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Abstract: We discuss some of the features of the R add-on package GJRM which implements a �exible joint
modeling framework for �tting a number of multivariate response regressionmodels under various sampling
schemes. In particular, we focus on the case inwhich the user wishes to �t bivariate binary regressionmodels
in the presence of several forms of selection bias. The framework allows for Gaussian and non-Gaussian de-
pendencies through the use of copulae, and for the association and mean parameters to depend on �exible
functions of covariates. We describe some of the methodological details underpinning the bivariate binary
models implemented in the package and illustrate them by �tting interpretable models of di�erent complex-
ity on three data-sets.

Keywords: binary data, copula, confounding, joint model, penalized smoother, selection bias, R, simultane-
ous parameter estimation

MSC: 62H99, 62J02

1 Introduction
The R [43] package GJRM [Generalised Joint Regression Modelling, 34] implements a �exible joint modeling
framework for �tting a number of multivariate response regressionmodels under various sampling schemes.
The package currently contains two main �tting functions: gjrm() which �ts bivariate regression models
with binary, discrete, continuous and survival margins in the presence of associated responses, endogeneity
and non-random sample selection, and trivariate binary models with and without double sample selection;
gamlss() which �ts several �exible univariate regressionmodels (this was initially designed to provide start-
ing values for many of the joint models in the package but it was subsequently made available in the form of
a proper function). This paper focuses on the case in which the user wishes to �t bivariate binary models in
the presence of (i) endogeneity, (ii) non-random sample selection or (iii) partial observability. We illustrate
the capabilities of such tool by �tting interpretable models of di�erent complexity on real data. The literature
on models tackling selection bias is vast and many variants have been proposed. Since our focus is on the
case of binary data, all of the non-binary cases (such as those mentioned above) are not discussed here since
these would deserve separate and lengthy expositions. The models considered in this article have wide ap-
plicability. Some examples are given by [9], [17], Jeliazkov and Yang [26, Chapter 13], [27], [29], [40] and [48],
to name but a few. The next sections describe the three aforementioned issues and available approaches to
tackle them.
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1.1 Endogeneity

Quantifying the e�ect of a non-randomly assigned treatment on an outcome may be a challenging task in
the presence of unobserved confounders (i.e., unknown or not readily quanti�able variables associated with
both treatment and outcome). In this situation, the treatment is often termed endogenous and the bias re-
sulting from neglecting unobserved confounding is typically referred to as endogenous selection bias. For
the case of binary treatment and outcome, [21] introduced the bivariate probit model to address this issue
(see also [18] and [30] for a gentle introduction). Alternative approaches are discussed in the excellent review
by [11] which empirically shows that all methods considered (including the bivariate probit) produce very
similar results. [10] and [31] extended Heckman’s model by introducing Bayesian and likelihood penalized
splinemethods tomodel �exibly covariate-response relationships. To account for non-Gaussian dependence
between treatment and outcome, [55] discussed the use of copulae. [44] proposed a more general approach
that deals simultaneously with unobserved confounding, non-linear covariate e�ects and non-Gaussian de-
pendence between treatment and outcome, and incorporated these developments in GJRM. Speci�cally, the
conventional bivariate probit model (which does not model �exibly covariate e�ects in a data-driven man-
ner and does not account for non-Gaussian dependencies) can be �tted in SAS [25] using the built-in proc
qlim [24] and in Stata [52] using the built-in functions biprobit [51], mvprobit [8] and ssm [37]. In R, VGAM
[60] may be used to estimate a bivariate binary model with endogenous treatment and non-linear covariate
e�ects but it relies on the assumption of Gaussian errors. mvProbit [23] may also be employed but it is under
development.

1.2 Non-random sample selection

Survey data (but not only) are often a�ected by systematic non-participation. This can occur through a variety
of mechanisms, including directly declining to participate in the study. If individuals select themselves into
(or out of) the sample based on a combination of observed and unobserved characteristics then models that
ignore such a mechanism will most likely yield estimates which are not representative of the population of
interest. The bias arising fromneglecting this systematic non-participation is typically known as non-random
sample selection bias. Selection and pattern-mixture models can deal with this issue, even when selection is
based onunobserved characteristics of respondents; Fitzmaurice et al. [15, Chapter 18] provide a discussion of
the features and variants of both approaches. Here the focus is on the sample selectionmodel approachwhich
was introduced by [19], [28] and [20], and discussedmore thoroughly in [22]. When the outcome is binary, the
conventional selectionmodel is a bivariate probit [13, 54]. [35] proposed, and incorporated in GJRM, a selection
model which allows for Gaussian and non-Gaussian dependencies, arbitrary parametric link functions, and
for the association and mean parameters to depend on several types of smooth functions of covariates; this
work extended the scope of the approaches introduced by [32] and [36]. More restrictive bivariate selection
models, which rely on normality and on linear or pre-speci�ed non-linear covariate-response relationships,
can be �tted in SAS using the proc qlim, in Stata using the built-in commands heckprob [51], mvprobit and
ssm, and in R using sampleSelection [53].

1.3 Partial observability

In some cases an observed binary outcome re�ects the joint realization of the unobserved choices of two
decision-makers. If this is not accounted for then partial observability bias will arise. The bivariate probit
with partial observability acknowledges this by assuming that themodel which determines the observed out-
come is a bivariate probit in which only one of the four possible outcomes is observed. This model was �rst
introduced by [41] and mainly consists of two equations (describing the underlying unobserved binary out-
comes) which are linked through a standard bivariate Gaussian where the correlation coe�cient captures the
presence of unobservables in�uencing the two decision-makers. [42] discussed multivariate extensions and
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applications of this model. The bivariate binary model with partial observability can be �tted in Stata using
biprobit. In this work we have extended the model to include �exible covariate e�ects, and incorporated it
in GJRM.

The paper is organized as follows. Section 2 introduces a general modeling framework for analyzing bivariate
binary data. Section 3 then discusses in more detail the binary models considered in this paper. Section 4
provides an overview of gjrm() in GJRM, whereas Section 5 is devoted to three data examples that illustrate
the use of the software. Section 6 concludes the paper.

2 Methodology
Let us assume that there are two binary random variables (Yi1, Yi2), for i = 1, . . . , n, where n represents the
sample size. The probability of event (Yi1 = 1, Yi2 = 1) can be de�ned as

p11i = P(Yi1 = 1, Yi2 = 1) = C(P(Yi1 = 1), P(Yi2 = 1); θi),

where P(Yij = 1) = 1−Fj(−ηji) for j = 1, 2, Fj(·) is the cumulative distribution function (cdf) of a standardized
univariate distribution (in this case Gaussian, logistic or Gumbel), ηji ∈ R is an additive predictor (refer
to (2) below), C is a two-place copula function [49, 50] and θi is an association parameter measuring the
dependence between the two random variables. The notation adopted for de�ning P(Yij = 1) is perhaps
unusual. However, here we have exploited the link between the binary regression model and Y*ij = ηji +
ϵi, where Y*ij is a continuous latent variable, ϵi is an error term and Yij can be viewed as an indicator for
Y*ij > 0. Therefore, P(Yij = 1) = P(Y*ij > 0) = 1 − Fj(−ηji). The marginal cdfs are conditioned on covariates
through η1i and η2i, but for notational convenience we have suppressed this when expressing them. Since
the strength and direction of the association between the twomarginalsmay, for instance, vary across groups
of observations, the dependence parameter is speci�ed as a function of an additive predictor. That is, θi =
m(ηci), wherem is a one-to-one transformation which ensures that θi lies in its range. This approach follows
the same rationale of [45], who introduced generalized additive models for location, scale and shape, where
all the parameters characterizing a chosen distribution are related to predictors via suitable link functions.
The copulae implemented in GJRM, corresponding ranges of θ and list of transformations m(·) are reported
in Table 1 of [33]. Rotations by 90◦, 180◦ and 270◦ are also implemented; for example, rotating the Clayton,
Gumbel and Joe by 90◦ and 270◦ allows these copulae to model negative dependence. Parameter θ is often
not easy to interpret, in which case the well known Kendall’s τ ∈ [−1, 1] can be employed. For full details on
copulae see, for instance, [38].

The log-likelihood function of the sample can be expressed as

` =
n∑
i=1


1∑

a,b=0
1abi log(pabi)

 , (1)

where 1abi is an indicator function equal to one when (yi1 = a, yi2 = b) is true, a, b ∈ {0, 1}, and yi1 and yi2
are realizations of Yi1 and Yi2, respectively.

2.1 Additive predictor speci�cation

Let us consider a generic additive predictor ηνi and an overall covariate vector zνi. Here, subscript ν can take
values 1, 2 (which refer to the �rst and second margins) and c (which refer to the copula parameter). The
predictor can be de�ned as

ηνi = βν0 +
Kν∑
kν=1

sνkν (zνkν i), i = 1, . . . , n, (2)

Brought to you by | UCL - University College London
Authenticated

Download Date | 5/20/19 3:44 PM



A joint regression modeling framework for analyzing bivariate binary data in R | 271

where βν0 ∈ R is an overall intercept, zνkν i denotes the kthν sub-vector of the complete vector zνi and the Kν
functions sνkν (zνkν i) represent generic e�ects which are chosen according to the type of covariate(s) consid-
ered. Each sνkν (zνkν i) can be approximated as a linear combination of Qνkν basis functions bνkνqνkν (zνkν i) and
regression coe�cients βνkνqνkν ∈ R, i.e.

sνkν (zνkν i) =
Qνkν∑
qνkν=1

βνkνqνkν bνkνqνkν (zνkν i). (3)

Equation (3) implies that the vector of evaluations
{
sνkν (zνkν1), . . . , sνkν (zνkνn)

}T can be written as Zνkνβνkν
with βνkν = (βνkν1, . . . , βνkνQνkν )

T and design matrix Zνkν [i, qνkν ] = bνkνqνkν (zνkν i). This allows the predictor in
equation (2) to be written as

ην = βν01n + Zν1βν1 + . . . + ZνKνβνKν , (4)

where 1n is an n-dimensional vector made up of ones. Equation (4) can also be written in a more compact
way as ην = Zνβν, where Zν = (1n , Zν1, . . . , ZνKν ) and βν = (βν0, βTν1, . . . , β

T
νKν )

T. Each βνk has an associated
quadratic penalty λνkνβ

T
νkνDνkνβνkν , used in �tting, whose role is to enforce speci�c properties on the kthν func-

tion, such as smoothness. For the case of a smooth function of a continuous regressor zνkν , Dνkν may be cal-
culated as

∫
dνkν (zνkν )dνkν (zνkν )Tdzνkν , where the qthνkν element of dνkν (zνkν ) is given by ∂2bνkνqνkν (zνkν )/∂z

2
νkν

and integration is over the range of zνkν . See, for instance, [33] for other examples. The smoothing param-
eter λνkν ∈ [0,∞) controls the trade-o� between �t and smoothness, and plays a crucial role in determin-
ing the shape of ŝνkν (zνkν i). Let us consider again the case of a smooth e�ect of a continuous variable. A
value of λνkν = 0 (i.e., no penalization is imposed during �tting) will result in an un-penalized regression
spline estimate which will most likely over-�t the data, while λνkν → ∞ (i.e., the penalty has a large in-
�uence on the smooth function) will lead to a straight line estimate. The overall penalty can be de�ned as
βTνDνβν, where Dν = diag(0, λν1Dν1, . . . , λνKνDνKν). The smoothing parameters can be collected in vector
λν = (λν1, . . . , λνKν )T. Finally, smooth functions are typically subject to centering (identi�ability) constraints
(see [58] for more details).

The above formulation allows one to employ a rich variety of covariate e�ects. Speci�cally, GJRM can
accommodate all terms available in mgcv [59], which include smooth functions of continuous covariates,
smooth interactions between continuous and/or discrete variables, random e�ect smoothers and spatial
smoothers for data sampled over a large portion of the globe or for geographic areaswith complicated bound-
aries. These are incorporated in our modeling framework by specifying the appropriate Zνkν and Dνkν . Oth-
erwise, the construction of the additive predictors and overall smoothing penalty remains essentially un-
changed.

2.2 Parameter estimation

Ourmodel speci�cation allows for a high degree of �exibility inmodeling covariate e�ects. If an unpenalised
approach is employed to estimate the model’s paramters then over-�tting is the likely consequence [e.g., 46].
To prevent this, we maximize

`p(δ) = `(δ) − 1
2δ

TSδ, (5)

where `p is the penalized model’s log-likelihood, δT = (βT1, β
T
2, β

T
c) and S = diag(D1,D2,Dc). The smoothing

parameter vectors are collected in the overall vector λ = (λT1, λT2, λTc)T. In practice, estimation of δ and λ is
achieved by using a stable and e�cient trust region algorithm (based on �rst and second order analytical
derivative information) with integrated automatic multiple smoothing parameter selection [35, 44].
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2.3 Further considerations

At convergence, point-wise ‘con�dence’ intervals for linear and non-linear functions of the model’s coe�-
cients can be obtained using the Bayesian large sample approximation

δ ·∼ N(δ̂,Vδ), (6)

where δ̂ is a parameter vector estimate, Vδ = −Hp(δ̂)−1 and Hp is the penalized model’s Hessian. Inter-
vals derived using (6) have good frequentist properties since they account for both sampling variability and
smoothing bias; see [35] and references therein for details. Intervals for non-linear functions of the model’s
coe�cients (e.g., τ, joint and conditional predicted probabilities) can be conveniently obtained by simulation
from the posterior distribution of δ using the following steps:

1. Draw nsim random vectors fromN(δ̂,Vδ).
2. Calculate nsim simulated realizations of the quantity of interest. For instance, for a Gaussian copula τi =

2
π arcsin

[
tanh

{
ηci(Zci; βc)

}]
in which case τsimi = (τsim1

i , τsim2
i , . . . , τsimnsim

i )T ∀i = 1, . . . , n is obtained
using βsimj

c ∀j = 1, . . . , nsim.
3. For each τsimi , calculate the lower, ς/2, and upper, 1 − ς/2, quantiles.

A small value for nsim, say 100, typically gives accurate results, whereas ς is usually set to 0.05.
Model building in our framework involves the choice of copula function, of pair of link functions and se-

lection of relevant covariates in themodel’s additive predictors. To this end, we recommend using the Akaike
information criterion (AIC) and/or the Bayesian information criterion (BIC), and hypothesis testing. The AIC
and BIC are given by −2`(δ̂)+2edf and −2`(δ̂)+ log(n)edf , where the log-likelihood is evaluated at the penal-
izedparameter estimates and edf represents the e�ective degrees of freedom (see [35] for the exact de�nition).
Approximate p-values for testing smooth components for equality to zero are obtained using the results by
Wood [56] and Wood [57].

3 The models
In the following sections, we describe in some detail the three models that can deal with the issues of (i)
endogeneity, (ii) non-random sample selection and (iii) partial observability, discuss their additive predictor
speci�cations and log-likelihood functions.We also report some typicalmeasures of interest. Formore details
on the models dealing with (i) and (ii), the reader is to referred to [44] and [35].

3.1 Bivariate binary model with endogenous treatment

A bivariate binary model with endogenous treatment is mainly employed when one is interested in estimat-
ing the e�ect of a binary treatment on a binary outcome in the presence of unobserved confounding. In eco-
nomics, this problem is commonly framed in terms of a regression model from which important covariates
have been omitted and hence become a part of themodel’s error term. In this context, the treatment is termed
exogenous if it is not associated with the error term after conditioning on the observed confounders, and
endogenous otherwise. The bivariate model controls for unobserved confounding by using a two-equation
structural latent variable frameworkwhere one equation essentially describes a binary outcome (say Yi2) as a
function of a binary treatment (Yi1) whereas the other equation determineswhether the treatment is received.
The model is completed by including covariates and by assuming that the latent errors of the two equations
follow a bivariate distribution with association parameter θi. Using the notation introduced in Section 2.1,
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the additive predictors for this model can be expressed as

η1 = β101n + Z11β11 + . . . + Z1K1β1K1 = Z1β1,
η2 = β201n + β21y1 + . . . + Z2K2β2K2 = Z2β2,
ηc = βc01n + Zc1βc1 + . . . + ZcKcβcKc = Zcβc ,

whereas log-likelihood function (1) becomes

` =
n∑
i=1

{
111i log(p11i) + 110i log(p10i) + 101i log(p01i) + 100i log(p00i)

}
,

where p10i =
{
1 − F1(−η1i)

}
− p11i, p01i =

{
1 − F2(η2i)

}
− p11i and p00i = 1 − p11i − p10i − p01i.

The e�ect of the treatment Yi1 on the probability that Yi2 = 1 is typically of primary interest. That is, the
aim is to investigate how the treatment changes the expected outcome. Thus, the treatment e�ect is given by
the di�erence between the expected outcome with treatment and the expected outcome without treatment.
Di�erent measures of treatment e�ect have been proposed in the literature. Here, we employ the average
treatment e�ect in the speci�c sample at hand, rather than in the population at large [SATE; 1]. This can be
de�ned as

SATE(β2, Z2i) =
1
n

n∑
i=1

{
P(Yi2 = 1|Yi1 = 1) − P(Yi2 = 1|Yi1 = 0)

}
,

where P(Yi2 = 1|Yi1 = 1) = 1−F2(−η(yi1=1)2i ), P(Yi2 = 1|Yi1 = 0) = 1−F1(−η(yi1=0)2i ) and η(yi1=a)2i represents the ad-
ditive predictor evaluated at yi1 = a, for a equal to 1 or 0. SATE(β2, Z2i) can be estimated using SATE(β̂2, Z2i),
whereas an interval for it can be obtained by employing Bayesian posterior simulation as explained in Sec-
tion 2.3. Linear and non-linear e�ects of covariates on the propensities or probabilities that certain events
occur can be also be easily obtained using the functions available in the package (e.g., jc.probs()).

3.2 Bivariate binary model with non-random sample selection

Non-random sample selection occurs when individuals select themselves into (or out of) the sample based
on a combination of observed and unobserved characteristics. Models that ignore such a systematic selec-
tion may yield estimates which are not representative of the population of interest. One way to deal with this
issue is to use a bivariate binary selection model which controls for non-random sample selection by using a
two-equation structural latent variable framework where one equation describes the selection process (Yi1)
and the other describes the outcome Yi2. Speci�cally, Yi1 indicates whether an individual is selected into
the sample whereas Yi2 is the outcome which is observed only if the individual is selected. Similarly to the
endogenousmodel, the errors of the two equations are assumed to follow a bivariate distributionwith associ-
ation parameter θi. In this case, the �rst additive predictor is the same as that de�ned in the previous section
and the remaining ones look like

η2 = β201ns + Z21β21 + . . . + Z2K2β2K2 = Z2β2,
ηc = βc01ns + Zc1βc1 + . . . + ZcKcβcKc = Zcβc ,

where 1ns is an ns-dimensional vector made up of ones corresponding to the selected observations, and Z2
and Zc have ns rows. The log-likelihood function of the sample is

` =
n∑
i=1

{
111i log(p11i) + 110i log(p10i) + (1 − yi1) log(p0i)

}
,

where p0i = F1(−η1i).
The proportion of a population found to have a condition (i.e., prevalence) may be of interest. This is

given as P(Y2 = 1) which can be estimated by

PREV(β̂2, Z2) =
∑n

i=1 wi
{
1 − F2(η̂2i)

}∑n
i=1 wi

,

Brought to you by | UCL - University College London
Authenticated

Download Date | 5/20/19 3:44 PM



274 | Giampiero Marra and Rosalba Radice

where the wi are survey weights. An interval for the prevalence can be derived using posterior simulation.
Covariate impacts on P(Y2 = 1) or other probabilities of interest can also be obtained. Sample selection
models typically require a valid exclusion restriction for empirical model identi�cation (i.e., a variable which
predicts selection but not the outcome).

3.3 Bivariate probit model with partial observability

This model tackles a problem in which an observed binary outcome re�ects the joint realization of two un-
observed binary outcomes. In other words, it is only possible to observe the product of two binary variables
whichmeans that Yi1Yi2 = 1 only if Yi1 = Yi2 = 1 and 0 otherwise. Therefore, the joint event (Yi1 = 1, Yi2 = 1)
has probability p11i whereas all the other events have probability 1 − p11i. In this paper, we extend Poirier’s
model to allow for the possibility of estimating �exibly various types of covariate e�ects. Additive predictors
η1 and η3 are the same as those de�ned in Section 3.1 whereas the second predictor is de�ned as

η2 =β201n + Z21β21 + . . . + Z2K2β2K2 .

The log-likelihood function can be written as

` =
n∑
i=1
{111i log (p11i) + (1 − 111i) log (1 − p11i)} . (7)

Quantities of interest include estimates for p11i and the impacts the covariates have on these probabilities.
Note that this model is de�ned using Gaussian margins and a Gaussian copula [41].

The non-linearity of (7) provides local identi�cation of the model parameters, except in certain cases
which are problem speci�c and usually involve peculiar exogenous variable con�gurations [41]. Because in-
terchanging η1 and η2 would give an observationally equivalent model (this was termed by Poirier the ‘la-
belling’ problem), the equations for the two underlying responses are typically distinguished by introducing
at least one exclusion restriction on the covariates. If the unobservable variables in�uencing both outcomes
are uncorrelated then the model can be simpli�ed by assuming a priori that θ = 0 [2], which would in turn
imply that p11i =

{
1 − F1(−η1i)

}{
1 − F2(−η2i)

}
.

4 The function gjrm() in the R package GJRM

The GJRM package is available at http://CRAN.R-project.org/package=GJRM and its main function is gjrm()
which can be employed to �t the three main types of bivariate binary models described in this paper. The
function can be called using

gjrm(formula, data = list(), ...)

where formula is a list of two compulsory equations and an optional extra formula for the dependence pa-
rameter, and data is a data frame, list or environment containing the variables in the model. These are glm
like formulae except that smooth terms can be included in the equations in the sameway as for gam() in mgcv
(see the documentation of mgcv). An example of speci�cation for the equations of a bivariate binary model
with varying association parameter is

list(y1 ~ as.factor(x1) + s(x2, bs = "cr"),
y2 ~ s(x3, bs = "tp"),

~ s(x4, bs = "mrf") )

where y1 and y2 are the two binary responses, x1 is a categorical predictor, and the s terms represent smooth
functions of predictors x2, x3 and x4. Argument bs speci�es the type of spline basis which has to be se-
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lected depending on the nature of the varible considered; some of the possible choices are cr (cubic regres-
sion spline), tp (thin plate regression spline, the default), re (random e�ect) and mrf (Markov random �eld
smoother). Bivariate smoothing can be achieved using s(x2, x3, bs = "te"), for instance. For more de-
tails and smooth term options see documentation of mgcv.

Important arguments of gjrm() are Model which indicates the type of model the user wishes to employ
("B" for the bivariate model with or without endogenous variable, "BSS" for the bivariate sample selection
model, "BPO" for the partial observability model, "BPO0" for the partial observability model with zero corre-
lation coe�cient), BivD which denotes the bivariate distribution linking the two model equations (the list of
possibilities include "N" (default), "C0", "J0", "F", "G0", "G180", etc.) and margins which indicates the link
functions ("probit", "logit", "cloglog"). Further details can be found in the help �le of gjrm.

The package contains several post-estimation functions whose aim is to provide interpretable numerical
and graphical summaries. The functions include:

• AT(x, nm.end, type = "joint", n.sim = 100, prob.lev = 0.05, hd.plot = FALSE, ...).
This function takes a �tted gjrm object x and calculates the SATE of a binary endogenous treatment,
with corresponding interval obtained using posterior simulation. nm.end denotes the name of the
binary endogenous predictor of interest, whereas type can take three possible values: "naive" (the
e�ect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the
e�ect is obtained from the univariate model which neglects the presence of unobserved confounders)
and "joint" (the e�ect is obtained from the simultaneous model which accounts for observed and
unobserved confounders). Arguments n.sim and prob.lev indicate the number of coe�cient vectors
simulated from the posterior distribution of the estimated model parameters, and overall probability
of the left and right tails of the simulated SATE distribution to be used for interval calculations. If
hd.plot = TRUE then a plot containing the histogram and kernel density estimate of the simulated
SATE distribution is produced.

• conv.check(x) provides some information about the convergence of the algorithm.
• prev(x, sw = NULL, type = "joint", n.sim = 100, prob.lev = 0.05, hd.plot = FALSE,

...). This function calculates the prevalence using sample selection model estimates, with correspond-
ing interval obtained using posterior simulation. Many of the arguments of prev() are the same as those
of AT(). sw allows for the use of survey weights.

• plot(x, eq, ...). This function takes a �tted gjrm object and plots the estimated smooth functions of
eq (1, 2 or 3). This function is a wrapper for plot.gam() in mgcv to which we refer the reader for further
details and options.

• polys.map(lm, z, scheme = "gray", lab = "", zlim, rev.col = TRUE, ...). This function
produces a map with geographic regions de�ned by polygons. lm is a named list of matrices; eachmatrix
has two columns and each matrix row de�nes the vertex of a boundary polygon. z is a vector of values
associated with each area of lm, scheme indicates how to �ll the polygons in accordance with the values
of z (possible options are "heat", "terrain", "topo", "cm" and "gray"), lab is a label for the plot, zlim
indicates the range to use for z (if missing then zlim = range(pretty(z))), and rev.col indicates
whether the coloring scheme should be reversed. This function is essentially the same as polys.plot()
in mgcv but with the added arguments zlim and rev.col and a wider set of choices for scheme.

• predict(object, eq, ...). This function takes a �tted gjrm object and produces predictions for eq
using a new set of values of the model covariates (newdata) or the original values used for the model �t.
This function is a wrapper for predict.gam() in mgcv.

• summary(object, n.sim = 100, prob.lev = 0.05, ...). This function produces some summaries
from a �tted gjrm object and returns a list including, for instance, summary tables for the parametric
and nonparametric components of the model equations and interval(s) for θi. n.sim and prob.lev have
the same de�nitions as those for AT().
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5 Examples
The modeling framework is illustrated in the next sections using three data-sets: Medical Expenditure Panel
Survey (MEPS) of 2008, a data-set based on the real HIV 2007 Zambian Demographic and Health Survey
(DHS), and a data-set on civil war onset from [14]’s seminal study. The data and code used for the analyses
below are available in the GJRM package (see the documentations of meps, hiv and war).

5.1 Impact of private health insurance on utilization of health services

We consider a case study which uses data from the 2008MEPS (http://www.meps.ahrq.gov/) and whose goal
is to estimate the e�ect of having private health insurance on the probability of using health care services.
Private health insurance status is an important determinant of the use of health services and is a potentially
endogenous variable. This is because unobserved variables, such as allergy and risk aversiveness, are likely
to in�uence both health service utilization and private insurance decision. Sometimes the e�ect of private
health insurance can be interpreted as adverse selection or moral hazard [e.g., 7]. Adverse selection occurs
when individuals with a greater demand for medical care (because of poor health, for instance) are expected
to have a greater demand for insurance. Moral hazard refers to the tendency of people to be more inclined
to seek health services and doctors to be more inclined to refer them when all costs are covered. The matter
is further complicated by the fact that the e�ects of observed confounders, such as age and education, may
be complex since they embody productivity and life-cycle e�ects that are likely to in�uence private health
insurance and health care utilization non-linearly. If these relationships are mismodeled then the e�ect of
insurance on the probability of using health services may be biased. Moreover, insurance status and health
care utilization may exhibit a non-Gaussian association [55].

The 2008 MEPS data-set includes information on demographics, individual health status, health care
utilization and private health insurance coverage. The data-set considers individuals aged between 18 and 64
years old. Individuals that did not have a complete set of socioeconomic and demographic control variables
were excluded from the sample (e.g.,missing values for education or income). After exclusions, the �nal data-
set contains 18592 observations. Table 1 in the Appendix summarizes the variables used in the analysis. The
choice of these variables was motivated largely by the �ndings reported in previous related studies. See [47],
and references therein, for further details.

We load GJRM, read the data-set and specify the treatment and outcome equations by including smooth
functions for bmi, income, age and education.

R> library("GJRM")
R> data("meps", package = "GJRM")
R> treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) +
+ as.factor(health) + as.factor(race) +
+ as.factor(limitation) + as.factor(region) +
+ gender + hypertension + hyperlipidemia + diabetes
R> out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) +
+ s(education) + as.factor(health) +
+ as.factor(race) + as.factor(limitation) +
+ as.factor(region) + gender + hypertension +
+ hyperlipidemia + diabetes

We estimate several copula models with endogenous treatment, where the bivariate distributions are chosen
so that positive dependence is allowed for. This is because the models based on the Gaussian and Frank
copulae suggest that the dependence between the outcomes is positive, therefore it would not make sense to
employ copulae which allow for negative association when the data do not support this [e.g., 44].
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R> f.list <- list(treat.eq, out.eq)
R> mr <- c("probit", "probit")
R> bpN <- gjrm(f.list, data = meps, Model = "B",

margins = mr)
R> bpF <- gjrm(f.list, data = meps, BivD = "F", Model = "B",

margins = mr)
R> bpC0 <- gjrm(f.list, data = meps, BivD = "C0", Model = "B",

margins = mr)
R> bpC180 <- gjrm(f.list, data = meps, BivD = "C180", Model = "B",

margins = mr)
R> bpG0 <- gjrm(f.list, data = meps, BivD = "G0", Model = "B",

margins = mr)
R> bpG180 <- gjrm(f.list, data = meps, BivD = "G180", Model = "B",

margins = mr)

conv.check() can be used to check convergence. For instance,

R> conv.check(bpC180)

Largest absolute gradient value: 1.532329e-09
Observed information matrix is positive definite
Eigenvalue range: [0.3580183,4.533308e+13]

Trust region iterations before smoothing parameter estimation: 8
Loops for smoothing parameter estimation: 3
Trust region iterations within smoothing loops: 6

Based on the AIC the preferred model is the survival Clayton copula.

R> AIC(bpN, bpF, bpC0, bpC180, bpG0, bpG180)

df AIC
bpN 72.27753 30737.89
bpF 72.01256 30740.67
bpC0 72.20412 30743.14
bpC180 71.71113 30730.36
bpG0 72.22814 30731.85
bpG180 72.20412 30743.14

We then try several combinations of link functions but the results indicate that probit links are adequate in
this case.

R> bpC180.1 <- gjrm(f.list, data = meps, BivD = "C180", Model = "B",
+ margins = c("logit", "logit"))
R> bpC180.2 <- gjrm(f.list, data = meps, BivD = "C180", Model = "B",
+ margins = c("logit", "cloglog"))
R> bpC180.3 <- gjrm(f.list, data = meps, BivD = "C180", Model = "B",
+ margins = c("logit", "probit"))
R> bpC180.4 <- gjrm(f.list, data = meps, BivD = "C180", Model = "B",
+ margins = c("cloglog", "probit"))

R> AIC(bpC180, bpC180.1, bpC180.2, bpC180.3, bpC180.4)
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df AIC
bpC180 71.71113 30730.36
bpC180.1 71.47172 30746.34
bpC180.2 71.29488 30771.21
bpC180.3 71.49500 30737.17
bpC180.4 72.66715 30761.16

We can now look at the results.

R> set.seed(1)
R> summary(bpC180)

COPULA: 180 Clayton
MARGIN 1: Bernoulli
MARGIN 2: Bernoulli

EQUATION 1
Link function for mu.1: probit
Formula: private ~ s(bmi) + s(income) + s(age) + s(education) +

as.factor(health) + as.factor(health) + as.factor(race) +
as.factor(limitation) + as.factor(region) + gender + hypertension +
hyperlipidemia + diabetes

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2869055 0.0560439 5.119 3.07e-07 ***
as.factor(health)6 -0.0601848 0.0290515 -2.072 0.03830 *
as.factor(health)7 -0.1367727 0.0307420 -4.449 8.62e-06 ***
as.factor(health)8 -0.3176189 0.0426018 -7.456 8.95e-14 ***
as.factor(health)9 -0.4971039 0.0680706 -7.303 2.82e-13 ***
as.factor(race)3 -0.0349365 0.0285036 -1.226 0.22032
as.factor(race)4 -0.2296738 0.1093789 -2.100 0.03575 *
as.factor(race)5 0.0911878 0.0418697 2.178 0.02941 *
as.factor(limitation)6 0.1393116 0.0440623 3.162 0.00157 **
as.factor(region)3 0.2773288 0.0376227 7.371 1.69e-13 ***
as.factor(region)4 0.0811418 0.0326925 2.482 0.01307 *
as.factor(region)5 0.0183348 0.0349897 0.524 0.60027
gender -0.0004841 0.0221287 -0.022 0.98255
hypertension 0.0693851 0.0304990 2.275 0.02291 *
hyperlipidemia 0.1589956 0.0306816 5.182 2.19e-07 ***
diabetes -0.0094771 0.0443395 -0.214 0.83075
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s(bmi) 4.416 5.415 6.188 0.314
s(income) 8.493 8.923 2335.550 <2e-16 ***
s(age) 6.371 7.518 116.092 <2e-16 ***
s(education) 6.898 7.847 1153.674 <2e-16 ***
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2
Link function for mu.2: probit
Formula: visits.hosp ~ private + s(bmi) + s(income) + s(age) +

s(education) + as.factor(health) + as.factor(race) +
as.factor(limitation) + as.factor(region) + gender +
hypertension + hyperlipidemia + diabetes

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.63295 0.07189 -8.804 < 2e-16 ***
private -0.05685 0.07319 -0.777 0.437315
as.factor(health)6 0.11841 0.03448 3.435 0.000593 ***
as.factor(health)7 0.16677 0.03660 4.556 5.21e-06 ***
as.factor(health)8 0.30112 0.04799 6.274 3.51e-10 ***
as.factor(health)9 0.51663 0.06863 7.528 5.17e-14 ***
as.factor(race)3 -0.10541 0.03357 -3.140 0.001687 **
as.factor(race)4 -0.09301 0.12751 -0.729 0.465729
as.factor(race)5 -0.13672 0.04801 -2.848 0.004402 **
as.factor(limitation)6 -0.45311 0.04202 -10.784 < 2e-16 ***
as.factor(region)3 0.16104 0.03899 4.131 3.62e-05 ***
as.factor(region)4 -0.23138 0.03607 -6.415 1.41e-10 ***
as.factor(region)5 -0.35540 0.03991 -8.906 < 2e-16 ***
gender -0.38202 0.02555 -14.953 < 2e-16 ***
hypertension 0.09921 0.03150 3.149 0.001637 **
hyperlipidemia 0.25949 0.03042 8.529 < 2e-16 ***
diabetes 0.10593 0.04362 2.429 0.015158 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s(bmi) 1.285 1.522 1.015 0.3556
s(income) 2.308 2.964 8.918 0.0292 *
s(age) 1.000 1.000 115.124 < 2e-16 ***
s(education) 6.940 7.847 68.572 1.58e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

n = 18592 theta = 0.313(0.177,0.476) tau = 0.135(0.0814,0.192)
total edf = 71.7

n = 18592
theta = 0.313(0.177,0.476) tau = 0.135(0.0814,0.192)
total edf = 71.7
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Note that we have set a seed before summary(). This allows us to recover the same results for the intervals
of θ and τ reported at the bottom of the summary output; recall that intervals for non-linear functions of
the model parameters are calculated using posterior simulation. The small yet signi�cant dependence pa-
rameter obtained for the Clayton copula indicates that there exists some positive association between the
unstructured terms of the model equations. This suggests that individuals with private health coverage are
more likely to use health care services as compared to those without coverage. The estimated e�ects for the
binary and categorical variables have the expected signs and we refer the reader to [47] for a thorough dis-
cussion of these. Using plot(), we produce the smooth function estimates for the treatment and outcome
equations which are reported in Figures 1 and 2.

R> par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
+ cex.axis = 1.6, cex.lab = 1.6)
R> plot(bpC180, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE,
+ pages = 1, jit = TRUE)
R> par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
+ cex.axis = 1.6, cex.lab = 1.6)
R> plot(bpC180, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE,
+ pages = 1, jit = TRUE)

The e�ects of bmi, income, age and education in the treatment and outcome equations show di�erent de-
grees of non-linearity. The point-wise con�dence intervals of the smooth functions for bmi in the treatment
and outcome equations contain the zero line for the whole range of the covariate values. The intervals of the
smooth for income in the outcome equation contain the zero line for most of the covariate value range. This
suggests that bmi is a weak predictor of private health insurance and health care utilization, and that income
might not be a very important determinant of hospital utilization. Similar conclusions can be drawn by look-
ing at the p-values reported in the summary output. As for the remaining variables, the estimated e�ects
have the expected patterns. For example, age is a signi�cant determinant in both equations. The probability
of purchasing a private health insurance is found to increase with age. The likelihood of using health care
services also increaseswith age. Insurance decision aswell as health care utilization appear to behighly asso-
ciated with education. Education is likely to increase individuals’ awareness of health care services and the
bene�ts of purchasing a private health insurance. Higher household income is associated with an increased
propensity of purchasing a private health insurance. See for example [7] for further details.

The estimated SATE (in %) and corresponding interval are given below.

R> set.seed(1)
R> AT(bpC180, nm.end = "private", hd.plot = TRUE, cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.6)

Average treatment effect (%) with 95% interval:

-1.11 (-4.14,1.59)

Figures 3 displays a plot of the histogram and kernel density estimate of the simulated SATE distribution for
the �tted Clayton180 copula model. For completeness, we also calculate SATE for the case in which unob-
served confounding is not accounted for and that in which both observed and unobserved confounding is
not account for.

R> AT(bpC180, nm.end = "private", type = "univariate")

Average treatment effect (%) with 95% interval:

3.94 (2.97,5.05)
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Figure 1: Treatment equation: smooth function estimates and associated 95% point-wise con�dence intervals obtained by
�tting the Clayton180 copula model on the 2008 MEPS data. Results are plotted on the scale of the additive predictor. The
jittered rug plot, at the bottom of each graph, shows the covariate values. The numbers in brackets in the y-axis captions are
the edf of the smooth curves.
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Figure 2: Outcome equation: smooth function estimates and associated 95% point-wise con�dence intervals obtained by �tting
the Clayton180 copula model on the 2008 MEPS data. Results are plotted on the scale of the additive predictor.
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Histogram and Kernel Density of Simulated Average Effects
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Figure 3: Histogram and kernel density estimate of the simulated SATE distribution for the �tted Clayton180 copula model.

R> AT(bpC180, nm.end = "private", type = "naive")

Average treatment effect (%) with 95% interval:

4.63 (3.95,5.31)

The naive estimate is larger than those obtained when observed and/or unobserved confounders are ac-
counted for. Focusing on the univariate and bivariate estimates, we can see that the bivariate model indi-
cates that private insurance does not in�uence signi�cantly the outcome of interest, whereas the univariate
model suggests that the impact is positive and signi�cant. The results are not in agreement and the researcher
should be careful when adopting a particular estimate for policy planning, for instance. Functions OR() and
RR() calculate the odds ratio and risk ratio, respectively, and can also be used to assess the impact of the
endogenous variable.

5.2 HIV prevalence

The sample selection bivariate binary model is illustrated on a data-set generated using the real 2007 Zam-
bian DHS onHIV; details can be found in [36]. Estimates of HIV prevalence are important for policy in order to
establish the health status of a country’s population, to evaluate the e�ectiveness of population-based inter-
ventions and campaigns, to identify the most at risk members of the population, and to target those most in
need of treatment. However, data in low andmiddle income countries are often derived fromHIV testing con-
ducted as part of household surveys, where participation rates in testing can be low. Low participation rates
may be attributed to HIV positive individuals being less likely to participate because they fear disclosure,
in which case, estimates obtained using conventional approaches to deal with non-participation, such as
imputation-based methods, will be biased. In addition, establishing which population sub-groups are most
in need of intervention requiresmodeling of both spatial dependence and the predictors of HIV status, which
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is complicated by data censoring due to non-participation. See [5] and [36] for full details. All these issues are
taken into account in the analysis below.

In the relevant survey, respondents are asked, at the end of their individual interview, if they would con-
sent to test for HIV. If they consent then a blood sample is drawn by �nger prick by the interviewer, and
subsequently the dried blood spot is sent to be laboratory tested for HIV. The model includes the variables
described in Table 2 in the Appendix.

We specify smooth functions of all the continuous variables, and employMarkov random�eld smoothers
tomodel spatial variation. All these components enter the additive predictors for the selection andHIV status
equations. The selection variable (exclusion restriction) is interviewerID and enters the �rst equation only.
We apply a ridge penalty to the coe�cients of this variable in order to account for the di�culties associated
with its use (e.g., interviewerID can be collinear with other independent variables since interviewers are of-
tenmatched to participants on the basis of some group-level characteristics such as language and ethnicity).
The additive predictor for the copula parameter only depends on the Markov random �eld term and allows
the association parameter to vary by region. See [35] for a detailed discussion of this model speci�cation.

We �rst read the data-set and region shape list (hiv.polys). Then, to account for geographic clustering of
HIVwe store the neighborhood structure information in an object xtwhich is then used in speci�cation of the
Gaussian Markov random �led smoother. The model is de�ned below. Note that the employed speci�cation
is fairly complex and it has been adopted to illustrate the �exibility of the modeling approach.

R> library(GJRM)
R> data("hiv", package = "GJRM")
R> data("hiv.polys", package = "GJRM")
R> xt <- list(polys = hiv.polys)
R> sel.eq <- hivconsent ~ s(age) + s(education) + s(wealth) +
+ s(region, bs = "mrf", xt = xt, k = 7) +
+ marital + std + age1sex_cat + highhiv +
+ partner + condom + aidscare +
+ knowsdiedofaids + evertestedHIV +
+ smoke + religion + ethnicity +
+ language + s(interviewerID, bs = "re")
R> out.eq <- hiv ~ s(age) + s(education) + s(wealth) +
+ s(region, bs = "mrf", xt = xt, k = 7) +
+ marital + std + age1sex_cat + highhiv +
+ partner + condom + aidscare +
+ knowsdiedofaids + evertestedHIV +
+ smoke + religion + ethnicity +
+ language
R> theta.eq <- ~ s(region, bs = "mrf", xt = xt, k = 7)
R> fl <- list(sel.eq, out.eq, theta.eq)
R> bss <- gjrm(fl, data = hiv, BivD = "J90", Model = "BSS",
+ margins = c("probit", "probit"))
R> mean(bss$theta)

-8.459184

The estimated dependence parameter is −8.45. Note, however, that this is an average of the copula coe�-
cients corresponding to the nine Zambian regions considered in the analysis. This result supports the hy-
pothesis that those who are most likely to be HIV positive are those who are also most likely to decline to
participate in testing. The estimated smooth functions of age, education, wealth and region, and the ef-
fects of the binary and categorical variables can be extracted as in the previous example. See [35] for a full
analysis of these. The estimated prevalences from the naive, univariate and selectionmodels are given below.
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R> prev(bss, sw = hiv$sw, type = "naive")

Estimated prevalence (%) with 95% interval:

12.1 (11.2,13.0)

R> set.seed(1)
R> prev(bss, sw = hiv$sw, type = "univariate")

Estimated prevalence (%) with 95% interval:

12.1 (11.6,13.2)

R> prev(bss, sw = hiv$sw)

Estimated prevalence (%) with 95% interval:

22.9 (19.9,26.3)

These estimates show that the selection model HIV prevalence is signi�cantly higher than that of the
imputation-based and naive models. At regional level the selection model HIV prevalences range from 13%
to 28%. Note that prevalence estimates, and more generally model estimates, can be adjusted for clustering
using adjCov() or adjCovSD(). Figure 4 showsmaps for the selectionmodel and single imputation estimates
as well as the dependence parameter estimates.

R> lr <- length(hiv.polys)
R> prevBYreg <- matrix(NA, lr, 2)
R> thetaBYreg <- NA
R> for(i in 1:lr) {
+ prevBYreg[i,1] <- prev(bss, sw = hiv$sw, ind = hiv$region==i,

type = "univariate")$res[2]
+ prevBYreg[i,2] <- prev(bss, sw = hiv$sw, ind = hiv$region==i)$res[2]
+ thetaBYreg[i] <- bss$theta[hiv$region==i][1]
+ }
R> zlim <- range(prevBYreg*100) # to establish a common prevalence range
R> par(mfrow = c(1, 3), cex.axis = 1.3)
R> polys.map(hiv.polys, prevBYreg[,1]*100, zlim = zlim, lab = "",
+ cex.lab = 1.5, cex.main = 1.5,
+ main = "HIV (%) - Imputation Model")
R> polys.map(hiv.polys, prevBYreg[,2]*100, zlim = zlim, cex.main = 1.5,
+ main = "HIV (%) - Selection Model")
R> polys.map(hiv.polys, thetaBYreg, rev.col = FALSE, cex.main = 1.7,
+ main = expression(paste("Copula parameter (",hat(theta),")")))
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Figure 4: HIV prevalence estimates by region obtained by applying the imputation and sample selection models. The copula
parameter plot reports the values of the estimated associations with range (−∞, −1) in the 90◦ Joe copula. The higher the ab-
solute value, the stronger the association between the selection and outcome equations.

Intervals for the θi can extracted using the summary function. For instance,

R> set.seed(1)
R> CItheta <- summary(bss)$CItheta
R> CItheta[1,]

2.5% 97.5%
-17.916304 -4.264049

5.3 Determinants of civil war onset

To highlight the bene�ts of using a bivariate probit model with partial observability, we re-estimate themodel
proposed in the [14]’s seminal study on civil war onset which has also been analyzed more recently by [39].

Civil wars are often theorized as the outcome of an interaction between an opposition group and the
government [12, 14]. This means that we can only observe their joint decision (war onset) rather than the
decisions of the single decision-makers (the opposition ‘challenges’ and the state ‘�ghts’). The study by [14]
aims at identifying the variables that increase the likelihood of civil war onset, however cannot distinguish
between variables that drive local populations to rebel against the government and variables that in�uence
government’s �ght. As in [39], the model includes the variables described in Table 3 in the Appendix.

We specify two equations, �t the model and check that convergence has been achieved.

R> library(GJRM)
R> data("war", package = "GJRM")
R> reb.eq <- onset ~ instab + oil + warl + lpopl + lmtnest +
+ ethfrac + polity2l + s(gdpenl) + s(relfrac)
R> gov.eq <- onset ~ instab + oil + warl + ncontig + nwstate +

s(gdpenl)
R> bpo <- gjrm(list(reb.eq, gov.eq), data = war, Model = "BPO",

margins = c("probit","probit") )
R> conv.check(bpo)

Largest absolute gradient value: 0.1752897
Observed information matrix is positive definite
Eigenvalue range: [0.1111491,5.648263e+13]
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Trust region iterations before smoothing parameter estimation: 20
Loops for smoothing parameter estimation: 2
Trust region iterations within smoothing loops: 3

The convergence diagnostics suggest that the model is perhaps too complex (the gradient is close but not
equal to 0 and the condition number of the information matrix relatively large). We check the estimate ob-
tained for θ and interval for it.

R> set.seed(1)
R> sbpo <- summary(bpo)
R> sbpo$theta; sbpo$CItheta

theta
0.05459771

2.5% 97.5%
[1,] -0.8903422 0.9390838

This result suggests that the unobservable variables in�uencing local populations to rebel against the gov-
ernment and government’s decision to �ght back are uncorrelated. Following [2], we can therefore simplify
the model by assuming a priori that θ = 0. This implies that p11i = Φ(η1i)Φ(η2i).

R> bpo0 <- gjrm(list(reb.eq, gov.eq), data = war,
Model = "BPO0", margins = c("probit","probit"))

R> conv.check(bpo0)

Largest absolute gradient value: 0.0725329
Observed information matrix is positive definite
Eigenvalue range: [0.1355123,4.740461e+13]

Trust region iterations before smoothing parameter estimation: 20
Loops for smoothing parameter estimation: 2
Trust region iterations within smoothing loops: 3

The gradient is now closer to zero. However, looking at the summary results (below) one notes that the esti-
mated smooth functions have edf = 1. Hence, gdpenl and relfrac can in principle enter the model para-
metrically; this is what makes the condition number large in this case.

R> summary(bpo0)

COPULA: Gaussian
MARGIN 1: Bernoulli
MARGIN 2: Bernoulli

EQUATION 1
Link function for mu.1: probit
Formula: onset ~ instab + oil + warl + lpopl + lmtnest + ethfrac +

polity2l + s(gdpenl) + s(relfrac)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.316782 0.374343 -8.860 < 2e-16 ***
instab -0.120379 0.259779 -0.463 0.64308
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oil 1.074245 0.470581 2.283 0.02244 *
warl -0.598469 0.320963 -1.865 0.06224 .
lpopl 0.116009 0.045151 2.569 0.01019 *
lmtnest 0.111640 0.043090 2.591 0.00957 **
ethfrac 0.085478 0.196891 0.434 0.66419
polity2l 0.010101 0.008683 1.163 0.24471
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s(gdpenl) 1 1 13.763 0.000207 ***
s(relfrac) 1 1 0.565 0.452208
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2
Link function for mu.2: probit
Formula: onset ~ instab + oil + warl + ncontig + nwstate + s(gdpenl)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4317 0.6604 -0.654 0.513
instab 0.8721 0.6107 1.428 0.153
oil -0.9638 0.6070 -1.588 0.112
warl 0.2113 0.6875 0.307 0.759
ncontig 0.5862 0.4968 1.180 0.238
nwstate 2.6507 2.6739 0.991 0.322

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s(gdpenl) 1 1 0.434 0.51

n = 6326 total edf = 17

For comparison, using mgcv, we also �t a probitmodel where the joint decision of the opposition group and of
the government ismodeledwithout distinguishing between the opposition’s challenge and the government’s
decision to �ght back.

R> war.eq <- onset ~ instab + oil + warl + ncontig + nwstate + lpopl +
+ lmtnest + ethfrac + polity2l + s(gdpenl) + s(relfrac)
R> Probit <- gam(war.eq, family = binomial(link = "probit"), data = war)
R> summary(Probit)

Family: binomial
Link function: probit

Formula:
onset ~ instab + oil + warl + ncontig + nwstate + lpopl + lmtnest +
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ethfrac + polity2l + s(gdpenl) + s(relfrac)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.641277 0.294255 -12.375 < 2e-16 ***
instab 0.261447 0.100910 2.591 0.009573 **
oil 0.363108 0.122069 2.975 0.002934 **
warl -0.378155 0.129964 -2.910 0.003618 **
ncontig 0.155754 0.121656 1.280 0.200446
nwstate 0.759497 0.163264 4.652 3.29e-06 ***
lpopl 0.104802 0.031235 3.355 0.000793 ***
lmtnest 0.091518 0.034332 2.666 0.007684 **
ethfrac 0.078613 0.157390 0.499 0.617443
polity2l 0.009303 0.007004 1.328 0.184115
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(gdpenl) 1.002 1.004 22.845 1.8e-06 ***
s(relfrac) 1.001 1.002 0.366 0.546
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.0314 Deviance explained = 10.5%
UBRE = -0.845 Scale est. = 1 n = 6326

Although both the probit and bivariate probit models recover coe�cients with the same signs, there are sev-
eral di�erences in the statistical signi�cance of these parameters (nwstate, instab, for example). What is of
greater consequence, however, is that, unlike probit, the partial observability model allows for a more nu-
anced separation of alternative theoretical mechanisms. For instance, instab, oil and warl are all statisti-
cally signi�cant in the probit model; each of these variables may a�ect the onset of civil war through the two
theoretical mechanisms, associated with opposition and government. The partial observability model per-
mits for evaluating each of the player-speci�c and outcome-speci�c theoretical components. To demonstrate
this point, let us focus, for instance, on how the twomodels separate the competingmechanisms linking civil
war andGDPper capita. The probitmodel shows that gdpenlhas a negative linear and statistically signi�cant
e�ect. The e�ect is linear because edf = 1 and has a negative impact as illustrated below.

R> coef(Probit)[(which(names(coef(Probit)) == "s(gdpenl).9"))]

s(gdpenl).9
-0.58988

(When using thin plate regression splines with basis dimensions equal to 10 and second-order penalties, if
edf = 1 then the coe�cient of the ninth spline basis corresponds to the parametric linear e�ect.) While this
suggests that GDP per capita reduces the propensity of civil war onset, we cannot determine which of the two
alternative mechanisms are supported by this result. In other words, a negative coe�cient for gdpenl in the
probitmodelmay indicate that (i) stateswith greater capacities aremore e�cient at deterring insurgents or (ii)
prospective rebels are less likely to challenge the state in the presence of higher opportunity costs or (iii) both
(i) and (ii). In contrast, the partial observability model provides some insights in regard to these processes.
gdpenl is negative, linear and statistically signi�cant in the rebels’ challenge equation. This indicates that
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as GDP per capita increases, potential rebel groups are less likely to challenge the government. In contrast,
gdpenl is not signi�cant in government’s �ght back equation.

R> coef(bpo0)[(which(names(coef(bpo)) == "s(gdpenl).9"))]

s(gdpenl).9 s(gdpenl).9
-0.9214988 0.4603390

Figure 5 displays the predicted probabilities of several outcomes (war onset, rebels challenging the state,
and government �ghting back) across varying values in GDP per capita.
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Figure 5: The probabilities of civil war predicted from the probit model are depicted as a continuous gray line. The probabilities
of rebels challenging the state, of government �ghting back, and of civil war from the partial observability model are depicted
as dashed, dotted and continuous black lines, respectively. Note that the probabilities of civil war for both models can not be
distinguished as in this case they are nearly identical.

R> probitW <- bpoW <- bpoReb <- bpoGov <- NA
R> gdp.grid <- seq(0, 8)
R> median.values <- data.frame(t(apply(war, 2, FUN = median)))
R> for (i in 1:length(gdp.grid)){
+ newd <- median.values; newd$gdpenl <- gdp.grid[i]
+ eta1 <- predict(bpo0, eq = 1, newd)
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+ eta2 <- predict(bpo0, eq = 2, newd)
+ probitW[i] <- predict(Probit, newd, type = "response")
+ bpoW[i] <- pnorm(eta1)*pnorm(eta2)
+ bpoReb[i] <- pnorm(eta1)
+ bpoGov[i] <- pnorm(eta2)
+ }
R> plot(gdp.grid, probitW, type = "l", ylim = c(0, 0.55), lwd = 2,
+ col = "grey", xlab = "GDP per Capita (in thousands)",
+ ylab = "Pr(Outcome)", main = "Probabilities for All Outcomes",
+ cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.3)
R> lines(gdp.grid, bpoW, lwd = 2)
R> lines(gdp.grid, bpoReb, lwd = 2, lty = 2)
R> lines(gdp.grid, bpoGov, lwd = 2, lty = 3)

The probit and partial observability models yield identical results as far as the probability of civil war is
concerned. However, the partial observability model reveals additional information about the e�ect of GDP
per capita on the rebel-government interaction, by also allowing to estimate the probabilities of rebels chal-
lenging the state and government �ghting back. We see, for example, that while the former decreases as GDP
per capita increases, the latter increases.

6 Discussion
We described the bivariate binary models implemented in the R add-on package GJRM and illustrated them
using three case studies inwhich the issues of endogeneity, non-random sample selection and partial observ-
ability were prevalent. The framework allows the user to specify �exibly covariate e�ects and the dependence
structure between the margins. Given the modular structure of the estimation algorithm, other copulae and
link functions can be incorporated in the package with little programming work.

Since link functions other than the ones implemented in the packagemaybeplausible in applications,we
explored the empirical performance of skewprobit links, derived from the standard skew-normal distribution
by [3], and power probit and reciprocal power probit links [6]. We opted for these links as they include the
probit as special case and have desirablemathematical properties.We found that the use of these approaches
causes numerical di�culties, which is in line with the arguments of [4]. Moreover, even when numerical
convergence is achieved, the empirical results are virtually identical to those obtained when assuming probit
links. We also considered non-exchangeable copulae and, following the approach detailed in [16], assessed
the feasibility of using Cκ1 ,κ2 (u, v) = u1−κ1v1−κ2C(uκ1 , vκ2 ), 0 < κ1, κ2 < 1 in the context of bivariate binary
data. We encountered the same issues mentioned above, even when employing models with a small number
of covariates and without nonlinear e�ects.

As mentioned in the introduction, the package allows for the modeling of several types of multivariate
responses in a �exible regression context. We are currently working on several extensions of the models in
GJRM and incorporating new ones.
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Appendix - Variable de�nitions
Table 1:MEPS data: description of the outcome and treatment variables, and observed confounders.

Variable De�nition
Outcome
visits.hosp = 1 at least one visit to hospital outpatient departments
Treatment
private = 1 private health insurance
Demographic-socioeconomic
age age in years
gender = 1male
race = 2 white, = 3 black, = 4 native American, = 5 others
education years of education
income income (000’s)
region = 2 northeast, = 3mid-west, = 4 south, = 5 west
Health-related
health = 5 excellent, = 6 very good, = 7 good, = 8 fair, = 9 poor
bmi body mass index
diabetes = 1 diabetic
hypertension = 1 hypertensive
hyperlipidemia = 1 hyperlipidemic
limitation = 1 health limits physical activity

Table 2: HIV data: description of the outcome and selection variables, and observed confounders.

Variable De�nition
Selection
hivconsent consent to test for HIV
Outcome
hiv HIV positive
Demographic-socioeconomic
age age in years
education years of education
region = 1 central, = 2 copperbelt, = 3 eastern, = 4 luapula, = 5 lusaka,

= 6 northwestern, = 7 northern, = 8 southern, = 9 western
et bemba, lunda (luapula), lala, ushi, lamba, tonga, luvale,

lunda (northwestern), mbunda, kaonde, lozi, chewa, nsenga,
ngoni, mambwe, namwanga, tumbuka, other

language English, Bemba, Lozi, Nyanja, Tonga, other
marital never married, currently married, formerly married
interviewerID interviewer identi�er
Health sex-related
std had a sexually transmitted disease
highhiv had high risk sex
condom used condom during last intercourse
aidscare = 1 if would care for an HIV-infected relative
knowsdiedofaids = 1 if know someone who died of HIV
evertestedHIV = 1 if previously tested for HIV
smoke smoker
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Table 3: Civil war data: description of the outcome variable and covariates.

Variable De�nition
Outcome
onset = 1 for all country-years in which a civil war started
Covariates
instab = 1 unstable government
oil = 1 for oil exporter country
warl = 1 if the country had a distinct civil war ongoing in the previous year
lpopl log(population size)
lmtnest log(%mountainous)
ethfrac measure of ethnic fractionalization (calculated as the probability that two randomly

drawn individuals from a country are not from the same ethnicity)
polity2l measure of political democracy (ranges from −10 to 10) lagged one year
gdpenl GDP per capita (measured as thousands of 1985 U.S. dollars) lagged one year
relfrac measure of religious fractionalization
ncontig = 1 for non-contiguous state
nwstate = 1 for new state
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