigma 158127) in PBS. For paraffin-embedding, kidneys were 

dehydrated through different Ethanol (EtOH) concentrations reaching 100% EtOH and 

then transferred to Histo-Clear (National Diagnostics). Kidneys were then infiltrated with 

paraffin for 3 hours, overnight at 60°C, then embedded sagittally in paraffin. Kidneys 

were sagittally sectioned using a microtome at 5-10µm thickness and transferred onto 3-

(Triethoxysilyl)propylamine (TESPA)-coated SuperFrost® microscope slides (VWR) 

overnight to dry. Paraffin embedding and sectioning was also carried out by the 

Histopathology Unit, GOSH, who also performed Periodic acid-Schiff (PAS) and 

Haematoxylin & Eosin (H&E) staining were performed for phenotype analysis. 

 

For cryo-preparation, 4% PFA-fixed kidneys were placed in 30% sucrose overnight at 

4°C. Kidneys were then moved from 30% sucrose to 1:1 30% sucrose:OCT embedding 

matrix (Fisher) for 30 minutes on a shaker to gradually remove all sucrose from the 

sections, and then into 100% OCT. Kidneys were moulded in OCT on dry ice with ethanol 

to snap freeze the sections. Tissues were stored at -80°C. Serial sections of the kidneys 

were cut at 10µm on SuperFrost® Plus glass slides (VWR) using the cryostat and stored 

at 80°C until staining. 

 

2.7.2 Urine protein analysis 
 

Urinary albumin and creatinine levels were determined using the mouse albumin ELISA 

quantitation set (Bethyl Laboratories, E90-134) and R&D systems creatinine assay 

(KGE005) kits respectively. For Albumin ELISAs, mouse albumin serum of 0-500ng/ml 

through to Blank (1:2 dilution series) were used to set the standard curve and urine was 
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diluted between 1:1,000–20,000 due to differing concentrations of albumin in each 

sample. Absorbance was measured on a plate reader at 450nm and concentrations were 

analysed using the 4-parameter curve method. Creatinine assay standards were 

prepared from 0-20mg/dl (1:2 dilution series) and most urine samples were diluted 1:20. 

Absorbance was measured on a plate reader at 490nm and measured using a log/log 

curve fit. Concentrations of albumin and creatinine were multiplied by their dilution and 

units were converted to µg/ml (albumin) and mg/ml (creatinine) in order to calculate a 

final ratio of albumin/creatinine (µg/mg). The results were analysed using Prism 

GraphPad 6. 

 

Furthermore, albuminuria was determined by using Western blot analysis with the 

albumin antibody (Bethyl laboratories, E90-134; 1:1,000 dilution). Urine samples were 

diluted 1:100 and loaded 10µl/lane. Urine samples were collected from Cre-ERTM-/-;Wt1f/f 

and Cre-ERTM+/-;Wt1f/f mice at D4, 5, 6, 8, and 12 P.I. to test for albumin. 

 

2.7.3 Immunohistochemistry and immunofluorescence multi-labelling 
 

2.7.3.1 Immunofluorescence on paraffin sections (IHC)  

 

A list of antibodies used can be found in Table 2.7. 

 

Sections were deparaffinised in Histo-Clear and rehydrated through a series of graded 

EtOH washes and then rinsed with H2O. For antibody staining, microwave antigen 

retrieval was performed in citrate buffer (pH6) for 15 minutes on a high heat setting 

(Panasonic NN-S758WC, 950W max. output), followed by a 20 minute cooling period at 

room temperature (RT). Slides were incubated in blocking buffer (PBS + 15% BSA + 

Goat Serum) or Universal Blocking Reagent (DAKO) in a humidified chamber for one 

hour at RT to prevent drying of sections. Sections were probed with primary antibodies 

diluted in incubation buffer (PBS+30% BSA+Goat serum+ 0.1% Tween-20) or DAKO 

buffer overnight at 4°C. The following day, sections were washed three times in PBS for 

10 minutes, and incubated with Alexa Fluor-conjugated secondary antibodies for one 

hour at RT. Slides were then washed in PBS, counterstained with DAPI (Sigma) and 

mounted using VECTASHIELD mounting medium (Vector laboratories H-1000). 

 

2.7.3.2 Immunofluorescence on cryosections  

 

Sections were brought to room temperature, washed in PBS and permeabilised in 0.5% 

Triton X-100 (Sigma) for 5 minutes, followed by 3x5 minute PBS washes. Sections were 
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incubated in blocking buffer (10% goat serum (Sigma), 1% BSA (Sigma), 0.1% Triton X-

100, PBS) in a humidified chamber for one hour, then incubated in primary antibody 

diluted in blocking buffer overnight at 4°C. The following day, slides were washed in PBS 

3x5minutes and incubated with Alexa Fluor-conjugated secondary antibodies for one 

hour at RT. Slides were then washed in PBS, counterstained with DAPI and mounted 

with coverslips using VECTASHIELD mounting medium. 

 

2.7.3.3 Cellular immunofluorescence 

 

For all cellular immunostaining, approximately 1x105 podocytes were seeded on 

Matrigel-coated (Corning 354234) chamber slides (Millipore Cat no. PEZGS0816) in 

RPMI (supplemented with 10% FBS, 1% ITS, 1% P/S). 

 

Cells were fixed in 4% PFA for 15 minutes at room temperature, washed three times in 

PBS and incubated in blocking solution (10% goat serum (Sigma), 1% bovine serum 

albumin (BSA, Sigma-Aldrich, 0.1% Triton X-100, PBS) for one hour at RT. Cells were 

then probed with the selected primary antibodies diluted in blocking solution overnight at 

4°C. A day later, cells were washed twice in PBS and probed with Alexa Fluor-conjugated 

secondary antibodies for one hour at RT. Slides were then washed in PBS, 

counterstained with DAPI and mounted with coverslips using VECTASHIELD mounting 

medium. 

 

Electron Microscopy (EM) and imaging were performed at the Histopathology Unit, 

GOSH. 
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Table 2.7. Antibodies for IHC, ICC, IFC 

Antibody Isotype Species 
reactive 

Dilution Use Company 

B-Actin (13E5) Rabbit mAB 

IgG 

H, M, R, 

Mk, Pg, B 

1:1,000 Western Cell Signalling 

CD13 (553370) Rat IgG2a M 1:100 IHC BD Biosciences 

NICD1(Val1744) Rabbit mAB H, M, R, 

Mk 

1:50 IHC Cell Signalling  

Notch1 (D1E11) Rabbit mAB H, M, R 1:1,000 Western Cell Signalling 

Cleaved Notch2 

(Ala1734) 

Rabbit H, M, R 1:150 IHC Thermo Fisher 

Cleaved Notch2 

(07-1234) 

Rabbit H, M 1:200, 

1:1,000 

IHC, 

Western 

Millipore 

Jagged 1(C20) Goat H, M, R 1:100 IHC Santa Cruz 

Jagged 1 (H114) Rabbit H, M 1:1,000 Western Santa Cruz 

Podoplanin 

(811) 

Hamster mAB M 1:100 IHC Novus 

Biologicals 

Hes1 Rabbit M 1:1000 IHC Gift-Professor 

Ryoichiro 

Kageyama, 

Kyoto 

university 

Synaptopodin 

(GD14) 

Mouse IgG1 H, M, R, 

GP, B 

Diluent IHC OriGene CAT 

no. BM5086 

Podocin 

(P0372) 

Rabbit H, M, R 1:100 IHC Sigma Aldrich 

LTL biotinylated 

(B1325) 

  1:100 IHC Vector 

laboratories 

Cleaved 

caspase-3 

(Asp175) 

Rabbit H, M, R, 

Mk 

1:400 IHC Cell Signalling  

Slug (C19G7) Rabbit H, M 1:1,000 Western Cell Signalling 

Delta-like1 

(HMD1-5) 

Hamster M 1:1,000 Western ThermoFisher 

WT1 (C-19) Rabbit H, M, R 1:250 IHC Santa Cruz 

POFUT1 (PA5-

31357) 

Rabbit H, M 1:1,000 Western Invitrogen 



 

Page 78 of 214 

 

Antibody Isotype Species 
reactive 

Dilution Use Company 

PSMAD2 

(D27F4) 

Rabbit mAB H, M, R, 

Mk 

1:100 IHC Cell Signalling 

Nestin (NB100-

1604) 

Chicken H, M, R 1:100 IHC Novus 

Biologicals 

Mash1/Ascl1 

(556604) 

Mouse IgG1 M, R 1:100, 

1:100 

IHC, 

Western 

BD 

Pharmingen 

Mash1/Ascl1 Rabbit M 1:1,000 IHC Gift – Dr Jane 

Johnson, UT 

Southwestern  

Nephrin (20R-

NP002) 

Guinea Pig H, M 1:50 IHC Fitzgerald 

Alexa Fluor 488, 

594, 680 

Goat/sheep 

anti-

Rabbit/Mouse/ 

Guinea pig/ 

chicken IgG 

(H+L) 

M 1:10,000 IHC ThermoFisher 

 

2.8 Apoptosis Assays 
 

2.8.1 Cleaved caspase 3 analysis  
 

Cleaved caspase-3 antibody staining was carried out on cryosections using the same 

method as described in section 2.7.3.2. 

 

2.8.2 DeadEnd Fluorometric TUNEL assay  
 

Cells were fixed in 4% PFA for 15 minutes at RT and washed three times in PBS. The 

DeadEnd Fluorometric TUNEL (Terminal deoxynucleotidyl transferase dUTP nick-end 

labelling) assay (Promega G3250 l) was used to assess apoptosis in the podocytes at 

different stages post-tamoxifen induction. Following fixation, cells were permeabilised 

with 0.2% Triton X-100 in PBS for 5 minutes, washed in PBS for 5 minutes and 

equilibrated in Equilibration TdT Buffer for 5-10 minutes at RT. rTdT [Terminal 

Deoxynucleotidyl Transferase, recombinant enzyme] incubation buffer (45µl 

Equilibration buffer + 5µl Nucleotide mix + 1µl rTdT enzyme) was then added to the cells 
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for one hour at 37°C. To ensure even distribution of the buffer, the slides were covered 

with plastic cover slips. Plastic coverslips were removed by immersing the slides in 

2XSSC (Saline-sodium citrate: 3M NaCl, 0.3M trisodium citrate pH7.0) for 15 minutes at 

RT. Slides were then washed twice in PBS at RT. VECTASHIELD with DAPI mounting 

medium (Vector Laboratories H-1200) was added to stain the nuclei and slides were 

mounted. For double staining with antibodies, cells were blocked following rTdT 

incubation and probed with the desired antibody for one hour at RT or overnight at 4°C. 

The next day, cells were washed twice in PBS and probed with Alexa Fluor-conjugated 

secondary antibodies for one hour at RT. Slides were then washed in PBS and mounted 

as previously described. 

 

2.8.3 Caspase 3/7 immunostaining  
 

Podocytes were incubated in 5µM Cell Event caspase 3-7 green detection reagent 

Green (prepared in complete RPMI - Life Technologies, C10423) for 30 minutes at 37°C. 

Cells were then fixed with 4% PFA, for 15 minutes at RT, washed in PBS, counterstained 

with DAPI and mounted with VECTASHIELD mounting medium. Caspase 3/7- and 

DAPI- positive cells were quantified in 10 different fields for each sample. 

 

2.8.4 Annexin V staining 
 

Following podocyte isolation and culture of six days, cells were collected and analysed 

at the FACS facility, Moorfields Eye Hospital. The samples were spun down at 320xg for 

5 minutes and washed with Annexin V Binding Buffer (ThermoFisher Scientific, 88-8103-

74). The cells were then stained with Annexin V-PE-Cy7 (ThermoFisher) for 30 minutes 

on ice, in the dark. Following incubation, the samples were washed again and re-

suspended in the Annexin V Binding Buffer. Samples were stained with SYTOX Blue at 

a final concentration of 0.3 mM (Thermo Fisher Scientific, Cat. No. S34857). Before cell 

acquisition, the cells were filtered through a 35mm cell strainer, preventing cellular 

aggregation during sample acquisition. The cells (control and mutant) were acquired 

using a 5-laser BD LSRFortessa X-20 Analyser, equipped with 355nm (UV), 405nm 

(violet), 488nm (blue), 561nm (yellow) and 640nm (red) lasers.  

 

2.8.5 Fluorescence microscopy 
 

All cellular and tissue sections were imaged in the laboratory using a Zeiss upright 

microscope with an AxioCam MRm camera and UV lamp. Confocal imaging was also 

performed using a Zeiss LSM-710 system with an upright DM6000 compound 
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microscope and images were processed with Zen software suite. Z stacks were acquired 

at 0.5μm intervals and converted to single planes by maximum projection with Fiji 

software. 

 

All images were processed using ImageJ/Fiji. 

 

2.9 Western blotting 
 

Protein extraction 
 

2x105 podocytes were seeded in 100mm Matrigel-coated dishes overnight and lysed the 

following day with RIPA lysis buffer (50 mM Tris–HCL [pH 7.5], 150 mM NaCl, 0.5% 

Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate), 

supplemented with phosphatase and protease inhibitors (Sodium orthovanadate and 

protease inhibitor cocktail, Sigma P8340) for one hour on ice. Lysis was completed by 

shearing through a 26-gauge syringe needle and samples were spun at 10,000xg for 

one minute at 4°C. The supernatant was collected and protein concentration was 

measured using the BCA protein assay kit (Thermo Scientific, 23225) where absorbance 

at 562nm was measured on a plate reader and concentrations were calculated using the 

standard curve log/log curve fit. 

 

Western Blot Analysis 
 

Samples were denatured with 10% β-Mercaptoethanol (Sigma) in 4X Laemmli sample 

buffer at 95°C for 10 minutes. 15µg protein was loaded per lane. Primary and 

immortalized podocyte lysates were run on 4–15% SDS-PAGE gradient gels (Bio-Rad 

Laboratories). Prepared 10X Running buffer (30g Tris base, 144g glycine, 10g SDS, 1L 

H2O, [pH 8.3]) was diluted to 1X Running buffer for sample running and separation. All 

gels were transferred onto polyvinylidene fluoride (PVDF, Bio-Rad) membranes using 

1X Transfer buffer (Diluted from 10X Transfer; 30 g Tris, 144g glycine, 1L H2O), blocked 

in 5% non-fat milk in PBS+ 0.5% Tween-20 before being probed with primary antibodies 

(overnight at 4°C) and secondary antibodies (one hour at RT) in blocking buffer (2.5% 

non-fat milk in PBS+ 0.5% Tween-20). Blots were developed with Pierce ECL Western 

Blotting Substrate (Thermo Scientific; 32106) and images were collected by film. 
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2.10 Glomerular RNA sequencing 
 

Mouse glomeruli were isolated at day 4 post-tamoxifen induction and RNA was extracted 

using the QIAGEN RNeasy mini kit (74104) for whole transcriptome sequencing. 

Samples were processed by UCL Genomics, where pair end reads were produced using 

the Illumina TruSeq stranded assay. BAM files were generated and analysed using the 

Strand NGS 2.5 software. This software uses DESeq algorithm, incorporating additional 

downstream analysis including Gene Ontology (GO) and pathway analysis. A Mann-

Whitney test was performed to analyse differential gene expression with a 2-fold change 

and p value of <0.5 to filter genes. GO and pathway analysis were used to understand 

the function and relationship between the identified genes of interest. 

 

2.11 Podocyte shRNA experiments 
 

Transformations and plasmid purifications 
 

shRNA GIPZ hairpin plasmids (provided by UCL Cancer Institute) were obtained as 

bacterial agar stab cultures. The stab cultures were streaked onto a Lysogeny broth (LB) 

agar plate (with 100µg/ml ampicillin) under sterile conditions and incubated at 37°C 

overnight. The following day, colonies from each shRNA plasmid were picked and 

inoculated in 3ml LB with 100µg/ml ampicillin in 15ml falcon tubes. These were incubated 

at 37°C overnight in a shaking incubator (300rpm). The bacterial cells were then 

harvested and the plasmids were purified using the Qiagen miniprep kit (Qiagen 27104) 

according to the manufacturer’s protocol. Purified plasmids were sent off to the 

Cambridge Source Bioscience facility for Sanger sequencing using the GIPZ sequencing 

primer (5' - GCATTAAAGCAGCGTATC - 3') and analysed by Sequencher. Plasmids 

were used to knock down Manic Fringe (GE Dharmacon V3LMM_20363) and Rbpsuh 

(GE Dharmacon V3LMM_437682) genes from D6 P.I. Cre-ERTM+/-;Wt1fl/fl primary 

podocytes, and non-silencing vectors (RHS4346) were used as controls. 

 

For Nphs2;rtTA podocyte transfection, Tet-O-Hes1 plasmids [Addgene 6154, (Cassady 

et al., 2014)] and control GFP only plasmids were purchased and grown using Stbl3 

chemically-competent cells (Thermo Fisher C737303). Colonies were grown on LB agar 

plates as mentioned above and plasmids were purified using the Qiagen miniprep kit. 
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shRNA transient transfections 
 

On the day before transfection, 1x105 cells/well were seeded in 6-well plates in RPMI 

medium (15% FBS, 1% P/S, 1% I/T/S) to allow between 70-90% confluency at the time 

of transfection. Cells were Cre-ERTM+/-;Wt1f/f mutants at D6 post-tamoxifen induction. 

Transfection was carried out using the Lipofectamine 2000 protocol (ThermoFisher, 

11668019). On the day of transfection, 4µg plasmid was diluted in 250µl Opti-MEM and 

mixed gently. 10µl Lipofectamine 2000 was diluted in 250µl Opti-MEM and incubated for 

5 minutes. The diluted plasmid and diluted Lipofectamine 2000 were then combined, 

mixed and incubated at RT for 20 minutes. 500µl of the mixture was then added to each 

well containing the medium and cells and gently mixed by rocking (according to the 

manufacturer’s protocol). Cells were then incubated at 37°C, 5% CO2 and RNA was 

extracted after 24, 48, 72 and 96 hours post-transfection. RNA was collected using the 

Qiagen RNeasy Micro Kit to examine gene expression using real-time qPCR (sections 

2.5 and 2.6). 

 

Primary transgenic murine Nphs2;rtTA podocytes were transfected with Tet-O-Hes1 

plasmid or control-GFP only plasmid with Lipofectamine 3000 kit (Thermo Fisher 

Scientific, L3000001). Cells were transfected at 70% confluency. After 24 hours, both 

Tet-O-Hes1- and control plasmid-transfected cells were treated with Doxycycline [2 and 

4 µg/ml] for 72 and 96 hours. RNA was extracted according to the manufacturer’s 

instructions using the Qiagen microRNA extraction kit. Protein was extracted as per 

section 2.9. 

 

2.12 Statistical analysis 
 

GraphPad Prism V.7 (GraphPad Prism Software, USA) was used to perform statistical 

analyses. Depending on the availability of the mice, between 3-10 mice per experimental 

group were used for each analysis. For qRT-PCR analysis, the average of duplicate 

reactions was used as the value of that sample. Normally distributed data was expressed 

as means ± SD (Standard deviations) or SEM (Standard error of the means) relative to 

the specified controls; non-normally distributed data was reported as medians with 

respective interquartile ranges (IQR). A two-tailed, unpaired student’s t-test or Mann-

Whitney test were used for statistical analysis between two groups and the Bonferroni 

correction and two-way ANOVA tests were used when more than two groups were 

compared. Values were regarded as significant if p<0.05 was calculated; error bars 

represent SEM, SD or IQR. 
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Chapter 3 - Podocyte Notch activation coincides 
with the onset of Wt1 Glomerulopathy 

3.1 Introduction 
 

Notch is a highly conserved pathway that mediates cell-to-cell signalling during 

organogenesis and is essential during podocyte development (Cheng et al., 2003, 

Piscione et al., 2004, Cheng and Kopan, 2005, Chen and Al-Awqati, 2005). Podocytes 

are terminally differentiated visceral epithelial cells crucial for glomerular permselectivity 

(Pavenstadt et al., 2003, Reiser et al., 2000, Fukasawa et al., 2009) and mutations in 

podocyte genes can result in various events including EMT, apoptosis, podocyte 

dedifferentiation and proliferation (Niranjan et al., 2008, Waters et al., 2008). As 

previously mentioned, the WT1 gene is key not only to podocyte development but also 

essential for podocyte homeostasis throughout adult kidney life (Guo et al., 2002, 

Kreidberg et al., 1993, Kreidberg, 2010, Dong et al., 2015a). Thus, the rationale for this 

study was that manipulating WT1 would allow further investigation of pathways 

secondary to podocyte injury. In order to examine the molecular mechanisms and 

pathways underlying WT1 glomerulopathy, a transgenic mouse line was established 

whereby Wt1 could be deleted and any glomerular phenotype examined. Temporal 

deletion of Wt1 was investigated using a ubiquitously expressed Cre-driver mouse line 

crossed to mice with a conditional floxed allele of Wt1, which allowed ubiquitous deletion 

including in podocytes following tamoxifen induction. 

 

The importance of the Notch pathway during kidney development is established in 

kidney-related diseases including GS (Cheng and Kopan, 2005, Piscione et al., 2004). 

Notch was shown to be essential at the early stages of podocyte development but 

detrimental during podocyte differentiation and in mature podocytes (Waters et al., 2008, 

Niranjan et al., 2008). Waters et al. reported that when cleaved Notch1 was activated in 

the developing podocytes, podocyte proliferation with DMS resulted (Waters et al., 

2008); Niranjan et al. reported that activating Notch at the capillary loop stage led to 

podocyte apoptosis with FSGS (Niranjan et al., 2008) as well as a reduction in podocyte 

markers, including Wt1. 

 

In view of this existing data supporting interaction between WT1 and NOTCH, I tested 

the following hypothesis:  
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Temporal deletion of Wt1 activates the Notch pathway and induces EMT and podocyte 

apoptosis. 

 

3.2 Results 
 

3.2.1 Wt1 deletion leads to glomerulosclerosis (GS) 
 

To establish a transgenic mouse line of Wt1 glomerulopathy, Cre-inducible mice carrying 

the Wt1 exon 1 floxed gene were tamoxifen-induced to delete Wt1 and a glomerular 

phenotype was examined. 

 

3.2.1.1 Temporal Wt1 deletion is observed in Cre-ERTM+/-;Wt1f/f mutants post-tamoxifen  

 

Tamoxifen induction in Cre-ERTM+/-;Wt1f/f transgenic mice has previously been reported 

to result in Wt1 deletion and GS at day 7 P.I. (post-induction) (Chau et al., 2011). In this 

project, earlier time-points of Wt1 deletion were explored to investigate the molecular 

mechanisms prior to and during the manifestation of GS. Day 4 P.I. was the earliest 

stage examined, allowing 3 days of tamoxifen to facilitate Wt1 deletion. Animals were 

very sick, showing signs of oedema at D12 P.I. This was therefore the latest time-point 

to examine due to humane reasons. 

 

Genetic deletion of Wt1 was supported by immunohistochemical findings with WT1 

protein expression significantly downregulated in Cre-ERTM+/-;Wt1f/f mutants compared 

to Cre-ERTM-/-;Wt1f/f controls at day 4 P.I. (Figure 3.1A, A’), day 5 P.I. (Figure 3.1B, B’) 

and absent by day 12 P.I. (Figure 3.1C, C’). Only non-specific autofluorescence was 

seen in figure 3.1C’ that did not co-localise with Dapi. Wt1 deletion was also validated 

on a molecular level through PCR at D4 and D5 P.I., where the recombination of Cre-

LoxP spanning exon 1 was detected post-tamoxifen induction. An amplicon size of 

400bp was observed, presenting the deletion of exon 1, only seen in Cre-ERTM+/-;Wt1f/f 

mutants compared to Cre-ERTM-/-;Wt1f/f controls, where no recombination was observed 

(Figure 3.1D, E). The floxed Wt1 amplicon was faintly present in the mutant, but evidently 

less than the Cre-ERTM-/-;Wt1f/f control at all time-points. Moreover, real-time qPCR 

analysis at D12 P.I. demonstrated a highly significant reduction in Wt1 gene expression 

in the Cre-ERTM+/-;Wt1f/f mutants compared to Cre-ERTM-/-;Wt1f/f controls (Figure 3.1F). 
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Figure 3.1. Temporal Wt1 deletion in Cre-ER TM+/-;Wt1f/f mutants. 
Illustrative images of WT1 protein in glomeruli following immunofluorescence labelling with WT1 

antibody of Cre-ERTM-/-;Wt1f/f control mouse kidney tissue sections, n=6 vs. Cre-ERT+/-;Wt1f/f 

mutants, n=6 (scale bars, 50μm). counterstained with DAPI. (A, A’) D4 P.I. controls show WT1 

protein expression (red arrows) (A) compared to mutants, where there’s reduced WT1 protein 

expression (A’). (B, B’) D5 P.I micrographs highlighting WT1 protein expression in controls as 

indicated by arrows (B) vs. mutants, where no WT1 protein is observed (B’). (C, C’). 
Representative micrographs of glomeruli following immunofluorescent labelling of podocytes with 

WT1 in D12 P.I. sections. WT1 protein is present in controls (red arrows) (C) vs. mutants, where 

WT1 is absent (C’). (D) DNA expression of Wt1 post-tamoxifen induction following PCR analysis 

at D4 P.I.; Recombination is seen in the mutants vs. controls. (E) PCR analysis of Wt1 genotyping 

post-tamoxifen induction at D5 P.I. in mutants vs. controls. The quantity of the Wt1 amplicon is 

reduced and recombination is shown in the mutant. (F) Quantitative real-time qPCR showing 

mRNA expression of Wt1 relative to Gapdh at D12 P.I., where Wt1 expression is reduced in the 

mutant vs. control (n=6 vs n=6 for each time-point). Analysed by Livak, ∆∆CT method. (Asfahani 

et al., 2018) 
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3.2.1.2 Early manifestation of GS is evident at day 5 post-tamoxifen induction in Cre-

ERTM+/-;Wt1f/f mutants 

 

To begin to address the underlying mechanisms and pathways following Wt1 deletion, it 

was important to confirm a phenotype of Cre-ERTM+/-;Wt1f/f mutants in comparison to Cre-

ERTM-/-;Wt1f/f and Cre-ERTM+/-;Wt1f/+ controls post-tamoxifen induction. This was achieved 

through PAS staining on paraffin-embedded kidney sections to assess the temporal 

induction of GS post-tamoxifen induction. Cre-ERTM-/-;Wt1f/f and heterozygote Cre-

ERTM+/-;Wt1f/+ controls did not exhibit any GS at any time-point (Figure 3.2A-D, Figure 

3.3A-F). To categorise glomerular morphology, the severity of GS was assessed based 

on the proportion of glomeruli analysed by extent of intra-GS (Score 0, <25% of 

glomerulus sclerosed; Score 1: 25-50% sclerosed, score 2: 50-75% sclerosed 

glomerulus, Score 3: >75% sclerosed glomerulus) in transgenic mice. 

 

At D4 P.I., some mutant glomeruli exhibited early segmental GS with higher urinary 

albumin/creatinine (UA/UC) ratios, however these were not statistically significant 

(p=0.21) between mutants and controls (Figure 3.2A, A’). At D5 P.I., the proportion of 

mutant glomeruli exhibiting segmental GS was significantly higher than the controls 

(>50% GS, ≥ score 2, p<0.05), (Figure 3.2B). UA/UC ratio was significantly increased in 

the mutants compared to the controls (*p=0.01) (Figure 3.2B’). By D6 P.I., hyaline-filled 

tubules were observed in the mutant kidneys with more extensive GS associated with 

significant albuminuria relative to the controls (Figure 3.2C, C’). Global GS was evident 

by D12 P.I. in the mutants with a significant increase in albuminuria compared to the 

controls (***p<0.0001 GS, *p=0.04 urine albumin/creatinine ratio) (Figure 3.2D, D’). 

Temporal induction of albuminuria in mutant mice from D4 to D12 P.I. was seen by 

Western blot analysis, where no albumin was present in the controls (Figure 3.2E). Due 

to limited availability of the mice, mouse numbers varied for each time-point. 
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Figure 3.2. Temporal increase of GS in Cre-ERTM+/-;Wt1f/f mutants post-tamoxifen induction 
(A) Glomeruli of Cre-ERTM+-/-;Wt1f/f transgenic mutant mice are morphologically similar to their 

controls, at D4 P.I. (A’) Quantitative graph displaying mean urine albumin/creatinine ratio (μg/mg) 

at D4 P.I. controls vs. mutants (n=14 vs n=10); 104.4±25.71 vs. 563.5±443, p=0.21, Student t-

test. (B) At D5 P.I., mutant mice reveal segmental GS compared to control mice. (B’) Graph 

showing mean urine albumin/creatinine ratio (μg/mg) at D5 P.I in controls vs. mutants (n=14 vs 

n=14); 217±157.5 vs. 11654±4304, *p=0.01, Student t-test. (C) More extensive GS is evident at 

D6 P.I. in mutants with hyaline filled tubules vs. control mice. (C’) Graph presenting mean urine 

albumin/creatinine ratio (μg/mg) at D6 P.I. in controls vs. mutants (n=5 vs n=6); 79.8±29.8 vs. 

15202±7210, **p=0.004, Student t-test. (D) Mutant mice glomeruli exhibit global GS at D12 P.I., 

with hyaline-filled tubules and pyknotic podocyte nuclei. (D’) Graph showing mean urine albumin/ 

creatinine ratio (μg/mg) at D12 P.I. controls vs. mutants (n=7 vs. n=7); 76.8±13.9 vs. 9469 ±4279, 

*p=0.04, Student t-test (E). Western blot analysis from D4, D5 and D6 D12 P.I. reveals increased 

albumin levels in the mutants vs. controls. (Scale bars=50 μm). (Asfahani et al., 2018) 

 

Heterozygotes (Cre-ERTM+/-;Wt1f/+) analysed at D4 (Figure 3.3A, A’) , D8 (Figure 3.3B, 

B’) and D12 P.I. (Figure 3.3C, C’) were no different to Cre-ERTM-/-;Wt1f/f controls. WT1 
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was observed in the glomeruli of these mice (Figure 3.3A, B, C). A normal phenotype 

was seen at all time-points (Figure 3.3A’, B’, C’) with no hyaline tubules or GS. 
 

 
Figure 3.3. WT1 is expressed Cre-ERTM+/-;Wt1f/+ hets transgenic mice post-tamoxifen 
induction 
Representative micrographs of murine glomeruli labelling podocytes with immunofluorescent anti-

WT1 antibody in D4 (A), D8 (B), D12 P.I. (C) Cre-ERTM+-/-;Wt1f/+ heterozygotes P.I. reveal WT1 

expression (Red arrow), Scale bar 50µm. (A’-B’) H&E stained glomeruli at D4, D8 and D12 P.I, 

Scale bar 25µm. (A’) No histological abnormalities exhibited at D4 P.I. (B’) D8 P.I.; intact 

glomeruli (C’) D12 P.I.; healthy glomeruli with no hyaline material in tubules (D) Graph presenting 

mean urine albumin/creatinine ratio (µg/mg) in D4 P.I controls vs. heterozygotes vs. mutants 

(n=14 vs. n=8 vs. n=10); 104.4±25.7 vs. 174.9±27.0 vs. 563.5±443.9, p=0.21, Student t-test. (E) 
Graph displaying mean urine albumin/creatinine ratio (µg/mg) in D12 P.I controls vs. 

heterozygotes vs. mutants (n=8 vs. n=3 vs. n=7); 76.8±13.9 vs. 223.5±93.8 vs. 9469±4279 (p= 

0.21, mutants vs controls), (*p=0.05, mutants vs hets), student t-test. (F) Immunoblot analysis of 

Cre-ERTM-/-;Wt1f/f, Cre-ERTM+/-;Wt1f/+ and Cre-ERTM+/-;Wt1f/f urine samples at D8 P.I. probed with 

anti-albumin [MW of albumin, 66.5kDa]. (Asfahani et al., 2018) 



 

Page 89 of 214 

 

The manifestation of GS was first observed at D5 P.I. with a significant increase in 

proteinuria in the mutants compared to the controls. This temporal model of GS allowed 

us to further explore the fundamental mechanisms and pathways, which may be 

associated with Wt1 glomerulopathy at the early and late stages of the disease; 

proteinuria and global GS. 

 

3.2.1.3 Podocyte FP effacement prior to the manifestation of GS 

 

Podocyte FP effacement was evident at D4 P.I. in Cre-ERTM+/-;Wt1f/f mutants compared 

to controls (Figure 3.4A, B).  

 

 
Figure 3.4. FP effacement at D4 P.I. in Cre-ERTM+/-;Wt1f/f transgenic mice 
Electron micrographs exhibiting focal FP effacement in Cre-ERTM+/-;Wt1f/f mutants (B) at D4 P.I. 

compared to control mice (A). (Asfahani et al., 2018) 
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Interestingly, PAS staining revealed no morphological difference between both controls 

and the mutants at this time-point (Figure 3.2A); however, albumin/creatinine ratio was 

higher in the mutants, although not significant compared to the controls (Figure 3.2A’). 

TEM highlights the early stages of glomerular disease, prior to GS, indicating that the 

deletion of Wt1 at an early time creates defects in the normal charge barrier, causing a 

leak of larger proteins, including albumin into the urine. This could be an indication of 

MCD, rather than FSGS or DMS, where the glomeruli show noticeable phenotypes. 
 

3.2.1.4 Tubulointerstitial disease is evident by D12 P.I. 

 

GS can lead to tubulointerstitial disease, causing tubular atrophy and fibrosis or 

inflammation of the interstitium, resulting in reduced renal function. Tubulointerstitial 

fibrosis is associated with an increased build-up of fibroblasts in the tubules expressing 

α-smooth muscle actin (α-SMA) and can lead to CKD. 

 

In order to confirm tubulointerstitial fibrosis in the Wt1-deleted mutants, glomeruli were 

marked with vascular α-SMA and the tubule marker LTL at D12 P.I. due to the high levels 

of proteinuria and GS at this time-point. Mutant mice showed evidence of the disease 

with increased vascular α-SMA expression within the glomeruli and peritubular cells 

(Figure 3.5A bottom panel, B bottom panel, green arrows). Control mice, on the other 

hand displayed insignificant levels of α-SMA within the kidney interstitium and glomeruli 

(Figure 3.5A top panel, B top panel). Thus, in addition to GS, SMA protein expression 

suggested that there was a progression towards CKD, a leading cause of ESRD. 

 



 

Page 91 of 214 

 

 
Figure 3.5. Vascular SMA expressed in Cre-ERTM+/-;Wt1f/f mutants 
(A-B) Representative micrographs of double immunofluorescent labelled glomeruli and tubules 

of transgenic mouse kidney tissue sections at D12 P.I; anti-α smooth muscle actin (Alexa Fluor 

488-conjugated) and Lotus tetragonolobus, LTL (Alexa Fluor 594-conjugated). tissues were 

counterstained with DAPI (scale bars, 50µm). (A) α-smooth muscle actin expansion is expressed 

in tubulointerstitial compartment in mutants (Green arrows, SMA) (A, bottom panel) vs. controls 

(red arrows, LTL) (A, top panel). SMA is not expressed within LTL-tubules of controls (A, top 
panel: merge) vs. mutants (A, bottom panel: merge, green arrows) (B) High power images of 

glomeruli and tubulointerstitium. α-SMA expression (green arrows) is stimulated in peritubular 

cells and in the glomerulus in the mutants (B, bottom panel) that is not seen in control Cre-ERTM-

/-;Wt1f/f transgenic mice (B, bottom panel). SMA is not expressed within LTL-tubules of controls 

(B, top panel: merge) vs. mutants (B, bottom panel: merge, green arrows). Scale bars 50µm. 

(Asfahani et al., 2018) 
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3.2.1.5 Podocin is detected within the tubular lumens of Cre-ERTM+/-;Wt1f/f mutants  

 

Due to the evidence of albuminuria and GS in the tamoxifen-induced Cre-ERTM+/-;Wt1f/f 

mutants, further investigation was carried out to determine whether podocyte depletion 

was taking place outside of the GBM. Under extreme stress, podocytes are in danger of 

detaching from the GBM causing disruption, and eventually leading to proteinuria (Kriz 

et al., 2013). TEM revealed that podocyte FP effacement was occurring as early as D4 

P.I. in the tamoxifen-induced mutants (Figure 3.4), which explained proteinuria at this 

time-point. This evidence drove us to investigate podocyte detachment further. 

 

Podocin is important for the glomerular SD and absence of this protein can lead to 

albuminuria and NS (Mollet et al., 2009). Following immunohistochemical findings of 

tamoxifen-induced D8 Cre-ERTM-/-;Wt1f/f controls and Cre-ERTM+/-;Wt1f/f mutants, Podocin 

was seen in the glomeruli of the controls with little expression in the tubules (Figure 3.6A-

F). 

 

Podocin staining of glomeruli in controls was weak (Figure 3.6E), but was completely 

absent from mutant glomeruli (Figure 3.6H, I). In the mutants, Podocin was seen in the 

kidney tubular lumen (Figure 3.6K, L), further supporting FP effacement and podocyte 

injury in the mutants, with podocyte detachment leading to GS. Research on animal 

models of progressive GS have reported that podocytes are undergoing apoptosis (Hara 

et al., 1998, Niranjan et al., 2008). GS, proteinuria and podocyte detachment led us to 

investigate the mechanisms of podocyte injury, namely apoptosis. 
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Figure 3.6. Podocin-positive cells in kidney tubules of D8 P.I Cre-ERTM+/-;Wt1f/f mutants 
Representative micrographs of kidney tubules and glomeruli in Cre-ERTM-/-;Wt1f/f controls (A-F) 
vs. Cre-ERTM+/-;Wt1f/f mutants (G-L), marked with the tubule marker, biotinylated Lotus 

tetragonolobus lectin (LTL, Alexa Fluor 488) and podocin (NPHS2, Alexa Fluor 594). Cre-ERTM-/-

;Wt1f/f controls exhibit low NPHS2 protein in the tubules, whilst NPHS2 is seen in the glomeruli, 

although faint (B, C, E, F). Cre-ERTM+/-;Wt1f/f mutants show loss of NPHS2 protein in the 

glomerulus and NPHS2 is seen in the tubules, indicated by red arrows (H, K, Alexa Fluor 594) 
and white arrows (I, L, merged). Scale bar 25µm. 

 

3.2.2 Apoptosis is evident in Cre-ERTM+/-;Wt1f/f mutants 
 

Due to the terminally differentiated nature of the podocytes, loss or injury of these cells 

can lead to GS. Although cell death can occur in three different forms: apoptosis, 

autophagy, and necrosis (Galluzzi et al., 2018, Elmore, 2007), given the evidence that 

apoptosis is a key mechanism in the pathogenesis of GS (Niranjan et al., 2008), this was 

an important mechanism to investigate following Wt1 deletion. Apoptosis is recognised 

by a compression of nuclei, along with cell shrinkage, plasma membrane blebbing and 
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cell detachment (Brauchle et al., 2014). Initial histological investigation of the glomeruli 

of Wt1 deleted mice led us to believe that podocyte apoptosis may be taking place in the 

mutant transgenic mice. 

 

One of the key components of apoptosis are the activated proteases, caspase-3 and 

caspase-6, which are the hallmark of apoptosis, triggering the “death cascade” (Crowley 

and Waterhouse, 2016). Caspases are usually inactive under normal conditions, 

however, become activated once cleaved. Upstream caspases, including caspase-8 and 

caspase-9 are the main components of triggering caspase-3 activation. In these 

experiments, cleaved caspase-3 was a major marker in detecting apoptosis at different 

time-points following Wt1 deletion. 

 

Additional apoptosis markers were explored with TUNEL assay to detect DNA 

fragmentation in the podocytes. Real-time qPCR was used to identify apoptotic genes 

expressed in the podocytes of the mutants compared with controls, and flow cytometry 

to detect Annexin V-positive podocytes in D8 P.I. mutants compared with controls. 

Annexin V staining detects translocated phosphatidylserine, identifying early actions of 

apoptosis. Together, these experiments enabled us to confirm podocyte apoptosis in the 

Wt1-deleted mice. 

 

3.2.2.1 Cleaved caspase-3 and caspase-3/7 protein expression support apoptosis in 

mutant podocytes from D4 P.I. 

 

At D4 P.I., cleaved caspase-3 protein was observed in vivo within the mutant glomeruli 

but quantitatively, was not significantly different compared to the controls, p=0.06 (Figure 

3.7A, A’, D). However, cleaved caspase-3/DAPI-positive cell numbers were significantly 

higher in the mutants by D5 P.I. compared to the controls, coinciding with the early 

manifestation of GS, ***p<0.0001 (Figure 3.7B, B’, E). Moreover, a significant increase 

of cleaved caspase-3/DAPI-positive cells was observed by D8 P.I., where severe GS 

was detected by PAS, ***p<0.0001 (Figure 3.7C, C’, F). Cleaved caspase-3 protein, 

however, was not colocalised with DAPI in all places. DAPI was evidently more 

condensed and pyknotic in the mutants in comparison to the controls, highlighting 

degeneration of the nuclei at this time-point. Podoplanin protein expression was severely 

reduced in the mutants at D8 P.I. compared to the controls, indicating a loss of 

glomerular architecture (Figure 3.7C), supporting the PAS histology analysis at D6 and 

D12 P.I. 
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Figure 3.7. Temporal increase in podocyte apoptosis in Cre-ERTM+/-;Wt1f/f mutants  
(A-F) Double immunofluorescence labelling of mouse of glomeruli; anti-cleaved caspase-3 (Casp-

3) (Alexa Fluor 594–conjugated secondary antibody) and anti-Podoplanin (Pdpn) (Alexa Fluor 

488–conjugated secondary antibody) at day 4, 5 and 8 P.I. counterstained with DAPI. Casp-3 

(red arrows) and Podoplanin-positive cells observed in DAPI-positive cells in mutant glomeruli 

(inset, white arrows) (A’, B’, C’) and not in control glomeruli (A, B, C). Scale bars 25 µm. (D) 
Graph mean percentage of DAPI-positive, Casp-3–positive cells per glomerulus at D4 PI in 

control and mutant mice. Bars represent mean and error bars specify the SEM. The number of 

DAPI-positive, Casp-3–positive glomerular cells were increased in mutant vs. control mice at D4 

PI: Controls vs. mutants (n=79 vs. n=80 glomeruli from n=3 per genotype); 1.6±0.3% vs. 

3.0±0.4%, p=0.06, not significant (NS). Student’s t-test. (E) Graph mean percentage of DAPI-

positive, cleaved caspase-3–positive, Podoplanin-positive cells per glomerulus at D5 PI in control 

and mutant mice: controls vs. mutants (n=98 vs. n=107 glomeruli from n=3 per genotype); 

0.8±0.2% versus 3.6±0.4%, ***p<0.0001, Student’s t-test. (F) Graph mean percentage of DAPI-

positive, Casp-3–positive, Podoplanin-positive cells per glomerulus at D8 PI in control and mutant 

mice: controls vs. mutants (n=30 vs. n=56 glomeruli from n=3 per genotype); 0.1±0.1% vs. 

9.5±6.4%, ***p=0.0005, Student’s t-test. (Asfahani et al., 2018) 
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In addition to this staining, D6 P.I. cellular immunostaining of cleaved caspase-3/7/DAPI 

positivity was also assessed and quantified in primary podocyte cultures (Figure 3.8). 

We observed increased cleaved caspase-3/7 positivity in the mutant podocytes (Figure 

3.8B) compared to the controls (Figure 3.8A), providing further evidence of podocyte 

apoptosis in early Wt1 glomerulopathy. 

 

 
Figure 3.8. Cleaved-caspase-3/7 is activated in primary Cre-ERTM+/-;Wt1f/f podocytes 

(A-B) Representative micrographs of D6 P.I. primary podocytes (cultured for 6 days) showing 

immunofluorescent labelling of anti-cleaved caspase-3/7 (Alexa Fluor 488-conjugated secondary 

antibody, green arrows) in control (A) and mutant mice (B). Dot plot showing the median number 

of cleaved caspase-3/7- positive podocytes in mutants vs. controls (C). Bars denote the median 

per group. Error bars symbolise the interquartile ranges (IQR). Median percentage of DAPI-

positive, cleaved caspase 3/7-positive podocytes in controls (n=9) vs. mutants (n=15): 0 (IQR: 0, 

6.56) % vs. 6.8 (IQR: 0, 16.7) % p=0.19 (n.s.), Mann-Whitney test. (n=number cells 

counted/sample). (Asfahani et al., 2018) 
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3.2.2.2 TUNEL expression coincides with the early manifestation of GS 

 

Apoptosis was further assessed using in vitro TUNEL analysis in D6 P.I. primary 

podocytes, and TUNEL-positive podocytes were apparent in the mutants (Figure 3.9D-

G) compared to the controls (Figure 3.9A-C). Quantification of TUNEL/DAPI-positive 

cells was significantly higher in the mutants vs. controls, *p=0.04 (Figure 3.9H).  

 

 
Figure 3.9. TUNEL-positive primary podocytes in D6 P.I. Cre-ERTM+/-;Wt1f/f mutants 
D6 P.I. Labelling of terminal deoxynucleotidyl transferase dUTP nick end-labelling (TUNEL)–

positive primary podocytes (Alexa Fluor 488–conjugated secondary antibody, green arrows) 

isolated from control and mutant mice (A-G) Sections counterstained with DAPI. (G) Higher-

power image displaying cell nucleus expressing TUNEL-positive signal. (H) Graph of apoptotic 

cells showing the proportion of TUNEL-DAPI–positive podocytes at D6 P.I. in vitro. Bars represent 

the mean, and error bars denote the SEM. Cre-ERTM-/-;Wt1f/f (n=2 samples, number of cells 

quantified per sample) versus Cre-ERTM+/-;Wt1f/f (n=2 samples, number of cells quantified per 

primary podocyte line per mouse); 1.4±0.2% versus 6.3±1.0%, *p=0.04, Student t-test. Scale bar 

25µm. (Asfahani et al., 2018) 
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Moreover, TUNEL-positive mutant podocytes were detected in vivo in D5 P.I. glomeruli 

(Figure 3.10A’), but not in controls (Figure 3.10A). There was a significant increase 

TUNEL/DAPI-positive cells in the mutants vs. controls, **p<0.0001 (Figure 3.10B). In 

vivo TUNEL analysis was further analysed at D12 P.I., where there were obvious 

TUNEL-positive podocytes in the mutants (Figure 3.11B, C, D) compared to the controls 

(Figure 3.11A). The increase in significance by D12 P.I. correlated with its phenotype of 

global GS and proteinuria, supporting apoptosis as a mechanism linked to the 

development of GS and potentially secondary tubulointerstitial fibrosis. 

 

 
Figure 3.10. TUNEL-positive glomeruli in D5 P.I. of Cre-ERTM+/-;Wt1f/f mutants 
Representative images of D5 P.I cryosections, TUNEL-positive and DAPI-positive cells [inset] in 

Cre-ERTM+/-;Wt1f/f mutants (A’) compared to Cre-ERTM-/-;Wt1f/f controls (A). Scalebar, 50µm. (B). 
Graph demonstrating increased proportion of median number of TUNEL-positive podocytes in 

Cre-ERTM-/-;Wt1f/f controls (n=2, 30 glomeruli counted/sample) vs Cre-ERTM+/-;Wt1f/f mutants (n=3, 

30 glomeruli counted/sample). Bars display the median of each group. Error bars represent 

interquartile ranges, **p<0.0001, Mann-Whitney test. (Asfahani et al., 2018) 
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Figure 3.11. TUNEL-positive cells in Cre-ERTM+/-;Wt1f/f glomeruli at D12 P.I. 
(A-D) D12 P.I. micrographs of glomeruli of transgenic mouse kidney tissue sections marked with 

TUNEL (Green arrows) and counterstained with DAPI (Scale bars, 25µm). (A) In the glomerulus 

of Cre-ERTM-/-;Wt1f/f controls, no TUNEL-positive cells are detected. (B-D) D12 P.I. Cre-ERTM+/-

;Wt1f/f mutants exhibit TUNEL/DAPI-positive cells in the glomeruli. (Asfahani et al., 2018) 

 

3.2.2.3 Early and late apoptosis is evident in the late stages of GS 

 

In vitro detection of apoptosis was also investigated along with cell necrosis through 

Annexin V/SYTOX Blue staining of D8 P.I. podocytes. Annexin V is a marker of early 

apoptosis and it identifies changes in the plasma membrane due to membrane 

externalisation of phosphatidylserine (Crowley et al., 2016). It is a useful assay to detect 

the development of apoptosis but it cannot identify which cells are undergoing late 

apoptosis or are early necrotic cells. For this reason, double staining of Annexin 



 

Page 100 of 214 

 

V/SYTOX Blue was carried out to determine which cells were apoptotic and which were 

necrotic. 

 

Annexin V/SYTOX Blue positive (late apoptotic/necrotic, Figure 3.12A, C) and Annexin 

V/SYTOX Blue negative (early apoptosis, Figure 3.12B, D) expression were higher in 

the primary mutant podocytes than the control podocytes, but not significantly so. The 

increase in Annexin V expression in the mutants vs. controls at D8 supported the 

previous findings of increased cleaved caspase-3 expression at this time-point, but at a 

less significant level. 
 

 
Figure 3.12. Apoptosis is increased at D8 P.I. in Cre-ERTM+/-;Wt1f/f mutant podocytes 

(A, B) Flow cytometry analysis of primary podocytes from Day 8 P.I. Cre-ERTM-/-;Wt1f/f control and 

Cre-ERTM+/-;Wt1f/f mutant transgenic mice. The abscissa and ordinate represent the fluorescence 

intensity of Annexin V Cy7 and SYTOX Blue, respectively. (C) Dot plot showing podocyte cell 

death. Bars display the median percentages of Annexin V–positive/SYTOX Blue–positive (late 

apoptotic/necrotic) podocytes. Cre-ERTM-/-;Wt1f/f controls (n=2) vs. Cre-ERTM+/-;Wt1f/f mutants 

(n=2): 2.1% versus 3.9%, p=0.33 (n.s). (D) Dot plot showing median percentages of Annexin V-

positive cells (early apoptosis); 1.6% versus 5.0%, p=0.33 (n.s). Mann-Whitney test. (Asfahani et 

al., 2018) 
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3.2.2.4 Increased apoptotic gene transcript levels in the mutants  

 

In addition to the detection of apoptosis on a protein level, further markers of apoptosis 

were investigated on an RNA level, including Bcl2 and Bax. Both genes are regulators 

of apoptosis, involved in either inducing or inhibiting the pathway (Hardwick and Soane, 

2013); Bcl2 is anti-apoptotic, inhibiting cell death and promoting cell survival, whilst Bax 

is pro-apoptotic, and both are involved in the intrinsic apoptosis pathway, affecting the 

mitochondria. 

 

Real-time qPCR data revealed an increase in apoptosis in the mutants compared to 

controls. Expression of apoptosis-related genes was carried out on D4, D5, and D6 P.I. 

glomerular isolates. The trend of the anti-apoptotic marker, Bcl2, was not significant in 

the mutants compared to the controls at D4 and D5 P.I. (Figure 3.13A). The pro-apoptotic 

marker, Bax, was also increased in the mutants at these time-points, but failed to reach 

statistical significance (Figure 3.13B). Interestingly, both Bcl2 and Bax were slightly 

increased in the mutants vs controls at these time-points (D4 and D5 P.I.), suggesting 

that the apoptotic pathway may be activated. Bcl2 transcript levels were at approximately 

equivalent levels in both the mutants and controls at both time-points; however, Bax 

transcript levels had increased by D5 P.I. in the mutants. This corroborated my findings 

of the activation of apoptosis using cleaved caspase-3 and TUNEL at D5 P.I. By D6 P.I. 

on the other hand, the anti-apoptotic transcript, Bcl2 was lower in the mutants compared 

to the controls, but again failed to reach statistical significance (Figure 3.13A). This 

correlates with my earlier findings of increased TUNEL and caspase-3 expression. While 

this was the case, Bax transcript levels were lower in the mutants vs. controls at D6 P.I., 

however were not significant (Figure 3.13B). D6 P.I. sample numbers were less than D4 

and D5 P.I., thus may be impacting the final result. It is also important to note that this 

experiment was done in the early stages of the project, where RNA transcripts were 

analysed from glomerular isolates that were not cultured. These isolates were not only 

podocytes, but were also mesangial and endothelial cells. Bcl2 and Bax2 transcript 

levels would have therefore been analysed from a heterogenous population. This may 

explain the lower expression of Bax transcript levels in the mutants in comparison to 

other apoptosis assay markers, such as cleaved caspase-3 and TUNEL, as the latter 

experiments (figures presented earlier) were focused on podocyte cells undergoing 

apoptosis. Moreover, limited sample numbers for real-time qPCR may also be impacting 

our final results. 
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Figure 3.13. Podocyte apoptosis in pre-proteinuric and GS Cre-ERTM+/-;Wt1f/f mutants. 
Representative dot plot analyses showing the median mRNA levels of apoptosis at D4, 5 and 6 

P.I. Error bars represent IQR. (A) Bcl2; D4 P.I. Cre-ERTM-/-;Wt1f/f controls (n=3) vs. Cre-ERTM+/-

;Wt1f/f mutants (n=3), 0.6 (IQR: 0.5, 1.5) vs. 0.9 (IQR: 0.5, 1.3), p=0.9; D5 P.I. Cre-ERTM-/-;Wt1f/f 

controls (n=6) vs. Cre-ERTM+/-;Wt1f/f mutants (n=5), 0.6 (IQR: 0.3, 1.6) vs. 0.7 (IQR: 0.5, 1.4), 

p=0.77; D6 P.I. Cre-ERTM-/-;Wt1f/f controls (n=2) vs. Cre-ERTM+/-;Wt1f/f mutants (n=3), 1.0 (IQR: 

0.7, 1.3) vs. 0.6 (IQR: 0.5, 0.7), p=0.2 (B) Bax; D4 P.I. Cre-ERTM-/-;Wt1f/f controls (n=3) vs. Cre-

ERTM+/-;Wt1f/f mutants (n=3), 0.7 (IQR: 0.6, 1.3) vs. 1.2 (IQR: 0.9, 1.7), p=0.4; D5 P.I. Cre-ERTM-/-

;Wt1f/f controls (n=6) vs. Cre-ERTM+/-;Wt1f/f mutants (n=6), 1.2 (IQR: 06, 1.9) vs.1.2 (IQR: 0.8, 2.6), 

p=0.6; D6 P.I. Cre-ERTM-/-;Wt1f/f controls (n=2 mice) vs. Cre-ERTM+/-;Wt1f/f mutants (n=3 mice), 1.0 

(IQR: 0.8, 1.1) vs. 0.7 (IQR: 0.5, 0.9), p=0.4. Mann-Whitney test. (n= number of mice). 

 

3.2.3 Podocyte Notch activation precedes GS in Cre-ERTM+/-;Wt1f/f mutants  
 

As previously mentioned, the Notch pathway is highly relevant during the early stages of 

kidney development and is activated following glomerular injury (Niranjan et al., 2009, 

Cheng and Kopan, 2005, Barak et al., 2012, Sirin and Susztak, 2012, Barisoni, 2008). 

Studies revealed that ectopically inducing cleaved Notch1 during the late stages of 

kidney development resulted in DMS and FSGS with reduced expression of podocyte 

markers, including Wt1, Nphs1, Nphs2 as well as increased podocyte apoptosis and 

dedifferentiation (Niranjan et al., 2008, Waters et al., 2008). Thus, we postulated that 

deleting Wt1 would trigger the Notch signalling pathway in the mutants, causing GS. 

 

3.2.3.1 Notch components are activated following Wt1 deletion 

 

Cleaved NOTCH1 is a transmembrane protein involved in the Notch pathway, which is 

cleaved following γ-secretase activation post-ligand binding (Jorissen and De Strooper, 

2010). As stated previously, the Notch pathway consists of 2 ligand family members 

including the Dll and Jag families. Upon binding with the Notch receptors, the Notch cell 

signalling pathway is activated, cleaving the intercellular domains of the Notch receptors, 
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thus finally activating the downstream transcription factors, including HES1 and HEYL, 

which are important for organogenesis and tissue patterning (Kopan and Ilagan, 2009, 

Bray, 2006, Bray, 2016, Hori et al., 2013). 

 

After detecting increased podocyte apoptosis in Cre-ERTM+/-;Wt1f/f transgenic mice, we 

postulated that podocyte Notch activation may be a factor in early Wt1 glomerulopathy. 

The Notch pathway was analysed using real-time qPCR at D4 and D5 P.I. (Figure 3.14). 

At D4 P.I., the bHLH transcription factor, Hes6, was significantly reduced in the mutants 

compared to controls (*p=0.03) (Figure 3.14A, Appendix B [figure B.1 A-S, individual dot 

plots]). Hes6 has been shown to promote neuronal differentiation by negatively 

regulating Hes1 activity (Gratton et al., 2003, Carvalho et al., 2015).  

 

The current data shows that Hes1 transcript was increased in D4 P.I. mutants, however, 

this was not significant (p=0.53) (Figure 3.14A). There was an increase in HeyL transcript 

levels, however the increase was not significant (Figure 3.14A). Interestingly, the β3-N-

acetylglucosaminyltransferase, Lfng, was significantly lower in the mutants compared to 

the controls at this time-point (**p=0.008) (Figure 3.14A). Lfng has been reported to 

inhibit Notch1 activity from Jag1 and enhance its activity from Dll1 by modifying Notch1 

EGF6 and 36 (Kakuda and Haltiwanger, 2017). At D4 P.I, Notch signalling was activated 

by showing increased transcript levels of bHLH transcription factors Hes1, Hes3, Hes5, 

Hey1, Hey2, HeyL in the mutants, although these were not significant (Figure 3.14A). 

Notch signalling was indeed activated at D4 P.I., however, sample sizes were quite low 

(n=5/group) due to the availability of mice. 

 

At D5 P.I., bHLH transcription factors, Hes3 (*p=0.01) and Hey1 (*p=0.03) were 

significantly lower in the mutants compared to controls (Figure 3.14B, Appendix B [figure 

B.2 A-R, individual dot plots]). Dll4 transcript levels were reduced in the mutants 

compared to the controls, however, these were not significantly different (Figure 3.14B). 

There was an outlier in the control group, showing a reduction in Dll4 mRNA levels. Mfng 

transcript levels were increased in mutant podocytes, however, not significantly (p=0.45, 

Figure 3.14B). Although Mfng was not significantly increased in the mutants, we were 

keen to explore whether there was a link between increased Mfng transcript and Notch 

activity in our mice. Manic Fringe is a β3-N-acetylglucosaminyltransferase that facilitates 

NECD glycosylation during signal transduction (Kakuda and Haltiwanger, 2017). Sample 

numbers for Neur were not equal between control and mutants due to availability of the 

samples. Due to apoptosis being significantly increased at D6 P.I., we were specifically 

interested in analysing the Notch pathway at this time-point. Individual dot plots for the 

genes at D4, D5 and D6 P.I. are shown in Appendix B. 
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Figure 3.14. Podocyte Notch pathway gene expression in pre-proteinuric Cre-ERTM+/-;Wt1f/f 
primary podocytes  
(A) Notch pathway transcripts in D4 P.I. Cre-ERTM+/-;Wt1f/f mutants compared to Cre-ERTM-/-;Wt1f/f 

controls. Box and whisker plots showing relative mRNA levels of Notch pathway components in 

primary podocytes of Cre-ERTM-/-;Wt1f/f vs. Cre-ERTM+/-;Wt1f/f. Horizontal lines within the box show 

medians. The boundaries of the box nearest zero mark the 25% percentile, the boundaries 

farthest from zero mark the 75% percentile (IQR). Whiskers indicate outliers outside the 10% and 

90% percentiles. Notch1 (n=5 vs n=5): 1.1 (IQR: 0.8, 1.6) vs. 0.8 (IQR: 0.5, 1.4), p=0.53; Notch2 

(n=5 vs. n=5): 1.3 (IQR: 0.7, 1.9) vs. 1.8 (IQR: 1.1, 4.3), p=0.31; Notch3 (n=5 vs. n=5): 1.2 (IQR: 

0.7, 1.5) vs. 1 (IQR: 0.5, 1.6), p=0.94; Jag1 (n=5 vs. n=5): 1 (IQR: 0.8, 1.4) vs. 1 (IQR: 0.5, 1.3), 

p=0.94; Jag2 (n=5 vs. n=5): 1 (IQR: 0.7, 1.4) vs. 0.8 (IQR: 0.5, 0.8), p=0.22; Dll3 (n=5 vs. n=5): 

0.8 (IQR: 0.6, 1.9) vs. 1.2 (IQR: 0.6, 1.9), p>0.99; Dll1(n=5 vs. n=5): 1.9 (IQR: 0.2, 4.2) vs. 1.3 

(IQR: 0.2, 2.2), p=0.67; Dll4 (n=5 vs. n=5): 0.9 9IQR: 0.3, 3.5) vs. 0.6 (IQR: 0.4, 2.7), p=0.67;  

Hes1 (n=5 vs. n=5): 3 (IQR: 1.5, 4) vs. 4 (IQR: 2.5, 4.3), p=0.53; Hes3 (n=5 vs. n=5), 0.8 (IQR: 

0.7, 1.6) vs. 1.2 (IQR: 0.7, 1.6), p=0.94; Hes5 (n=5 vs. n=5), 1.1 (IQR: 0.7, 1.5) vs. 1.2 (IQR: 1, 

3.8), p=0.31; Hes6, (n=5 vs. n=5), 1 (IQR: 0.8, 1.3) vs. 0.4 (IQR: 0.4, 0.8), *p=0.03; Hey1, (n=5 

vs. n=5), 1 (IQR: 0.5, 2.3) vs. 1 (IQR: 0.7, 1.1), p=0.94; Hey2, (n=5 vs. n=5), 0.8 (IQR: 0.6, 1.9) 

vs. 1.2 (IQR: 0.9, 1.6), p=0.8; HeyL, (n=5 vs. n=5), 0.9 (IQR: 0.5, 2.7) vs. 1.9 (IQR: 1.5, 18.9), 

p=0.15; Mfng, (n=4 vs. n=5), 0.8 (IQR: 0.3, 6.1) vs. 1.4 (IQR: 0.5, 1.5), p=0.68; Lfng (n=5 vs. n=5), 
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1 ( IQR: 0.8, 1.2) vs. 0.4 (IQR:0.3, 0.5), **p=0.008; Mb (n=5 vs. n=5), 1.3 (IQR: 0.6, 1.7) vs. 1.3 

(IQR: 0.7, 2.7), p=0.8; Neur (n=5 vs. n=5), 1 (IQR: 0.7, 1.5) vs. 0.5 (IQR: 0.5, 1.6), p=0.22. Mann-

Whitney U test. (B) Notch pathway transcripts in D5 P.I. Cre-ERTM+/-;Wt1f/f mutants compared to 

Cre-ERTM-/-;Wt1f/f controls. Box and whisker plots showing relative mRNA levels of Notch pathway 

components in primary podocytes of Cre-ERTM-/-;Wt1f/f vs. Cre-ERTM+/-;Wt1f/f. Horizontal lines 

within the box show medians. The boundaries of the box nearest zero mark the 25% percentile, 

the boundaries farthest from zero mark the 75% percentile (IQR). Whiskers indicate outliers 

outside the 10% and 90% percentiles. Notch1 (n=6 vs n=6), 1.3(IQR:1, 1.5) vs. 1.1(IQR: 0.4,2.1), 

p>0.99; Notch2 (n=6 vs. n=6), 1.5 (IQR: 1.2, 1.7) vs. 2 (IQR: 1, 2.7), p=0.33; Notch3 (n=6 vs. 

n=7), 1.3(IQR: 1.1, 1.5) vs. 1 (IQR:0.4, 1.7) p=0.36; Dll1 (n=6 vs. n=8), 1 (IQR: 0.8, 1.3) vs. 0.9 

(IQR: 0.03, 1.4), p=0.84; Dll4 (n=6 vs. n=7), 0.8 (IQR: 0.5, 2.9) vs. 0.4 (IQR: 0.04, 0.8), p=0.18; 

Jag1 (n=6 vs. n=8), 1.1 (IQR: 0.9, 1.3) vs. 0.6 (IQR: 0.5, 1.1), p=0.08; Jag2 (n=2 vs. n=2), 1.3 

(IQR: 0.6, 1.9) vs. 1 (IQR: 0.9, 1.1), p>0.99; Hes1 (n=7 vs. n=8), 2.2 (IQR: 1.4, 3.9) vs. 1.5 (IQR: 

1.4, 3.1), p=0.39; Hes3 (n=9 vs. n=11), 1.3 (IQR: 0.9, 1.5) vs. 0.8 (IQR: 0.6, 1.2), *p=0.01; Hes5 

(n=6 vs. n=7), 1 (IQR: 0.7, 2) vs. 1.4 (IQR: 0.7, 2.1), p=0.7; Hes6, (n=8 vs. n=8), 1.6 (IQR: 1, 2.1) 

vs. 1.1 (IQR: 0.4, 1.8), p=0.41; Hey1, (n=6 vs. n=8), 1.5 (IQR: 0.9, 2.1) vs. 0.7 (IQR: 0.5, 1.1), 

*p=0.03; Hey2, (n=6 vs. n=8), 1.2 (IQR: 0.7, 1.4) vs. 1.2 (IQR: 0.6, 1.5), p>0.99; HeyL, (n=6 vs. 

n=7), 2.2 (IQR: 0.3, 4.8) vs. 2.8 (IQR: 0.3, 4.4), p=0.8; Mfng, (n=12 vs. n=10), 0.8 (IQR: 0.6, 3.1) 

vs. 1.4 (IQR: 0.6, 9.4), p=0.45; Lfng (n=6 vs. n=8), 0.6 ( IQR: 0.5, 1.3) vs. 0.6 (IQR:0.2, 0.7), 

p=0.49; Mb (n=6 vs. n=5), 0.6 (IQR: 0.4, 1.2) vs. 0.8 (IQR: 0.7, 1.5), p=0.33; Neur (n=2 vs. n=4), 

1.4 (IQR: 0.9, 1.8) vs. 0.4 (IQR: 0.3, 0.7), p=0.13. Mann-Whitney U test. Individual dot plots are 

shown in Appendix B. 

 
Double immunofluorescence labelling at D4 P.I. between the controls and mutants 

(Figure 3.15A-H) showed increased cleaved Notch1 (Val1744) protein expression in the 

mutant nuclei of Nestin-positive podocytes, with a loss of podocyte glomerular 

architecture (Figure 3.15E-H). We observed no cleaved Notch1 (Val1744) protein in the 

podocyte nuclei of the controls, labelled with the podocyte marker, synaptopodin (Synpo) 

at D5 P.I. (Figure 3.15I-L). In the mutants, however, cleaved Notch1 protein was seen in 

the podocytes (Figure 3.15M-P). Podocyte markers, Podoplanin at D4 P.I, and 

Synaptopodin at D5 P.I. were used due to the lack of availability of one or the other 

during the experiment.  
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Figure 3.15. Activated cleaved Notch1 at the early onset of disease in Cre-ERTM+/-;Wt1f/f 

mutants 
Representative micrographs of glomeruli in D4 P.I., stained with the glomerular marker, 

podoplanin (PDPN, Alexa Fluor 488, green), and cleaved notch 1 (Val1744, Alexa Fluor 594, red), 

counterstained with the nuclear marker, DAPI (A-H) NICD protein expression is not evident in the 

control Cre-ERTM-/-;Wt1f/f mice (C, D) in comparison to the Cre-ERTM+/-;Wt1f/f mutants, where NICD 

appears to be expressed in the podocytes, indicated by red and white arrows (G, H) 
Representative micrographs of mouse glomeruli at D5 P.I. stained with the podocyte marker, 

Synaptopodin (SYNPO, Alexa Fluor 488, green) and NICD (Alexa Fluor 594, red), counterstained 

with DAPI (I-P). Control Cre-ERTM-/-;Wt1f/f mice display no NICD protein in the glomerulus (K, L) 
compared to Cre-ERTM+/-;Wt1f/f   mutants, where NICD protein expression is revealed in the 

podocytes, indicated by red and white arrows (O, P). Scale bar, 25 µm. 

 

Next, we examined the Notch pathway at the onset of GS, D6 P.I. Concomitant with early 

GS and albuminuria, Notch transcripts, Notch1, Hes1, 3, 5 and Hey2 were increased in 

primary mutant podocyte lysates compared to controls (Figure 3.16A, Appendix B 

[Figure B.3 A-R, individual dot plots]). FoxC2 transcript was repressed in the mutants, 

with increased Nrarp expression (Figure 3.16A). Notch regulated ankyrin repeat protein 

(NRARP) is a downstream effector of Notch signalling (Zhang et al., 2017). Earlier 

studies showed that Nrarp is regulated by Notch signalling and is highly expressed in 

mouse tissues where Notch1 is expressed (Krebs et al., 2001). Our data reveals a 
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significant increase in Notch1 (*p=0.04), Nrarp (**p=0.0087), Hes5 (**p=0.005), and 

Hey3 (*p=0.03) transcripts in the mutants. This data suggests that the increased Nrarp 

transcript is regulated by Notch activity. Repression of FoxC2 coincides with the 

upregulation of the Notch components and onset of GS in the mutants (Figure 3.16A). 

 

Immunofluorescence labelling at D6 P.I. validated these results, where cleaved Notch1 

protein (Val1744) was seen in the mutant podocytes compared to controls (Figure 

3.16B). Western blot analysis further validated this data, where Notch1 protein was 

increased in primary mutant podocyte lysates relative to controls (Figure 3.16C). 

Supporting activation of a pathogenic Notch signal was further observed in increased 

podocyte Mfng transcript (Figure 3.16A). Pofut1 protein was also observed in primary 

mutant podocytes at D6 P.I. (Figure 3.16D). Fucosylation of the extracellular domain of 

the Notch protein is mediated by Pofut1, an O-fucosyltransferase 1 enzyme (Rana and 

Haltiwanger, 2011). 

 

A role for ligand-dependent activation of podocyte Notch1 was suggested by the 

observation of a striking upregulation of Jag1 in the parietal epithelium of mutants 

compared to controls (Figure 3.17 A, B). Mutant glomeruli fragments revealed Jag1 

expression in foci of Podocin-positive cells (Figure 3.17a, b, insets). At D6 P.I., Jag1 

protein expression was evident in the primary mutant lysates compared to controls 

(Figure 3.17C). Increased transcript levels of Mfng, as well as increased Jag1 and Pofut1 

protein expression in the mutants led us to hypothesis that Jag1 may be activating 

Notch1 signalling via Mfng and Pofut1 modification in our disease model. These data 

support a role for the potentiation of Notch1 signalling in early Wt1 glomerulopathy.  

 

To further validate Notch activation following Wt1 deletion, immortalised podocytes of 

DDS and FS patients were analysed. DDS patients carried C1096T mutations in WT1, 

(p.Arg366Cys) and FS patients carried mutations at intron 9 of WT1, affecting the ratio 

of +/-KTS. There was an increase in transcript levels of Notch pathway components, 

NOTCH1, NOTCH2, HES1, HEYL, JAG1 (Figure 3.18A). PCR data showed no WT1 

amplicon in the DDS and FS patients compared to the control sample, where WT1 was 

expressed (Figure 3.18B). While this corroborates our in vivo findings, patient sample 

numbers were very low. Therefore, increasing sample sizes will provide us with a more 

accurate result. 
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Figure 3.16. Notch activation coincides with onset of GS in Cre-ERTM+/-;Wt1f/f mutants  
(A) At D6 P.I.; Box and whisker plots showing relative mRNA levels of Notch pathway components 

in primary podocytes of mutants vs controls. Horizontal lines within the box show medians. The 

boundaries of the box nearest zero mark the 25% percentile, the boundaries farthest from zero 

mark the 75% percentile. Whiskers indicate outliers outside the 10% and 90% percentiles. Cre-

ERTM-/-;Wt1f/f  vs. Cre-ERTM+/-;wt1f/f: Wt1 (n=6 vs. n=6), 1 (IQR: 0.7, 1.8) vs. 0.2 (IQR: 0.2, 0.6), 

*p=0.02; FoxC2 (n=5 vs. n=6), 1.5 (IQR: 0.4, 1.7) vs. 0.1 (IQR: 0.1, 0.7), *p=0.03; Notch1 (n=6 vs 

n=11), 0.9(IQR:0.7, 1.5) vs. 2.9(IQR: 0.9, 3.5), *p=0.036; Notch2 (n=6 vs. n=10), 0.9 (IQR: 0.9, 

1.2) vs. 1.2 (IQR: 0.8, 1.8), p=0.41; Dll1 (n=6 vs. n=10), 1.2 (IQR: 0.4, 2.9) vs. 0.3 (IQR: 0.1, 2.8), 

p=0.3; Dll4 (n=5 vs. n=5), 2.3 (IQR: 0.3, 2.5) vs. 0.1 (IQR: 0.04, 1.6), p=0.15; Jag1 (n=6 vs. n=10), 

1.1 (IQR: 0.6, 1.7) vs. 0.9 (IQR: 0.7, 1.2), p=0.71; Jag2 (n=5 vs. n=5), 0.8 (IQR: 0.5, 2.2) vs. 0.5 
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(IQR: 0.4, 0.7), p=0.15; Nrarp (n=5 vs. n=5), 0.8 (IQR: 0.3, 1.8) vs. 3.8 (IQR: 3.1, 4.2), **p=0.0087; 

Rbpj (n=7 vs. n=10), 1 (IQR: 0.8, 1.3) vs. 1.5 (IQR: 1, 2.1), p=0.05; Hes1 (n=6 vs. n=11), 1 (IQR: 

0.7, 1.3) vs. 1.3 (IQR: 1, 2.2), p=0.12; Hes3 (n=6 vs. n=11), 0.9 (IQR: 0.7, 1.7) vs. 1.3 (IQR: 0.9, 

3.4), p=0.17; Hes5 (n=6 vs. n=11), 0.9 (IQR: 0.7, 1.4) vs. 2.3 (IQR: 1.3, 6.2), **p=0.005; Hey1, 

(n=4 vs. n=5), 1.2 (IQR: 0.5, 1.8) vs. 2 (IQR: 1.2, 2.6), p=0.29; Hey2, (n=4 vs. n=5), 1.4 (IQR: 0.6, 

1.5) vs. 3.9 (IQR: 2.1, 6), *p=0.03; HeyL, (n=5 vs. n=5), 1.1 (IQR: 0.6, 1.6) vs. 1.7 (IQR: 0.9, 4.8), 

p=0.31; Mfng, (n=9 vs. n=10), 0.9 (IQR: 0.5, 2.3) vs. 2.3 (IQR: 0.7, 5.7), p=0.21; Lfng (n=5 vs. 

n=5), 0.8 ( IQR: 0.7, 1.6) vs. 0.8 (IQR:0.5, 1.9), p=0.8; Mb (n=5 vs. n=5), 0.6 (IQR: 0.6, 2.3) vs. 

1.3 (IQR: 0.6, 3.8), p=0.53. Mann-Whitney U test. Individual dot plots are shown in Appendix B. 

(B) Representative image of D6 P.I. glomeruli following double immunofluorescence labelling of 

mouse kidney sections with anti-cleaved Notch1 (Val1744, Alexa Fluor 594-conjugated 

secondary antibody) and anti-Nestin (demarcates podocytes, Alexa Fluor 488-conjugated 

secondary antibody) in Cre-ERTM-/-;Wt1f/f (controls) and Cre-ERTM+/-;Wt1f/f (mutants) 

counterstained with DAPI. Arrows indicate positive Cleaved Notch1 nuclear staining in mutant 

glomeruli within Nestin-positive cells, which are not detected in control glomeruli. Scale bar 50 

μm. Inset display high power image of same cell, scale bar 10 μm. (C, D) western blot images of 

protein derived from primary podocytes isolated from mutant and control mice. Immunoblots show 

that (C) cleaved Notch1 [Val1744] and Pofut1 (D) are expressed at D6 P.I. in mutant podocytes 

and not in controls (Asfahani et al., 2018). 
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Figure 3.17. JAGGED 1 is expressed in Cre-ERTM+/-;Wt1f/f glomeruli at disease onset 
Representative images showing glomeruli double immunofluorescence labelled with anti-JA1 

(Alexa Fluor 594–conjugated secondary antibody) and anti-Podocin (demarcates podocytes; 

Alexa Fluor 488–conjugated secondary antibody) in D6 P.I. mouse kidney sections of Cre-ERTM-

/-;Wt1f/f (control) and Cre-ERTM+/-;Wt1f/f (mutant) mice. Sections are counterstained with DAPI. 

Positive Jagged1 staining in the parietal epithelium (red arrows), areas of podocyte adhesion (on 

the surface of Podocin-positive podocytes, green arrows, [B]; white arrows in merged image) to 

Bowman’s capsule and in the glomerular stalk of mutant glomeruli that are not evident in control 

glomeruli. Scale bar 50µm. (A, B) Higher-power views showing perimembranous expression of 

Jagged1 (green) in Podocin-positive podocytes (red) in controls (a) compared to mutants (b). (C) 
Western blot analyses of protein derived from primary podocytes isolated from mutants and 

control mice. Jagged1 is shown to be increased at D6 P.I. in mutant podocytes but not in controls. 
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Figure 3.18. Increased Notch pathway transcripts in primary mutant WT1 podocytes 
(A) WT1 is absent in patients carrying WT1 mutations compared to control DNA. GAPDH 

expression is equal amongst all groups. (B) Relative transcript levels of the Notch pathway in 

controls lacking WT1 mutations vs. DDS (exon 8 C1096T mutation) and FS (intron 9 splice site 

mutation) patients. Bars represent the median, error bars represent the IQR; Ctrl (n=3) vs. DDS 

(n=3): NOTCH1, 1±0 (IQR: 1, 1) vs. 2.9 (IQR: 2.5, 2.9), p=0.1; NOTCH2, 1±0 (IQR: 1, 1) vs. 1.1 

(IQR: 1.1, 1.3), p=0.1; HES1, 1 (IQR: 1, 1) vs. 1.8 (IQR: 1.1, 1.8), p=0.1, HEYL, 1 (IQR: 1, 1) vs. 

0.9 (IQR: 0.6, 1), p=0.7; JAG1, 1 (IQR: 1, 1) vs. 0.7 (IQR: 0.7, 0.8), p=0.1. Ctrl (n=3) vs. FS (n=3): 

NOTCH1, 1 (IQR: 1, 1) vs. 1.3 (IQR: 1.2, 1.5), p=0.1; NOTCH2, 1 (IQR: 1, 1) vs. 1.7 (IQR: 1.3, 

1.9), p=0.1, HES1, 1 (IQR: 1, 1) vs. 1.3 (IQR: 1.3, 1.5), p=0.1, HEYL, 1 (IQR: 1, 1) vs. 1.2 (IQR: 

1, 1.3), p=0.1, JAG1, 1 (IQR: 1, 1) vs. 1.1 (IQR: 0.9, 1.1), p=0.7. DDS (n=3) vs. FS (n=3): 

NOTCH1, p=0.1; NOTCH2, p=0.2; HES1, p=0.7; HEYL, p=0.1; JAG1, p=0.1. Mann-Whitney U 

test. DDS, Denys-Drash syndrome; FS, Frasier syndrome 

 

3.2.3.2 HES1 is apparent at the onset of GS and is associated with podocyte EMT  

 

We next investigated the activation of Hes and Hey in early disease. 

Immunofluorescence revealed expression of Hes1 in Synaptopodin-positive podocytes 

at the onset of GS in mutants compared with controls (Figure 3.19A, B). Hes1-positive 

glomerular epithelial cells exhibited Hes1 protein distinctive from Hes1-positive LTL-

positive tubules, indicating Notch activation specifically in the podocytes (Figure 3.19B, 

B’). Hes1 protein was also revealed as clusters in the Synaptopodin-positive podocytes 
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compared to PECAM-positive glomerular endothelial cells of the mutants (Figure 3.19 D, 

D’). Hes1 was absent in the Synaptopodin-positive cells of controls (Figure 3.19C). 

 

 
Figure 3.19. Podocyte Hes1 expression coincides with onset of GS in Cre-ERTM+/-;Wt1f/f 
mutants 
(A, B, B’) D5 P.I. glomeruli following double immunofluorescence labelling of mouse kidney 

sections with anti-Hes1 (Alexa Fluor 594–conjugated secondary antibody), anti-Synaptopodin 

(SYNPO, demarcates podocytes (Alexa Fluor 647–conjugated secondary), and LTL, demarcates 

tubules (Alexa Fluor 488–conjugated secondary antibody) of Cre-ERTM-/-;Wt1f/f (control) and Cre-

ERTM+/-;Wt1f/f (mutant) transgenic mice. Sections are counterstained with DAPI. Scale bar, 50 µm. 

(B, B’) Hes1-positive, SYNPO-positive glomerular epithelial cells were observed in regions 

distinct from LTL-positive tubules in the mutants. Scale bar, 50 µm. (B’) 10 µm. (C, D, D’) 
Segmental clusters of nuclear Hes1 expression in Synpo-positive, PECAM-negative podocytes 

detected in glomeruli of the mutants and not in the control glomeruli. Scale bar, 50 µm. (Asfahani 

et al., 2018) 
 

Due to HES1’s association with EMT (Wang et al., 2015), we tested whether there was 

an upregulation of Snail and Slug mRNAs in D6 P.I. mutant podocytes compared to 



 

Page 113 of 214 

 

controls (Figure 3.20A). Both EMT transcript levels were significantly increased in the 

mutants compared to controls, suggesting a role for Hes1 inducing EMT gene 

expression. To examine this, primary podocytes were isolated from Nphs2;rtTA mice, 

cultured, and transfected with constructs expressing either Tet-O-Hes1 or GFP. Hes1 

was not detected in untreated Tet-O-Hes1 nor doxycycline-treated GFP transfected 

Nphs2;rtTA podocytes (Figure 3.20B). Dose-dependent doxycycline treatment led to an 

increase in podocyte Hes1 mRNA and protein expression (Figure 3.20B, C, Figure 3.21). 

Induction of Hes1 expression led to a 3-fold upregulation of Snail and Slug mRNAs 

compared to untreated TetO-Hes1 transfected and doxycycline-treated GFP transfected 

Nphs2;rtTA podocytes (Figure 3.20C). Thus, the induction of Hes1 in podocytes could 

facilitate manifestation of GS by controlling expression of EMT genes in podocytes. 

 

 
Figure 3.20. Upregulation of podocyte EMT genes in TetOHes1-induced podocytes 
(A) Graph at D6 P.I. showing an upregulation of podocyte Snail and Slug EMT transcripts. Median 

Snail mRNA expression at D6 PI in control vs mutant mice: 1.1 (interquartile range [IQR]: 0.9, 

1.2) vs. 2.7 (IQR:1.8, 2.8), *p=0.045, Mann-Whitney. Median Slug mRNA expression at D6 PI in 

control vs. mutant mice: 1.2 (IQR: 0.6, 1.5) vs. 2.8 (IQR: 1.4, 3.7), *p= 0.03, Mann-Whitney. (B) 
Hes1 mRNA expression is increased in doxycycline-treated primary Nphs2;rtTA podocytes 

transduced with TetOHes1 plasmid vs. untreated TetOHes1 and treated green fluorescence 

protein (GFP)-transduced primary Nphs2;rtTA podocytes. Mean Hes1 mRNA expression relative 

to Gapdh (±SD): untreated control (GFP) vs. untreated TetOHes1 vs. treated control (doxycycline 

2 µg/ml) vs. treated TetOHes1 (2 µg/ml) vs. treated TetOHes1 (4 µg/ml): 1.15±0.66 vs. 1.26±1.13 

vs. 1.21±0.88 vs. 54.56±44.24 (**p<0.004) vs. 42.78±33.07 (**p<0.008). No significant difference 

in dose-response was observed, p=.045 (n.s.). (C) EMT genes, Snail and Slug are upregulated 

in doxycycline-treated primary Nphs2;rtTA podocytes transduced with TetOHes1 plasmid vs. 

untreated TetOHes1 and treated GFP-transduced primary Nphs2;rtTA podocytes. Untreated 

control (GFP) vs. untreated TetOHes1 vs. treated TetOHes1 (4 µg/ml): mean Snail mRNA 

expression relative to Gapdh (±SD): 1.76±2.1 vs. 1.01±0.31 vs. 4.82±3.94, *p< 0.05. Mean Slug 

mRNA expression relative to Gapdh (±SD): 0.95±1.12 vs. 0.31±0.26 vs. 5.10±0.3, *p<0.05. 

(Asfahani et al., 2018) 
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Figure 3.21. Hes1 is increased post-doxycycline treatment in Nphs2;rtTA-transduced 
podocytes 
Western blot analysis showing a representative image of protein lysates from doxycycline-treated 

primary Nphs2;rtTA podocytes transduced with TetoHes1 (t-o-Hes1) and GFP plasmids. 

Increased Hes1 protein expression was detected following a dose increase of doxycycline in the 

tetoHes1 transduced podocytes. No Hes1 protein expression was observed in GFP-transduced 

Nphs2;rtTA podocyte lysates post-doxycycline treatment (Asfahani et al., 2018). 

 

In addition to analysis of Notch activation in Wt1 glomerulopathy in mice, we examined 

biopsy samples from an FSGS patient with the mutation WT1c.1390G>T. JAGGED1 

protein was detected in cells with focal NEPHRIN staining in the patient but was 

predominantly in the parietal epithelium (Figure 3.22A, bottom panel). The control 

samples, which were non-diseased time-zero renal transplant biopsies, showed 

JAGGED1 expression in regions distal to NEPHRIN suggesting that there was 

endothelial JAGGED1 expression (Figure 3.22A, top panel). JAGGED1 was not 

observed in the control parietal epithelium to the extent that was seen in the mutant WT1 

patient tissue. The bHLH transcription factor, HES1 was also examined by 

immunofluorescence staining on the patient tissue and was detected in the podocytes 

(Figure 3.22B, bottom panel) compared to the control biopsy tissue (Figure 3.22B, top 

panel). 

 

The data above has highlighted an increase in the Notch pathway components in Wt1 

glomerulopathy in both murine and patient samples, supporting a role for Notch 

activation in human WT1-mediated glomerular disease. A recent study has shown that 

both Jag1 and Notch2 are associated with kidney fibrosis in mouse models of folic-acid 

(FA)-induced nephropathy, UUO and apolipoprotein L1 (APOL1)-associated kidney 

disease (Huang et al., 2018). Similarly, our immunohistochemistry and Western blot 

findings show that Jag1 may be playing a role in the activation of Notch1 in Wt1 

glomerulopathy. 
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Figure 3.22. JAGGED1 and HES1 are expressed in WT1 c.1390G>T (p.Asp464Asn) human 
glomeruli 
(A, B) Representative micrographs of glomeruli following double immunofluorescence labelling 

of human kidney sections from control (time-zero renal allograft biopsy) and WT1 

c.1390G>T mutant patient with anti-JAGGED1 (A) or anti-HES1 (B) antibodies (Alexa Fluor 594) 

and anti-Nephrin antibody (demarcates podocyte slit diaphragm, Alexa Fluor 488). (A) JAGGED1 

is upregulated in parietal epithelium of WT1 c.1390G>T glomeruli vs. controls (red arrows) and is 

also expressed in a linear pattern associated with focal NEPHRIN staining in podocytes. 

JAGGED1 expression is also detected in the endothelium of time-zero allograft glomeruli, which 

do not exhibit GS. Scale bars, 50 μm. (B) Increased HES1 expression is observed in nuclei of 

cells adjacent to NEPHRIN-positive podocytes of WT1 c.1390G>T glomeruli with advanced GS. 

Scale bars, 50 μm (Asfahani et al., 2018). 
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3.2.4 Notch inhibition ameliorates disease severity in Wt1 glomerulopathy 
 

Finding that there was an activation of the Notch pathway in early disease, we next 

determined the consequences of γ-secretase inhibition in Cre-ERTM+/-;Wt1f/f mutant mice 

to inhibit Notch during disease manifestation. Mice were given an intraperitoneal injection 

of the γ-secretase inhibitor, GSI-IX (DAPT), at late D4 P.I. and a second dose was given 

16 hours later (D5 P.I.). Mice were then sacrificed at least 8 hours following the second 

treatment. Paraffin-embedded PAS-stained tissue sections were examined using a light 

microscope to score the severity of GS in the GSI-IX-treated vs. vehicle (DMSO only)-

treated mutants, treated at the same time. Hyaline-filled tubules were observed in the 

vehicle-treated mutants, showing evidence of proteinaceous material in the tissues. 

Sclerotic glomeruli with mesangial proliferation were also evident in the vehicle-treated 

mutants (Figure 3.23B), whilst these features were not exhibited in the GSI-IX-treated 

mutants (Figure 3.23C). GS was significantly higher in the vehicle-treated mutant 

glomeruli compared to the GSI-IX-treated mutants (**p=0.008) (Figure 3.23D). 

 

The hypothesis that podocyte Notch activation is likely a ligand-dependent event is 

supported by the efficacy of GSI inhibition in manifestation of early glomerulopathy. GSI-

IX-treated mutants showed improved urine albumin/creatinine ratio in contrast to the 

vehicle-treated mutants (*p=0.02) (Figure 3.23F). Notch transcript levels were reduced 

post-GSI treatment compared to the vehicle-treated mutants (Figure 3.23E). Wt1 

transcript levels and protein expression were verified by real-time qPCR and 

immunofluorescence in both GSI-IX- and vehicle-treated mutants to confirm whether any 

alteration of Wt1 expression was observed following treatment (Figure 3.24). There was 

no significant difference of Wt1 transcript levels between the vehicle- and the GSI-IX-

treated mutant mice (Figure 3.24B) as well as no difference in WT1 protein expression. 

Cre-ERTM-/-;Wt1f/f controls were used for comparison of Wt1 levels post-tamoxifen 

induction, and it was evident that Wt1 expression was reduced in the mutants vs. Cre-

ERTM+/-;Wt1f/f controls on an mRNA and protein level. To examine urine albumin levels 

further, Western blot analysis revealed absence of albuminuria in the GSI-IX-treated 

mice compared to vehicle-treated mutants at D5 P.I. (Figure 3.23G). 
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Figure 3.23. γ-secretase inhibition of Notch ameliorates early Wt1 glomerulopathy 
(A) PAS-stained sections of D5 P.I. Cre-ERTM-/-;Wt1f/f mutants. (B) Vehicle-treated Cre-ERTM+/-;Wt1f/f 

mutants. (C) GSI-IX-treated Cre-ERTM+/-;Wt1f/f mutants. Scale bar, 50 µm. (A, B) GS with hyaline 

material in the tubules in mutants and vehicle-treated mice. (C) Glomeruli of GSI-IX–treated mutants 

present lower levels of GS vs. vehicle-treated mutants. (D) Graph showing proportion in glomeruli per 

genotype with different levels of GS (score 0: <25% sclerosis; score 1: 25%–50% sclerosis; score 2: 

50%–75% sclerosis; score 3: >75% sclerosis). Bars show mean percentage of scores, error bars show 

SEMs. Normal glomerular morphology was present in a higher proportion of GSI-IX–treated Cre-

ERTM+/-;Wt1f/f transgenic mice (n=52 glomeruli, n=5 mice) compared with vehicle-treated Cre-ERTM+/-

;Wt1f/f (mutants) at D5 P.I. (n=52 glomeruli, n=4 mice): vehicle-treated Cre-ERTM+/-;Wt1f/f vs. GSI-IX–

treated Cre-ERTM+/-;Wt1f/f transgenic mice: score 0: 18 0.9% vs. 59 1.0%, *p<0.02, Student’s t-test; 

score 2: 39 5% vs. 8 3%, *p<0.008, Student’s t-test. (E) Graph showing reduced mean relative Rbpsuh, 

HES1, Hes3, and HES5 mRNA expression from cultured podocytes from GSI-IX–untreated vs. 

untreated mutant mice: Rbpsuh, 1.2±0.2 vs. 0.6 0.03, *p=0.01; Hes1, 1.1±0.1 vs. 0.6±0.01, p=0.05; 

Hes3: 1.4±0.3 vs. 0.5±0.1, p=0.05; Hes5: 3.1 0.9 vs. 2.0±0.4, P=0.1. Bars represent means and error 

bars represent SEMs. (F) Graph illustrating median urine albumin-creatinine ratio in vehicle-treated vs. 

GSI-IX–treated mutant mice. Bars represent the median of each group. Error bars represent the 

interquartile ranges (IQRs): Cre-ERTM+/-;Wt1f/f vs. GSI-IX–treated Cre-ERTM+/-;Wt1f/f mice: 35,836 (IQR: 

21,304, 46,371) vs. 6657 (IQR: 1337, 10,565), *p=0.02, Mann-Whitney test. (G) Western blot analysis 

reveals albumin in urine samples of vehicle-treated vs. GSI-IX–treated mutant mice (MW albumin, 66.5 

kDa), n=3 mice/group (Asfahani et al., 2018). 
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Figure 3.24. Wt1 transcript and protein levels are comparable in Cre-ERTM+/-;Wt1f/f mutants 
post-γ-secretase inhibition and vehicle treatment 
(A) Representative images of glomeruli following immunofluorescence labelling of kidney 

sections: Cre-ERTM-/-;Wt1f/f (control), Cre-ERTM+/-;Wt1f/f (mutant), vehicle-treated Cre-ERTM+/-;Wt1f/f 

and GSI-IX-treated Cre-ERTM+/-;Wt1f/f transgenic mice with anti-WT1 (Alexa Fluor 594-conjugated 

secondary antibody). WT1 is evident in control and reduced in the mutants. (B) Quantitative graph 

illustrating relative transcript levels of Wt1 in primary podocytes of Cre-ERTM-/-;Wt1f/f (control), Cre-

ERTM+/-;Wt1f/f (mutant), vehicle-treated Cre-ERTM+/-;Wt1f/f and GSI-IX treated Cre-ERTM+/-;Wt1f/f 

transgenic mice. Bars signify the mean, error bars denote the standard error of the mean, (SEM). 

Cre-ERTM-/-;Wt1f/f vs. Cre-ERTM+/-;Wt1f/f: 1.1±0.2 vs. 0.4±0.4, *p=0.03; Cre-ERTM-/-;Wt1f/f vs. 

vehicle-treated Cre-ERTM+/-;Wt1f/f mice: 1.1±0.2 vs. 0.4±0.2, p=0.07; vehicle-treated Cre-ERTM+/-

;Wt1f/f vs. GSI-IX treated Cre-ERTM+/-;Wt1f/f: 0.4±0.2 vs. 0.4±0.3, p=0.93, Student t-test, n=6 

mice/group (Asfahani et al., 2018). 
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We next tested the effects of GSI-IX treatment in established disease by inhibiting γ-

secretase at D7 P.I. in Cre-ERTM+/-;Wt1f/f mutant mice. Mice were treated with the 

compound twice and late D8 P.I. kidney histology analysed by PAS staining using a light 

microscope (n=2 mice) following tissue harvest. There was no significant difference in 

the severity of GS or albumin levels between the GSI-IX- and vehicle-treated mutants at 

this time-point (Figure 3.25A, E). In fact, a scoring of 3 for GS was relatively high in both 

groups (Figure 3.25C). Albumin/creatinine levels were lower in the GSI-IX-treated 

mutants; however, the difference did not reach statistical significance (Figure 3.25D). 

Furthermore, immunofluorescence revealed no difference in tubulointerstitial expression 

of vascular smooth muscle actin between both groups (Figure 3.25B).  

 

These data illustrate that the activation of Notch in podocytes occurs in early Wt1 

glomerulopathy. Additional mice need to be analysed to further establish the effect of 

GSI-inhibition at later time-points. 
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Figure 3.25. γ-secretase inhibition in Cre-ERTM+/-;Wt1f/f at D8 P.I. does not rescue GS  
(A) Representative images of H&E stained kidney sections of GSI-IX-treated Cre-ERTM+/-;Wt1f/f 

and vehicle (DMSO)-treated Cre-ERTM+/-;Wt1f/f mutant mice treated at D8 P.I. Global GS with 

hyaline material in the tubules is observed in vehicle-treated mice (top panel). A lower power 

image of glomeruli and tubules is presented in the top left, with hyaline material in the tubules 

(indicated by white arrows, Scale bar 50μm); A high-power image of the glomerulus is shown in 

the top right panel exhibiting global glomerulosclerosis (indicated by white arrows, scale bar 

25μm). The same level of GS is displayed in glomeruli of GSI-IX treated mice (bottom panel) 
and vehicle-treated mice, with global GS. Bottom left image shows a lower power image of the 

glomeruli and tubules, with hyaline-filled tubules (indicated by white arrows, Scale bar 50μm); 

Bottom right panel displays a high-power image of the glomerulus, with severe glomerulosclerosis 

(indicated by white arrows, Scale bar 25μm). (B) Merged images of kidney sections following 

double immunofluorescence labelling of vehicle- and GSI-IX-treated Cre-ERTM+/-;Wt1f/f kidney 

tissue sections with α-SMA (Alexa Fluor 488-conjugated secondary antibody) and LTL (Alexa 

Fluor 594-conjugated secondary antibody) (scale bars, 50μm). Top panel represents lower power 

image (left) of the tubules and glomeruli in vehicle-treated mutants, highlighting α-SMA between 

the tubules (green arrows), indicating tubulointerstitial disease; higher power (right) shows α-
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SMA- positive staining in dilated capillary loop (green arrow). Bottom panel; low power image 

(left) of the tubules and glomeruli in GSI-IX-treated mutants, showing α-SMA in peritubular 

interstitium (green arrows); higher power (right) images highlights the glomerulus with α-SMA 

expression within the glomerular tuft (green arrows). (C) Graph illustrating semi-quantitative GS 

scoring (Score 0-3, 0, < 25%, 1, 25-50%, 2, 50-75%, 3,>75% sclerosis). Vehicle-treated mutants 

(n=62 glomeruli, n=2 mice) vs. GSI-IX-treated mutants (n=66 glomeruli, n=2 mice): Bars 

symbolise the mean of each group, error bars display the standard error of the mean (SEM). 

Score 0: 0% vs. 8.5±8.5% (p=0.42); Score 1: 9±5% vs. 28.5±3.5% (p=0.09); Score 2: 20.5±1.5% 

vs. 28±11% (p=0.57); Score 3: 72.5±8.5% vs. 49±9% (p=0.20) Student t-test. (D) Quantitative 

graph showing mean urine albumin/creatinine ratio in vehicle- (n=3) vs. GSI-IX-treated (n=1) Cre-

ERTM+/-;Wt1f/f transgenic mice. Bars represent the mean; error bars represent the standard error 

of the mean (SEM). (E) Albuminuria is detected by Western blot analysis in D8 P.I., Cre-ERTM+/-

;Wt1f/f (mutant), vehicle-treated Cre-ERTM+/-;Wt1f/f and GSI-IX treated Cre-ERTM+/-;Wt1f/f 

transgenic mice but not in Cre-ERTM-/-;Wt1f/f control mice [MW of albumin, 66.5kDa] (Asfahani et 

al., 2018). 

 

3.2.5 Podocyte epithelial-mesenchymal transition (EMT) in Cre-ERTM+/-;Wt1f/f 

mutants at the onset of Wt1 glomerulopathy 
 

As previously mentioned, the Notch pathway consists of ligand binding, which is affected 

by the glycosyltransferases; Manic, Lunatic and Radical Fringe, located in the Golgi 

(Okajima et al., 2003, Bray, 2006, Kakuda and Haltiwanger, 2017). The Fringes bind to 

the EGF domains of the extracellular domain of the Notch receptors, affecting which 

ligands the Notch receptors bind to prior to the activation of the Notch pathway (Kopan 

and Ilagan, 2009, Taylor et al., 2014, Kakuda and Haltiwanger, 2017). Studies have 

shown that when Fringe proteins bind to different parts of the EGF domains of the 

receptors, the affinity of binding with either the Dll or Jag families gets influenced (Kakuda 

and Haltiwanger, 2017). 

 

As Mfng and Rbpj transcript levels were upregulated at D6 P.I. (Figure 3.26A, C), we 

sought to determine the influence of knockdown of both transcripts on podocyte EMT 

and apoptotic gene expression. Although both Mfng and Rbpj levels were reduced 

following knockdown, with repression of the Notch bHLH transcripts, there was no sign 

of a significant decrease of the EMT genes, Snail and Slug, nor a significant upregulation 

of podocyte-specific transcripts including Nphs1 and Nphs2 (Figure 3.26). Sample 

numbers were very low (n=2 mice/group), therefore we could not draw final conclusions 

for this data. Podocytes that were transfected were the only available D6 P.I. cells. This 

was due to slow growth, apoptosis, and the viability of the primary mutant podocytes. In 
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future, higher sample numbers of podocytes that show increased transcript levels of the 

bHLH transcription factors would be selected. 

 
Figure 3.26. Mfng/Rbpj shRNA knockdown in Cre-ERTM+/-;Wt1f/f podocytes repress Notch 
bHLH transcripts  
(A) Dot plot analysis showing the median relative transcript mRNA levels of Rbpj (canonical Notch 

target) in D6 P.I. primary podocytes of Cre-ERTM-/-;Wt1f/f controls cultured for 6 days (n=7) vs. 

Cre-ERTM+/-;Wt1f/f mutants (n=10). Error bars represent the interquartile range (IQR). Rbpsuh 

expression is increased in D6 P.I. Cre-ERTM+/-;Wt1f/f vs. Cre-negative controls: 0.95 (IQR: 0.79, 

1.27) vs. 1.45 (IQR: 1.01, 2.09), p=0.05. Mann-Whitney test. (B) Relative transcript levels of Rbpj, 

Notch bHLH components, Hes1, 3 and 5, Snail, Slug (markers of EMT), podocyte-specific 

transcripts Wt1, Nphs1 and Nphs2 and apoptosis components, Apaf1, Bax and p53 following 48 

hours of Rbpj shRNA knockdown. Bars represent the median, error bars represent the IQR. 

Scrambled shRNA (SCR) Cre-ERT+/-;WT1f/f mutants (n=2), vs. shRNA Rbpj-Cre-ERTM+/-;Wt1f/f 

mutants (n=2); Rbpj, 1.0 (IQR: 0.9, 1.2) vs. 0.6 (IQR: 0.5, 0.7), p=0.33; Hes1, 1.0 (1, 1) vs. 0.6 

(IQR: 0.5, 0.6), p=0.33; Hes3, 1.0 (IQR: 1, 1) vs. 0.7 (IQR: 0.7, 0.7), p=0.33; Hes5, 1.0 (IQR: 0.8, 

1.3) vs. 0.4 (IQR: 0.1, 0.7), p=0.33; Wt1, 1.0 (IQR: 1,1) vs. 0.8 (0.7, 0.9), p=0.33; Snai, 1.0 (IQR: 

0.8, 1.2) vs. 1.0 (IQR: 1, 1), p>0.99; Slug, 1.0 (IQR: 0.8, 1.2) vs. 0.9 (IQR: 0.9, 0.9), p>0.99; Apaf1, 

1.0 (IQR: 0.9, 1.1) vs. 0.71 (IQR: 0.5, 0.9), p=0.67; Bax, 1.1 (IQR: 0.7, 1.4) vs. 0.8 (IQR: 0.6, 1), 

p=0.67; p53, 1.0 (IQR: 1, 1) vs. 0.7 (IQR: 0.5, 0.9), p=0.33. Mann Whitney U test. (C) 
Representative dot plot analysis showing the median relative transcript mRNA levels of Manic 

Fringe in Cre-ERTM-/-;Wt1f/f controls vs. Cre-ERTM+/-;Wt1f/f mutants at D4, D5 and D6 P.I. Error bars 

represent the IQR. D4: Mfng: 0.8 (IQR: 0.3, 6.1) vs. 1.4 (IQR: 0.5, 1.5), p=0.68; D5 Mfng: 0.8 

(IQR: 0.6, 3.1) vs. 1.4 (IQR: 0.6, 9.4), p=0.45; D6: Mfng: 0.9 (IQR: 0.5, 2.3) vs. 2.8 (IQR: 0.8, 7), 

p=0.15. Mann Whitney U test. (D) Relative transcript levels of Mfng, Notch bHLH components, 

Hes1, 3 and 5, Snail, Slug (markers of EMT) and podocyte-specific transcript Wt1 following 48 
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hours of Mfng shRNA knockdown. Scrambled shRNA transfected (Scr) Cre-ERT+/-;Wt1f/f (n=2) vs. 

Manic Fringe shRNA (ShMfng) transfected Cre-ERTM+/-;Wt1f/f (n=2). Bars display the median, 

error bars present the IQR, Mfng expression is reduced following shRNA knockdown. Scr vs. 

ShMfng: Mfng: 1.3 (IQR: 0.6, 1.9) vs. 0.1 (IQR: 0.1, 0.1), p=0.33. Wt1 transcript levels are equal 

in both groups post-transfection, 1.0 (IQR: 0.9, 1) vs. 1.1 (IQR: 0.7, 1.5), p>0.99; Hes1: 0.8 (IQR: 

0.4, 1.3) vs. 0.5 (IQR: 0.3, 0.7), p=0.67; Hes5: 1.5 (IQR: 0.1, 2.9) vs. 0.2 (IQR: 0.1, 0.3), p=0.67; 

EMT marker, Snail is reduced: 4.4 (IQR: 1.6, 7.1) vs. 3.2 (IQR: 0.9, 5.5), p=0.67; Slug: 1.1 (IQR: 

0.8, 1.4) vs. 1.0 (IQR: 0.9, 1.1), p>0.99. Analysed by Mann Whitney U test. 

 

3.3 Discussion 
 

This project demonstrates that our inducible model of Wt1 deletion shows activation of 

the Notch pathway in the pathogenesis of Wt1 glomerulopathy. A temporal rise in urine 

albumin/creatinine urine levels was seen in our mutants with FP effacement and 

development of GS. PAS staining of tissue sections revealed FSGS as early as D5 P.I. 

in our mutants. All together, these results support the view of podocyte apoptosis 

contributing to the development of Wt1 glomerulopathy. Likewise, tubulointerstitial 

disease was evident at D12 P.I., which may be a result of glomerular injury and podocyte 

apoptosis. This corroborates earlier findings of podocyte apoptosis leading to GS 

(Niranjan et al., 2008). Thus, investigating podocyte apoptosis was an obvious 

mechanism to pursue in our inducible model of Wt1 deletion. 

 

Due to the terminally differentiated nature of podocytes, previous studies have shown 

that apoptosis of these cells contributes to disorders that lead to ESRD, including FS, 

DDS, NS and diabetic nephropathy (DN) (Wang et al., 2014, Niranjan et al., 2008). Loss 

of podocytes and tubular injury have been linked to podocyte apoptosis (Chang et al., 

2012) leading to FSGS and DMS (Shankland, 2006). An earlier study introduced high 

doses of Diphtheria toxin (dT) in a rat model, which led to a reduced number of podocytes 

and FSGS. This work demonstrated the importance of podocytes in glomerular 

selectivity and maintenance (Wharram et al., 2005). Here, we present data from 

numerous apoptosis assays to validate this mechanism in our inducible model. Podocyte 

apoptosis occurs as early as D4 P.I. in the mutants, before GS is evident. Apoptosis is 

significantly increased in the mutants at D5-D12 P.I. and is associated with increased 

albuminuria and the progression of GS. 

 

Temporal Wt1 deletion leads to proteinuria and GS 
 

Despite the accumulated research of Wt1 being vital during the early stages of kidney 

development, it has not been studied in depth in the mouse adult kidneys. Various 
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studies have shown that Wt1 mutations in mice can lead to aberrant kidney 

morphogenesis, kidney failure, and embryonic lethality (Davies et al., 2004, Kreidberg et 

al., 1993, Hammes et al., 2001). Wt1 deletion in Cre-inducible adult mice results in 

glomerulopathy with tubule casts and FP effacement (Chau et al., 2011). While detailed 

analysis of temporal Wt1 deletion has been performed by Chau and colleagues, their 

main focus was to examine multiple organs affected by Wt1 deletion, and the tissues 

analysed were no later than D10 P.I. (Chau et al., 2011). This therefore provided us with 

a great platform to investigate different stages of NS, including pre-proteinuric, 

proteinuric and GS following temporal deletion of Wt1. 

 

Our findings demonstrate a key role for Wt1 in maintaining kidney homeostasis and 

podocyte morphology in adult kidneys. Cre-ERTM+/-;Wt1f/f mutants showed FP effacement 

as early as D4 P.I., with proteinuria at D5 P.I. Glomeruli of D6-D12 P.I. mutants 

presented with either FSGS or DMS, with severe proteinuria and tubulointerstitial 

fibrosis. There was progressive loss of Wt1 in the mutants following tamoxifen induction, 

which was supported by DNA and protein findings. The temporal loss of Wt1 is 

associated with the progression of GS and proteinuria, supporting earlier connections of 

Wt1 with renal disorders (Gessler et al., 1990, Orloff et al., 2005). 

 

Numerous mutations of WT1, including missense, nonsense and splice site-mutations 

have been variously associated with DDS, FS, and SRNS, leading to ESRD (Orloff et 

al., 2005, Benetti et al., 2010, Hall et al., 2015, Ruf et al., 2004, Topaloglu et al., 1999). 

The majority of the mutations lie within exon 8 and 9, which have been linked to DDS 

and FS, mainly due to the disruption of the KTS isoforms (Patek et al., 1999, Barbaux et 

al., 1997, Barbosa et al., 1999, Saylam and Simon, 2003, Hashimoto et al., 2016). 

Additionally, deletion of this gene has given rise to glomerulopathies linked to DDS, FS 

and SRNS. Our data illustrates that time-point analysis following Wt1 deletion in adult 

kidneys show a striking deterioration of the glomerulus and proteinuria, with rapid 

progression towards GS, as early as day 5 P.I.  

 

Podocyte architecture was altered in the Cre-ERTM+/-;Wt1f/f mutants at D4 P.I., where FP 

effacement was seen. Wt1 has been reported to be a master regulator of numerous 

genes associated with podocyte integrity. Target genes include, Itga3, which is 

associated with podocyte adherence to the GBM (Dong et al., 2015b). Mutations in Itga3 

have been linked to FP effacement and proteinuria. Wt1 has been reported to bind to the 

proximal promoters of Nphs1, Nphs2 and Magi2 DNA, regulating their expression within 

the kidney (Lefebvre et al., 2015). Injury to the SD can lead to proteinuria (Grahammer 

et al., 2013, Dong et al., 2015b). The polarity and cytoskeleton of the podocytes are 
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regulated by WT1 where it binds the cis-regulatory elements of genes specific to 

cytoskeletal features of the podocytes (Kann et al., 2015b, Dong et al., 2015b). 

Therefore, direct target genes of WT1 are necessary for the integrity of podocyte 

architecture and maintaining an intact GFB. 

 

Human FSGS and DMS can be caused by mutations in podocyte-specific genes, 

including, WT1, NPHS1, NPHS2, LAMB2, PAX2, which lead to SRNS and ESRD (Chen 

and Liapis, 2015, Lipska et al., 2014). Clinical research has demonstrated the 

importance of podocyte-specific genes in maintaining podocyte integrity (Chen and 

Liapis, 2015, Kaverina et al., 2017). Here, we show that Wt1 deletion leads to FSGS and 

DMS in the mutants from D5 to D12 P.I. Expansion of the mesangial space was observed 

in the glomeruli at D6, D8 and D12 P.I. with fragmented podocyte nuclei in the mutants 

compared to the controls. Hypercellularity and basement membrane thickening was 

detected, possibly due to the increase in protein components following podocyte injury 

as well as the proliferation of endothelial and mesenchymal cells. Extensive hyaline 

material was also noted in the tubules and was associated with tubular dilatation. 

Hyalinosis is a result of capillary wall injury, leading to plasma protein leakage in the 

filtration system, resulting from podocyte injury. Glomerular global scarring was seen at 

D12 P.I., with thickening of the capillary walls, where podocyte and parietal epithelial 

cells were on some occasions, confluent. This may be due to podocytes re-entering the 

cell cycle in order to adhere to the denuded glomeruli (Wiggins et al., 2005). However, 

due to the nature of the terminally differentiated podocytes, their lack of proliferation 

contributed to the manifestation of GS. As a result, hypercellular glomeruli with collapsing 

lesions were observed with proliferation of endothelial and mesangial cells, and 

basement membrane thickening. 

 

Wt1 deletion led to podocyte depletion, GS and tubulointerstitial fibrosis by D12 P.I., 

showing αSMA protein in the mutants’ tubules and glomeruli. The development of GS 

initiates with an adhesion of the tuft and Bowman’s capsule, eventually affecting the 

parietal epithelial membrane and glomerulotubular junction. This leads to the obstruction 

of the urinary opening. Due to the reduced filtrate release, tubules no longer function 

appropriately and degenerate (Kaissling et al., 2013). This disease progression was 

revealed from D4 to D12 P.I. in Wt1 mutants. Proteinuria and FP effacement were signs 

of podocyte injury at D4 P.I., and global GS and tubulointerstitial fibrosis developed by 

D12 P.I. Apoptosis was explored as an important mechanism underlying podocyte loss. 
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Podocyte apoptosis is a mechanism of podocyte injury in Wt1 glomerulopathy 
 

Podocyte apoptosis has been reported to instigate the pathogenesis of GS and DN 

(Niranjan et al., 2008, Susztak et al., 2006, Li et al., 2013). By performing a number of 

different apoptosis assays in our inducible model, we show that podocyte apoptosis 

plays a key role in GS following Wt1 deletion. Cleaved caspase-3 protein is a common 

tool to detect apoptosis and is activated by the upstream caspases 8 and 9 (Barrett et 

al., 2001). Cleaved caspase-3 protein was observed as early as D4 P.I. in the adult Cre-

ERTM+/-;Wt1f/f mutants, before GS was detected. This protein was significantly increased 

in the mutants showing GS. TUNEL analysis and Annexin V staining were also used to 

validate podocyte apoptosis in the mutants. Whilst there was an increase in Annexin V 

in the mutants compared to controls, sample sizes were very low (n=2/group). This was 

due to the low survival of podocytes at D8 P.I., when GS was already evident. In addition, 

mRNA transcripts for the pro-apoptotic marker, Bax and anti-apoptotic marker, Bcl2 were 

tested on D4, 5 and 6 P.I. Interestingly, Bax, was reduced in the mutants at D6 P.I. vs. 

controls in comparison to D4 and D5 P.I., however this was not statistically significant. 

Bcl2 was also reduced in the mutants at this time point, with no significance compared 

to the controls. It was difficult to draw conclusions from these data due to the low sample 

number analysed (n=3 at D6 P.I.). These results demonstrate that a loss of Wt1 in mature 

podocytes leads to podocyte apoptosis. 

 

Previous work has shown that ectopic induction of the Notch pathway in developing and 

mature podocytes can induce FSGS and DMS, with an associated activation of 

apoptosis (Niranjan et al., 2008, Waters et al., 2008). Following this theory, the current 

project demonstrated both FSGS and DMS following Wt1 deletion, with an activation of 

apoptosis. The next question in this project was to determine whether the Notch pathway 

was mediating podocyte apoptosis.  

 

The Notch pathway plays a role in the pathogenesis of Wt1 glomerulopathy 
 

The Notch pathway is activated in early proximal nephron development, and the 

inhibition of Notch signalling during development affects proximal tubule formation 

(Cheng et al., 2003). During terminal podocyte differentiation, the Notch components, 

including the bHLH transcription factors, Hes/Hey are progressively downregulated 

(Piscione et al., 2004, Chen and Al-Awqati, 2005). Here, we demonstrate that Notch 

signalling is activated in our mutants following Wt1 deletion. Prior to GS, cleaved Notch 

1 and Hes1 proteins are seen in the podocytes of the mutants post-Wt1 deletion. At the 



 

Page 127 of 214 

 

onset of GS, there is an upregulation of the canonical Notch targets, as well as Notch1 

and Nrarp, its transcriptional target gene (Krebs et al., 2001). 

 

Vertebrate podocyte differentiation has been shown to be regulated by a transcriptional 

network of wt1, foxC1/C2, and rbpj (O'Brien et al., 2011, White et al., 2010). WT1-binding 

regions have also been found to target FOX transcription factor binding motifs, further 

supporting their coordinating relationship in podocyte regulation (Lefebvre et al., 2015, 

Kann et al., 2015b). In zebrafish, podocyte depletion has been linked to double 

knockdown of either wt1a/rbpj or wt1a/foxc1a, highlighting the significance of interaction 

between these genes in regulating podocyte differentiation (O'Brien et al., 2011). Our 

model of Wt1 glomerulopathy shows reduced FoxC2 transcript levels and an increase in 

Notch signalling at the onset of GS. We postulate that FoxC2 is repressing the Notch 

bHLH genes, including Hey2, due to their increased transcript levels in the mutants. 

Supporting this, a previous study demonstrated that FOXC2 targeted HEY2 in 

endothelial cells (Hayashi and Kume, 2008). Further studies showed that WT1 was able 

to inhibit NICD1 from activating a synthetic Notch reporter controlled by Rbpj sites 

(O'Brien et al., 2011), suggesting that both WT1 and Foxc1/2 can antagonise the Notch 

pathway in mature podocytes. Based on our current findings, podocyte-specific gene 

expression may be rescued following restoration of FoxC2 levels in the adult Cre-

ERTM+/-;Wt1f/f mutants, which may in turn inhibit Notch bHLH gene expression. 

 

The current data shows that the canonical Notch target, Hey1, is also increased in the 

mutants at the onset of GS. Co-immunoprecipitation studies revealed an interaction 

among WT1, RPBJ and FOXC2 proteins and a combination of these genes induce Hey1 

expression (O'Brien et al., 2011). In xenopus, xwt1 knockdown leads to reduced xhrt1 

expression (Hey1 orthologue) in the developing glomus (glomerulus of the pronephric 

kidney in Xenopus), but not in the late glomus, proposing a role for xwt1 mediating xhrt1 

expression in early glomerulogenesis (Taelman et al., 2006). Subsequent investigations 

revealed that WT1 regulates HeyL expression in pre-tubular aggregates as well as binds 

to the HeyL promoter (Hartwig et al., 2010). Together, these findings support a role for 

WT1 and FOXC1/2 modulating Notch targets during nephrogenesis.  

 

Our model of Wt1 glomerulopathy shows an upregulation of the EMT genes, Snail and 

Slug at the onset of GS. This data proposes that the loss of Wt1 in mature podocytes 

activates Notch signalling, which may mediate podocyte EMT and apoptosis. Increased 

Hes1 transcript levels were accompanied by increased Snail and Slug at the onset of 

GS. Hes1 has been reported to induce EMT in various cancers (Thiery and Sleeman, 

2006). To further validate Hes1-mediated EMT in our model of Wt1 glomerulopathy, 
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Nphs2;rtTA primary podocytes were induced to overexpress HES1. This led to an 

upregulation of the EMT markers, Snail and Slug, suggesting that Notch was triggering 

genes promoting EMT in our model of Wt1 glomerulopathy. Further evidence of Notch 

being associated with both podocyte apoptosis and EMT has been demonstrated in 

earlier studies where the conditional deletion of Notch1 in DN abrogated GS with a 

reduced expression of Snail1 mRNA and protein (Sweetwyne et al., 2015). 

 

An earlier study demonstrated that podocytes transduced with Notch1 ICD inhibits 

apoptosis following pifithrin-α treatment, proposing that Notch1 may be inducing 

podocyte apoptosis via the p53 pathway (Niranjan et al., 2008). In the current study, it is 

possible that p53 may be playing a role in mediating podocyte apoptosis in the 

pathogenesis of Wt1 glomerulopathy. An interesting way to investigate this would be to 

conditionally-inactivate Notch1 in podocytes of the adult Cre-ERTM+/-;Wt1f/f mice. In our 

model of Wt1 glomerulopathy, Notch inhibition was carried out using a γ-secretase 

inhibitor at different stages of the disease. The inhibition of Notch at D4 and D5 P.I. 

showed decreased severity of GS and albuminuria. However, Notch inhibition at D7 and 

D8 P.I. failed to rescue the disease, and albuminuria was not reduced. Early intervention 

of γ-secretase inhibition reveals the importance of the Notch pathway at the initiation and 

during early manifestation of disease. 

  

Podocyte Notch activation post-Wt1 deletion may also be mediated by Hippo signalling 

activation. Hippo signalling has been shown to be a transcriptional target of Notch ligands 

in human epidermal stem cells (Totaro et al., 2017). An earlier study exposed TEAD 

transcription motifs (Hippo signalling effectors) within WT1 ChIP sequencing peaks 

(Kann et al., 2015b). Therefore, Wt1 deletion in mature podocytes may also induce Notch 

activation through regulating Hippo components. 

 

Notch glycosylation is evident post-Wt1 deletion 
 

The current data reveals that Jag1 and Pofut1 are expressed at the onset of GS, 

supporting ligand-dependant Notch activation in podocytes at disease manifestation. 

The Notch pathway is activated by o-glycosylation of the extracellular domains of the 

Notch ligands and receptors (Stanley and Okajima, 2010). Pofut1, is an O-

fucosyltransferase 1 enzyme that mediates fucosylation of the Notch ECD. Pofut1 has 

been reported to regulate cell surface expression of Notch1 (Okajima et al., 2003). Manic 

Fringe, a β3-N-acetylglucosaminyltransferase, that mediates glycosylation of the Notch 

ECD, was also increased in our Cre-ERTM+/-;Wt1f/f mutants. Studies have argued that Dll1 

activation of the Notch pathway is mainly influenced by Fringe-mediated NOTCH1 
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glycosylation (Kakuda and Haltiwanger, 2017). The current study, however, has 

demonstrated jagged1 expression in the Cre-ERTM+/-;Wt1f/f mutants as well as in human 

biopsies of WT1-glomerular disease, followed by an activation of Manic Fringe. It would 

therefore be interesting to examine the relationship between Fringe proteins and Notch 

ligands, namely, Mfng and Jag1 in the context of podocyte injury. 

 

One avenue to explore would be to study Notch1 EGF domains and its activation through 

the Fringe proteins in the context of podocyte injury. Earlier research has already shown 

that Notch1 can be activated or inhibited by Fringe modifications on specific EGF 

domains (Kakuda and Haltiwanger, 2017). Mutations in specific EGF domains of Notch 

receptors can reduce Delta-1 mediated Notch signalling from all Fringes. Mfng and Lfng 

modify similar EGF domains of Notch1, while Rfng modifies a portion, thus enhancing 

Notch activation through both ligands (Kakuda and Haltiwanger, 2017). Knowing that 

Fringe modification can impact Notch signalling, exploring and manipulating Fringe 

expression in injured podocytes will allow us to appreciate Notch glycosylation in the 

context of podocyte injury. 

 

Previous work in Drosophila explored EGF8 in Notch 2 and showed that Dll1/Jag1-

mediated Notch2 activation can occur without EGF8 modification, indicating that the 

Notch orthologues and their EGF repeats show differences in where Fringe modification 

occurs (Yamamoto et al., 2012). Fringe modification causes conformational changes in 

NOTCH1, exposing its EGF repeats to POFUT1, thus becoming more modified by O-

fucosylation and inducing Notch proteolytic activation. The absence of Fringe therefore 

decreases Notch modification. An example of Pofut1 modification occurs in EGF26 

following Fringe elongation, where NOTCH1 conformational changes exposes its EGF 

domain and allows POFUT1 to bind to it (Kakuda and Haltiwanger, 2017). 

 

Studying alternative Notch receptors could further illuminate the role of Notch 

glycosylation. Fringe glycosylation also occurs in Notch2, stimulating Dll1/Jag1-mediated 

Notch activity or Jag1-induced Notch inhibition by Lfng and Mfng. Although Notch1 and 

Notch2 are structurally parallel with their 36 EGF repeats, their chemical requirements 

for activation vary. Studies have reported that Notch2 is more prone to ligand mediated 

activation than Notch1, perhaps due to the distinct conformational changes in their NRR 

to expose the S2 site for proteolytic cleavage (Stephenson and Avis, 2012). 

  



 

Page 130 of 214 

 

Notch ligands exhibited in early disease progression 
 

In the current study, the Notch ligand Jag1 was expressed in both podocytes and parietal 

epithelium at the early stages of GS in the WT1 deleted mouse, observations supported 

by evidence from earlier studies (Niranjan et al., 2008, Murea et al., 2010). In contrast, 

the Dll1 ligand showed no quantitative difference between the Cre-ERTM+/-;Wt1f/f mutants 

and controls at any time point. During kidney development, Jag1 and Dll1 expression 

overlaps within the middle portion of the S-shaped body. Moreover, their loss in 

Cre;Dll1f/f;Jag1f/f mouse mutants leads to a significant decrease in glomeruli and proximal 

tubules (Liu et al., 2013), highlighting their importance in mediating Notch activation 

during renal development. Jag1 plays a role in determining podocyte fate induction; Dll1 

replacement by a Jag1 allele rescues WT1-positive podocytes (Liu et al., 2013). 

Furthermore, Niranjan et al. showed that in podocyte injury, Jag1 was upregulated 

following TFG- β1 treatment, suggesting a role for Jag1 in podocyte fate (Niranjan et al., 

2008). A more recent study using genome-wide expression analysis in human tubular 

epithelial cells has shown that JAG1 and NOTCH2 are increased in kidney fibrosis 

(Huang et al., 2018). Mouse models of nephropathy corroborated these findings, 

showing higher levels of Jag1 and Notch2 in renal fibrosis (Huang et al., 2018). Given 

that there is an increase in podocyte expression of Notch1 and Jag1 in our mutants, 

future work could focus on conditionally deleting each of these in adult Cre-ERTM+/-;Wt1f/f 

transgenic mice. Subsequent evaluation of disease manifestation might help identify 

which ligand and receptor pair are responsible for the manifestation of GS in Wt1 

glomerulopathy.  

 

In summary, upregulation of specific Notch components and EMT genes together with 

reduced FoxC2 expression correlated with the onset of GS in Cre-ERTM+/-;Wt1f/f 

transgenic mice. In addition, induced HES1 podocyte expression lead to increased 

expression of the EMT markers, Snail and Slug, supporting a role for HES1 in regulating 

podocyte EMT. Downregulation of FoxC2 expression led to the activation of Notch 

signalling. These data support the hypothesis that Wt1 deletion in podocytes results in 

apoptosis that contributes to the initiation of glomerular fibrosis. This is supported by the 

observation that early pharmacological inhibition of the Notch pathway reduced 

albuminuria and GS severity.  

 

Nonetheless, WT1 is a complex gene with multiple roles within the podocyte. As such, 

to explore further its mechanisms of action including its relationship to Notch signalling 

and programmed cell death in glomerular fibrosis in more detail, further study of 
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transgenic mice, for example with Wt1 point mutations relating to human disease would 

help explore further mechanisms involved.  
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Chapter 4 - Ascl1 expression precedes podocyte 
Notch activation in Wt1 glomerulopathy 

4.1 Introduction 
 

RNA sequencing of glomerular isolates in Wt1-deleted mutants at D4 P.I. indicated that 

mRNA expression of another downstream effector of the Notch signalling pathway, 

achaete-scute complex homologue-1 (ASCL1) is increased. Thus, to complement 

investigation of Notch pathway activation in murine WT1 mediated glomerulopathy, the 

role of ASCL1 in podocyte differentiation and WT1 glomerulopathy was examined 

further. The aim was to build on existing experimental evidence that ASCL1 upregulation 

may precede Notch pathway activation and consequently play an important part in the 

pathogenesis of GS in murine Wt1 glomerulopathy. 

 

ASCL1 has a key role in Notch signalling during neuronal differentiation and proliferation 

(Kageyama et al., 2005, Vasconcelos and Castro, 2014), further supporting evidence 

that it may also mediate podocyte differentiation. Ascl1 both regulates and is regulated 

by, the Notch signalling pathway (Figure 4.1). 

 

Ascl1 stimulates neuronal differentiation by directly activating the Notch ligand, Dll1, 

eventually leading to the activation of the transcriptional repressors, Hes1 and Hes5 

(Borromeo et al., 2014, Raposo et al., 2015). These repressors inhibit proneural gene 

expression by binding to their promoters, thereby repressing neuronal differentiation 

(Kageyama et al., 2005). This process prevents all progenitors from simultaneously 

differentiating, guaranteeing that a suitable number are sustained during embryonic 

development (Vasconcelos and Castro, 2014). 

 

ASCL1, the proneural bHLH TF  
 

ASCL1, also known as Mammalian achaete-scute complex homologue-1 (Mash1), is a 

class II proneural basic-helix-loop-helix transcription factor mainly known for its key role 

in initiating neurogenesis (Guillemot et al., 1993). ASCL1 binds to E-box motif (5’-

CANNTG-3’) and dimerises with other bHLH proteins to activate transcription (Nakada 

et al., 2004). 
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Figure 4.1. Interplay between Ascl1 and Notch signalling during neurogenesis 
Neuronal differentiation is controlled by the activator-type and repressor-type bHLH transcription 

factors. (1) In a neural stem cell, Delta-Notch binding triggers Notch signalling. (2) NICD is cleaved 

and translocates to the nucleus, where it co-binds with Rbpj, activating Hes1 and Hes5 

expression. (3) These genes inhibit the activity the activator genes (Ascl1 [Mash1], Math3, Ngn2) 

by sequestering E47, a bHLH transcription factor. Transcription of the activator genes is also 

inhibited due to Hes1 and Hes5 binding to their promoters and employing the corepressor 

TLE/Grg. (4) in the differentiating neuron, Notch signalling is downregulated, and the repressor-

type TFs Hes1 and Hes5 expression is inhibited by RBPJ. (5) Expression of the activator-type 

bHLH TFs is triggered. (6) The activator-type bHLH TFs activate Hes6 expression, which 

represses Hes1 activity. (7) Other specific neuronal genes are stimulated by the activator type 

bHLH TFs, including the Delta ligand, which induces Notch activity in neighbouring cells (lateral 

induction). Right image displays modes of Ascl1 expression in neural stem cells; The oscillation 

between Ascl1 and Hes1 occurs within a 2-3 hour period, where their modes of expression are 

out of phase. Hes1 expression is terminated following neuronal differentiation, while Ascl1 

expression becomes sustained. Adapted from (Kageyama et al., 2005, Vasconcelos and Castro, 

2014). 

 

ASCL1 has multiple roles in sequentially triggering target genes in the progenitors of 

differentiating and proliferating neurons (Raposo et al., 2015), which not only induce cell 

cycle exit, but promote proliferation in specific cell contexts (Castro et al., 2011, 

Wilkinson et al., 2013). Its dual role during neurogenesis, including the proliferation of 

neural progenitor cells (NPCs), is controlled by other genes including Hes1, the 

downstream Notch target, which represses Ascl1, thus regulating neuronal proliferation 

(Dhanesh et al., 2016, Shimojo et al., 2008). Proliferation and differentiation of NPCs 

depend on Ascl1’s expression being either transient or sustained (Imayoshi et al., 2013, 

Urban et al., 2016). 
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ASCL1 has been identified to regulate genes associated with podocyte differentiation, 

including, Lmx1b (Borromeo et al., 2014) and Wnt1 (Burghardt et al., 2013). ASCL1 

represses Wnt1 in the spinal cord during early dorsal ventral patterning (Augustine et al., 

1995, Lee and Jessell, 1999, Herzlinger et al., 1994). 

 

ASCL1 mediates Notch signalling 
 

Experiments in chick retinal progenitors support an association between Ascl1 and Dll 

genes (Nelson et al., 2009) in that co-expression increased Dll gene expression and 

Notch signalling in retinal progenitors. During neuronal differentiation, Dll1, Dll4, and 

Ascl1 demonstrate similar expression patterns. Overexpression of Ascl1 potentiates 

Notch signalling by inducing Dll1 and Dll4 gene expression (Nelson and Reh, 2008). 

ASCL1 binds DLL1 through the former’s E-box domain (Castro et al., 2006). Ascl1 binds 

to a specific enhancer of Dll4 during ventral spinal cord development, activating Dll4 

expression (Bertrand et al., 2002, Misra et al., 2014). Similarly, Dll3 expression is mainly 

reliant on Ascl1, which binds to Dll3’s E box subdomain during neurogenesis (Henke et 

al., 2009). 

 

Both Rbpj and Ascl1 have been shown to interact transcriptionally in the ventral 

telencephalon of Drosophila, mainly promoting proliferation (Nellesen et al., 1999, Castro 

et al., 2011). 

 

Murine in vivo studies associated with Ascl1 and the Notch pathway  
 
Ascl1 activates Notch signalling through Dll and Jag induction (Castro et al., 2006). Both, 

Dll1 and 3 have been found to be expressed in the mouse ventral telencephalon. Mutant 

Ascl1 embryos revealed a loss of both Dll genes, highlighting Ascl1’s importance in 

Notch ligand expression (Casarosa et al., 1999). Research in Ascl1-deficient mouse 

retina also showed a significant reduction in Dll1 expression (Nelson et al., 2009). 

Expression of the murine Hes5 gene was reduced following Notch signalling disruption 

in the Ascl1 mutants, further confirming the relevance of Ascl1 in Notch signalling 

(Casarosa et al., 1999). 

 

Previous findings have reported that Ascl1 is able to convert astrocytes to neurons in 

vivo; one study discovered that stroke and attenuated Notch signalling in mice led to 

Ascl1 expression in striatal astrocytes and transdifferentiation into neurons (Magnusson 

et al., 2014). The combination of Ascl1 overexpression and Notch inhibition has been 



 

Page 135 of 214 

 

revealed to be a potential treatment in glioblastomas, where Ascl1 expression can 

reduce cancer cell proliferation and encourage cell cycle exit (Park et al., 2017). 

 

The relationship between the proneural bHLH repressors and Ascl1 
 
The bHLH Hes1 has been shown to play a role in repressing Ascl1 either transcriptionally 

or through protein-protein interaction during neural stem cell differentiation (Kageyama 

et al., 2005). Both repressor bHLH HES1 and activator-type bHLH (ASCL1) work 

together to promote fate determination in a subset of cells, while others remain as neural 

cells (Shimojo et al., 2008).  

 

Since a definitive role for ASCL1 in nephrogenesis has not been established, in order to 

elucidate its contribution to the early mechanisms of Notch induction in Wt1 

glomerulopathy, glomerular RNA from mice at day 4 post Tamoxifen induction was 

sequenced (n=3/group). Interestingly, Ascl1 transcript was increased in the mutants 

compared to controls, suggesting a role for Ascl1 in the manifestation of GS. Gene 

expression analysis was performed for several genes, listed in Appendix A. 

 
Our qPCR and Western blot data presented in this chapter, demonstrate increased Ascl1 

RNA and protein expression in our Cre-ERTM+/-;Wt1f/f mutants compared to Cre-ERTM-/-

;WT1f/f controls in D4 and D5 P.I. primary podocytes. Furthermore, tissue IHC at D4, 5 

and 12 P.I. reveal ASCL1 protein in the podocytes. ASCL1 expression during 

nephrogenesis has not been published to date, therefore its expression pattern was 

analysed by IHC during early and late glomerulogenesis. Finally, Ascl1 gene expression 

was induced in differentiating and mature podocytes in vivo to examine whether an 

increase in Ascl1 induces Notch signalling and GS. 

 
4.2  Results 
 

4.2.1 Ascl1 is upregulated in D4 P.I. Cre-ERTM+/-;Wt1f/f mutant glomeruli 
 

Following Wt1 deletion at D4 P.I., RNA data showed an upregulation of Ascl1 in the 

mutants compared to the controls (Figure 4.2A). This was further validated through real-

time qPCR, demonstrating an increase in the Cre-ERTM+/-;Wt1f/f mutants compared to 

Cre-ERTM-/-;Wt1f/f controls at D4 P.I., but this failed to reach statistical significance (Figure 

4.2B). Studies have reported that Ascl1 and Hes1 expression patterns oscillate in 

neurogenesis (Vasconcelos and Castro, 2014). Here, we show that there is a fluctuation 

in Ascl1 mRNA levels from D4-D6 P.I. in the mutants. Transcript levels of Ascl1 were 
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reduced in the mutants at D5 P.I., followed by an increase in mRNA levels at D6 P.I., but 

this failed to reach statistical significance (Figure 4.2B). 

 

ASCL1 protein levels were examined using Western blot analysis (Figure 4.2C) and 

immunostaining (Figure 4.2D-I’) to validate Ascl1 increase in the mutants. Western blot 

analysis demonstrated an increase in ASCL1 protein levels at D4 P.I. in the mutant vs. 

control (Figure 4.2C). 

 

Furthermore, immunostaining at D4 P.I. revealed ASCL1 nuclear expression within the 

podocytes of the mutants (Figure 4.2E, F, inset F’), whilst the controls did not display 

any ASCL1 protein within the glomerulus (Figure 4.2D). At D5 P.I., ASCL1 was also 

detected in the mutants, namely in the podocytes and possibly in the PECs (Figure 4.2H, 

I, inset, H’, I’) compared to the control, where it was faintly identified (Figure 4.2G). Insets 

illustrate ASCL1 expression in the nucleus (Figure 4.2F’, H’, I’). 

 

Genes significant for podocyte biology were also shown to be up or downregulated 

following Wt1 deletion at D4 P.I. Wifi1, Nphs1, Nphs2, Kirrel2, Lmx1b were all decreased 

in the mutants at D4 P.I. (Figure 4.2A), supporting previous studies of glomerular disease 

where reduced expression of these genes was demonstrated (Boute et al., 2000, Koziell 

et al., 2002, Caridi et al., 2005, Ihalmo et al., 2007, Boyer et al., 2013, Woroniecki and 

Kopp, 2007).  

 

Wnt3a, a member of the Wnt signalling pathway, involved in cell fate and patterning 

during embryogenesis, was increased in the mutants compared to the controls. Studies 

have shown that sustained activation of Wnt signalling can lead to renal fibrosis and 

chronic kidney disease. High glucose in mice has been reported to impair podocyte 

integrity by inducing Wnt3a and suppressing podocyte-specific genes, Nphs1 and Nphs2 

(Wang et al., 2018). Here, we show that Nphs1 and Nphs2 are downregulated in the 

mutants, with increased Wnt3a expression, suggesting a role for the Wnt pathway in Wt1 

glomerulopathy. Intriguingly, the Notch components, Notch2, Hes1, Hes5, Dll1, Dll4, 

Jag1 and Lfng showed no difference between the mutants and the controls. Real-time 

qPCR at D4 P.I., however, showed Lfng to be significantly decreased in the mutants 

compared to the controls (Figure 3.14A). 
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Figure 4.2. Upregulation of Ascl1 mRNA and protein in D4 P.I. Cre-ERTM+/-;Wt1f/f mutant 
glomeruli 
(A) Heatmap demonstrating differential gene expression of genes in Cre-ERTM-/-;Wt1f/f controls 

(n=3) vs. Cre-ERTM+/-;WT1f/f  mutants (n=3) with a 2.0-fold change; Ascl1, -0.02 vs. 1.39; Wifi1, 

0.18 vs. -2.93; Nphs1, 0.31 vs. -1.12; Nphs2, 0.15 vs. -1.12; Wnt3a, -2.11 vs. 2.53; Gas1, -0.52 

vs. 0.48; Cdkn1c, -0.90 vs. 0.72; Mmp7, -0.40 vs. 0.41; Hes1, -0.29 vs. 0.09; Hes5, 0.275 vs. -

0.20; Notch2, -0.03 vs. 0; Dll1, -0.04 vs. 0.01; Jag1, -.0.01 vs 0.16; Kirrel2, 0.54 vs. -1.32; Smad3, 

-0.03 vs. 0.06; Esr1, -1.29 vs. 1.50; Hhip, -0.37 vs. 0.68; Lfng, -0.08 vs. 0.07; Foxa2, 0 vs. 1.37; 

Lmx1b; 0.20 vs. -0.52. (B) Dot plot showing relative transcript levels of Ascl1 in Cre-ERTM-/-;Wt1f/f 

controls (n=3) vs. Cre-ERTM+/-;WT1f/f mutants (n=3) representing the median and error bars IQR, 

D4 P.I., 1.1 (IQR: 0.8, 1.2) vs. 2 (IQR: 1.5, 3.2), p=0.1; D5 P.I., 1.2 (IQR: 0.7, 1.6) vs. 1 (IQR: 0.8, 

1.8), p=0.9; D6 P.I., 0.8 (IQR: 0.2, 1.3) vs. 5.4 (IQR: 1.3, 9.6), p=0.07. Mann Whitney U test. (C) 
Representative image of Western blot analysis of protein derived primary podocytes isolated from 

controls vs. mutant mice. Immunoblot reveals increased ASCL1 expression in the mutants at D4 

P.I., with weaker expression of the protein in the controls. (D-I’) Shown are representative 

micrographs of double immunofluorescence labelled glomeruli marked with podoplanin (Alexa 
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Fluor 488) and ASCL1 (Alexa Fluor 594), counterstained with DAPI at D4 P.I. (D-F’) and D5 P.I. 

(G-I’) controls vs. mutants. ASCL1 is not present in D4 controls (D), however co-nuclear 

expression of ASCL1 is revealed in the mutants, within the podocytes (E, F, red arrows). Inset 

shows a higher power view of ASCL1 nuclear expression in D4 P.I. mutants (F’). ASCL1 protein 

is not seen in D5 P.I. controls (G), however it is present in the podocytes of D5 P.I. mutants (H, I, 
red arrows), with insets showing higher power images of ASCL1 positive cells (H’, I’). Scalebar 

25 µm. 

 

It is important to note that the RNA sequencing data presented here were analysed from 

glomerular isolates. Glomerular isolates included a heterogenous population of 

podocytes, endothelial and mesangial cells. This may have resulted in the difference in 

expression levels between RNA sequencing and real-time qPCR. RNA sequencing was 

also performed on only 3 mice/group, whereas the qPCR data was analysed on a larger 

number of mice, giving us a more accurate conclusion. Esr1 (Estrogen Receptor 1) was 

also increased in the mutants, and has been known to be expressed in pathological 

processes, such as breast cancer (Martin et al., 2017). The Forkhead Box A2 (Foxa2) 

was upregulated in the mutants, a transcription factor associated with embryonic 

development as well as regulating gene expression in differentiated tissues. 

Interestingly, Lmx1b has been shown to interact with genes including Foxa2 during 

neurogenesis (Nakatani et al., 2010) and Foxa2 plays a specific role in the differentiation 

of dopaminergic neurones (Domanskyi et al., 2014). The downregulation of Lmx1b may 

have had an effect on Foxa2 expression. 

 

Hes1 and Ascl1 mRNA levels were compared from D4 to D6 P.I. in the mutants (Figure 

4.3). Expression levels of Ascl1 oscillated at D4 (Figure 4.3A, B), D5 (Figure 4.3A, C) 

and D6 P.I. (Figure 4.3A, D). Hes1 mRNA levels were lower than Ascl1 at D6 P.I., 

however remained higher in the mutants compared to controls (Figure 3.16A). Studies 

have shown an association between Ascl1 and Hes1 in neurogenesis (Vasconcelos and 

Castro, 2014). The data here shows that Notch activation at disease onset may be due 

to an interaction between Ascl1 and Hes1 expression, regulating Notch signalling. 

Reduced levels of Hes1 are associated with increased levels of Ascl1. At D4 P.I., Hes1 

mRNA is higher than Ascl1. Levels of both transcripts are almost equal at D5 P.I., with 

their expression levels switching by D6 P.I. 
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Figure 4.3. Ascl1 and Hes1 mRNA levels oscillate in Cre-ERTM+/-;Wt1f/f mutants from D4 to 
D6 P.I. 
(A) Graph showing relative transcript levels of Ascl1 vs. Hes1 in Cre-ERTM+/-;Wt1f/f mutants at D4 

(n=3 vs n=5), D5 (n=3 vs =8) and D6 P.I. (n=5 vs n=11). Bars represent the median, error bars 

represent IQR. D4 P.I., 2 (IQR: 1.5, 3.2) vs 4 (IQR: 2.5, 4.3), p=0.14; D5 P.I., 1 (IQR: 0.8, 1.8) vs 

1.5 (IQR: 1.4, 3), p=0.24; D6 P.I., 5 (IQR: 1.3, 9.6) vs 1.3 (IQR: 1, 2.2), p=0.09 (ns). Analysed by 

Mann-Whitney. (B) Dot plot analysis showing the median relative transcript levels of Ascl1 vs 

Hes1 at D4 P.I. (C) Dot plot analysis of Ascl1 vs Hes1 at D5 P.I. (D) Dot plot analysis of Ascl1 vs 

Hes1 at D6 P.I. Bars represent the IQR. 

 

4.2.2 Glomerular ASCL1 and HES1 protein in patient WT1 glomerulopathies 
 

Since Ascl1 was increased in the mouse mutants vs. controls, its expression pattern was 

examined in human kidney biopsies from patients with DDS caused by mutations of 

WT1: R390X and R362X. Findings were compared with time-zero renal allograft biopsies 

of normal kidneys as controls. The oscillatory relationship between the transcription 

factors, Hes1 and Ascl1 described during neurogenesis was examined in association in 

human WT1 mutations. Immunostaining revealed higher expression of HES1 in both 

WT1 R390X and WT1 R362X compared with controls (Figure 4.4A-C). Additionally, 

upregulation of nuclear ASCL1 expression was evident in both WT1 mutant biopsies 

compared with controls (Figure 4.4D-F), where only low, non-nuclear expression of the 

protein was observed. HES1 protein expression was detected at higher levels than 

ASCL1 in the human mutants, supporting a role of the Notch pathway in glomerular 

injury. 
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Figure 4.4. ASCL1 and HES1 are expressed in WT1 glomeruli 
(A-F) Representative micrographs of immunofluorescence labelling with HES1 (Alexa Fluor 594) 

and ASCL1 (Alexa Fluor 594) in patient glomeruli. Control biopsies (time-zero renal allografts) 

reveal no glomerular HES1 expression (A) compared to patients carrying WT1 mutations (B, C, 
red arrows), with increased expression of the protein in both glomeruli. Control biopsies display 

low glomerular ASCL1 protein expression (D) but are increased in the patients of WT1 mutations 

(E, F, red arrows). Scalebar 25 µm. 

 

4.2.3  TUNEL is not detected in all ASCL1-positive cells in late GS 
 

ASCL1 was upregulated in both murine and human samples with WT1 mutations. In view 

of the role of Notch/ASCL1 signalling in apoptosis, this was examined in ASCL1-positive 

cells. TUNEL analysis was used to identify cell apoptosis along with ASCL1 

immunostaining in both Cre-ERTM-/-;Wt1f/f controls vs. Cre-ERTM+/-;Wt1f/f mutants at D12 

P.I. (Figure 4.5A-L). Only one ASCL1-positive cell was also TUNEL-positive in the Cre-

ERTM+/-;Wt1f/f mutants (Figure 4.5E-L), suggesting that podocyte apoptosis is not 

associated with ASCL1. 
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Figure 4.5. ASCL1 protein is expressed in D12 P.I. Cre-ERTM+/-;Wt1f/f glomeruli 
Representative micrographs of immunofluorescence labelled glomeruli with Ascl1 (Alexa Fluor 

594) and apoptosis detection by TUNEL assay reveals no ASCL1 or TUNEL positive cells in the 

Cre-ERTM-/-;Wt1f/f controls (A-D). D12 Cre-ERTM+/-;Wt1f/f mutants (E-L); ASCL1-positive cells (F), 
with no TUNEL (G, H), ASCL1-positive cells (J) and TUNEL-positive cells (K,L). Scalebar, 25 µm. 

(n=3 mice) 

 

4.2.4 Patterns of ASCL1 expression during glomerulogenesis 
 

Initial data indicated that ASCL1 was upregulated in the mutants and in patients with 

WT1 mutations. In view of its participation in neurogenesis and the similarities with 

nephrogenesis regarding Notch signalling, a role for ASCL1 in nephrogenesis was 

examined. Mouse kidneys were collected at E17.5 and P7, and ASCL1 protein was 

analysed at different stages to identify its expression pattern during nephrogenesis 

(Figure 4.6, Figure 4.7). Embryonic kidneys isolated at E17.5 were immunostained with 

ASCL1, co-stained with LAMB2 to mark the podocytes, CD31, to mark the endothelial 

cells, and DESMIN, to mark the mesangial cells (Figure 4.6). ASCL1 demonstrated a 

perinuclear expression pattern in the mid-S-shaped body (Figure 4.6A-C) with 

expression sustained into the capillary loop stage, primarily in podocyte progenitors 

(Figure 4.6J-L), as well as mesangial cells (Figure 4.6G-I). ASCL1 expression was 

absent in endothelial cells (Figure 4.6D-F). 

 

P7 kidneys were also isolated to examine the role of ASCL1 in late glomerulogenesis 

(Figure 4.7). Interestingly, its expression pattern had changed from being perinuclear to 
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being nuclear at the capillary loop stage. Cells were also co-stained with podoplanin to 

mark the developing glomerulus. Clusters of ASCL1-positive cells were mainly podocyte-

specific, suggesting a role for ASCL1 during podocyte differentiation (Figure 4.7A-F). 

 

 
Figure 4.6. ASCL1 protein expression during early glomerulogenesis  
(A-L) Shown are representative micrographs of double immunofluorescence labelled glomeruli 

highlighting ASCL1 expression (Alexa Fluor 594), Lamb2 (podocyte marker, Alexa Fluor 488), 

CD31 (endothelial marker, Alexa Fluor 488), Desmin (mesangial marker, Alexa Fluor 488) at 

E17.5. ASCL1 protein is expressed in the middle segment of the S-shaped body, marked with 

Lamb2 (B, C) The comma-shaped body exhibits increased ASCL1 protein expression, showing 

a perinuclear pattern of expression (F, I, L, red arrows). Scalebar 25µm. 
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Figure 4.7. ASCL1 protein expression during late glomerulogenesis 
(A-F) Representative micrographs of double immunofluorescence labelled glomeruli 

demonstrating ASCL1 protein expression in the differentiating capillary loops of the glomerulus. 

Three different representative images of the same stage reveal an abundant expression of the 

protein during this stage of development, predominantly in the podocytes, as indicated by the 

white arrows (C, F, I). Scalebar, 25 µm. 

 

4.2.5 Doxycycline-induced Ascl1 expression in TetOAscl1;NPHS2;rtTA mice  
 

Initial data demonstrated upregulation of ASCL1 in Wt1 glomerulopathy and during 

nephrogenesis. The next aim was to determine whether cell-specific overexpression of 

ASCL1 might result in a glomerular phenotype. Mice carrying the reverse tetracycline 

receptor (rtTA) under the control of the human Podocin promoter (NPHS2) were crossed 

with transgenic mice carrying the tetracycline-responsive element with the Ascl1 gene 

under the mCherry reporter (TetOAscl1). Overexpression of Ascl1 was induced in the 

podocytes following administration of doxycycline. Ascl1 upregulation was analysed in 

3-week-old mice following 2 weeks of 2mg/ml doxycycline in 5% sucrose water. Primary 

podocytes were then cultured and treated with 4µg/ml doxycycline for another four days. 

 

To confirm overexpression, mCherry reporter gene was tested using fresh cryosections 

to determine the presence of Ascl1 (Figure 4.8A-G). Additionally, glomerular RNA was 

collected from these kidney tissues and analysed by real-time qPCR to validate 

upregulation of Ascl1 compared with no-doxycycline treated TetOAscl1;NPHS2;rtTA 

mice (Figure 4.8H). Podocytes were also isolated from fresh kidneys of doxycycline- vs. 
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no-doxycycline-treated mice, cultured and fixed to confirm mCherry presence (Figure 

4.8I-Q). 

 

Cryosections of the kidney revealed mCherry expression in glomeruli of the doxycycline-

treated TetOAscl1;rtTA;NPHS2 mice (Figure 4.8E-G) compared to the non-treated 

TetOAscl1;rtTA;NPHS2 mice, where mCherry expression was absent (Figure 4.8A-D). 

In support of these findings, real-time qPCR confirmed a significant increase in Ascl1 

expression in the doxycycline-treated TetOAscl1;rtTA;NPHS2 mutants vs. 

TetOAscl1;rtTA;NPHS2 controls (**p=0.0063), where Ascl1 expression was 

undetectable (Figure 4.8H). In addition, primary podocyte cells confirmed the 

upregulation of Ascl1, where there was clear detection of mCherry reporter expression 

(Figure 4.8I-Q). 

 

These results confirmed that the TetOAscl1;rtTA;NPHS2 system resulted in upregulation 

of Ascl1 in the doxycycline-treated mice compared with negative controls. Following 

validation of Ascl1 overexpression model, urine was collected for measurement of urine 

protein levels and mice sacrificed in order to ascertain the glomerular phenotype. 
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Figure 4.8. Upregulation of Ascl1 mRNA and protein in doxycycline-induced 
TetOAscl1;NPHS2rtTA primary podocytes 
(A-I) Shown are representative micrographs of mouse kidney cryosections highlighting mCherry 

expression in the podocytes (F, G) post-doxycycline treatment, indicating an increase in Ascl1 

expression (Scalebar, 25μm). Relative transcript levels showing the mean expression of Ascl1 in 

doxycycline-treated (D) vs. non-treated (ND) TetO:Ascl1;NPHS2;rtTA transgenic mice (H) Ascl1 

transcript levels are significantly increased post-doxycycline treatment; mean±SEM non-treated 

(n=2) vs. treated (n=2), 1.02±0.19 vs. 6745±539.5, **p=0.0063. Representative images showing 

mCherry expression in doxycycline-treated TetO:Ascl1;NPHS2;rtTA transgenic mice of primary 

podocytes (I-Q) ASCL1 protein expression is revealed in the podocytes via mCherry in the 

doxycycline treated cells. Scalebar, 10μm. 
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4.2.5.1 Increased doxycycline dosage in TetOAscl1;NPHS2;rtTA mice does not lead to 

glomerulopathy  

 

Administration of 2mg/ml doxycycline in TetOAscl1;rtTA;NPHS2 mutants resulted in a 

significant increase of Ascl1. However, this did not result in a phenotype as urine protein 

levels and glomerular phenotypes remained normal. The doxycycline dosage was 

therefore increased to 4-5g/day in chow in three-week-old mice, and urine protein loss 

measured on alternate days. Histological analysis by H&E to establish whether a 

glomerular phenotype was present was performed on kidneys collected at 2, 4 and 6 

weeks post-doxycycline and histological analysis by H&E was performed (Figure 4.9). 

 

At 2 weeks post-doxycycline, there was no glomerular or tubular phenotype present in 

either treated mice or non-treated controls (Figure 4.9B, B’) in comparison to the non-

treated controls (Figure 4.9A, A’). Glomeruli were intact with a normal number of cells 

and no red cells, or proteinaceous or hyaline material observed in the tubules. At four 

weeks, the glomeruli remained normal with no evidence of GS or tubulointerstitial 

abnormalities (Figure 4.9D, D’) compared to their non-treated controls (Figure 4.9C, C’). 

Cryosections of kidneys, 6 weeks post-doxycycline, showed no evidence of GS nor 

tubule interstitial fibrosis with hyaline material (Figure 4.9F, F’). Higher magnification of 

the glomerulus showed a normal mesangial matrix with no hypo- nor hypercellularity. 

Tubules contained no hyaline material (Figure 4.9F’) compared to the non-treated 

controls, where both groups were indistinguishable (Figure 4.9E, E’). 

 

Urine was collected every other day and was analysed for proteinuria following 

doxycycline treatment (Figure 4.9G). Four different groups were analysed, including the 

mutant group, doxycycline-treated TetOAscl1;rtTA;NPHS2 vs. three control groups; no-

doxycycline-treated TetOAscl1;rtTA;NPHS2, doxycycline-treated TetOAscl1, and 

doxycycline-treated rtTA;NPHS2 mice. Urine was collected up to 11 days and tested 

using urine reagent strips to measure protein levels. We were unable to collect urine at 

later time-points as the metabolic cages were not available in the following weeks. 

Protein levels did not reach above 1+, which was considered normal and all groups were 

comparable, including the mutants, where all mice had either 0 or 1+ protein in their 

urine. Protein levels did not increase in the days post-doxycycline and remained similar 

to the control groups, showing no indication of proteinuria (Figure 4.9G). 

 

At 6 weeks of doxycycline administration, both histology and urine-protein analysis 

remained normal. This indicated that in contrast to Wt1-deleted mutants, overexpression 

of Ascl1 did not result in a renal phenotype. Therefore, although there was an increase 
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in Ascl1 in Wt1-glomerulopathy, this might simply be secondary or compensated by 

Hes/other Notch pathway members. 

 

 

 
Figure 4.9. Doxycycline-induced TetO:Ascl1;NPHS2;rtTA exhibit normal glomerular 
morphology 
Shown are representative H&E sections of TetO:Ascl1;NPHS2;rtTA mice after 2, 4 and 6 weeks 

of non-doxycycline (A-E’) and doxycycline (B-F’) treatment. Low power images of non-treated 

mice reveal no abnormality in the tubules and glomeruli (A,C,E). Higher power images show intact 

glomeruli with a normal number of cells (A’, C’, E’). Low power image of the kidney after 2 weeks 

of doxycycline treatment exhibited no phenotype in the interstitium which remained normal after 

4 and 6 weeks of doxycycline treatment in the TetO:Ascl1;NPHS2;rtTA mice (B, D, F). Higher 

power images of the glomerulus at these time points revealed healthy glomeruli (B’, D’, F’). 
Scalebar 25 μm. Table demonstrating levels of proteinuria in doxycycline-treated 

TetO:Ascl1;NPHS2;rtTA mice vs. controls; non-doxycycline-treated TetO:Ascl1;NPHS2;rtTA, 

doxycycline-treated TetOAscl1 and doxycycline-treated NPHS2;rtTA mice (G) Levels of urine 

protein remain consistent amongst mutants and controls throughout the treatment. 
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4.3 Discussion 
 

This chapter has investigated a role for Ascl1 in Wt1 glomerulopathy and nephrogenesis. 

RNA and protein analysis showed that levels of Ascl1 are indeed increased at D4, D5 

and D6 P.I. mutants compared to the controls. Ascl1 function has been studied in 

neurogenesis and has been shown to play a role in cell cycle promotion and termination 

(Castro et al., 2011, Ge et al., 2006). In this study, we explored the role of ASCL1 in early 

and late nephrogenesis. Interestingly, the expression patterns of ASCL1 transformed 

from perinuclear to nuclear from early to late nephrogenesis This is suggestive of a role 

in Notch signalling mediated transcriptional activation. 

 

The effect of Ascl1 overexpression on differentiating podocytes was examined by 

crossing transgenic mice carrying the dox-inducible podocin-rtTA with transgenic mice 

carrying TetO-Ascl1 under the mCherry reporter. Following 6 weeks of doxycycline 

treatment, mice did not show any histological renal phenotype nor evidence of 

proteinuria. These results suggest that Ascl1 does not participate in podocyte injury 

following Wt1 deletion and its upregulation may only be relevant to regulation of Notch 

pathway signalling. 

 

Ascl1 mRNA levels oscillate from D4 to D6 P.I. Cre-ERTM+/-;Wt1f/f mutants  
 

Ascl1 transcript levels were increased in the Cre-ERTM+/-;Wt1f/f mutants compared to 

controls at D4 and D6 P.I. Transcript levels of Ascl1 oscillated at each time-point, 

showing reduced Ascl1 mRNA levels at D5 P.I. in the mutants. Previous research has 

highlighted the role of Ascl1 during different stages of neurogenesis, where its 

expression patterns oscillate with the Notch bHLH transcription factor, Hes1 

(Vasconcelos and Castro, 2014). The proneural transcription factors, including Ascl1, 

play a crucial role in both proliferation and complete differentiation of neuronal 

development, with the assistance of specific genes, including Hes1 of the Notch 

pathway. Genetic ablation of Ascl1 results in decreased neuron generation (Casarosa et 

al., 1999, Horton et al., 1999), whilst overexpression of Ascl1 induces cell cycle exit and 

complete neuronal differentiation (Castro et al., 2006, Berninger et al., 2007, Geoffroy et 

al., 2009), highlighting its importance in regulating vertebrate neurogenesis. 

 

Our data shows that increased Ascl1 mRNA expression at D6 P.I. is accompanied by 

reduced levels of Hes1 in the mutants which to some extent mirrors the oscillatory 

expression pattern seen in neurogenesis. Hes1 levels were higher in the mutants 

compared to controls at each time-point. Ascl1 oscillations depend on Hes1 oscillations 
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in neurogenesis, regulating active or quiescent neural stem cells. The oscillation 

between Hes1 and Ascl1 levels in our model may suggest that both genes interact to 

regulate the Notch pathway in podocytes. The expression of podocyte ASCL1 was 

further validated through Western blot analysis at D4 P.I., showing a clear increase of 

the protein in the Cre-ERTM+/-;Wt1f/f mutants. By immunofluorescence, ASCL1 protein 

was nuclear and mainly restricted to podocytes, indicating that ASCL1 may be activated 

in Wt1 glomerulopathy, and may interact with HES1 during Notch activation. 

 

Earlier findings have proposed that Wt1 acts upstream of Ascl1 during olfactory neuron 

development. Wt1 KTS-/- mouse mutants had reduced Ascl1 and severely impaired 

neural retina, with thinner retinas and fewer cells (Wagner et al., 2005). Hes1 and Wt1 

are the two main transcription factors regulating Ascl1 during embryonic olfactory 

development. Hes1 and Hes5 are its downstream targets and their expression prevents 

premature differentiation of neurons (Cau et al., 2000, Nicolay et al., 2006), whilst Wt1 

is upstream (Wagner et al., 2005). Although little is known about the molecular control of 

Ascl1 expression, earlier research (Wagner et al., 2005) and work presented in this 

chapter suggest that Wt1 deletion may increase Ascl1 mRNA levels in Wt1 

glomerulopathy. Furthermore, Hes1 and Hes5 expression are affected following Wt1 

deletion, which may be a consequence of Ascl1 overexpression, manipulating the 

expression levels of the canonical Notch targets. One way to further examine this would 

be to investigate the Notch pathway following Ascl1 overexpression in the 

TetOAscl1;rtTA;NPHS2 mutants.  

 

The specific expression patterns of both ASCL1 and HES1 in the podocytes 

corroborated our findings of increased mRNA levels of both bHLH transcription factors 

in podocyte injury and onset of GS. Patients with R390X and R362X WT1 mutations also 

showed ASCL1 overexpression in their glomeruli compared to control biopsies. HES1 

was also overexpressed in the glomeruli of the patients. Both of our WT1 patient samples 

carry a mutation lacking three of the four zinc fingers in which the KTS isoforms are 

present, leading to DDS. Here, we show that WT1 mutations and deletion result in 

increased ASCL1 expression with glomerular injury, suggesting that WT1 may be 

controlling ASCL1 activity. By contrast, Wt1 +KTS mutations in mice have shown 

reduced Ascl1 expression during olfactory development (Wagner et al., 2002). By 

studying–KTS/+KTS isoforms, we could further explore the relationship between Wt1 

and Ascl1 in podocyte development and injury.  
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Ascl1-positive podocytes do not undergo apoptosis in late GS 
 

Since apoptosis is a major mechanism following podocyte injury (Chapter 3.2.2), the aim 

was to investigate whether Ascl1 participated in inducing cell death. Apoptosis was 

detected by TUNEL analysis in D12 P.I. mutants, where a very small number of ASCL1-

positive cells were observed. TUNEL was not detected in the majority of ASCL1-positive 

podocytes. This suggests that podocyte apoptosis is not activated by increased ASCL1 

expression. Conversely, Ascl1 mRNA has been associated with apoptosis in the adult 

rat brain (Kolobov et al., 2012). While research has focused on ASCL1 contributing to 

apoptosis in SCLC and the brain, no work has explored its role in the pathogenesis of 

podocyte injury and apoptosis. The preliminary data presented here shows that there is 

an upregulation of Ascl1 in our D4 to D6 P.I. mutants, however, this does not contribute 

to apoptosis or the progression of GS. 

 

Ascl1 is expressed during podocyte differentiation 
 

The current data shows that Ascl1 is increased in our model of Wt1 glomerulopathy. 

Given its oscillatory role with Hes1 in neurogenesis and the role of the Notch pathway 

during nephrogenesis, we sought to investigate whether Ascl1 plays a role during 

nephrogenesis. 

 

Results revealed that in murine E17.5, ASCL1 was present in the middle region of the 

S-shaped body during glomerulogenesis, similar to components of the Notch pathway, 

namely HES1 and HES5 (Piscione et al., 2004). ASCL1 displayed a perinuclear pattern 

of expression at this time-point, rather than nuclear, indicating that it may be playing 

several roles during nephrogenesis, as it does in neurogenesis (Garcez et al., 2015, Britz 

et al., 2006, Pacary et al., 2011, Liu et al., 2017). One of its major roles in neurogenesis 

is during mitotic spindle assembly, which may explain its specific pattern of expression 

in the S-shaped body, as ASCL1 is detected at each end of the nucleus, indicating that 

mitosis may be occurring at that point in time. 

 

At post-embryonic stage, P7, ASCL1 was detected in the nuclei of the capillary loops, 

further emphasising its numerous roles during development. At this time-point, ASCL1 

was mainly detected within the podocytes and within the same regions as the Notch 

components, suggesting an association between Ascl1 and the Notch pathway during 

nephrogenesis. 
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ASCL1 has been shown to play certain roles with the Notch pathway during neuronal 

differentiation. One study demonstrated its interaction with specific E-box sites within the 

Dll3 promoter in vitro during neural tube development (Henke et al., 2009). Furthermore, 

in situ hybridisation revealed its expression within the developing mouse hypothalamus 

along with Dll1, Hes5 and Hey1, where its pattern of expression overlapped with both 

Dll1 and Hes5 (Guillemot et al., 1993). Its relationship with the Dll genes was further 

revealed in chick retinal progenitors, where it was co-expressed in Dll progenitors of 

differentiating neurons and its presence was necessary for normal Dll gene expression 

(Nelson et al., 2009). Moreover, ASCL1 was discovered to regulate Hes6 during neural 

differentiation (Nelson et al., 2009), adding to its importance in regulating the Notch 

pathway. Phosphorylation of ASCL1 serine residues regulate DNA binding, resulting in 

selection of transcriptional target genes with open chromatin, including Dll1 (Guillemot 

and Hassan, 2017). 

 

Together, these elements highlight ASCL1’s importance and association with the Notch 

pathway during differentiation and its possible role with the Notch pathway during 

nephrogenesis. Since the Notch pathway plays a crucial role during early podocyte 

differentiation as well as being regulated by ASCL1 during neuronal development, 

ASCL1’s expression patterns during glomerular development does not seem surprising. 

Perhaps, during podocyte development, ASCL1 regulates the Notch pathway to induce 

cell proliferation and differentiation, as part of glomerular morphogenesis. A more reliable 

method to explore Ascl1 expression during podocyte differentiation would be by lineage 

tracing. An Ascl1-GFP mouse line can be analysed at different stages of development, 

such as E13.5, E15.5, E18.5 and P7. 

 

Overexpression of Ascl1 in the podocytes does not induce podocyte injury  
 

The upregulation of Ascl1 in Wt1 deleted Cre-ERTM+/-;Wt1f/f mutants encouraged us to 

explore whether ectopic expression of Ascl1 in murine podocytes would induce podocyte 

injury manifested as GS. Overexpression of Ascl1 was validated by real-time qPCR as 

well as mCherry reporter gene expression in kidney cryosections and podocyte cells. 

Although Ascl1 RNA expression was increased at D4 P.I. in the mutants compared to 

the controls, overexpression up until 6 weeks in the TetoAscl1;rtTA;NPHS2 system did 

not reveal any signs podocyte injury, including proteinuria and GS. Previous studies 

revealed that ectopically induced Notch1 in the developing and differentiated podocytes 

resulted in GS and podocyte apoptosis (Waters et al., 2008, Niranjan et al., 2008), thus 

suggesting that Ascl1 is not the main inducer of podocyte injury in Wt1 glomerulopathy. 

Although it may have a role in regulating the Notch pathway, there are other possible 
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upstream players that may influence the Notch pathway to stimulate podocyte injury and 

GS. Furthermore, while Ascl1 overexpression was confirmed in this mouse model, 6 

weeks of doxycycline may have not been enough time to induce injury. In future, 

extending doxycycline treatment for a longer period of time, or challenging the mice with 

toxic agents could result in a diseased phenotype and allow us to further understand 

Ascl1 expression patterns in the podocyte injury further. 

 

Overall, this chapter has demonstrated an increase in Ascl1 in our model of Wt1 

glomerulopathy. Increased levels of Ascl1 mRNA is associated with reduced levels of 

Hes1, the canonical target of the Notch pathway. The oscillation between both genes 

suggests that Ascl1 and the Notch pathway may be regulating each other in the context 

of podocyte injury to rescue disease. This correlates with our findings of ASCL1 being 

expressed in the middle region of the S shaped body in early nephrogenesis, similar to 

the Notch components, HES1 and HES5. Overexpression of Ascl1 in transgenic mice 

does not induce podocyte apoptosis or GS, suggesting that it may be activated to rescue 

disease as a result of podocyte injury. To further investigate the role of Ascl1 in 

nephrogenesis, future experiments could focus on analysing an Ascl1-GFP mouse line 

at different stages of nephrogenesis. RNA studies, including in situ hybridisation could 

be used to highlight the association between Ascl1 and the Notch pathway during 

nephrogenesis. To conclude, Ascl1 may be a participant in regulating Notch signalling 

activity during glomerulogenesis and podocyte injury.  
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Chapter 5 - Discussion and Future Directions 

5.1 Overall Discussion 
 

5.1.1 Utility of inducible models to study mechanisms underlying disease onset 
 

Data presented in this thesis has demonstrated a novel role for Jag1-mediated Notch 

activation in Wt1 glomerulopathy, with semi-quantitative evidence of GS in an inducible 

model of mature podocyte injury. 

 

Podocyte apoptosis is evident in the early proteinuric stages, accompanied by FP 

effacement. Increased levels of albuminuria correlate with the loss of podocytes following 

Wt1 deletion. GS is evident at later stages of Wt1 deletion with increased expression of 

mesenchymal markers, including Snail and Slug, highlighting an EMT in the primary 

mutant podocytes. 

 

Previous studies demonstrated that ectopically activating Notch in developing and 

mature podocytes leads to podocyte injury associated with podocyte apoptosis and 

dedifferentiation, as well as DMS and FSGS histological phenotypes (Waters et al., 2008, 

Niranjan et al., 2008), and this also correlated with WT1 mutations (Chernin et al., 2010, 

Lipska et al., 2014). Our model revealed an upregulation of several Notch components 

in primary podocytes following Wt1 deletion, including the Notch bHLH transcription 

factors, Notch1 and Nrarp (Krebs et al., 2001). Primary mutant podocytes also revealed 

an upregulation of JAGGED1 and POFUT1, suggesting a ligand-dependent mechanism 

of podocyte Notch activation at the progression of disease. Additionally, HES1 induction 

in Nphs2;rtTA primary podocytes increased Snail and Slug expression, further 

supporting the role of Notch stimulating EMT. 

 

γ-secretase inhibitors administered prior to disease onset prevented GS and albuminuria, 

proposing a role for Notch-mediated activation of podocyte apoptosis and EMT in Wt1 

glomerulopathy. In support of this, earlier findings demonstrated podocyte Notch 

activation in human biopsies of glomerular injury and in models of GS (Niranjan et al., 

2008, Murea et al., 2010, Sweetwyne et al., 2015, Morimoto et al., 2016). Increased 

expression of the canonical Notch targets, including Hes1, Hes3, Hes5, Hey1, Hey2 and 

HeyL were demonstrated in STZ- and PAN-induced models of GS (Niranjan et al., 2008). 

Increased Notch activity has been found to promote podocyte apoptosis, and in turn 

podocyte apoptosis has been shown to induce FSGS pathogenesis. Apoptotic genes 
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including Trp53 and Apaf1, as well as positive TUNEL staining, have been detected in 

murine models of induced Notch1 ICD in mature podocytes (Niranjan et al., 2008). 

Podocyte apoptosis is inhibited following pifithrin-α induction in the Notch1 ICD-induced 

models, suggesting a role for the p53 pathway in Notch-mediated apoptosis (Niranjan et 

al., 2008). The role of p53 mediated apoptosis might to be involved in the pathogenesis 

of GS in our Wt1 glomerulopathy model. Further evidence of Notch-induced podocyte 

apoptosis has been provided by conditionally deleting podocyte Rbpj in mice with DN, 

where podocyte apoptosis was decreased (Niranjan et al., 2008). Given that Notch1 

deletion has been associated with abrogating GS in models of DN, as well as 

downregulating Snail1, an EMT marker (Sweetwyne et al., 2015), it would be noteworthy 

to explore whether conditional Notch1 deletion would reduce podocyte apoptosis and 

EMT in our model. Conditional inactivation of Notch1 and its canonical targets in early 

and late Wt1 glomerulopathy will allow us to further delineate Notch’s role in disease 

pathogenesis. 

 

Notch bHLH transcription factors, Hes/Hey genes are downregulated following terminal 

podocyte differentiation (Piscione et al., 2004) and podocyte differentiation has been 

found to be regulated by a transcriptional network of genes, including Wt1, Foxc1/c2, 

and Rbpj (O'Brien et al., 2011, White et al., 2010). Binding motifs of FOX have been 

linked with WT1 binding regions, supporting their synchronised relationship in podocyte 

regulation (Lefebvre et al., 2015, Kann et al., 2015b). Podocyte numbers are seen to be 

reduced in zebrafish following double knockdown of wt1a/rbpj or wt1a/foxc1a compared 

to single knockdown of any of the three genes, supporting a collaborating network 

between the genes in regulating podocyte specification (O'Brien et al., 2011). Moreover, 

an interaction between WT1, FoxC2 and RBPJ has been reported on a protein level, and 

HEY1 expression can be triggered through the combination of WT1, NICD and FOXC1/2 

(O'Brien et al., 2011). Wt1 regulates expression of the Hey1 orthologue, XHRT, in 

Xenopus, in early glomus development (Taelman et al., 2006) as well as modulating 

HeyL expression during murine metanephric development in pre-tubular aggregates, by 

binding to its promoter (Hartwig et al., 2010). Collectively, these studies highlight the 

relevance of Wt1 and Foxc1/2 in regulating Notch transcriptional targets during 

nephrogenesis. 

 

As highlighted above, normal mature podocytes no longer express Notch components. 

Wt1 deletion in our model led to an upregulation of the Notch pathway markers, Notch1, 

Nrarp, Hey1, HeyL, Hes1, Hes3 and Hes5. These changes are reminiscent of earlier 

findings in zebrafish that Wt1 and Foxc1a repress NICD1’s ability to activate a synthetic 

Notch reporter driven by Rbpj sites (O'Brien et al., 2011), proposing a role for WT1 and 
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FOXC1/2 to antagonise Notch signalling. Our data also reveals downregulation of Foxc2 

expression following Wt1 deletion, with increased Notch transcript expression at the 

onset of GS and proteinuria. Our current findings demonstrate an increase in Hey2 

transcript expression concurrent with a downregulation of Foxc2 in the mature 

podocytes, advocating a role for FoxC2 in inhibiting Hey2 expression, as well as other 

Notch components, in differentiated podocytes. Earlier studies in endothelial cells 

revealed that Hey2 is a transcriptional target of FoxC2 (Hayashi and Kume, 2008), which 

correlates with our current findings. Therefore, restoring FoxC2 quantities in the adult 

Cre-ERTM+/-;Wt1f/f mutants may supress Notch bHLH gene activity, and restore podocyte-

specific gene expression. Alternatively, Hippo signalling may be another pathway 

mediating Notch activity in Wt1 glomerulopathy. Hippo signalling has been found to 

target Notch components (Totaro et al., 2017), as well as being a target of Wt1 during 

podocyte specification (Kann et al., 2015b). This can be explored by knocking down or 

overexpressing Hippo signalling components in our model of Wt1 glomerulopathy. 

 

Notch glycosylation is necessary for the activation of Notch signalling through the binding 

of Notch receptors and ligands (Chung et al., 2017). Our data revealed increased 

expression of the O-fucosyltransferase POFUT1 in the Cre-ERTM+/-;Wt1f/f mutant 

podocytes, as well as Mfng, which facilitates Notch ECD glycosylation (Bruckner et al., 

2000, Kakuda and Haltiwanger, 2017). Typically, Fringe glycosylation of Notch1 

activates Notch signalling through the Dll1 ligand. A more recent study showed Notch2 

and Jag1 play a role in kidney fibrosis. Our data reveals increased expression of Jag1 

and Manic Fringe in our Cre-ERTM+/-;Wt1f/f mutants as well as in human samples of WT1-

mutated GS, with increased Notch activity. This data suggests that Mfng and Jag1 

contribute to Notch signalling activation in our model of Wt1 glomerulopathy. 

 

JAG1 protein was increased in our mutant podocytes in the early stages of disease, 

which correlates with earlier reports showing Jag1 in GS (Niranjan et al., 2008, Murea et 

al., 2010). Dll1 expression, on the other hand, showed no difference between the 

mutants and the controls at this time point. Both ligands overlap in the middle region of 

the S-shaped body during kidney development, and murine models showing double 

deletion of both ligands results in reduced numbers of proximal tubules and glomeruli, 

highlighting Notch’s importance in proximal nephron development (Liu et al., 2013). 

Moreover, the Jag1 allele has been shown to rescue some WT1-positive podocytes in 

Dll1-null mice, highlighting its potential role in podocyte fate induction (Liu et al., 2013). 

Therefore, deletion of Jag1 in adult Cre-ERTM+/-;Wt1f/f mice will allow us to further analyse 

targets of disease manifestation. 
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The proneural transcription factor Ascl1 was also increased in the Cre-ERTM+/-;Wt1f/f 

mutants at the early stages of disease. Several studies have highlighted the role of Ascl1 

and an overlapping relationship with the Notch pathway in neurogenesis. Intriguingly, 

Ascl1 plays a role in the maintenance of Hes1 oscillations in neural stem cells 

(Vasconcelos and Castro, 2014), correlating with our model showing oscillating Ascl1 

and Hes1 mRNA levels during early stages of the disease. Our data demonstrates Notch 

signalling is potentially activated through Jag1 binding, proposing a role for Ascl1-

mediated Jagged Notch activation. Former investigations revealed that Wt1 expression 

is upstream of Ascl1 during olfactory development (Wagner et al., 2005), highlighting a 

link between both genes during neurogenesis. The deletion of Wt1 in our adult mice may 

result in Ascl1 overexpression in the podocytes, contributing to aberrant Notch activation. 

These findings are consistent with patient biopsies of WT1 mutations (namely in R390X 

and R362X mutations), where ASCL1 protein expression was increased, further 

supporting the theory of WT1 deletions/mutations altering Ascl1 expression patterns. Our 

model shows that Ascl1 may contribute to the temporal gene expression of Hes1 in 

podocyte injury. 

 

5.1.2 Utility of primary podocyte culture 
 

The isolation of primary podocytes has proven to be a valuable tool in investigating the 

mechanisms and pathways associated with podocyte injury. To confirm that our cells 

were purely podocytes, cells were stained with the podocyte-specific antibody, Nestin. 

Having utilised this method, we were able to specifically explore podocyte genes and 

podocyte-related disease. 

 

5.1.3 Limitations 
 

Despite achieving the overall goals of the project, technical challenges were encountered 

along the way. RNA sequencing was achieved through glomerular isolation. This work 

was undertaken at an early stage of the project; thus, the analysis was based on a 

heterogenous population including podocytes, mesangial and endothelial cells. Primary 

podocyte isolation was then utilised, which will allow future RNA sequencing analysis to 

be achieved with pure podocytes. Furthermore, due to the injury to the cells, their viability 

and ability to survive in culture was limited, thus restricting us from carrying out later 

experiments on the cells. With this in mind, genetic rescue experiments were limited due 

to the low viability of the primary cells. 
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5.2 Future work 
 

5.2.1 Pharmacological inhibition of Notch to prevent late stages of disease 
 

GSI-IX treatment reduced Notch activity in adult Cre-ERTM+/-;Wt1f/f mice at D4-D5 P.I., 

preventing GS and reducing albuminuria. While prophylactic treatment prevented onset 

of disease progression, GSI-IX treatment did not rescue disease at the later stages (D7-

D8 P.I.). Increasing the sample size, this would validate existing findings with regards to 

rescuing a disease phenotype using GSI-IX. It would also be worth treating mutant mice 

at D6 P.I., where there is onset of disease. Gastrointestinal toxicity has been reported to 

be a major side-effect of GSI-IX (Barten et al., 2006). It has also been shown to alter 

lymphocyte development (Wong et al., 2004). Alternative compounds inhibiting Notch 

activity include SAHM1, which interferes with the Notch1 transactivation complex, 

repressing its downstream targets. Previous reports have shown that SAHM1 specifically 

represses Notch signalling in human T-ALL (T-cell acute lymphoblastic leukaemia) cells 

and a mouse model of NOTCH1-driven T-ALL, with no toxic effects in comparison to 

DAPT (Moellering et al., 2009). This therefore will be a valuable avenue to pursue by 

exploring its effects on Wt1 glomerulopathy. 

 

5.2.2 Investigating Fringe and ligand-mediated Notch signalling in podocytes 
 

Our data reveals an upregulation of Notch signalling with increased Manic Fringe and 

JAG1 expression in the mutants compared to the controls. Elucidating the effects of 

Manic Fringe on JAG1-mediated Notch1 signalling would be an interesting avenue to 

explore. One way of approaching this would be to overexpress Manic Fringe by 

transfecting it into immortalised podocytes co-transfected with a Notch1 luciferase 

reporter construct. These would then be co-cultured with DLL1 or JAG1 expressing CHO 

cells in order to reveal which ligand induces Notch1 activity. An experimental design to 

overexpress Manic Fringe in immortalised podocytes is illustrated in Figure 5.1. Past 

studies have utilised this method in order to determine ligand-mediated Notch signalling 

in other cells/species (Yang et al., 2005, Ilagan et al., 2011, Chen et al., 2001). Luciferase 

assays would reveal Notch signalling and upregulation of its downstream bHLH targets, 

including HES and HEY would be explored through protein and transcript analysis. This 

approach may highlight which ligand is potentiating Notch activity by Manic Fringe, or if 

in fact other Fringes are participants. Furthermore, by using shRNA knockdown of Manic 

Fringe in the mutant podocytes to inhibit Notch activity, EMT and podocyte apoptosis 

may be prevented. Preliminary data (Figure 3.26) using shMfng has already shown 

evidence of target knockdown, as well as reduced Notch activity through its bHLH TFs. 
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Additionally, EMT genes Snail and Slug were downregulated (Figure 3.26). Despite there 

being a decrease in the above markers, p values were not significant, and differential 

gene expression between scrambled and Mfng shRNA were also not significant. 

Increasing sample numbers (n=10) would allow us to produce a more significant and 

accurate result. Additionally, knockdown of other acetylglucosaminyltransferases may 

also be necessary to further dissect the role of Fringe-mediated Notch signalling in the 

context of podocyte injury. 

 

 
Figure 5.1. Experimental design for Manic Fringe overexpression in podocytes 

 

5.2.3 Strategies to investigate transcriptional networks 
 

Ascl1 expression and the Notch pathway oscillate during neurogenesis (Vasconcelos 

and Castro, 2014); future experiments examining Ascl1’s temporal and spatial role 

alongside the Notch components and Wt1 during nephrogenesis will allow us to 

appreciate their relationship further. Our data revealed that ASCL1 protein is expressed 

during glomerulogenesis (4.2.4); Additional experiments analysing ASCL1 protein 

expression, in conjunction with in situ hybridisation of Notch components and Wt1, will 

allow further appreciation of ASCL1’s role in early kidney development. During 

nephrogenesis, the Notch transcription factors are known to become downregulated 

(Barak et al., 2012, Asanuma et al., 2017), suggesting a role for Notch in podocyte fate 

specification. Utilising a transgenic mouse in which the Ascl1 locus carries a GFP 

element would allow us to further explore the spatial and temporal expression of the 

gene during nephrogenesis at E13.5, E15.5, E18.5 and P7, where Notch expression is 

downregulated. Another approach would be to cross CreTM-Wt1 mice with Ascl1-GFP 

mice, induce with tamoxifen, and harvest the kidneys at D4 post-tamoxifen (only 

proteinuria is detected), D5 (early GS), D6 and D7 P.I. (established GS with significant 

albuminuria). Primary podocytes would be isolated and the Ascl1-GFP positive 

podocytes sorted from the Ascl1-GFP-negative podocytes. RNA would be extracted from 
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both and differential Notch pathway expression investigated in both groups by real-time 

qPCR. This would allow us to understand the relationship between Wt1 and Ascl1. 

Furthermore, analysing podocyte differentiation in Ascl1-/- null mice (from Professor 

Francois Guillemot), would allow us to further validate whether Ascl1 has a significant 

role during podocyte development. We know that Dll1 is expressed in the proximal 

domain of the RV during nephrogenesis (Kopan et al., 2007, O'Brien and McMahon, 

2014) and ASCL1 binds to the enhancer of Dll1 during neurogenesis, triggering its 

transcription (Nelson and Reh, 2008, Nelson et al., 2009). Thus, it would be of interest 

to examine their association during nephrogenesis. Ascl1 expression would be examined 

in the glomeruli, S-shaped bodies and the tubules in Ascl1-null mice versus wild-types. 

 

Examination of Ascl1’s promoter sequence revealed conserved binding sites for Wt1 

(Figure 5.2). Additionally, the Notch bHLH protein, HeyL is a direct transcriptional target 

of Wt1 (Hartwig et al., 2010) and conserved binding sites for Wt1 have been revealed in 

the Notch bHLH protein, Hes1 (Figure 5.2). Studies have highlighted a transcriptional 

complex between WT1 and ASCL1 (Wagner et al., 2005, Kang et al., 2014) as well as 

Hes1/Ascl1 (Vasconcelos and Castro, 2014). Therefore, ChIPSeq of ASCL1 and WT1 

as well as Notch components in the context of podocyte injury would be an interesting 

avenue to explore. 

 

Wt1, FoxC and Notch signalling collaborate transcriptionally during podocyte 

differentiation (O'Brien et al., 2011, Kann et al., 2015b). In this project, FoxC2 transcript 

was downregulated following Wt1 deletion, with increased expression of the Notch bHLH 

TF, Hey2, at the onset of GS. By overexpressing FoxC2 in vivo and in vitro in models of 

GS through a podocyte-specific tetO;rtTA system, we can examine whether podocyte-

specific markers are upregulated, with reduced Notch signalling. RNA and ChIPSeq 

analysis of cells overexpressing FoxC2 could further confirm the relationship between 

FoxC2/Notch/Wt1 in models of GS. 
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Figure 5.2. Binding domains within the WT1 promoter for Notch bHLH genes 
(% of ECR [evolutionary conserved regions]) 

 

5.2.4 Genetic rescue strategies  
 

While GSI-IX treatment has been a mode of inhibiting the Notch pathway post-tamoxifen 

induction, toxic side-effects have been reported (Barten et al., 2006). An alternative 

method would be to genetically inhibit the Notch pathway by repressing the activation of 

its components, namely Rbpj, Hes1 and Notch1 in the Cre-ERTM+/-;Wt1f/f mouse line. 

Gene editing these Notch components has been achieved in the past using several 

mouse models of disease (Niranjan et al., 2008, Imayoshi et al., 2008, Yang et al., 

2004b). With this approach, adult Cre-ERT-/-;Wt1f/f controls (group 1) vs. Cre-ERTM+/-

;Wt1f/f mutants (group 2) vs. Cre-ERTM+/-;Wt1f/f;Rbpjf/f/ or Hes1f/f/or Notch1f/f rescue mice 

(group 3) mice could be analysed at different time-points to examine whether the genetic 

inhibition of Notch signalling prevents disease manifestation (Figure 5.3). The aim would 

be to knockout Wt1 and the Notch targets through tamoxifen induction in all groups, then 

compare and examine them at each stage of disease by histological and urine analysis. 

By removing Rbpj/, Hes or Notch1, we aim to rescue glomerulopathy, which would be 

confirmed through mRNA and protein analysis of Notch and podocyte components, 

including the bHLH transcription factors, Hes and Hey, and podocyte markers Nphs1, 

Nphs2. Furthermore, the antagonising relationship of FoxC on Notch signalling could be 

further validated in these systems by analysing FoxC expression following Notch 

signalling knockout. Podocyte apoptosis, proliferation, and EMT would be examined in 

all groups to confirm whether deleting Notch components ameliorates glomerular 

disease and podocyte injury. 
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Figure 5.3. Experimental strategy to genetically inhibit Notch target genes in Wt1 
glomerulopathy 

 

Another avenue to explore would be to validate the role of the canonical Notch targets, 

Hes1 and Hes5 in podocyte apoptosis in vivo. Recently, Ohtsukas’s group 

overexpressed Hes1 and Hes5 in podocytes of Nestin-rtTA;TetOHes1 or Hes5 

transgenic mice through doxycycline treatment to study neurogenesis and gliogenesis in 

neocortical development (Bansod et al., 2017). This would be a good model to examine 

whether these genes do indeed play a role in promoting podocyte apoptosis, as well as 

EMT upregulation in GS. Furthermore, this model will allow us to investigate other 

mechanisms involved in bHLH-induced podocyte injury. 

 

5.2.5 Transgenic Wt1R394W mutant mice  
 

While ubiquitous Wt1 deletion revealed GS with induced Notch signalling and apoptosis, 

examining models of SRNS with specific WT1 point mutations would be a valuable route 

to pursue. GS accounts for 5-10% of ESRD with a recurrence of 30-60% in renal 

allografts (Saran et al., 2015). Genetically-mediated SRNS develops in approximately 

70% of infants within the first 3 months, and 50% of children between 4 and 12 months 

(Rheault and Gbadegesin, 2016). WT1 mutations contribute to about 3% of paediatric 

SRNS, where no treatments are currently available (Rheault and Gbadegesin, 2016, 

Lipska et al., 2014). The missense mutation WT1 R394W, known to be a C-to-T 

transition, results in the substitution of tryptophan to arginine at amino acid 34 (R394W), 

disrupting zinc finger 3, and deleting the KTS insert and zinc finger 4 (Gao et al., 2004). 
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R394W mutations affect WT1 DNA binding, and DDS (Lipska et al., 2014). GS presents 

in Wt1r394w/+ heterozygous mice by 4 months postnatally (Gao et al., 2004), providing a 

useful model to further examine the pathogenic role of Notch activation in Wt1 

glomerulopathy. Our data also revealed an activation of Notch in patient biopsies with 

de novo heterozygous WT1 mutations associated with DMS (Figure 3.22), a phenotype 

also manifested in the Wt1r394w/+   transgenic mice. This represents an opportunity to 

investigate Notch signalling in WT1 glomerulopathy further by confirming a histological 

phenotype and proteinuria. Immunohistochemistry analysis of the TGF-β pathway, 

including Smad2/3 activation as well as markers of EMT, would be analysed to assess 

the development of tubulointerstitial disease. Furthermore, temporal analysis of Notch 

activation would be examined at different ages in kidney sections. 

 

5.2.6 Notch pathway analysis in other murine models of GS 
 

WT1 mutations account for around 2-3% of SRNS, whereas mutations in other podocyte-

specific genes, account for around 27-30% of SRNS (Jain et al., 2014). Our data 

supports Notch as a key player in GS linked to WT1 abnormalities. WT1 is known to act 

as a “master controller” of gene transcription within the podocyte, regulating many other 

podocyte genes linked to podocytopathy. Therefore, by conditionally deleting other key 

podocyte genes with tamoxifen, we would be able to explore the pathogenic mechanisms 

mediated by Notch signalling in other monogenic types of SRNS. 

 

5.3 Summary 
 

In summary, Wt1 deletion in adult podocytes leads to podocyte apoptosis at the very 

early stages of GS. Notch signalling and EMT components are upregulated at the onset 

of disease. Induced podocyte HES1 expression results in increased Snail and Slug 

expression, advocating a role for HES1 in podocyte EMT. Early pharmacological 

inhibition of the Notch pathway reduces the severity of GS and albuminuria. Our data 

illustrates a possibility for repressed FoxC2 expression to be mediating Notch activity. 

Due to WT1’s intricate biological structure and roles, examining mouse models of Wt1 

point mutations will provide unique tools to decipher the underlying transcriptional and 

post-transcriptional mechanisms involved in WT1 GS. 
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Appendix A 
 

Heatmap displaying differential gene expression of D4 PI glomerular RNA isolates. 

Based on the average FPKM (fragments per kilobase of exon model per million reads 

mapped) reads per sample. Differential gene expression was analysed by the genomics 

department, UCL. Heatmap was developed using Microsoft Excel. A group of 3 mutants 

(mut1, 2, 3; Cre+/-;Wt1f/f) were compared to 3 controls (CTL1, 2, 3; Cre-/-;Wt1f/f). 
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Appendix B  

Figure B.1. Dot plot analyses showing each gene of the Notch pathway at D4 P.I. (Cre-

ERTM-/-;Wt1f/f vs. Cre-ERTM+/-;Wt1f/f). Middle horizontal lines mark median mRNA 

transcript levels relative to Gapdh, upper and lower horizontal lines mark the IQR. 
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Figure B.2. Dot plot analyses showing each gene of the Notch pathway at D5 P.I. (Cre-

ERTM-/-;Wt1f/f vs. Cre-ERTM+/-;Wt1f/f). Middle horizontal lines mark median mRNA 

transcript levels relative to Gapdh, upper and lower horizontal lines mark the IQR. 
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Figure B.3. Dot plot analyses showing each gene of the Notch pathway at D6 P.I. (Cre-

ERTM-/-;Wt1f/f vs. Cre-ERTM+/-;Wt1f/f). Middle horizontal lines mark median mRNA 

transcript levels relative to Gapdh, upper and lower horizontal lines mark the IQR 
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