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Abstract

Models of contagion dynamics, originally developed for infectious diseases, have proven

relevant to the study of information, news, and political opinions in online social systems.

Modelling diffusion processes and predicting viral information cascades are important prob-

lems in network science. Yet, many studies of information cascades neglect the variation in

infectivity across different pieces of information. Here, we employ early-time observations of

online cascades to estimate the infectivity of distinct pieces of information. Using simulations

and data from real-world Twitter retweets, we demonstrate that these estimated infectivities

can be used to improve predictions about the virality of an information cascade. Developing

our simulations to mimic the real-world data, we consider the effect of the limited effective

time for transmission of a cascade and demonstrate that a simple model of slow but non-

negligible decay of the infectivity captures the essential properties of retweet distributions.

These results demonstrate the interplay between the intrinsic infectivity of a tweet and the

complex network environment within which it diffuses, strongly influencing the likelihood of

becoming a viral cascade.

Introduction

Massive data sets that comprehensively capture users’ behaviors in online social systems and

their underlying network structures have reached an unprecedented scale, making it possible

to develop computational methods to model complex patterns of human behavior at both

individual and population levels [1–5]. Among various human-induced online processes, the

study of social contagion—the spread of information, ideas, and behaviors through social net-

works—has attracted tremendous attention, especially in the fields of computational social sci-

ence and network science [6, 7]. Many studies examine these peer-to-peer diffusion processes

by focusing on a single piece of information and making assumptions about infectivity, recov-

ery probabilities, and their intrinsic relations to network structures [4, 8–12]. We consider
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measuring the infectivity of information cascades to be the crux for predicting their ultimate

virality.

Previous research has successfully advanced the modelling of information spread by study-

ing memes in Twitter data, where a meme is defined by the use of a hashtag and includes all of

the tweets with that hashtag [5, 13–16]. Gleeson et al. introduced a mathematical framework to

examine the branching dynamics of this meme spread process [17]. Besides these theoretical

efforts, many other studies try to explore this research topic with large scale empirical data and

real world experiments. Vosoughi et al. analyzed over ten years of Twitter data on the dynam-

ical diffusion of true and false news [12]. Bail et al. ran a field experiment on Twitter to study

the spread of views and political opinion [18]. Del Vicario et al. studied emotional contagion

and group polarization on another popular online social network platform: Facebook [19]. All

these efforts provide a deeper understanding of social factors and behavioral patterns in online

information spread.

Here, we reanalyze these data with an exclusive focus on modelling the direct transmission

of information through a social network in the form of retweets. Our reason for focusing on

retweets is that the transmission of a particular hashtag is more likely to occur not only from

person to person through online social ties [15], but also through mass targeted broadcasting

from other media sources outside the specific social network. As observed in Ref. [20], broad-

casts contribute substantively to viral events, e.g., the World Cup Final attracts about 1 billion

viewers worldwide, while news coverage from popular websites also reaches a similar number

of Internet users. In such popular events, the discussion of a meme in broadcasting media (e.g.

social network platforms, TV shows, radio and news reports) can greatly boost its spread.

Retweets, by contrast, constitute an information cascade that originated from an identifiable

individual user and is a contagion spread mostly through the links of the follower network

(Fig 1).

Materials and methods

Data

The Twitter data, studied previously in Refs. [14] and [15], comprise a reciprocal follower net-

work of N = 595, 460 nodes and the time-stamp record of Ntwt = 12, 054, 205 tweets, of which

Nret = 1, 687, 704 are retweets, within a total time frame of T = 33 days and we treat a day as

the time step. According to Refs. [14] and [15], they complied with the terms of service for

Twitter from which they collected data and the data were analysed anonymously. The data

were collected in three data sets: (1), a reciprocal follower network where each edge is a pair of

Twitter users who are following each other; (2), tweet timeline data with the hashtags and their

adopters sorted by timestamp; (3), the retweet timeline data where each line is a hashtag fol-

lowed by the sequence of its adopters retweeting about this hashtag from other users sorted by

timestamp. Note that the retweet data set is a subset of the tweet data set.

Generating functions

The modeling of human factors—specifically a dynamical process with limited user memory

length—can help to unveil the core features of contagion in complex social systems driven by

peer-to-peer influence. At every time step, a user generates a new tweet with innovation proba-

bility β = (Ntwt − Nret)/NT. The infectivity λ0 of a cascade is the probability that a follower will

retweet it in one time step. Let us consider the dynamical process of retweeting in more detail

by focusing on a given information cascade with infectivity λ0, posted online at time t = 0,

assuming for simplicity that all other cascades have infectivity equal to its mean, hλ0i. We

denote the distribution of retweets at time t by qn(t), which is the probability that a cascade has
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popularity n at t. Following the probability generating function (PGF) formalism in Refs. [17,

21, 22], we define the cascade PGF, parameterized by x, to be Hðt; xÞ �
P1

n¼1
qnðtÞxn. We

assume the in-degree of all nodes to be hki, and characterize the heterogeneity of the out-

degree distribution with PGF f ðxÞ �
P1

k¼0
pkxk, where pk is the probability of a node with out-

degree k. We seek to quantify G(t, x) as the PGF for the retweet distribution at time t of a ran-

dom cascade branch that originates from a single user randomly chosen from a given cascade.

For the user and all of her followers, a tweet event increases the popularity of the given cascade

by 1, and places it at the top of the memory length window. As a result, the PGF for the num-

ber of tweets at time t is given by [17] H(t, x) = xG(t, x)f(G(t, x)). Denoting the rate of a user’s

tweet activity as ρ = (β(hki + 1) + hλ0ihkiM)/M, and following the analysis from Ref. [17], the

differential equation for G(t, x) is obtained:

@G
@t
¼ l0xf ðGÞ þ r � ðl0 þ rÞG; ð1Þ

which can be solved with initial conditions f0(1) = hki and G(0, x) = 1.

The above PGF provides a prediction of the expected popularity m(t) for the focal tweet at

time t, and by definition the number of retweets is m(t) − 1. In the case of constant infectivity

with no decay effect, Eq (1) leads to

mðtÞ ¼ ð2l0 þ rÞtþ ð1 � ð2l0 þ rÞtÞ exp ð� t=tÞ; ð2Þ

where τ� 1/(ρ − λ0(hki − 1)). When λ0 is small enough such that τ> 0, Eq (2) suggests that

the popularity converges to a finite level. In contrast, for λ0 large enough and τ< 0, Eq (2)

indicates that popularity grows exponentially with time. The threshold separating these two

Fig 1. Schematic of social contagion information diffusion in Twitter. (a) The Twitter user interface that displays three latest tweets with different

degrees of interestingness from her friends. The first message was originally posted by someone with whom she does not have direct connection, but

she is still able to see it after being retweeted by one of her friends. She chose to retweet the second tweet she found interesting, extending the

information flow of that message to all her followers. If the “memory length” of this user is 3, she will not read or retweet messages posted more that 10

hours ago (the time of the third item in the display). (b), The online network environment of involved users and the flows of information cascades.

https://doi.org/10.1371/journal.pone.0214453.g001
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behaviors is at

�l0 ¼ r=ðhki � 1Þ: ð3Þ

Above this threshold, information can spread to a global scale; However, when t!1 the

exponential growth prediction m(t)!1 does not conform with real data, calling for addi-

tional effects to reproduce the empirical process.

Decay factor and infectivity estimation

Previous studies have found that the attractiveness of online information does not remain con-

stant over an indefinite period of time, but rather gradually declines as it grows older [23]. We

adopt this observation of fading popularity by incorporating a decay factor α and assume that

the infectivity of cascade i decays exponentially by λi(t) = λi0e−α(t−ti0), where ti0 is the time of

the initial tweet. Among retweets for which we can identify at least one of the previous tweets

in the same cascade posted by their neighbors, a fraction ψ = 0.69 of them occurred within

one day after the tweet was last seen by the retweeted user. Using a mean-field approach that

assumes the degree of all nodes to be equal to hki, we then express the average number of

retweets of cascade i at time t as ai,t = λi0e−αthkiai,t−1/ψ.

We define the number of total retweets of cascade i at time t as Ai,t, and derive the condi-

tional expectation of Ai,t given that cascade i is retweeted at least once during its lifetime:

EðAi;tjAi;t � 1Þ �
Xt

t¼1

ai;t ¼
Xt

t¼1

ð
li0hki
c
Þ
te� 1

2
atðtþ1Þ: ð4Þ

Here we make two assumptions about the retweet size and infectivity of cascades: first, the

tweet will either be stifled by stochastic fluctuations at the beginning such that no followers

retweet it, or will be retweeted with probability hkiλi(t)ψ−1 and reach the mean size determined

by Eq (4) at time t; second, for fixed values of t and Ai,t, the infectivity λi0 calculated by Eq (4)

is the minimum rate to reach a retweet size� Ai,t. We further assume that the relation between

the number of retweets Si in the real Twitter data and Ai,t is Si = Ai,t|t!1. Then we set t = 25 to

fit the spread rate distribution in Eq (4). As such, we can obtain (λi0, Si) pairs such that their

probability distribution satisfies P(S� Si) = P(λ0� λi0), which can be used to approximately

estimate the distribution of λ0 from empirical Twitter data.

The above analysis has taken the decay effect into account. We next approximate the distri-

bution of initial infectivity λi0 for cascade i as a truncated lognormal form with an upper bound

probability λmax. Let p0(λ0) be the lognormal distribution p0ðl0Þ ¼ ðl0s
ffiffiffiffiffiffi
2p
p
Þ
� 1e� ðlnl0 � mÞ

2=2s2

,

where μ and σ are parameters, and the normalization factor for the infectivity distribution can

be written as P0ðlmaxÞ ¼
R lmax

0
p0ðl0Þdl0. Thus we have the probability distribution of infectiv-

ity pinfectivity(λ0) = p0(λ0)/P0(λmax) in the truncated lognormal form with 0< λ0 < λmax. If a ran-

dom user tweets a cascade with initial infectivity λ0, and it stays in the followers’ memory for

an average lifetime 1/ψ, the probability that it is not retweeted by any follower is (1 − λ0)hki/ψ.

Therefore, the fraction of cascades being retweeted at least once is given by

Pðl0Þ ¼

Z l0

0

pinfectivityðtÞ½1 � ð1 � tÞhki=c�dt: ð5Þ

This expression captures the fact that information cascades are likely to be stifled due to sto-

chastic fluctuations at the initial stage, before it actually starts spreading. Assuming the
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infectivity is small such that [1 − (1 − λ0)hki/ψ]’ λ0hki/ψ, we have

Pðl0Þ ¼
hki

2cP0ðlmaxÞ
emþs

2

2 1þ erfð
lnl0 � m � s

2

s
ffiffiffi
2
p Þ

� �

; ð6Þ

where erf(x) is the error function. We then estimate (λi0, Si) pairs from empirical data with a

pre-assumed decay factor α from Eq 4, and fit the outcome distribution with Eq 6 (see Fig 2a).

Simulations

The simulations start with a set of users generating tweets, the infectivity of which follow a

truncated lognormal probability distribution, with a universal decay factor governing their

long time dynamics. When a user tweets a new message by herself, or retweets an old message

from her followees, illustrated in Fig 1, all of her followers will receive the message. A user will

only see the latest tweets within her memory length, which is a fixed value for all users [13, 16,

24, 25]. A natural measure of popularity is the number of retweets plus one that accounts for

the original tweet, and we regard each not-retweeted tweet as a cascade with popularity 1. The

innovation probability (the probability that a user generates a brand new tweet) β = 0.528 is

calculated from Twitter data.

Fig 2. Simulation parameter settings and results. a, Truncated lognormal fit. Light and dark blue lines are fit with

theoretical distribution function Eq (6), and the red and orange points are fit with distribution computed from real

Twitter data with Eq (4). The parameters used in Eq (6) are as follows: when decay factor α = 0, μ = ln 0.0012, σ = ln

2.4, λmax = 0.015; when α = 0.01, μ = ln 0.0012, σ = ln 2.4, λmax = 0.017. b, Retweets at time t of cascades originated at

time t0 with different decay factors. c-e, Complementary cumulative distribution functions (CCDFs)—the fraction of

cascades with more than n retweets for numerical simulations, compared with retweets from empirical Twitter data

marked by green points. The model parameters are identical except for the network structure: c, The empirical Twitter

follower network with N = 5.95 × 105 and hki = 47.94; d, Reconfiguration of the empirical Twitter network preserving

the degree distribution; e, Scale-free network with N = 5 × 105, hki = 48 and exponent γ = 2.8.

https://doi.org/10.1371/journal.pone.0214453.g002
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The mean degree of the Twitter follower network is hki = 47.94 with a total number of

Ncas = Ntwt − Nret = 10, 366, 501 cascades, of which 962, 341 are cascades with popularity > 1.

Each time step a user retweets or creates on average Ntwt/NT cascades that will be retweeted

hλihkiNtwt/NT times by her followers in the next time step, leading to an estimate of average

infectivity as hλi = ψNret/hkiNtwt = 0.002. Memory length can thus be estimated by M = ψNret/

hλiNT = 43, and the threshold �l in Eq (3) is 0.015. We use decay parameter α = 0.01, and the

corresponding infectivity distribution parameterized by μ = ln 0.0012, σ = ln 2.4 and λmax =

0.017 to obtain the blue curve in Fig 2a fitting to the red dots of (λi0, Si) pairs calculated from

Twitter data.

In all simulations, we first run a burn-in period of 100 time steps. As the Twitter data focus

on new memes, we only analyse new cascades that originate in the next T = 33 time steps.

Results

The Twitter data we use contains a follower network with 6.0 × 105 users, 1.7 × 106 retweets

and 1.2 × 107 tweets generated by these users in 33 days [14, 15]. We estimate the probability

distribution of the infectivity of cascades from real data, and simulate the process on the fol-

lower network (see Methods). A cascade consists of retweets that have the same hashtag

and the same user who initially posted the tweet, together with the tweet that originated the

cascade.

Previous studies have demonstrated that the topology of networks, especially the commu-

nity structure, has pronounced effects on information diffusion [14, 26]. Communities could

promote spread by homophily and social reinforcement, but may also hinder wider spread by

trapping information, resulting in a high concentration of retweets within a community. To

examine the influence of community structures, Weng et al. [14] introduced two statistical fea-

tures of memes, which we modify for retweet cascades: the adoption dominance g computes

the proportion of users retweeting the cascade in the community with the most adopters; and

the retweet entropy Hr quantifies the distribution of retweets across different communities, as

a measure of the concentration of the cascade across communities. We compute both mea-

sures based only on retweets in their early stages (first 50 tweets) to avoid bias from a cascade’s

popularity.

Retweet cascades are very different from hashtag memes in that we can more realistically

assume that social contagion through the follower network is the major mechanism by which

the retweet cascade is propagating. To provide direct evidence of this, we sampled 105 tweets

and retweets, respectively, finding that for 23.8% of tweets we can find at least one earlier tweet

with the same hashtag from the user’s friends, while 46.0% of retweets have at least one friend

who previously retweeted in the same cascade. Importantly, these percentages are limited by

the specific follower network available in the data set, which inherently undercounts the possi-

bility of transmission through the online social network because the network in the data only

includes the reciprocal following ties (to better reflect real social relations). We estimate the

infectivity of a specific cascade assuming that all such identifications are the actual paths of

information transmission, using only the first 50 retweets (see Methods). Despite the relatively

high inaccuracies observed between the true and predicted infectivities in our simulated data

(where we know the true imposed infectivity, cf. real Twitter data), we note the overall trends

of the infectivity estimates are in the right direction, with a slope of 0.92, R2 = 0.05 and p-

value < 0.01 (Fig 3). The distribution of estimated infectivity is heavy tailed and not Gaussian,

and the R2 of the linear model is low. Interestingly though, as we proceed to consider predic-

tive models for virality that include such estimates of cascade infectivity, we will see that it

improves prediction despite relatively poor fit.
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We now test whether this simple model of infectivity demonstrates predictive power for

identifying viral retweet cascades in real Twitter data. In Ref. [14], Weng et al. used community

concentration features to predict viral memes with three models: the random guess (RG)

model randomly samples the cascade without any predictors; the null model (NM, referred to

as the “community-blind model” in Ref. [14]) employs the number of distinct users and the

total number of neighbors of early retweet users; the community-based (CB) model also incor-

porates three community-based features of the Twitter network: the number of infected com-

munities, retweet entropy Hr, and the fraction of intra-community user interactions. We

introduce two additional models adding features to the NM model to predict viral cascades

with infectivity estimates: the infectivity-based (IB) model uses the estimated rate of infectivity

l̂0 from Eq (2), where hki is the mean degree of early retweet users; and the community &

infectivity based (C&I) model combines all of these infectivity and community-based features.

Each of our classifiers includes only information about the first 50 retweets of each tweet, to

try to predict whether the retweet cascade “goes viral”. We train random forest classifiers on 1,

272 real Twitter cascades and 20, 000 simulated cascades sampled from 20 replications, using

10-fold cross validation to predict viral cascades that attract more retweets than a certain per-

centile threshold θ of all cascades.

The results on the Twitter data suggest that in most cases our IB model performs better

than the CB model (Fig 4a and 4b), indicating that estimated infectivity alone can improve the

prediction even more than the community-based predictors. Moreover, the C&I model, incor-

porating both community and infectivity factors, reveals a striking increase of predictive

power above the other models. Fig 4c and 4d shows random forest model prediction and recall

rates on retweet data generated by our simulations, indicating patterns consistent with those

observed in the Twitter data. The IB model, only adding infectivity to the NM model, is com-

parable to the CB model that includes three community features, and by considering all pre-

dictors the C&I model excels in both precision and recall rates. We note that replacing the

estimated l̂0 by the true λ0 used in the simulations—a test we can obviously not reproduce in

Fig 3. Comparison between real and estimated infectivity in simulations. Real infectivity λ0 and estimated

infectivity l̂0 computed from simulation data according to Eq 2 without considering the decay effects. The solid line is

the linear regression fit. Estimates are calculated from only the first 50 retweets of each tweet, so that they may be used

to try to predict whether a given cascade “goes viral”.

https://doi.org/10.1371/journal.pone.0214453.g003
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the real Twitter data—yields additional improvement in classification (S2 Table), suggesting

substantial potential for a more refined estimate of l̂0 to lead to even greater accuracy for pre-

dicting viral cascades.

We further test our results using logistic regression with the same set of features as in the

C&I model. We find that estimated infectivity is still a significant predictor in simulation data,

but not in predicting virality in the real Twitter data (S3–S5 Tables). There may be multiple

reasons for this apparent discrepancy between the random forest and logistic regression

results. One possibility is that logistic regression is too specific in the functional form in which

it estimates the probability of virality. In particular, we note the substantial noise in estimating

infectivity we observe in our simulations; without any way to compare the estimated infectivi-

ties with “true” values in the real Twitter data, we cannot know whether the effect of this noise

interacts poorly with the log-odds-shift assumptions of logistic regression.

Our simulations emulate the real-world diffusion process in Twitter by taking into consid-

eration several human behavioral factors, such as a limited memory length and a gradual

decrease in interest, in a simplified simulation model. We estimate a fixed memory length for

all users from data and additionally incorporate a small but non-zero decay parameter to the

infectivity of each cascade (see Methods). The initial infectivities of cascades are sampled from

a probability distribution computed from empirical data (Fig 2a). The decay effect mainly

affects the long time dynamics of viral cascades (Fig 2b). If we ignore the decay effect of

Fig 4. Random forest model predictions. We predict whether a cascade will go viral or not; a cascade is viral if it produces more

retweets than a certain percentile threshold (θ = 70, 80, 90) of cascades, using community-based features and infectivity estimates

that are calculated based on the initial 50 retweets for each cascade. Random forests are trained on sets of features delineated by

the labels RG, NM, CB, IB and C&I (see the main text). The classifier including estimated infectivity (IB) typically outperforms

the community-based model (CB), while combining all of the community-based and infectivity features (C&I) gives the best

predictions overall. a, Precision rates of Twitter data. b, Recall rates of Twitter data. c, Precision rates of retweet data from

simulations. d, Recall rates of retweet data from simulations. The precision and recall rates reported in this figure are mean values

of 100 randomizations of the random forest model.

https://doi.org/10.1371/journal.pone.0214453.g004

Infectivity enhances prediction of viral cascades in Twitter

PLOS ONE | https://doi.org/10.1371/journal.pone.0214453 April 17, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0214453.g004
https://doi.org/10.1371/journal.pone.0214453


infectivity, cascades with large infectivity will still keep spreading after long periods of time,

even with fixed user memory length. With a small but non-zero decay parameter α, even the

most popular cascades will diminish at some point, and the system quickly reaches equilib-

rium. We then use simulations on networks with different structural properties but otherwise

identical parameter settings to calculate the distributions of cascade sizes.

Fig 2c shows that our simulations on the Twitter follower network replicate well the cascade

distribution observed in the data. We also run a simulation on a configuration model network

with the same degree distribution as the empirical Twitter network (Fig 2d). Simulation results

on a synthetic network generated by the algorithm in Ref. [27] with the power-law exponent γ
= 2.8, representing an analogous degree heterogeneity of the Twitter network (see S3 Fig), also

recover the statistical features of Twitter data (Fig 2e). When we switch the decay parameter to

0.001 and 0.02, respectively, we still replicate the empirical retweet distribution fairly well by

changing the corresponding λmax parameter (S5 Fig).

Discussion

We have demonstrated the predictive power of infectivity for identifying viral retweet cascades

in real-world Twitter data and in simulation. An important assumption of this study is that the

spread of retweet cascades resembles the peer-to-peer social contagion through the Twitter

follower network, which we argue is different from viral memes represented by hashtags that

more heavily rely on transmission through broadcasting. We demonstrate that the early spread

rate for retweet cascades can be a good indicator of the intrinsic interestingness of a tweet,

and that the corresponding estimate of infectivity gives improved prediction of virality. But,

importantly, the same scheme might not readily apply to some memes that need to be broadly

broadcast before they become viral. This difference may help explain why the measure of early

infectivity of a hashtag in Ref. [15] does little to improve the prediction of viral memes.

Our mean-field method to estimate infectivity from empirical data clearly leaves plenty of

room for improvement. The predictive ability of machine learning methods improves further

on simulation data when we include the true infectivity, demonstrating the importance of

accurate estimations of the cascade infectivity. Apart from this indirect approach with strong

assumptions, we could also design a more straightforward method. The biggest challenge for

such a measurement is to gather large-scale, high-quality data with which it is possible to infer

accurate retweet relations. Better data and more reliable methodology to estimate infectivity

are key to improving the predictive power.

Our study shows that infectivity improves the prediction of viral cascades that are mostly

induced by contagion along the links representing social network connections. Network com-

munity structure captures additional local environmental factors such as homophily, social

reinforcement and a trapping effect that further affect the spread and likelihood of virality of

retweet cascades. Nevertheless, the infectivity determines the internal attractiveness and seems

to be one of the most important factors in driving the virality of a cascade. Said another way,

we have successfully demonstrated that the inherent quality of content—in the sense of being

sufficiently interesting to have high infectivity—is an essential element promoting the chances

of a successful spread that might not otherwise be as plausible in light of the local environmen-

tal factors.
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