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Task inhibition (also known as backward inhibition) is an hypothesised form of cognitive
inhibition evident in multi-task situations, with the role of facilitating switching between
multiple, competing tasks. This article presents a novel cognitive computational model of a
backward inhibition mechanism. By combining aspects of previous cognitive models in
task switching and conflict monitoring, the model instantiates the theoretical proposal that
backward inhibition is the direct result of conflict between multiple task representations.
In a first simulation, we demonstrate that the model produces two effects widely observed
in the empirical literature, specifically, reaction time costs for both (n-1) task switches and
n-2 task repeats. Through a systematic search of parameter space, we demonstrate that
these effects are a general property of the model’s theoretical content, and not specific
parameter settings. We further demonstrate that the model captures previously reported
empirical effects of inter-trial interval on n-2 switch costs. A final simulation extends
the paradigm of switching between tasks of asymmetric difficulty to three tasks, and gen-
erates novel predictions for n-2 repetition costs. Specifically, the model predicts that n-2
repetition costs associated with hard-easy-hard alternations are greater than for easy-
hard-easy alternations. Finally, we report two behavioural experiments testing this
hypothesis, with results consistent with the model predictions.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A fundamental requirement of much human behaviour in a dynamic world is the ability to flexibly switch between tasks
in response to environmental context. Thus when cooking one may need to alternate between slicing onions and regularly
stirring a simmering pan. The control processes involved in regulating this form of behaviour have been studied in the lab-
oratory using so-called task-switching paradigms, where participants typically alternate performing each of two or more
possible tasks afforded by a stimulus, for example classifying digit stimuli by magnitude (high/low) or parity (odd/even)
(see Kiesel et al., 2010; Vandierendonck, Liefooghe, & Verbruggen, 2010, for reviews).

In a typical task-switching experiment the ordering of tasks is such that each trial requires either a switch or a repetition
of the preceding task. An early observation was that task switches were associated with costs, in terms of response times and
error rates, compared to task repeats. Numerous explanations for the switch cost sought to attribute it to cognitive processes
required on switch trials, but not repeat trials, such as an executive mechanism responsible for reconfiguring the cognitive
system appropriately for the new task (e.g., Rogers & Monsell, 1995; Rubinstein, Meyer, & Evans, 2001; Sohn & Anderson,
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2001). However, alternative accounts suggested that the switch cost does not directly reflect control processes, but results
from interference between the two task representations (e.g., Allport, Styles, & Hsieh, 1994; Allport & Wylie, 2000; Altmann
& Gray, 2008; Yeung & Monsell, 2003) with a possible middle ground being that interference is itself mediated by control
processes (e.g., the suggestion by Goschke, 2000, that inhibition of tasks is regulated by response conflict).

Residual inhibition of the now-relevant task-set is a common explanatory concept for a number of interference-based
accounts of the switch cost (Allport et al., 1994; Allport &Wylie, 2000; Gilbert & Shallice, 2002; Mayr & Keele, 2000). Hoever,
task interference can also be conceptualised in activation-only terms (Altmann & Gray, 2008; Yeung & Monsell, 2003), and
non-inhibitory, non-interference based accounts also exist. In these accounts, switch costs are a consequence of cue-
switching, and may not necessarily reflect a task switch (Logan & Bundesen, 2003; Logan & Schneider, 2010). Thus, while
it remains plausible that task switching involves task inhibition, switch costs alone do not provide strong evidence for such
processes (for recent reviews, see Gade, Schuch, Druey, & Koch, 2014; Koch, Gade, Schuch, & Philipp, 2010).

More promising behavioural evidence for task inhibition comes from a procedure in which participants switch between
three possible tasks (e.g., Mayr & Keele, 2000). For example, in response to single-digit stimuli, excluding 5, participants may
switch between classifying the stimuli according to parity (odd/even), magnitude (greater/less than 5) or centrality (near/far
from 5) (e.g., Schuch & Koch, 2003). In most examples of this paradigm, task repeats are avoided, hence each trial (n) rep-
resents a switch compared to the previous (n-1) trial. The main dependent measures are the contrast in RT and error rates
between ‘n-2 repeats’ — trials in which a task re-occurs after a single intervening trial (i.e., given switching between three
tasks, A, B and C, the third trial in the task sequence ABA) — and ‘n-2 switches’, in which the task has not been performed for
two or more trials (such as the third trial in CBA sequences). Assuming persistent activation (i.e., priming) of task sets, one
might expect n-2 repeats to be facilitated by more recent performance of the task, compared to n-2 switches. Instead, the
robust finding is that n-2 repeats are significantly slower, and more error prone, than n-2 switches. To date, these n-2 rep-
etition costs have been resistant to alternative explanations, with a consensus that the effect indeed reflects task inhibition
(Koch et al., 2010). One suggestion is that task inhibition, also referred to as ‘backward inhibition’, forms part of a cognitive
mechanism for sequential task control (Mayr & Keele, 2000). Such a mechanism would have the functional benefit of reduc-
ing cross-task interference from highly active, yet goal-irrelevant, task-sets in multiple-task situations.

However, while task inhibition has commonly been invoked in verbal descriptions of task switching, formal accounts of
the mechanism remain at an early stage (e.g., Grange & Juvina, 2015). To date, a formal model has yet to be specified which
shows how task inhibition affects performance in both two and three-task paradigms, thus clarifying the contribution (if
any) of backward inhibition to the n-1 switch cost. The remainder of this article describes and evaluates such a model.
The model extends the interactive activation model of Gilbert and Shallice (2002) with a simple task inhibition mechanism
sensitive to task conflict. It represents a formalisation of the idea that task inhibition occurs in response to conflicting task
representations (Goschke, 2000; Koch et al., 2010).

In a first pair of simulations, the model demonstrates that backward inhibition can explain the main qualitative pattern —
costs for both n-1 switches and n-2 repeats — and that these effects are a property of the model architecture and not of speci-
fic parameter settings (given certain theoretically-motivated constraints). A third simulation explores the effects of variable
inter-trial intervals on n-1 and n-2 costs, replicating existing empirical results. Finally with respect to the simulation work,
and as backward inhibition in the model is sensitive to inter-task conflict, we explore a version of task switching where three
tasks are of different (i.e., asymmetric) difficulty. In such a procedure, the inter-task conflict generated by hard-easy-hard
alternations may be contrasted with that of easy-hard-easy alternations. The model makes clear behavioural predictions
for differential effects on n-2 repetition costs. We then report two novel three-task switching experiments which success-
fully test these predictions. In the final part of the paper, the implications of the model are discussed, including the functional
benefit provided by the backward inhibition mechanism. Specifically, we argue that backward inhibition facilitates task con-
trol by automatically reducing cross-task interference, thereby reducing or eliminating the need for attentionally-demanding
deliberate control in some situations.

2. Existing computational accounts of task switching

To date, a variety of computational accounts of task switching have been proposed, drawing either on the principles of
Interactive Activation and Competition (IAC) (Brown, Reynolds, & Braver, 2007; Gilbert & Shallice, 2002) or developed within
the ACT-R architecture (Altmann & Gray, 2008; Sohn & Anderson, 2001, see Grange & Houghton, 2014, for a recent review
and theoretical comparison). Only one has extended to three-task switching and n-2 effects (Grange & Juvina, 2015; Grange,
Juvina, & Houghton, 2013).

2.1. The IAC model of Gilbert and Shallice (2002)

Gilbert and Shallice (2002) proposed an Interactive Activation and Competition (IAC) model of task switching based on
earlier IAC models of the Stroop task (Cohen, Dunbar, & McClelland, 1990; Cohen & Huston, 1994). Within the model stimuli
are represented as single units for each possible alternative across its two possible dimensions (‘word’ and ‘ink colour’), with
possible responses also represented as single units. The two alternative tasks thus form two segregated processing pathways.
The weights of the associative links from stimulus input to response units are greater in the word reading than the colour



N.J. Sexton, R.P. Cooper / Cognitive Psychology 94 (2017) 1–25 3
naming pathway, reflecting greater experience with this task. Two ‘task demand’ units provide control of the current task,
analogous to task-sets. These have excitatory connections with all response units for their respective task and inhibitory con-
nections with the alternative task response units.1 As is typical with IAC models, lateral inhibition is implemented between
units at the same level, meaning that units within a level compete to become the most highly active, while simultaneously sup-
pressing activation in the others. The overall effect of task demand unit activation, therefore, is general facilitation of the respec-
tive task demand unit pathway and inhibition of the alternative task pathway. In the absence of intervention from higher-level
control processes, the network produces responses from the stronger, word reading pathway. To perform task switching, a top-
down control input is supplied to the relevant task-demand unit on each trial. As more biasing is required to perform the
weaker task than the stronger one, the top-down-control input is stronger for colour naming than word reading.

On a typical trial, stimulus input units are activated for each processing pathway (e.g., the red colour unit and the green
word unit representing the word ‘green’ incongruously displayed in red), with activation propagating through both path-
ways. Simultaneously, a single task-demand unit becomes active through top-down-control excitation. This biases process-
ing in favour of the current task, while suppressing processing in the competing task.

In the model, interference from previous tasks occurs due to residual activation of the task-demand units from the pre-
vious trial. Repeat trials are therefore facilitated, as the relevant task-demand unit is already highly active. Interference
occurs on switch trials, as residual task-demand activation now facilitates processing for the irrelevant task, and a greater
period of processing is required for top-down control to re-activate the relevant task-demand unit against irrelevant task
interference, producing switch costs. Importantly, as the task-demand unit for the weaker task requires greater activation
to perform the task than that for the well-learned task, a greater degree of residual activation is carried over to the following
trial, producing greater switch costs for hard-easy switches than for easy-hard switches. This phenomenon is known in the
empirical task-switching literature as an asymmetric switch cost (see Kiesel et al., 2010, for a review).

The model of Gilbert and Shallice (2002) has not been extended to the n-2 repetition paradigm. However, while the model
lacks any explicit control processes, its top-down input is regarded as a proxy for the output of higher-level control processes
which bias processing in the production of responses — an arrangement analogous to the two-level contention scheduling
and supervisory systems proposed by Norman and Shallice (1986). In theoretical and practical terms, the model therefore
makes a suitable platform for implementing a putative task inhibition mechanism.

2.2. The IAC model of Brown et al. (2007)

Brown et al. (2007) have proposed a model of task-switching that, while conceptually similar to the model of Gilbert and
Shallice (2002), is substantially more complex.

It incorporates two additional cognitive control mechanisms. Firstly, an incongruency detector signals conflict between
co-active incompatible responses, and in response sends additional excitation to the currently active task unit. Secondly,
a change detector responds to trial-by-trial changes in either the task units or the response units, by removing a ‘tonic arou-
sal signal’ — an effect which slows all responses and lasts for a number of trials. Through slowing of responses, this latter
mechanism also leads to increased accuracy. Thus, the model reacts to sequential conflict (generated between current trial
processing and residual activation from previous trials) by slowing all responses, while within-trial conflict (between simul-
taneously active responses) is resolved by reinforcing the activation of the currently active task unit. While this model is
noteworthy in integrating conflict-monitoring mechanisms with a task switching model, the authors do not explore the
model’s performance in the n-2 repetition paradigm, and instead focus on sequential stimulus congruency and response rep-
etition effects. The model fits the authors’ target data, reproducing a complex behavioural pattern, however it introduces a
high level of complexity and requires hand-setting of 21 free parameters.

2.3. The model of Altmann and Gray (2008)

In the model of Altmann and Gray (2008), based on the ACT-R cognitive architecture, task switching is conceptualised as a
memory retrieval process. Task cues are encoded as an episodic memory trace, used as the basis for retrieving the relevant
stimulus dimension (e.g., odd/even), identifying the correct category (odd) and making a response (left). As is standard in all
ACT-R models, the time taken to access representations (‘chunks’) from memory is based on their activation. ACT-R’s base-
level-learning (BLL) equation, which governs chunk activation, ensures that the activation of a chunk increases each time it is
accessed, after which it decays according to a power law. Given this formulation, task repeats are faster than task switches
because the relevant task representations have been accessed more recently — a form of priming.

As with all ACT-R models, the activation of chunks in declarative memory flows associatively. Thus, activation of a task
dimension (parity) spreads to associated dimensions (odd/even), and then to the associated responses (left/right). Concep-
tually, then, the explanation for switch costs in the model is similar to that of the model of Gilbert and Shallice (2002). It is
due to residual activation/priming of recently performed tasks and the related representations (although in the Gilbert and
1 The model also involves a variably-weighted connection from stimulus input units to task-demand units — stimuli occurring in the previous trial evoke the
task that occurred on that trial. While this mechanism, simulating a short-term priming effect, accounts for an item-specific component of the switch cost
(Allport & Wylie, 2000), we do not consider this component of the switch cost further in this article.
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Shallice model there is a greater emphasis on between-task interference, which occurs due to lateral inhibition from resid-
ually active irrelevant representations).

2.4. The task inhibition models of Grange and colleagues

Given the absence of inhibitory processes within the ACT-R architecture, Grange et al. (2013) argued that the model of
Altmann and Gray (2008) cannot account for n-2 repetition costs, and would instead predict n-2 repetition facilitation,
for similar reasons as for n-1 repeats. Grange et al. (2013) therefore implemented a model within ACT-R by modifying
the BLL equation to include an early, inhibitory component (i.e., self-inhibition). This component is large immediately after
chunk retrieval, making chunks harder to retrieve immediately, but dissipates passively over time, leading to an inverted-U
shaped activation curve. In this model, the locus of the n-2 repetition cost is the process of retrieving target representations
from memory — for a certain period this process is slower for more recently retrieved target representations, as in the n-2
repetition condition.

Using this model, Grange and Juvina (2015) predicted that n-2 repetition costs should be specific to relatively novel tasks:
when tasks become relatively automatised after a large amount of practice, n-2 repetition costs should be reduced or elim-
inated. This is due to the increase in the base-level activation with learning for each task representation, which makes well-
learned tasks easier to retrieve. In an experiment with 10 participants completing 6100 trials over five days, the average n-2
repetition cost did significantly decrease with practice. However, the model predicted a smaller reduction in costs than was
observed empirically. To fit the data, Grange and Juvina (2015) further assumed that cue-target associations also become
stronger as a result of practice.

While modelling task inhibition as a form of self-inhibition provides a good fit to the data, whether it represents a viable
theoretical proposal remains unresolved (see Grange et al., 2013; Koch et al., 2010, for a range of arguments).

However, Grange and colleagues themselves concede that a limitation of their model is that it cannot simultaneously
account for both empirically observed n-1 and n-2 effects of task switching; the model with the inhibitory version of the
BLL equation predicts n-1 switch facilitation (or equivalently, n-1 repetition costs) rather than n-1 switch costs.

2.5. Interim summary

None of the models discussed above provides a complete account of n-1 and n-2 effects in task switching. The model of
Altmann and Gray (2008) explains n-1 switch costs through priming, but the dynamics of its activation equations suggest
that the model would (incorrectly) predict n-2 repetition facilitation and n-2 switch costs. Grange and colleagues (Grange
& Juvina, 2015; Grange et al., 2013) present a model of the n-2 repetition paradigm by introducing a short-term inhibitory
component to the ACT-R BLL equation, but the model does not fully explain how or why this occurs, and with the modified
activation equations the model incorrectly predicts n-1 switch facilitation and n-1 repetition costs. An ACT-R model that is
capable of producing both empirical n-1 and n-2 effects remains a future prospect. The model of Gilbert and Shallice (2002)
successfully simulates a range of n-1 switch effects, but has not yet been adapted to the n-2 paradigm. It also lacks any high-
level cognitive mechanisms to detect conflict or inhibit task sets. Thus, while it incorporates lateral inhibition between units
at the same level (i.e., between incompatible responses), it is unlikely this is sufficient to produce the n-2 repetition cost (see
Grange et al., 2013). Finally, while the model of Brown et al. (2007) includes a range of conflict monitoring mechanisms and
would seem well suited to addressing the n-2 repetition cost paradigm and the wide range of empirical findings concerning
the role of conflict, the complexity of the model is a disadvantage for the current purpose (i.e., of specifying the minimal cog-
nitive mechanisms necessary and sufficient for backward inhibition). Even if the model of Brown et al. (2007) is able to pro-
duce the empirical pattern of behaviour, the wide range of cognitive mechanisms postulated within it may be superfluous to
any explanation (i.e., they may be sufficient, but not necessary), and without a systematic approach to fitting the large num-
ber of free parameters, it is unclear what other patterns of behaviour the model is capable of fitting (cf. Roberts & Pashler,
2000). In the following section we therefore present an alternative model of task switching which incorporates a backward
inhibition mechanism and which, as is shown in subsequent sections, is capable of accounting for both n-1 and n-2 effects.

3. Model description

The present theoretical perspective conceptualises backward inhibition as a cognitive control mechanism that operates
by biasing processing between multiple task pathways, on the basis of conflict at the level of task representations. The model
extends the interactive activation model of Gilbert and Shallice (2002), which in itself is analogous to a lower-level con-
tention scheduling system (Cooper & Shallice, 2000; Norman & Shallice, 1986), with an additional task inhibition
mechanism.

3.1. Model architecture

The model architecture is illustrated in Fig. 1 The portion of the figure below the dashed line is equivalent to the model of
Gilbert and Shallice (2002) applied to three tasks. Specifically, it is implemented as an interactive activation model in which



Fig. 1. Architecture of the model, capable of switching between three tasks (A, B & C). Excitatory connections are represented as lines in solid black with
sharp arrows, inhibitory connections are dashed grey lines with circular arrows. Arrowheads show the direction of the connection. Not shown are within-
level connections (e.g., lateral inhibition).

N.J. Sexton, R.P. Cooper / Cognitive Psychology 94 (2017) 1–25 5
processing in each unit of the model is allowed to bias processing at other levels (McClelland, 1993). The model has three
sets of input and output units, corresponding to each of three tasks (referred to in Fig. 1 as tasks A, B and C). For each task,
two input units correspond to the two possible input values. For example, the input stimulus ‘9’, affording the three tasks
parity, magnitude and centrality, might be represented as odd (left), high (right) and peripheral (right). Input units have
feed-forward connections to the corresponding output unit. There are six output units, representing two possible responses
to each of the three tasks. Within the set of output units, units that correspond to the same response are mutually excitatory,
while units that correspond to alternative responses are mutually inhibitory.

The model therefore implements an experimental procedure in which responses for all tasks are mapped to the same set
of response keys (cf. Gade & Koch, 2007b).

The strength of the connection weights between input and output units represents the strength of ‘bottom-up’ processing
in the model: a well-learned or prepotent task (e.g., word reading of Stroop stimuli) has stronger connection weights than a
weaker task (e.g., colour naming).2

3.2. Task demand units

As in the model of Gilbert and Shallice (2002), task processing is biased by task-demand units — one per task — which
have excitatory (i.e., positively weighted) connections to their respective output units and inhibitory (i.e., negatively
weighted) connections to the output units associated with the other tasks. These connections are bi-directional, so a
response activated bottom-up by a strong input connection will tend to activate the task with which the response is asso-
ciated. The currently relevant task unit also receives a ‘top-down control’ input, from units represented on the left of Fig. 1,
simulating the level of deliberate control required to perform each task to a reasonable level. As a simplification, the model
omits the modifiable connections from input to task demand units, which Gilbert and Shallice (2002) used to simulate the
influence of item-specific priming. While it should be stressed that task demand units are ordinary units, with input and acti-
vation calculated in the same way as all other units in the model (excepting conflict monitoring units), they take input from a
range of sources within the model. Explicitly, the input (Itd) may be expressed in the following terms:
2 Unl
connect
when p
Itd ¼ Stdc þ
X
c

acxc þ
X
o

aoxo ð1Þ
where Stdc is the top down control strength parameter for the respective task, ac and xc are the activation and weights for
the two conflict units connected to the unit, and ao and xo are the activation and connection weights of the six output units
in the model.
ess otherwise specified, the weights of connection are fixed and take the default values used by Gilbert and Shallice (2002). Moreover, while training of
ion weights in the model did not occur, previous work has demonstrated that a similar architecture can learn this arrangement of connection weights
resented with training sets biased toward particular tasks (Cohen et al., 1990).
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3.3. Conflict monitoring units

The current model extends previous models by introducing an upper level of conflict monitoring units, operating simi-
larly to those in the model of Botvinick, Braver, Barch, Carter, and Cohen (2001). The input (Ic) to these units is somewhat
different to elsewhere in the model. Each monitors the conflict (i.e., simultaneous activation) between two Task Demand
(TD) units, according to Eq. 2. In this equation, the activations of each task demand unit (a1;a2) are linearly rescaled from
(�1,1) to (0,1) to ensure the minimum activation value is zero. The input to conflict units (Ic) on each cycle is then calculated
as the product of these rescaled values, multiplied by a gain parameter (cc), plus a constant negative bias (bc).
3 Giv
affect ta
via inhi

4 The
Ic ¼ cc
a1 þ 1

2

� �
a2 þ 1

2

� �
þ bc ð2Þ
Thus, in the absence of conflict, the conflict units receive a constant negative baseline input ensuring their activation
decreases. If the activation values of two TD units are both greater than zero, the mutually connected conflict unit will
receive an input greater than this baseline.

Unlike the model of Botvinick et al. (2001), conflict units bias model processing interactively, via inhibitory connections to
both respective task demand units multiplied by a weight parameter (x).3 In sum, the model instantiates a theoretical posi-
tion similar to the proposal by Koch et al. (2010), i.e., that task inhibition is recruited by conflict generated during task
processing.

3.4. Activation calculation

The equation for calculating unit activation is unchanged from the model of Gilbert and Shallice (2002). For each unit i,
the change in activation value on each model cycle, Dai, is calculated as follows:
Dai ¼
rIiðamax � aiÞ þ l if Ii P 0
rIiðai � aminÞ þ l if Ii < 0

�
ð3Þ
where ai is the unit’s current activation, Ii is its net input, and r;amax and amin are parameters affecting step size (0.0015 for
all simulations reported here), and maximum (1.0) and minimum (�1.0) unit activation values respectively. l is a noise
term, drawn from a Gaussian distribution, with a mean of 0 and standard deviation of 0.006.4

3.5. Processing within the model

On the first trial of each block, all units are initialised with zero activation. On subsequent trials, TD units carry over 20% of
their activation from the final step of the previous trial (as in the original model of Gilbert & Shallice, 2002) and conflict units
carry over 50% of their activation. This models the effects of residual task inhibition. All other units are initialised as for the
first trial.

In a simulated trial, one input unit in each task pathway (representing a trivalent stimulus) and a top-down control unit
(representing the currently cued task) are set to 1. Activation then iteratively propagates throughout the model. As response
units suppress their non-congruent competitors via lateral inhibition, they exhibit a ‘winner-takes-all’ property, in which
small differences in activation between the ‘winning’ and ‘losing’ units become decisive as the losing units are actively sup-
pressed. A response is therefore taken as the most active output unit, when its activation exceeds that of the next most
active, non-congruent output unit by a response threshold of 0.15. The number of cycles taken for this to occur is the sim-
ulated response time (RT).

4. Simulations

The model was evaluated in four simulations using an analog of a behavioural paradigm allowing for calculation of both
n-1 and n-2 switch effects. All simulations were run on variably sized blocks of trials, where each trial was one of three tasks
(A, B or C). Each trial was also categorised into a switch condition on the basis of the number and type of task switches on the
preceding two trials, with the dependent variable being the simulated RT and error rate for each condition. In the general
case there are five types of triplet: 0SW (were there is a switch after trial n-2 but trial n-1 and trial n are the same —
ABB, ACC, BAA, BCC, CAA, CBB); 1SW (where there is no switch from trial n-2 to trial n-1 but a switch from trial n-1 to trial
n — AAB, AAC, BBA, BBC, CCA, CCB); 2SW (where each trial is a switch and no task is repeated — ABC, ACB, BAC, BCA, CAB,
CBA); ALT (where the tasks alternate — ABA, ACA, BAB, BCB, CAC, CBC); and BLK (where one task repeats three times — AAA,
BBB, CCC). Paralleling prior empirical work, the n-1 switch cost was calculated as the difference between 1-switch (1SW) and
en that unit activation varies between �1 and 1, for conflict units exclusively a threshold of zero was applied, such that only above-zero unit activations
sk demand units (as inhibition, given that the weight of the connection is negative). This prevents ‘negative conflict’ from exciting task demand units
bitory connections.
se parameter values were the defaults used by Gilbert and Shallice (2002).
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0-switch blocks (0SW), in which the final trial was a task switch (e.g., AAB) versus a task repeat (e.g., ABB). The n-2 repetition
cost was calculated as the difference between final trial RT on blocks where the final trial, with respect to the second pre-
ceding (n-2) trial, was an alternating (ALT) switch (e.g., ABA) versus a non-alternating (or two-switch: 2SW) switch (e.g.,
CBA). If the correct response was not made within 500 cycles the trial was classified as an error and the block discarded from
the RT analysis.5

Running the model requires a number of parameter values to be specified. In addition to those shared with the model of
Gilbert and Shallice (2002), which took the default values used in that previous work, the conflict monitoring layer intro-
duces: (a) an additional conflict squashing parameter that controls the amount of residual conflict activation carried over
from one trial to the next within a block (set to 50% for all simulations); and (b) three further parameters (gain, bias, and
weight) that determine the steepness of the response function and the strength of the effect of the conflict units (as described
above). In simulation 1, these parameters were hand-set to assess whether the model was capable of producing the empir-
ically observed pattern of behaviour. In simulations 2, 3 and 4, the model’s parameters were explored more systematically.

4.1. Simulation 1: Basic effects

Simulation 1 aimed to explore the qualitative effect of the proposed inhibitory control mechanism. Two versions of the
model were therefore compared: a no-inhibition version, where the weight of inhibitory conflict task-demand connections
was zero (effectively, a three-task version of the Gilbert & Shallice (2002) model) and a model where the value of the weight
parameter (x) was �20.0. Conflict unit gain (c) and bias (bc) were 50.0 and �10.0, respectively, for both models.

4.1.1. Method
In order to evaluate model performance over a large block of consecutive trials, parallelling a typical behavioural para-

digm, each version of the model was run on 100 blocks consisting of 600 trials with re-initialisation of the model occurring
between blocks but not between trials. The sequence of tasks was generated randomly, with all three tasks having an equal
probability of occurring on any given trial. As in previous empirical research, each trial was categorised according to the task
sequence formed by it and its two preceding trials as described above.

4.1.2. Results
Mean response times and error rates for each sequence of switches were calculated for each block. Fig. 2 plots the mean

and 95% confidence intervals for all blocks, for both versions of the model (without and with inhibition) and triplet type.
Confidence intervals allow direct inference of statistically significant differences from the figure.

Firstly, consider the no-inhibition version of the model. For mean reaction times, there is no statistically significant dif-
ference between repeats where the previous switch was recent (0SW) or more distant (BLK), inferred from 95% confidence
intervals for each condition which include the other condition’s mean. Similarly, 1SW is significantly slower than 0SW, i.e.,
an n-1 switch cost. These two findings replicate the results of Gilbert and Shallice (2002). There is also little difference
between 1SW and 2SW conditions, while the ALT condition is faster than 2SW, i.e., a slight n-2 repetition facilitation (or
equivalantly, a negative n-2 repetition cost). Due to the stochastic nature of the data, more variance is present in the error
rate data, as reflected by larger confidence intervals. Nevertheless, a similar pattern is observed: No significant difference
between BLK or 0SW repeats, a significant n-1 switch cost, but no significant difference between any of the switching con-
ditions (1SW, 2SW or ALT).

Next, consider the backward inhibition model. For reaction times, again, no significant differences are observed between
different repeat conditions (BLK or 0SW). As in the no-inhibition model, 1SW sequences are slower than 0SW, producing a
significant n-1 switch cost. However the switch cost is reduced compared to the no-inhibition model, due to larger 0SW RTs
and smaller 1SW RTs than the no-inhibition model. Effectively, switches are facilitated, at the cost of slower repeat trials.
However, ALT switches are significantly slower than 2SW sequences, i.e., a positive n-2 repetition cost, in contrast to n-2
facilitation in the no-inhibition model.

4.1.3. Discussion
Simulation 1 demonstrates that the basic task switching model (analogous to the model of Gilbert & Shallice, 2002),

which incorporates lateral inhibition at the response and task demand level, but no backward inhibition, predicts n-1 switch
costs, but negative n-2 repetition costs, for both reaction times and error rates. This finding strengthens the conclusion of
Grange et al. (2013), who argued against lateral inhibition as a plausible mechanism for backward inhibition. They argued
that lateral inhibition alone was incapable of producing lasting, residual inhibition of task demand units on the basis of activ-
ity on the n-2 trial. In contrast, the backward inhibition model predicts both n-1 switch costs (albeit reduced in magnitude
compared with the no-inhibition model) and n-2 repetition costs, for both RTs and error rates.

With respect to the error rate data, although the pattern of results is similar to the response time data, larger variability in
the data leads to few statistically significant differences. In particular, the 95% confidence interval for the n-2 repetition cost
5 A more generous ‘timeout’ threshold of 500 cycles was used in preference to the 400 cycles used by Gilbert and Shallice (2002), however this change had
negligable effect on model behaviour and is not considered further.



Fig. 2. Simulation 1 results: RTs and error rates for sequences of task switches, and derived costs. Error bars represent bootstrapped 95% confidence
intervals.
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overlaps zero, suggesting the model does not predict statistically significant effect for error rate data. Although the size of the
confidence intervals is somewhat arbitrary, given the nature of simulation (i.e., a smaller CI could be obtained simply by run-
ning more blocks, or increasing the size of each block), the point remains that more statistical power is available for the
response time data, parallelling the empirical literature.

It is also notable that one effect of backward inhibition is a general increase in the error rate, irrespective of triplet type.
On the face of it, this may raise concerns about the function of a backward inhibition mechanism: what benefits would such
an error-causing mechanism bring to a cognitive system? This question is deferred until the general discussion, however it is
worth noting at this point that the model’s error rate, even with backward inhibition, is generally below 1% — substantially
below empirically observed error rates. Thus, while the model accounts well for the empirically observed pattern of reaction
times, as a general model of speeded response generation/execution it remains somewhat incomplete in comparison with
other models which account for a speed/accuracy tradeoff (e.g., Brown et al., 2007).

4.2. Simulation 2: Generality of the effects

It has been argued that fitting a model to an empirical data pattern is not informative if the model could fit any arbitrary
pattern of behaviour (Roberts & Pashler, 2000). Simulation 2 therefore pursues a strategy similar to that advocated by Pitt,
Kim, Navarro, and Myung (2006), whereby a large portion of the three-dimensional parameter space defined by gain, bias,
and weight was systematically scanned and partitioned into regions that yielded qualitatively different behaviours.6 Thus
we sought to understand where in parameter space the behaviour of a model would be qualitatively similar to human partic-
ipants (i.e., RT costs for n-2 repetitions and n-1 switches) and where it would produce alternative patterns (e.g., n-1 repetition
costs and n-2 switch costs, or costs for both n-1 and n-2 switches, or costs for both n-1 and n-2 repetitions). More specifically, in
simulation 2 the three parameters were independently varied across their ranges, and for each resulting point within parameter
space, a model with those values was tested on the paradigm. The resulting dependent variables were generated and plots pro-
duced to show effect sizes for each effect at each point in parameter space.

4.2.1. Method
Simulation 2 varied the three parameters of the conflict system: gain (c, 0–100); bias (bc , �40 to 0); and weight (x, �30 to

0). As described above, gain and bias affect the rate at which conflict unit activation builds up, and decays, respectively.
Weight affects the amount of biasing that conflict units exert on Task Demand (TD) units. A weight of zero is therefore func-
tionally equivalent to a model with no conflict mechanism (and thus, only lateral inhibition between TD units). The effect
that the task inhibition/conflict mechanism has on behaviour is assessed by comparing stronger levels of weight with this
baseline. For simplicity, simulations were run on blocks of three trials, with the dependent measure being RT in model cycles
6 Note that for simplicity, the conflict squashing parameter was not varied in these simulations. However, additional simulations revealed that the effect of
varying this parameter was to change the magnitude of the resulting effect sizes but not the qualitative pattern of results.
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for the final trial in each triplet. The model was re-initialised after each block. Thus, each block was defined by the sequence
of task switches as 0SW, 1SW, 2SW or ALT. Also for simplicity, given the stochastic nature of the error rate data, and the
finding from simulation 1 that error rates largely parallel RTs, only RT data was considered. Mean RT switch costs and n-
2 repetition costs, in model cycles, were calculated from 3000 three-trial blocks of each switch condition and for each point
within parameter space.

4.2.2. Results
Dependent variables were compared for each point using a Welch two-samples t-test, with the resulting t converted to an

effect size (r) and plotted in Fig. 3 (upper panel: n-1 switch cost; centre panel: n-2 reptition cost). Dark grey voxels in the
upper two panels represent no data: with this combination of parameter settings, the model is unable to correctly complete
any trials in at least one condition. The intersection of both empirical effects (n-1 switch costs and n-2 repetition costs), cal-
culated as the geometric mean of both effect sizes, for points in parameter space with both effects in the empirically
observed direction, is shown in Fig. 3 (lower panel).

4.2.3. Discussion
As shown in Fig. 3 (upper panel), n-1 switch costs are robustly predicted over a wide region of the model’s parameter

space, except for a small region in the upper right of the plot for stronger weight values. Here, a high gain and weak bias
means that activation of conflict units increases irrespective of the degree of actual conflict. Where bias is close to zero,
the activation of the conflict units quickly saturates, particularly for strong gain values. Where weight values are also high,
the model ceases to function correctly (i.e., it cannot correctly complete any trials). Conversely, behaviour in the bottom left
of each plot (i.e., strong bias and low gain) is relatively uniform. With these settings conflict unit activation decreases irre-
spective of input, and thus little biasing of model processing occurs.

N-2 repetition costs (Fig. 3, centre panel) are less robust than switch costs, partly because the difference in sequence types
(occurring on the n-2 trial) must affect processing after an intervening trial (i.e., the n-1 trial). Nevertheless, systematic
effects occur, and for stronger weight values inhibition of TD units by the conflict units produces the empirically observed
effect for a contiguous region of parameter space. Note also that, replicating the results of simulation 1, the model does
not produce n-2 repetition costs for near-zero weight values, demonstrating that lateral inhibition of task representations
alone is insufficient to produce n-2 repetition costs.

In addition to the above, a large region of parameter space (below a top left - bottom right diagonal) results in n-2 rep-
etition facilitation. Here, the combination of strong bias and low gain means that conflict decays too quickly, with the units
insufficiently sensitive to their inputs to produce residual conflict effects. Only in the region above this diagonal, where bias
is weaker and/or gain stronger, are n-2 repetition costs consistently produced for non-zero weight values.

The two empirically observed phenomena, costs for n-1 switches and n-2 repetitions (Fig. 3 lower panel) co-occur in a
well-defined region for non-zero weight values. Informally, this behavioural pattern is obtained with the constraints that
the activation of conflict units must increase given conflict and decrease given lack of conflict. Outside these regions, other
behaviour (e.g., switch costs but n-2 repetition facilitation) may be understood either in terms of implementational failure of
the model (the parameter settings do not implement the theory of beackward inhibition) or in terms consistent with theory
(TD unit processing must be biased by inhibitory connections from conflict units). Therefore, the empirical pattern is pro-
duced by any set of parameters in which the model functions according to these theoretical constraints.

4.3. Simulation 3: Variable intertrial intervals

One of the key empirical findings suggesting that n-2 repetition costs are an inhibitory phenomenon, rather than merely
reflecting interference from a residually active irrelevant task, comes from studies which manipulated the intertrial interval
(RCI, response-cue interval). When RCIs are manipulated blockwise, n-2 repetition costs tend to decrease with longer inter-
vals (Koch, Gade, & Philipp, 2004; Meiran, Chorev, & Sapir, 2000). This finding would be consistent with n-2 repetition costs
being caused either by residual activation (i.e., of the B task in an ABA sequence), or residual inhibition (of the A task in the
same sequence), which dissipates over time and is thus greater for shorter RCIs. Gade and Koch (2005), however, hypothe-
sized that if task inhibition is primarily affected by decay of the n-1 task, n-2 repetition costs should mainly be affected by
manipulation of the RCI preceding trial n (RCIn) — that is, task inhibition should decrease with longer intervals before the
return to the inhibited task. Alternatively, if task inhibition were mainly affected by conflict between co-active tasks, n-2
repetition costs should mainly be affected by the RCI preceding trial n-1 (RCIn�1) — that is, task inhibition should decrease
with longer intervals immediately before the trial that causes the ‘A’ task to be inhibited. In their experiments, when RCIn�1

and RCIn could each be either short (i.e., 0.1 s) or long (1.4 s or 1.9 s in experiments 1 and 2 respectively), n-2 repetition costs
were affected by RCIn�1 but not RCIn. This finding has been taken to support the view that n-2 repetition costs are an instance
of cognitive inhibition, and linked to intertrial conflict generated on the n-1 trial (Koch et al., 2010). As the present model
represents an implementation of the inter-task conflict hypothesis, it should readily produce this same empirical pattern.
This was tested in simulation 3.



Fig. 3. Simulation 2 results. Maps within each horizontal panel correspond to increasing levels of the weight parameter, from �30 (far left) to zero (i.e.,
baseline, far right). Upper panel: n-1 switch cost effect size (r). Central panel: n-2 repetition cost effect size (r). Lower panel: geometric mean of n-1 switch
cost and n-2 repetition cost effect sizes for voxels with positive costs only. Dark grey voxels in the upper two figures represent no data: the model does not
correctly complete trials in these regions.
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4.3.1. Method
In the model, the concepts of residual activation and inhibition are modelled by two features. As in Gilbert and Shallice

(2002), residual task activation is simulated by a proportion of task demand unit activation (determined by the task demand
squashing parameter, /, valid between 0 and 1), which is carred forward to subsequent trials. Inhibition is caused by the
residual activation of conflict units, modelled by a proportion of conflict unit activation (conflict squashing parameter, v)
carried forward to subsequent trials. Thus, residual activation in the model, ar , resulting from the previous trial, is calculated
as:
ar ¼
atd � / for task demand units
ac � v for conflict units

�
ð4Þ
where atd is the task demand unit activation, and ac is the final conflict unit activation at the end of the preceding trial.
These calculations assume that RCI is constant and do not consider how the decay of activation over time will be affected

by RCI. This simulation assumes that Eq. (4) calculates decay after unit time. More generally, decay after time s may be cal-
culated as:
ar ¼
atd � /s for task demand units
ac � vs for conflict units

�
ð5Þ
Thus, the model parameters which affect residual activation and its decay are the task demand squashing parameter /,
the conflict squashing parameter v, and sn�1 and sn, representing the RCI preceding trial n-1 and trial n, respectively.

Simulation 3 varied the s parameters while maintaining / and v at their default values (0.8 and 0.5 respectively). Values
of s of 0.9 and 1.5 were used for the short and long RCIs. The simulation was run on the four different combinations of sn�1

and sn for 2000 3-trial blocks (1000 of each ABA and CBA sequences).



Fig. 4. Simulation 3: RTs for 2SW and ALT conditions. Black/grey lines represent short/long values of sn�1, while solid/dashed lines represent short/long
values of sn . Error bars represent bootstrapped 95% confidence intervals.
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4.3.2. Results
The RTs for trial 3 of 2SW and ALT sequences are plotted in Fig. 4. As can be observed from the figure, for a given set of

parameters, ALT trials have longer RTs than 2SW trials. Hence all parameterisations produce an n-2 repetition cost. The sn�1

parameter is represented by line colour: short/long values represented by black/grey lines respectively. It is evident that
shorter values of s1 produce a greater n-2 repetition cost, in addition to producing longer RTs overall. The sn parameter is
represented by line style, with solid/dashed lines representing short/long values. Different values of this parameter have
a relatively small effect on both overall RTs and n-2 repetition costs.

This graphial analysis was assessed quantitatively using a 3-way ANOVA (sequence� sn�1 � sn). The main effect of
sequence (n-2 repetition costs) was significant, Fð1;7301Þ ¼ 23:09; p < :0001, as was the main effect of sn�1,
Fð1;7301Þ ¼ 213:88; p < :0001, however the main effect of sn was not, Fð1;7301Þ ¼ 0:83; p ¼ :36. The effect of interest, that
of RCI on n-2 repetition costs, was assessed by the two s� sequence interactions. First the sn � sequence interaction was not
significant, Fð1;7301Þ ¼ 1:13; p ¼ :29. However, the sn�1 � sequence interaction was highly significant,
Fð1;7301Þ ¼ 6:71; p ¼ :009. Finally, the sn�1 � sn interaction, Fð1;7301Þ ¼ 1:14; p ¼ :29, was not significant, and niether
was the three-way sn�1 � sn � sequence interaction, Fð1;7301Þ ¼ 1:43; p ¼ :23. Thus, for these two values of s, the model
confirms the hypothesis and reproduces the empirical finding, that n-2 repetition costs are affected by the RCI preceding
the n-1 (sn � 1), but not the n (sn), trial.

To determine the respective effects of sn�1 and sn on n-2 repetition costs more generally, a further simulation was run in
which the two were varied factorially, from 0.3 to 2.4 in increments of 0.3. For each of these 64 combinations, 1000 blocks of
three trials were run for both ALT and 2SW sequences. The mean RTs are represented as 3D plots in Fig. 5a and b, and the
resulting n-2 repetition costs are plotted in Fig. 5c. Graphically, it is evident that the n-2 repetition cost decreases with longer
values of sn�1, while it is not systematically affected by changes in sn. To quantify this model behaviour, linear regression was
used to estimate the effect of sn�1 and sn on trial 3 RT, for both 2SW and ALT sequences. Estimates for b coefficients for sn�1

and sn (and their bootstrapped 95% confidence intervals) are given in Table 1. Note that the confidence intervals for bðsn�1Þ
do not overlap, while both confidence intervals for bðsnÞ include the other estimated sn coefficient, and indeed are nearly
identical. The estimated coefficients yield the following regression equations, which may be combined to calculate n-2 rep-
etition costs:
2SWRT ¼ 105:22� 12:45sn�1 þ 0:14sn
ALT RT ¼ 112:56� 14:57sn�1 þ 0:14sn
. . .

n-2 repetition cost ¼ 7:34� 2:12sn�1
Importantly, the n-2 repetition cost is dependent on sn�1, while the sn terms cancel out.



Fig. 5. Effects on simulated RT (expressed in model cycles) of varying RSI preceding n-1 and n trials (sn�1; sn) factorially. (a) 2SW RTs. (b) ALT RTs. (c) n-2
repetition costs.

Table 1
Regression coefficients [and 95% confidence intervals] for RT for 2SW and ALT blocks.

Sequence Intercept bðsn�1Þ bðsnÞ
2SW 105.32 [104.59–106.04] �12.45 [�12.81 to �12.10] 0.14 [�0.20 to +0.49]
ALT 112.56 [111.81–113.31] �14.57 [�14.93 to �14.20] 0.14 [�0.22 to +0.49]
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4.3.3. Discussion
The model’s predictions clearly parallel the behavioural pattern observed by Gade and Koch (2005). Most critically, longer

values of sn�1 reduce RTs of both 2SW and ALT trials, however the former are reduced by less than the latter. This has the
effect of decreasing n-2 repetition costs. sn has no reliable effect on RTs. The general increase in RTs for both 2SW and ALT
trials for shorter values of sn�1, but not sn, is also observed by Gade and Koch (2005), and is consistent with blockwise RCI
manipulations (e.g., Grange & Houghton, 2009; Koch et al., 2004).

This simulation demonstates that a characteristic empirical pattern is predicted by the model with no changes to its
architecture, beyond the assumption that residual activation decays over time (and hence decays more with longer intertrial
intervals). It also suggests that the claim that backward inhibition is a residual effect caused by conflict occurring when
switching away from a task is a viable theoretical proposal, and that this does indeed predict the observed empirical pattern.
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In short, it validates the verbally specified model of Koch et al. (2010), demonstrating that the theoretical proposals are
indeed consistent with the data.

4.4. Simulation 4: Asymmetric tasks

Although simulation 1 demonstrates that a conflict mechanism is sufficient for explaining n-2 repetition costs in human
participants, it does not provide any insight into whether this occurs as a result of slowing or facilitating particular trials.
Additionally, it does not address why a cognitive system for task switching should employ a conflict detection mechanism
in order to regulate performance. These questions may be addressed by considering switching between tasks of asymmetric
difficulty. The model of Gilbert and Shallice (2002) demonstrated that asymmetric n-1 switch costs occur because a greater
amount of task demand activation is required to execute a harder task than an easier task, and therefore a greater amount of
this activation is carried over to the next trial. This in turn causes greater cross-task interference (i.e., conflict). Consequently
switch costs are greater for hard-easy switches than for easy-hard switches. Simulation 4 extends the asymmetric task para-
digm to three task switching, manipulating the between-trial conflict by using two tasks of identical, fixed, intermediate dif-
ficulty, while varying the difficulty of the third task.

4.4.1. Method
In the model of Gilbert and Shallice (2002), task difficulty is specified by two parameters — stimulus input strength (SIS),

representing the automatic, bottom-up activation of a response by a stimulus (greater for stronger tasks), and top-down con-
trol strength (TDCS), specifying the control needed to ensure the task is performed (greater for weaker tasks). Simulation 4
varied the SIS and TDCS parameters of task B together with the weight parameter of the conflict layer to create a three-
dimensional space. The bias and gain parameters of the conflict layer were fixed at �10.0 and 75.0 respectively, while the
task parameters (TDCS, SIS) of tasks A and C were held at their default values.

For asymmetric tasks, each task sequence (e.g., 0SW) has various permutations — (e.g., ABB, BAA and BCC). Here, we con-
sidered only switches from task B (variable SIS and TDCS) to task A (fixed). Hence, 0SW sequences are all BAA, 1SW are BBA,
2SW are CBA and ALT are ABA, with only the n-1 task being of variable difficulty (except for the 0SW condition). By varying
the parameters of task B, simulation 4 therefore tests the effect on behaviour for both hard-easy-hard (HEH) and easy-hard-
easy (EHE) switches.

As top-down control provides a constant positive input to the cued task demand unit, a variable TDCS is a confounding
factor in that the same degree of task inhibition has a stronger influence on the processing of units with a low TDCS (i.e.,
easier tasks) than those with a high TDCS (i.e., harder tasks). Thus, rather than using a single weight value for all connections
from inhibitory conflict units to TD units (as in simulation 1), in this simulation the influence of conflict units on TD units
was calculated as the product of the weight parameter and the TDCS parameter for each TD unit.7 The input to task demand
units (Itd) may be expressed as the following modified equation:
7 It w
conside
demand
Itd ¼ Stdc þ
X
c

acxcStdc þ
X
o

aoxo ð6Þ
where Stdc is the top down control strength parameter for the respective unit, ac and xc are the activations and weights for
the two conflict units connected to the unit, and ao andxo are the activations and connection weights of the six output units
in the model.

By varying SIS and TDCS of task B factorially, such that either may be greater or less than that for task A, the resulting two-
dimensional parameter space is divided into four quadrants. The upper-left represents the region in which task B is stronger,
but less controlled, than task A, as in a stronger task B (e.g., word reading). In the lower-right, B is weaker, but more con-
trolled than task A, indicating a weaker task B (e.g., colour naming). In the upper-right both the input and control strength
are greater for task B, hence the task has more control than is needed to perform the task. Finally, in the lower-left a weak
task is coupled with insufficient control.

4.4.2. Results and discussion
To illustrate the effect of the conflict/task-inhibition mechanism on performance, Fig. 6 plots the basic RTs (panels 1–4)

for the trial 3 of a 3-trial block, relative to a baseline where the weight of conflict-task demand connections is zero, while
Fig. 7 plots the resultant modulation of n-1 switch costs (upper panel), n-2 repetition costs (lower panel). The plot of relative
switch costs (Fig. 7, upper panel) shows that stronger weight values produce smaller switch costs, especially for HEH
switches (upper quadrants). The effect is qualitatively modulated by the strength of inhibitory biasing: for the weakest
weight, the effect is minimal, while for stronger weight values, the reduction in switch costs is greatest where the n-1 task
receives a high level of activation (top right quadrant) due to both a high level of control and high input strength. This is
because greater task-demand activation on the n-1 task leads to more residual conflict on the n (switch) trial, and the result-
ing task inhibition reduces interference, leading to a reduction in relative switch cost. Interestingly, this selective reduction
as determined through simulation that this modified architecture produces the same pattern of results as observed in simulation 1. However, if we
r that in simulation 1 TDCS is identical for all three tasks, we can see that the effect is merely to multiply the weight value of all three conflict-task
connections by a common constant, effectively rescaling the weight axis of parameter space but having no effect on the pattern of results.



Fig. 6. Simulation 4: Modulation of RT for individual 0SW, 1SW, 2SW and ALT conditions (from top to bottom), for successive values of weight, from strong
(left) to weak (right). All values are relative to a zero weight baseline. Black squares represent no data, and the model’s failure to produce correct responses
with these parameter settings.
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in switch costs exaggerates the switch cost asymmetry (i.e., it reduces costs more for EH than HE switches) suggesting that in
a task-switching system with such a mechanism, a component of the switch cost asymmetry may be attributable to task
inhibition.

To understand the basis for this asymmetry, we next consider the effect of the backward inhibition mechanism on 1SW
and 0SW sequences individually. The simplest case is the 1SW (e.g., BBA) condition (Fig. 6, panel 2), where the switch occurs
on trial n. Here, lower weight levels produce RT facilitation, particularly for switches from highly controlled tasks (e.g., HE
switches, right hand quadrants). On the switch trial, more conflict is generated in activating the A task demand unit when
B is harder than when it is easier, due to greater residual task-demand activation when performing the harder task on trial n-
1. This is the reason for the asymmetric n-1 switch cost (i.e., larger costs for HE than EH switches) in the model of Gilbert and
Shallice (2002). Due to this asymmetry in conflict, processing on trial n is facilitated when task B is harder than task A. When
B is easier than A, more activation of task demand unit A is required to produce a response. However, because task demand
unit B is still residually active, task inhibition counteracts the activation by top-down control of task demand unit A, leading
to interference on trial n, and slower responses.

In the task-repeat 0SW condition (e.g., BAA, Fig. 6, panel 1), stronger weight values produce longer RTs on the final trial,
especially following switches from easier tasks (left quadrants). As for the switch on trial n in the 1SW sequence, conflict
occurs between the A and B task demand units on the switch trial, excepting that for 0SW sequences this occurs on the



Fig. 7. Simulation 4: Modulation of n-1 switch costs (upper panel) and n-2 repetition costs (lower panel) for successive values of weight, from strong (left)
to weak (right). All values are relative to a zero weight baseline.
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n-1 trial. Due to persistent conflict, the A/B conflict unit is still residually active on trial n, inhibiting the A task. Thus, slowing
in 0SW trials is due to residual conflict from previously occurring task switches. At stronger weight values, there is greater
slowing for EH (top left) than for HE (bottom right) switches. Because 0SW is the baseline condition for establishing the n-1
switch cost, slower responses lead to a reduction in the EH switch cost.

Taken together, the reduction in switch cost, which is greater for EH switches, occurs for two reasons: firstly, 1SW trial
facilitation, particularly for switches from more controlled tasks (including HE switches); and secondly, 0SW trial interfer-
ence, particularly for switches from less controlled tasks (including EH switches). Overall, the switch cost is reduced for both
HE and EH switches, but the effect is greater for EH switches, exaggerating the switch cost asymmetry.

In contrast to the effects on n-1 switch costs, stronger weight values produce larger n-2 repetition costs (Fig. 6, lower
panel). This effect is modulated by input control strength, and is larger for HEH alternations (i.e., upper quadrants) than
EHE alternations. In the ALT condition (Fig. 6 panel 4), the effect is modulated by n-1 task difficulty. For low weight values,
conflict units generally facilitate performance. For intermediate values they selectively impair HEH alternations (top left
quadrant), while for the strongest values they also begin to slow EHE alternations.

The reason for these asymmetric effects on ALT trials is because more conflict is generated on the n-1 trial for HEH
sequences than EHE sequences, for the same reasons that HE switches generate more conflict than EH switches in 1SW trials
above. In the current model, greater conflict on the n-1 trial means that the n-2 task is inhibited more on HEH than EHE
switches, and therefore re-activating this task on trial n of ALT sequences takes more time.

In the 2SW condition (Fig. 6 panel 3), mild and intermediate weight values produce generalised facilitation. For stronger
weight values, the effect on RTs is highly modulated by top-down control, with interference and facilitation caused by low-
control and high-control n-1 trials, respectively, and with most pronounced effects for under- and over-activated trials (i.e.,
bottom left and top right quadrants). The fact that facilitation dominates irrespective of SIS or TDCS for all but the strongest
weight values suggests that the mechanism beneficially reduces the amount of control required to achieve good performance
when frequently switching between multiple tasks. In contrast to the effect on ALT trials, on a 2SW trial the difficulty of the
n-1 task has a much less pervasive effect on trial n performance, because the task demand unit for trial n has not recently
been inhibited by conflict units.

Together, the 2SW and ALT results explain the larger n-2 repetition costs observed in HEH alternations than in EHE alter-
nations — it is a composite of stronger facilitation for switches from easier/more controlled tasks in the 2SW condition, and
greater interference when switching from those same tasks in the ALT condition.

In general, the effects of backward inhibition on all four types of trial can be understood in terms of the conflict generated
on switch trials by simultaneously active task demand units, and the asymmetry in activation dynamics between easy-hard
and hard-easy switches. Because the model regulates task inhibition on the basis of detected conflict, the model predicts an
asymmetric effect on the size of the n-2 repetition cost. More specifically it predicts that the cost is larger for HEH than EHE
alternations, and that this is a residual effect from the additional conflict generated by HE switches compared with EH
switches occurring on the n-1 trial. This prediction was directly tested in the following experiments.
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5. Experiment 1

This experiment tested the prediction of simulation 4 — that n-2 repetition costs are modulated by asymmetric task dif-
ficulties: for ABA triplets (i.e., the n-2 repetition condition) the n-2 repetition cost is larger for hard-easy-hard (HEH) triplets
than for easy-hard-easy (EHE) triplets.

To date, only one study has systematically examined n-2 repetition costs for asymmetric tasks. Arbuthnott (2008) used a
digit classification variant, in which the three tasks were judgments about magnitude (low/high), parity (odd/even) and
whether the digit was prime (prime/multiple), in increasing order of difficulty, assessed through RT and error rates. In
her procedure, the order of tasks was fully randomised for each participant, and each trial was classified by the sequence
of switches in relation to previous tasks – possibilities were 0SW (e.g., BAA), 1SW (e.g., BBA), 2SW (e.g., CBA) or ALT (e.g.,
ABA). Thus, a single procedure was capable of obtaining values for (n-1) switch costs (the RT difference between 1SW
and 0SW trials) and n-2 repetition costs (the RT difference between ALT and 2SW trials). Arbuthnott reasoned that if the
asymmetric n-1 switch cost was due to residual inhibition on the switch trial (that is, greater for hard-easy (HE) switches
than easy-hard (EH) switches, because executing the H task requires greater inhibition of the E task than vice versa, and this
carries over to subsequent trials), and if this same mechanism was responsible for backward inhibition, then it would lead to
greater n-2 repetition costs for EHE than HEH alternations. Alternatively, if the asymmetric switch cost was due to residual
priming of the harder task (i.e., greater priming for HE than EH switches), then this would have no differential effect on n-2
repetition costs for EHE compared to HEH alternations.8

In two experiments, involving either separate or overlapping response sets respectively, Arbuthnott (2008) observed
asymmetric n-2 repetition costs, with greater costs for EHE triplets than HEH triplets. That is, the n-2 task received greater
backward inhibition when it was easy than when it was hard. This was consistent with Arbuthnott’s hypothesis that back-
ward inhibition was caused by the same mechanism as the n-1 switch cost, namely residual inhibition of the preceding task.
However, the effect on RTs was not robust, and only reached statistical significance for one pairing of tasks (magnitude-
prime switches, not parity-prime switches), and then for non-overlapping response sets only. Additionally, unexpected
effects occurred, such as the reversal of direction of the n-1 switch cost asymmetry for magnitude-prime tasks; that is,
switching to the prime (harder) task incurred a greater n-1 switch cost than switching to the magnitude (easier) task, a find-
ing inconsistent with the literature on two-task switch costs. It is difficult to see why, if asymmetric backward inhibition is
the same mechanism as responsible for asymmetric n-1 switch costs, the direction of the latter effect should be reversed
when the former effect is in the hypothesised direction. Moreover, this pattern of findings is difficult to fully explain using
only ‘inhibition’ as an explanatory mechanism, without recognising the potential dynamic interaction of excitatory and inhi-
bitory processes.

5.1. Methodological concerns

In addition to the difficulties in interpreting results, there are three potential concerns regarding the procedure used by
Arbuthnott (2008).

Firstly, and most simply, at least one study suggests that procedures which include immediate task repeats may reduce or
eliminate n-2 repetition costs (Philipp & Koch, 2006). In investigating modulations of the n-2 repetition cost, therefore, it
seems prudent to design task sequences to avoid immediate task repetitions, at least in one condition.

The second issue relates to the possibility of graded response congruence effects in the digit classification task, in which
single digits are classified according to three different criteria: In this case, parity (odd or even), magnitude (greater or less
than 5), or prime (prime or non-prime), with two possible responses signalled by pressing left or right response keys.
Arbuthnott (2008) used the following mapping of stimuli to responses: for magnitude, 2, 3, 4/6, 7, 9; for parity, 3, 7, 9/2,
4, 6; for prime, 2, 3, 7/4, 6, 9. Given six stimuli three possible dimensions, the stimuli have different levels of congruence
between the correct response, and the responses to the alternative tasks afforded by the stimulus. For example, for magni-
tude judgements, the stimulus 6 has a correct response (right) congruent with both the odd-even task’s response and the
prime-nonprime task’s response (i.e, fully congruent), 7 is congruent on only one of the irrelevant tasks (semi-congruent),
while 4 is incongruent with both irrelevant tasks (fully incongruent). Thus, specific stimulus items are conflated with the
degree of response conflict generated on each task. In fact, there is recent empirical evidence that this type of graded
response congruence indeed affects reaction times (Longman, Lavric, Munteanu, & Monsell, 2014; Schneider, 2014) in
three-task versions of the digit classification task. While differing levels of stimulus response congruence might be assumed
to counterbalance for each task for symmetric difficulties, when difficulty varies by task, stimulus response congruence also
varies per task, thus confounding stimulus congruence with task difficulty.

The final issue is the assumption that the task sets involved do not overlap. It is questionable, however, whether prime
number judgement is really independent from the other two tasks. For example, if a digit is even it is guaranteed to be non-
prime unless it is 2, providing a heuristic method for determining prime/nonprime status using an easier odd/even judge-
ment. If responding to a prime trial involved even partial activation of the parity task-set, then any task-set inhibition
8 Note that this reasoning assumes that asymmetric n-1 switch costs are exclusively due to either inhibition or activation (priming) of task sets. In models of
task switching incorporating inhibitory connections (Brown et al., 2007; Gilbert & Shallice, 2002), activation and inhibition are dynamically interactive, and
thus not easily separated.
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occurring on the next trial may be applied to both prime and parity task-sets. In sum, in three-task switching paradigms that
incorporate only two possible responses to each task, pairings of task difficulty may be confounded with response congru-
ence and response set overlap from the switched-away-from task. Avoiding these problems within a three-task switching
paradigm requires tasks with (at least) three possible responses.

5.2. Method

Participants classified letters according to the dimensions of colour (red, green or blue), alphabetical position (beginning,
middle, or end) and font (bold, regular, italic). Importantly, each task has three possible responses to each stimulus, rather
than two. This has the advantages that, firstly, response repetition effects can be eliminated (even if response repetitions
never occur, there are still two possible responses to each task), and secondly, as the three stimulus dimensions (colour,
alphabet, font) can be manipulated independently, irrelevant-dimension congruency effects can be controlled such that
all stimulus dimensions are always mutually incongruent.

5.2.1. Participants
39 participants were recruited through the Birkbeck psychology participant database, of whom 22 were female. Informed

consent was obtained from each participant. The median participant age was 28 years, with a range of 46 years. All partic-
ipants spoke English fluently, although nine reported a first language using a non-Roman alphabet. Participants received
their choice of either £7.50 cash or course credit.

5.2.2. Design
The experiment compared n-2 repetition costs for each of three possible pairings of tasks. The relative ordering of task

difficulty was determined by comparing reaction times and error rates. For each task pairing, n-2 repetition costs could
then be determined independently for easy-hard-easy (EHE) or hard-easy-hard (HEH) alternations. For example, n-2 rep-
etition costs for the colour-alphabet pairing are calculated as the difference between colour-alphabet-colour and font-
alphabet-colour sequences (EHE), and alphabet-colour-alphabet and font-colour-alphabet sequences (HEH). Thus, the
experimental design had two factors: switch direction (EHE vs. HEH) and task pairing (colour-font vs. colour-alphabet
vs. alphabet-font).

5.2.3. Tasks
Participants performed one of three tasks in response to a target letter stimulus. The target letter, rendered in the Latin

Modern Roman font, appeared in the centre of the screen, approximately 20 mm � 30 mm in size. Simultaneously with the
target stimulus, a cue presented above the target, ‘colour’, ‘alphabet’ or ‘font’ in lower case and approximately 7 mm in
height, indicated which task to perform. The response to all three tasks was made by pressing one of the left, down, or right
cursor keys on a standard PC keyboard, thus the set of possible responses was fully overlapping. The colour task was to iden-
tify the colour of the target, indicating red, green, or blue, by pressing left, down or right respectively. The font task was to
indicate whether it was rendered in a bold (left), regular (down), or italic (right) font. The alphabet task was to indicate
whether the letter occurred toward the beginning, (d, e, f, g, h; left), middle, (k, l, m, n, o; down) or end (s, t, u, v, w; right)
of the alphabet.

5.2.4. Procedure
The procedure was administered using PsychoPy version 1.82.01 (Peirce, 2009) on a GNU/Linux PC. Stimuli were pre-

sented on a 380 mm � 300 mm LED monitor, placed approximately 750 mm from the participant. With the exception of
the target letter, unless otherwise stated, all text was displayed in white against a black background.

Participants were instructed to perform the tasks ‘as quickly and accurately as possible’. Instructions for each task were
worded as follows: ‘In the colour task, press the key corresponding to whether the letter appears in red, green, or blue’; ‘In
the alphabet task, press the key corresponding to where the letter appears in the alphabet: toward the beginning (d e f g h),
middle (k l m n o), or end (s t u v w)’; ‘In the font task, press the key corresponding to whether the font of the letter is bold,
regular, or italic’. Simultaneously with the instruction, the three response mappings (red/green/blue, beginning/middle/end,
bold/regular/italic) appeared in the bottom left, bottom centre, and bottom right of the screen, to correspond with the
response key mappings.

After receiving instructions for each task, participants performed a practice block of 10 trials. Participants then performed
20 practice trials where the task switched, as in the main procedure. For all practice blocks, specific feedback was provided
on incorrect responses (e.g., ‘Oops! the correct response was: left. Press space to continue’).

Following the practice blocks and a break screen, in which participants could rest as long as desired, participants per-
formed six blocks of 103 trials, with a break screen between each block. The order of tasks was randomised, with the con-
straint that immediate task repeats were not allowed (hence, given a specific preceding task, the two other switch tasks may
each occur with 50% likelihood). Stimulus dimensions were randomised, subject to the constraint that all three possible
response keys were represented in each stimulus (e.g., a bold, green letter t) to avoid stimulus congruency effects.



Table 2
Mean (SD) of RTs (milliseconds) and error rates for each task.

Task RT Error rate

Colour 1544 (391) 3.74% (2.83%)
Font 1774 (411) 5.86% (3.61%)

Alphabet 1849 (500) 7.98% (5.99%)
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Error feedback throughout the experimental blocks was considered an important element of the procedure,9 and was pro-
vided in the following ways. Firstly, immediate feedback was given following incorrect responses. This was in the format of an
additional message which appeared on screen (‘Oops!’) and a reminder of the response mappings for all three tasks, appearing
in the bottom left, bottom centre, and bottom right, of the screen. This message remained on screen for 4000 ms, before trials
resumed. This additional pause following an incorrect response was intended to break any rhythm in responding, as well as
providing a mild penalty for an incorrect response. Secondly, overall feedback was given following each block on the accuracy
rates for each task. This was in the format of e.g., ‘colour accuracy: 95%’. This message appeared in white if accuracy was 90% or
higher, but in red if accuracy dropped below 90%. If the accuracy for any task was below 90%, the message ‘Please take more
care!’ also appeared on screen, while if all were above 90%, the message read ‘Well done!’.

5.3. Results

A single participant with a mean RT more than 2.5 SDs above the group mean was excluded from the analysis, for gen-
erally very slow responses (overall mean RT 4131 ms, compared to a groupmean of 1782, SD 553 ms). In addition, error trials
and the subsequent two trials, and trials with very slow RTs (over 20 s) were all excluded from the RT analysis. After trim-
ming, the mean proportion of trials retained for analysis was 83.2%, this proportion did not vary substantially across cells of
the experimental design, with the least trials retained for colour-alphabet switches (81.4%) and the most for font-alphabet
switches (84.9%). The means and SDs for the remaining trials for each task are presented in Table 2.

The asymmetry of the three tasks was established using a one-way, within-subjects ANOVA. For RTs, the effect of task was
significant, Fð1:66;61:57Þ ¼ 23:1; p < :001, Greenhouse-Geisser corrected for non-spherical data. Pairwise t-tests (Holm-
Bonferroni corrected for multiple comparisons) indicated significant RT differences between colour and font,
tð37Þ ¼ 5:39; p < :001, colour and alphabet, tð37Þ ¼ 5:43; p < :001, and a marginally significant difference for font and alpha-
bet, tð37Þ ¼ 1:89; p ¼ :067. Parallel tests for error rates revealed the same pattern: the effect of task was significant,
Fð1:73;64:16Þ ¼ 13:95; p < :001, Greenhouse-Geisser corrected, with significant pairwise differences between colour and
font, tð37Þ ¼ 3:38; p ¼ :003, colour and alphabet, tð37Þ ¼ 4:87; p < :001, and font and alphabet, tð37Þ ¼ 2:40; p ¼ :022.

However, individual differences did exist in the ordinal difficulty of the three tasks. In increasing difficulty, assessed by
RTs/error rates, were colour-font-alphabet (21 participants for RTs/20 for error rates) colour-alphabet-font (8/10), font-
alphabet-colour (2/2), font-colour-alphabet (2/2), alphabet-colour-font (4/4) and alphabet-font-colour (2/2). Nevertheless, given
the statistically significant differences in task difficulty, it was concluded that the three tasks were indeed of asymmetric
difficulty, with the colour task easier than the font task, which in turn was easier than the alphabet task. The analysis then
proceeded to test the main hypothesis.

Mean and standard deviations of n-2 repetition costs (for RTs and error rates) for each task pairing and direction of alter-
nation are given in Table 3. The analysis of n-2 repetition costs consisted of a 3 � 2 within-subjects ANOVA, with factors of
task pairing (colour-font vs. colour-alphabet vs. alphabet-font) and switch direction (EHE vs. HEH), to test the hypothesis
that n-2 repetition costs for hard-easy-hard triplets would be greater than for easy-hard-easy triplets. For RT, there was a
significant main effect of switch direction, Fð1;37Þ ¼ 4:441; p ¼ :042, partial g2 ¼ 0:022, consistent with the main hypothe-
sis. The main effect of task pairing was not significant, Fð2;74Þ ¼ 1:06; p ¼ :353, and nor was the task � switch direction
interaction (Fð2;74Þ ¼ 0:218;n:s:). For error rates, the main effect of switch direction failed to reach significance
(Fð1;37Þ ¼ 2:815; p ¼ :102). The main effect of task pairing was also not significant (Fð2;74Þ ¼ 0:064;n:s:). However, the task
� switch direction interaction was significant, Fð1:98;73:19Þ ¼ 3:400; p ¼ :039, partial g2 ¼ 0:034, Greenhouse-Geisser
corrected.

Given the statistically marginal nature of the results, the individual differences in task difficulty present one area for
potential concern. For example, the larger n-2 repetition costs observed for HEH alternations might be partially driven by
the 18 participants for whom task difficulty did not conform to the group mean. The results were therefore analysed again
according to relative task difficulty, with the three tasks for each participant ranked as primary, secondary, and tertiary tasks
9 In a pilot experiment, in which feedback on errors was provided only during the practice phase, participants appeared to regulate their performance by
maintaining a relatively uniform response time across tasks, with large differences instead appearing in error rates. This may have occurred for a number of
reasons. Participants may sometimes have been unaware of their errors; they may not have been motivated to try to reduce their errors for harder tasks, or the
uniform rate of stimulus presentation may have encouraged participants into a rhythmic response pattern, leading to a forced response in a relatively
constrained response time window, rather than responding to the dual constraints of responding quickly and accurately. In the present experiment, where
reaction time was the primary dependent variable, it was expected that participants should maintain a high level of accuracy across all three types of trial,
adjusting the level of control appropriate for each task, and thus taking more time on harder trials.



Table 3
Experiment 1: Mean (SD) n-2 repetition costs for RT and error rates by task pairings and switch direction.

Task pairing Easy-hard-easy Hard-easy-hard

RT (ms) Error rate (%) RT (ms) Error rate (%)

Colour-Font 7 (202) �0.95 (4.01) 98 (292) 1.82 (4.96)
Colour-Alphabet 16 (249) �0.45 (4.67) 100 (266) 0.82 (4.57)
Font-Alphabet �10 (211) �0.96 (4.23) 31 (263) �0.47 (5.51)
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on the basis of mean RTs, in ascending order of difficulty. For RT, there was no statistically significant main effect of task,
Fð2;76Þ ¼ 1:02; p ¼ :36, however the main effect of switch direction was significant, Fð1;38Þ ¼ 4:58; p ¼ :039;g2

p ¼ 0:030.
The task � direction interaction was not significant, Fð2;76Þ ¼ 1:09; p ¼ :34. A parallel analysis of error rates revealed no sta-
tistically significant effects (main effect of task: Fð1;38Þ ¼ 1:88; p ¼ :16; main effect of direction: Fð1;38Þ ¼ 0:00; p ¼ :95;
interaction: Fð2;76Þ ¼ 1:10; p ¼ :34).

5.4. Discussion

The results, a significant main effect of switch direction for RTs, and a nonsignificant trend for error rates, with greater n-2
repetition costs for HEH triplets than EHE triplets, contrast with those of Arbuthnott (2008), who reported greater inhibition
of the easier task (larger n-2 repetition costs for EHE switches). They are, however, consistent with the main hypothesis and
the prediction of the model.

How might one account for the differences in direction of effect between this experiment and the findings of Arbuthnott
(2008)? As discussed above, there are a number of differences in task design. Specifically, the current procedure uses tasks
with three possible responses, allowing the procedure to remove stimulus congruency and varying response set overlap as
possible confounding variables. Additionally, the three tasks (font, alphabet, and colour) were chosen to avoid potential over-
lap in their task-sets.

One feature of the present results is that the magnitude of the n-2 repetition costs observed are rather small. However,
the tested hypothesis concerned the modulation of the n-2 repetition cost, with no prediction as to the magnitude of the n-2
repetition cost overall. One potential concern is that the absence of an n-2 repetition cost might suggest the absence of task
inhibition, precluding its modulation in the present experiment. While there is reason to believe n-2 repetition cost of zero
does not represent zero task inhibition, merely reduced task inhibition (cf. Grange et al., 2013, and as also predicted by the
present model, simulation 1), small task inhibition effects may be one reason for the small effect size and marginally signif-
icant results. It is therefore reassuring that the additional analysis conducted for ordinal task difficulty, in which individual
differences in task difficulty are accounted for, produced a slightly larger effect size for reaction times than the first analysis.
If the procedure were modified to produce larger n-2 repetition costs, it is reasonable to expect a larger effect size. The next
expreriment therefore aimed to obtain stronger support for the model by modifying the procedure to produce larger n-2 rep-
etition costs overall.

6. Experiment 2

6.1. Introduction

One experimental factor known to produce larger n-2 repetition costs is the use of non-transparent or abstract task cues,
where the relationship between the cue and the task is arbitrary rather than bearing a resemblence (e.g., using geometric
shapes to represent which task to perform next, as in Houghton, Pritchard, & Grange, 2009). Experiment 2 featured a mod-
ified procedure with non-transparent cues with the aim of obtaining larger n-2 repetition costs.

6.2. Method

6.2.1. Participants
40 participants were recruited through the Birkbeck psychology participant database, of whom 28 were female. Partici-

pants received £7.50 in cash.

6.2.2. Design
The design was identical to experiment 1.

6.2.3. Tasks
The tasks were identical to experiment 1, with the exception that tasks were cued by a frame appearing simultaneously

to, and enclosing the target letter. The frame could take the shape of a circle, square or hexagon. The association between
frame shape and target task was randomised for each participant.



Table 4
Mean (SD) of RTs (milliseconds) and error rates for each task.

Task RT Error rate

Colour 1866 (498) 5.49% (3.63%)
Font 2079 (446) 7.45% (4.43%)

Alphabet 2095 (490) 6.66% (5.31%)

Table 5
Experiment 2: Mean (SD) n-2 repetition costs for RT and error rates by task pairings and switch direction.

Task pairing Easy-hard-easy Hard-easy-hard

RT (ms) Error rate (%) RT (ms) Error rate (%)

Primary-Secondary 112 (250) 0.50 (5.85) 184 (303) 0.40 (6.42)
Primary-Tertiary 79 (247) 1.30 (6.03) 255 (315) 2.31 (7.72)

Secondary-Tertiary 77 (387) 0.05 (5.31) 153 (308) 1.22 (6.81)
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6.2.4. Procedure
As participants were required to learn cue-task associations, they received additional practice trials (compared to exper-

iment 1), performing 15 trials for each task, before completing a practice switching block of 20 trials. The main experiment
consisted of 8 blocks of 60 trials.

6.3. Results

Of the 40 participants, data was not analysed from two participants who failed to complete it, and five who exceeded an
error rate of 20%, leaving data from 33 participants. The data were analysed as for experiment 1. For consistency with the
previous experiment, trials exceeding 20s were excluded from the reaction time analysis. However, the pattern of data
was robust to stricter RT thresholds of 10 s and 5 s. Additionally, error trials and the two subsequent trials were also
excluded from the RT analysis. Mean RTs and error rates for the three tasks are presented in Table 4.

Unlike experiment 1, the difference in difficulty of the three tasks was equivocal. For RT, ANOVA suggested significant
differences in task difficulty, Fð2;64Þ ¼ 7:70; p ¼ 0:010, however pairwise t-tests suggested significant differences between
colour and alphabet ðtð32Þ ¼ 3:27; p ¼ 0:007Þ and colour and font (tð32Þ ¼ 3:29; p ¼ 0:007) pairings, but not alphabet and
font (tð32Þ ¼ 0:26; p ¼ 0:796). For error rates, ANOVA revealed overall significant differences between tasks,
Fð2;64Þ ¼ 4:44; p ¼ 0:016, but pairwise t-tests suggested only significant differences between colour and alphabet
(tð32Þ ¼ 3:13; p ¼ 0:011) but not colour and font (tð32Þ ¼ 1:52; p ¼ 0:277) or alphabet and font (tð32Þ ¼ 1:37; p ¼ 0:277),
all Holm-Bonferroni corrected for multiple comparisons.

Further inspection of the data revealed substantial individual differences in task difficulty. The ordinal ranking of task dif-
ficulty, in increasing difficulty, assessed by RTs/error rates, were colour-alphabet-font (11 participants for RTs/6 for error
rates) and colour-font-alphabet (10/12), followed by font-alphabet-colour (5/6), font-colour-alphabet (4/3), alphabet-colour-
font (2/5) and alphabet-font-colour (1/1).

The remaining analysis therefore proceeded according to ordinal task difficulty, as was also conducted for the previous
experiment. On this basis, n-2 repetition costs (RT and error rates) for the critical conditions are shown in Table 5. The mean
proportion of trials retained was 81.3%. Like the previous experiment, this proportion was consistent across individual cells,
with the least trials retained for tertiary-primary switches (79.9%) and the most for tertiary-secondary switches (82.8%).

Once again, the analysis of n-2 repetition costs consisted of a 3 � 2 within-subjects ANOVA, with factors of task pairing
(primary-secondary vs. primary-tertiary vs. tertiary-secondary) and switch direction (EHE vs. HEH), testing the hypothesis
that n-2 repetition costs for hard-easy-hard triplets would be greater than for easy-hard-easy triplets. For RTs, the results
revealed that the main effect of task was not significant (Fð2;64Þ ¼ 0:59; p ¼ 0:557), but the main effect of direction was
(Fð1;32Þ ¼ 5:92; p ¼ 0:021;g2

p ¼ 0:031). The interaction was not significant (Fð2;64Þ ¼ 0:64; p ¼ 0:53). Pairwise t-tests
revealed these differences reached significance for the primary-tertiary task pairing (tð60:49Þ ¼ 2:52; p ¼ 0:014) but not
for primary-secondary (tð61:75Þ ¼ 1:05; p ¼ 0:298) or secondary-tertiary (tð60:93Þ ¼ 0:89; p ¼ 0:379).

No significant effects were found in the analysis of error rates (main effect of task: Fð2;64Þ ¼ 0:79; p ¼ :46; main effect of
direction: Fð1;32Þ ¼ 0:81; p ¼ :37; interaction: Fð2;64Þ ¼ 0:17; p ¼ :85).

6.4. Discussion

Once again, as predicted, a significant effect of switch direction was found, with a greater n-2 repetition cost for HEH than
EHE triplets. Although the finding was only significant for the task pairing with the greatest differences in difficulty for each
participant (the primary-tertiary pairing), the trend was observed for each of the task pairings.
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As anticipated, mean reaction times and error rates were greater for experiment 2 than experiment 1, reflecting the
increased difficulty introduced by non-transparent task cueing. Unexpectedly, non-transparent task cueing appeared to
modify the relative difficulty of each of the tasks, introducing substantial individual differences. However, as our hypothesis
concerns the relative difficulty of tasks, rather than differences between specific tasks, the inferences from these results
remain valid.

While the results are inconsistent with those of Arbuthnott (2008), presumably for the reasons noted in the discussion of
experiment 1, they are as predicted by the model. Notably, the model predicts that HEH should produce greater n-2 repe-
tition costs that EHE, for the same reason that the model of Gilbert and Shallice (2002) predicts switch cost asymmetries
when switching between two tasks. Firstly, executing a harder task against interference from easier, but irrelevant, stimulus
dimensions requires a greater degree of biasing by task-demand units than executing an easier task against interference
from a harder task. Secondly, if the next trial is a switch, HE switches have a greater switch cost than EH switches because
more task demand activation is carried over (Gilbert & Shallice, 2002). Finally, in a system with a backward inhibition mech-
anism the simultaneous activation of task demand units on the n-1 trial means more conflict is detected on the n-1 trial for
HEH switches than EHE switches. As a result the n-2 task receives more inhibition. In contrast, on a two-switch trial, the
difficulty of the n-1 task has a much less pervasive effect on performance on trial n. This overall effect, greater n-2 repetition
costs for HEH trials, is precisely what was observed.

7. General discussion

We have presented a model of task switching that extends the basic model of Gilbert and Shallice (2002) with the addi-
tion of a conflict monitoring layer, and shown that the augmented model accounts for two well-established classes of empir-
ical effects — n-1 switch-costs and n-2 repetition costs — across a theoretically justified portion of its parameter space.
Additionally, the model predicts a key empirical finding – that the n-2 repetition cost is affected by the intertrial interval
preceding trial n-1, but not trial n (Gade & Koch, 2005). This latter effect has been widely accepted as evidence that the
n-2 repetition cost genuinely reflects task inhibition stemming from conflicting task representations, rather than a task inter-
ference effect akin to n-1 switch costs. Moreover, we have demonstrated that the model predicts that the magnitude of the
n-2 repetition cost will be modulated by task difficulty (being greater for hard-easy-hard switches than easy-hard-easy
switches). This prediction was then confirmed by two novel empirical studies. We structure this discussion of the findings
around three broad issues: the theoretical interpretation of our empirical results; the relationship between the proposed
model and existing models of task switching; and limitations of the proposed model.

7.1. Empirical findings and theoretical interpretation

Our empirical results extend the growing literature on n-2 repetition costs by showing that the effect is modulated by the
relative difficulty of the tasks involved. The typical size of the basic n-2 repetition cost (e.g., 31–35 ms, as reported by Mayr &
Keele, 2000) is smaller than the typical size of the n-1 switch cost (e.g., 200 ms, as reported by Rogers & Monsell, 1995), and
consequently it is harder to obtain positive evidence for the cost.10 The relative difference in size is not surprising given that n-
2 repetition costs relate to effects that persist across two switches (and a longer temporal window), as opposed to one, but our
finding that the n-2 repetition cost is also sensitive to task difficulty (albeit in the opposite direction to the only previous study
of asymmetric repetition costs; though see the earlier discussion for potential reasons why) further suggests that considerable
methodological care is required to isolate such costs.

At a theoretical level, the empirical findings argue against attributing switch costs (solely) to reconfiguration or cue retrie-
val, but rather support the role of cross-task interference in the switch cost, as the interference/conflict asymmetry between
easy-hard and hard-easy switches plays an important role in producing asymmetric n-2 repetition costs on subsequent
trials.

N-2 repetition costs are typically attributed to residual task inhibition. In the model presented here, task demand units
receive both inhibitory and excitatory inputs, hence ‘task inhibition’ may be an overly simplistic label. However, consistent
with the original hypothesis, units sensitive to conflict at the level of task representations inhibit those same task represen-
tations. Rather than persistent inhibition, it is the activation of conflict units that persists across trials. Thus, conflict gener-
ated on switch (n-1) trials causes inhibition when returning to the original task on trial n. The effect is to effectively smooth
performance in switch trials, at the cost of interference when resuming a recently abandoned task. As a side-effect, the
reduction in switch cost contributes to the switch cost asymmetry, suggesting that one component of the switch cost
may be due to task inhibition that is modulated by inter-task conflict.

A beneficial effect of the proposed mechanism is facilitation of performance following under-controlled tasks, as seen in
the 2SW condition of simulation 4. This suggests that conflict units insulate switching performance against deterioration
when top-down control is lower than ideal, such as in the case of distraction or divided attention. This would be beneficial
if deployment of top-down control is effortful or somehow limited in capacity, as is often assumed. One possibility is that
10 There is evidence of substantial individual differences in n-2 repetition costs, with Grange and Juvina (2015) recently reporting costs of up to 200 ms for
certain individuals.
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conflict units might serve a role of ‘smoothing’ performance if control is diverted (e.g., in the case of distraction). However, it
is notable that the benefit of conflict units is most observed in the 2SW condition – i.e. when rapidly switching between dif-
ferent task-sets. The trade-off is weaker performance when repeating the same task. Thus, conflict units might serve the
function of an intermediate control layer — ‘dumb’ units that are unselective/uncontrolled as to the target of inhibition,
but that effectively facilitate performance in contexts requiring control, such as task switching. Such units might provide
an automatic, low-level control layer, reserving top-down attentional biasing for the ‘heavy lifting’ of deliberative control.
Additionally, the effect of conflict units is heavily modulated by top-down control. Specifically, in switching conditions
(1SW, 2SW) conflict units, and backward inhibition more generally, protects performance following a highly controlled task
(such as a simple task with a high cost of failure — imagine carrying an antique vase across a polished floor), effectively pro-
tecting subsequent tasks against distraction.

A further theoretical question is how the proposed backward inhibition mechanism fits within an overall cognitive
architecture. Should it properly be regarded as an executive function, perhaps belonging to a supervisory attentional sys-
tem (Norman & Shallice, 1986)? Alternatively, Mayr and Keele (2000) prefer an account in which task-set inhibition is a
relatively automatic process on the basis that once established, task-set inhibition appears to be resistant to high-level
intervention, such as is afforded by a preparation interval. In the model presented here, the task inhibition mechanism
is relatively low-level, being automatically triggered by task conflict. However, given its role in facilitating rapid switching
between tasks, it may be more properly conceptualised as one sub-component of a more general ‘task switching’ executive
function. Whether all such functions should be viewed as residing within a putative supervisory attentional system
remains a separate issue.

7.2. Relationship with other models of backward inhibition

Our model implements a backward inhibition mechanism as a general purpose task-inhibition mechanism which
responds to task conflict through a general inhibitory influence on task representations. This has a disproportionately large
effect on representations which are no longer being excited from another source (such as top-down control) hence it reduces
cross-task interference.

In contrast, the model of Grange and colleagues (Grange & Juvina, 2015; Grange et al., 2013) conceptualises backward
inhibition as the self-inhibition of task-sets, as part of a memory retrieval process. Grange and Juvina (2015) generated a
specific behavioural prediction of their model — the change in n-2 repetition costs following practice — and confirmed this
prediction empirically. Although the authors argued that inhibition is proportional to the interference in the system, and
thus related to conflict while not being triggered by it, the model does not appear to easily accommodate the robust
empirical finding that backward inhibition is modulated by manipulations of inter-task conflict (Koch et al., 2010). Addi-
tionally, as discussed earlier it does not seem to generalise to reproducing established empirical effects from two-task
switching (e.g., switch costs) without changes to the model. In the present model, it has been assumed that the same cog-
nitive mechanism, without any re-parameterisation, is responsible for producing n-1 switch costs and n-2 repetition costs.
The empirical observation of n-1 switch costs, rather than facilitation, is a key piece of evidence against a self-inhibitory
account of task inhibition (Koch et al., 2010). However, one possibility raised by Grange et al. (2013) is that task inhibition
may be strategically recruited by the human participant in three-task switching paradigms, but not in two-task paradigms,
as it provides a selective advantage in situations where task repeats are not possible. This view has some empirical sup-
port. While some studies have shown that n-2 repetition costs occur when n-1 repeats are possible (Arbuthnott, 2005),
others have shown that the n-2 repetition cost is significantly reduced in such circumstances, (e.g., Philipp & Koch,
2006), with yet others suggesting that consistent n-1 switch and n-2 repetition costs tend not to occur in the same block
of trials (Philipp & Koch, 2006, for review). While reconfiguration remains an intriguing possibility, current evidence offers
only weak support, and the cognitive system responsible for such strategic (re)configuration remains to be specified in
theoretical terms.

Arguably, the strategic recruitment of task inhibition has some parallels in the present model in the weight parameter,
which controls the strength of inhibitory biasing. However, it is an empirical question whether this parameter models
something fixed or variable in a human cognitive system. In other words, does the conflict system exert more or less
biasing on task representations in different contexts, and if so, how is it regulated? This possibility is a topic for future
study.

7.3. Limitations of the present model

A further difference between our model and that of Grange and colleagues (Grange & Juvina, 2015; Grange et al., 2013)
relates to the conceptualisation of backward inhibition. In the Grange et al. model, backward inhibition is a process of self-
inhibition as part of the cue-task memory retrieval mechanism that is absent from our model. One reason for the difference
in theoretical emphasis lies in the different experimental paradigms. The set-shifting paradigm of Mayr and Keele (2000),
favoured by Grange and colleagues, emphasises cue-task memory retrieval in order to select the correct target, determined
by singleton status along the cued dimension. In contrast, the item classification paradigm favoured by Gade, Koch and col-
leagues and used in our own experiments emphasises switching between different stimulus-response mappings according
to the cued task, in response to a single target. While the bulk of empirical work on backward inhibition suggests conflict
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occurring at the task and response levels is most critical for backward inhibition (e.g., Gade & Koch, 2007a; Philipp, Jolicoeur,
Falkenstein, & Koch, 2007; Schuch & Koch, 2003), conflict occurring during the cue-processing stage is known to also affect n-
2 repetition costs (e.g., Arbuthnott & Woodward, 2002; Houghton et al., 2009). Indeed, the typical increase in n-2 repetition
costs as a result of increased cue-processing difficulty forms part of the rationale for the present experiment 2. In the present
work, however, we have not attempted to model the cue-encoding stages of the task (e.g., translating a particular polygon
into a representation of the ‘colour’ task) which presumably include some form of working memory retrieval. Instead, the
model assumes that the necessary cue processing stages of the task have already taken place and that once encoded, the
activation of the target cue representation is continuous and discrete (i.e., either fully on or off). Clearly, an end-to-end model
of task processing must include a cue encoding stage. While models of cue-encoding have been proposed within the task-
switching literature (e.g., Logan & Bundesen, 2003; Schneider & Logan, 2005), the nature of the cue-encoding process
remains an open theoretical question. Recent research has suggested that cue-encoding itself consists of multiple stages
or processes (Schneider, 2016). For now, integrating a theory and model of cue-encoding with the present model remains
a future prospect. However, without modelling these stages, our model does not fully explain how conflict at the cue encod-
ing level contributes to the n-2 repetition cost. Each model, therefore, appears to account for slightly different aspects of
backward inhibition. It remains an open question whether backward inhibition is a single mechanism that can be deployed
at any stage of cognitive processing, or whether backward inhibition is a somewhat generic process that occurs indepen-
dently at multiple stages of processing. Answering this question, and the possibility of reconciling both types of cognitive
model, is one goal of future empirical and modelling research.

Within the present implementation, conflict units are sensitive to simultaneously active task-demand units, rather than
response units. This arrangement was motivated by modelling convenience rather than representing a strong theoretical
claim. As the response and task demand layer have reciprocal connections, response units tend to activate relevant task-
demand units and vice versa. Hence, conflict calculated at the response and task-demand levels would be expected to cor-
relate. While some data suggests that task conflict and response conflict may be separable (e.g., Steinhauser & Hübner, 2009),
clear evidence of a dissociation between the two types of conflict has yet to emerge. More critically, a range of evidence sug-
gests response processes have a critical role in backward inhibition (Koch et al., 2010). Accommodation of these findings
within the current model would seem to require an elaboration of the model’s response processes, at least. Alternatively,
these phenomena may be better explained by a model in which task inhibition is triggered by response, not task, conflict.
Development of such a model, and detailed behavioural comparisons on a range of simulated experimental paradigms, elu-
cidating the role of response or task conflict in task inhibition, is a goal for future research.

One further area of difference between the model and the present empirical data is the simulation of error trials. In
human participants, a trade-off is observed between speed and accuracy: it appears that participants regulate their level
of performance to give either fast, but more error-prone responses, or slower, more accurate responses. Indeed, providing
error feedback in the empirical work was designed to encourage participants to regulate their performance appropriately
for each task. In the model, however, error trials tend to occur with very long RTs, while the fastest responses tend to be
the most accurate. This is because responses are not produced until one response unit’s activation is sufficiently more than
that of the next largest, incompatible unit. Ordinarily, correct responses may occur quickly. However, due to a combination
of residual task-demand activation (irrelevant task interference) and noise, errors may occur if an incorrect response unit is
able to exceed that of the correct unit. In this case, intense competition typically occurs, with the activation of both units at a
similar level, before one unit ‘wins’ and its activation exceeds the response threshold. Thus, although the simulations have
been successful in predicting the modulation of n-2 repetition costs, the model fails to capture this aspect of behaviour due,
in our view, to a simplified model of response production.

7.4. Conclusion

Through combining two previous cognitive models — task switching and conflict monitoring — we have produced a novel
model of a backward inhibition mechanism. Primarily, the model demonstrates the viability of the proposal that backward
inhibition is triggered by conflict between task representations, specifically on the n-1 trial (Koch et al., 2010). In the model, a
series of conflict-detector units bias processing between competitive task representations, when task switching, through a
generalised inhibition of all conflicting task representations. This is sufficient to produce n-2 repetition costs, given that the
relevant task representation for each task is being excited, presumably as the result of a cue-driven memory retrieval
process.

The model reproduces observed findings related to both n-1 switch costs and n-2 repetition costs, and additionally pre-
dicts that n-2 repetition costs will be modulated by asymmetries in task difficulty. This prediction was supported by two
experiments which adapted the commonly used item classification paradigm, and in so doing demonstrated n-2 repetition
costs for a novel combination of three tasks.

Appendix A. Model parameter settings

See Table A1.



Table A1
Model parameter settings.

Parameter Simulation 1 Simulation 2 Simulation 3 Simulation 4

Unit activation max 1.0 1.0 1.0 1.0
Unit activation min �1.0 �1.0 �1.0 �1.0
Response Threshold 0.15 0.15 0.15 0.15

Step Size 0.0015 0.0015 0.0015 0.0015
Squashing Parameter (task demand units) 0.8 0.8 0.8 0.8

Noise 0.006 0.006 0.006 0.006
Bias (output units) �6.0 �6.0 �6.0 �6.0

Bias (task demand units) �4.0 �4.0 �4.0 �4.0
Stimulus Input Strength (A) 3.0 3.0 3.0 3.0
Stimulus Input Strength (B) 3.0 3.0 3.0 1.5–5.0
Stimulus Input Strength (C) 3.0 3.0 3.0 3.0

Topdown Control Strength (A) 12.0 12.0 12.0 12.0
Topdown Control Strength (B) 12.0 12.0 6.0 6.0–20.0
Topdown Control Strength (C) 12.0 12.0 12.0 12.0

Output unit lateral weights (incongruent) �2.0 �2.0 �2.0 �2.0
Output unit lateral weights (congruent) 2.0 2.0 �2.0 2.0

Output unit - task demand weights (congruent) 1.0 1.0 1.0 1.0
Output unit - task demand weights (incongruent) �1.0 �1.0 �1.0 �1.0

Task demand - output inhibitory weights �2.5 �2.5 �2.5 �2.5
Task demand - output excitatory weights 2.5 2.5 2.5 2.5

Squashing Parameter (conflict units) 0.5 0.5 0.5 0.5
Bias (conflict units) �10.0 �40 to 0 �7.5 �10
Gain (conflict units) 75.0 0–100 39.0 75.0

Conflict - task demand unit weights �10.0 �30 to 0 �14.0/0 �2.6 to 0
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