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Abstract  

The performance of agricultural systems and their environmental impacts can vary considerably within a single 

crop supply chain, due to differences in farming practices, soil properties, and yearly climatic conditions. In this 

paper, we characterised the variability of carbon footprints of open-field tomato production by analysing a 

comprehensive farm dataset gathered over 4 years. We also assessed the importance of the different drivers of 

variability as compared to model uncertainties. The primary data used in this study were collected from 189 

farms from the Extremadura region in Spain and Portugal over a period of four years, from 2012 to 2015. We 

modelled the carbon footprint of these farms using the Cool Farm Tool model developed by Hillier et al. (2011) 

and conducted statistical analysis on the results to understand the relative importance of inter-year and intra-year 

variability. We performed sensitivity analysis to understand how sensitive the results were to variability in the 

farmers’ input parameters and to the uncertainty in model parameters. This was done by varying all factors one-

at-a-time, and then by running a Monte Carlo simulation where all uncertainties were propagated 

simultaneously. Results clearly show significant inter-year and intra-year variability in carbon footprints of 

tomato production within the study region. We observed approximately 20% variation for each annual carbon 

footprint (intra-year variability), resulting in an overall 28% coefficient of variation in the aggregated footprint 

across the different years. The carbon footprint of the whole tomato supply, calculated with the 4-year dataset, 

showed a weighted geometric mean of 51 kg CO2-eq/t and a weighted GSD of 1.32, meaning a 95% confidence 

interval of 29 to 89 kg CO2-eq/t. Results also show that small farms were characterised by a larger variability 

than larger ones. This highlights the need to weight farm results by production volumes if the objective is to 

obtain a carbon footprint for the total production in a given region. The carbon footprint was found to be mainly 

sensitive to variability in farm practices, notably extent of pump irrigation and choice and amount of fertiliser 

used, with model uncertainties influencing the results to a relatively smaller extent. Further work is needed to 

extend these findings to other crops, regions and impact categories.  
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1 Introduction 

In the context of growing consumer awareness of sustainability issues, corporate sustainability activities and 

reporting have expanded to cover full supply chains including agricultural production. Many companies have 

implemented sustainable sourcing initiatives to promote sustainable farming practices in their own or supplier 

operations. While these strategies were primarily focused on management practices, they are starting to drive the 

collection of farm data to generate the evidence of environmental performance and reductions in environmental 

impacts. For example, Unilever has developed a Sustainable Agriculture Code (SAC)1, which defines 

sustainable farming practices using 11 social, economic and environmental indicators (Unilever website). 

Compliance with the SAC is achieved through self-assessment and verification against the code, or compliance 

with an external certification scheme with similar requirements. In terms of the former, suppliers are requested 

to collect and submit farm data annually, in order to demonstrate sustainable farming practices and continuous 

improvement. This includes an estimation of the life-cycle greenhouse gas (GHG) emissions from their 

agricultural production using a recommended GHG calculator: the Cool Farm Tool (CFT, Hillier et al., 2011). 

Other companies also use the Cool Farm Tool (Cool Farm Tool website) or other similar tools (e.g. Diaterre, 

Farm Carbon Calculator, CALM, CCalc, or PalmGHG; see Colomb et al. 2012 and Whittaker et al. 2013 for 

reviews of such GHG calculators) to assess the GHG emissions of agricultural production and raw material 

supply. 

However, estimating GHG emissions of agricultural practices and evidencing progress over time presents 

challenges that are not encountered when assessing impacts from industrial processes and energy systems. The 

carbon footprint of agricultural production can vary significantly between farms and from year to year and many 

authors, such as Sala et al. (2017), have stressed the need for more local assessments of crop production. This is 

because agricultural systems are, by nature, highly variable: weather conditions fluctuate; soil and topographic 

conditions vary from location to location and; genetic material and farming practices are influenced by factors 

such as local knowledge, socio-economic status of the farmer and local legislation. Therefore, the analysis and 

interpretation of farm data collected through sustainable agriculture initiatives and certification schemes are 

challenging, particularly if the objective is to benchmark performance and evidence improvement over time. For 

this, a better understanding of inherent variability and uncertainties in calculated emissions is required.  

                                                           
1 Abbreviations used in the article: CFT: Cool Farm Tool; CRM: Crop residue management; GM: Geometric 

mean; GSD: Geometric standard deviation; SAC: Sustainable Agriculture Code. 
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A number of studies have started evidencing the variability of environmental impacts associated with specific 

crop productions. Gerber et al. (2010) quantified the GHG emissions associated with global dairy production 

and showed significant variability between regions and between production systems. Ntinas et al. (2017) 

showed how the carbon footprint of tomato production differs between various cultivation systems, based on 

data collected over several months in two fields and five greenhouses located in Greece and Germany. Pishgar-

Komleh et al. (2017) analysed the variability of the GHG emissions from open-field tomato production using 

data collected in 204 farms in two regions of Iran. They obtained a carbon footprint ranging between 0.1 and 0.4 

kg CO2-eq per kg tomato and showed that the performance in one region was systematically better than in the 

other one due to a combination of the use of modern irrigation system, less fertiliser use and better yields.  

Even though multi-year base periods are recommended (World Resources Institute, 2014), many studies of 

agricultural production are based on data collected over periods shorter than a year as monitoring farm practices 

over several years can be very resource intensive. Inter-year variability is however of high relevance when 

assessing open-field agricultural production. Röös et al. (2010) quantified the uncertainty of potato production 

in a region of Sweden and obtained a carbon footprint of 0.10–0.16 kg CO2-eq per kilogram of potatoes with 

95% certainty for an arbitrary year and field, which was reduced by 19% when the temporal variation was 

locked to a specific year. Fedele et al. (2014) compared the performance of conventional and organic production 

of barley and soybean in an Italian region and confirmed the importance of considering annual variations. Boone 

et al. (2016) analysed factors of variability in production systems of maize and showed that year-to-year weather 

variation resulted in large differences in the environmental footprint. Even though more insights are gained on 

variability of the environmental impacts between production systems, none of these previous studies 

systematically addressed the separate influence of intra-year variability (differences between farms within one 

year due to e.g. soil conditions or farm practices) and inter-year variability (due to year-to-year weather 

variations). 

In this study we made use of a large dataset collected at the farm level over a four-year period by the tomato 

processor Agraz (part of Conesa Group), supplying Unilever with tomato products in accordance with 

Unilever’s SAC. A total of 189 quality-checked datasets from farms located in the Extremadura region across 

Spain and Portugal were analysed. The objectives of this study were to: 

1. Characterise the intra- and inter-year variability in the carbon footprint of tomato production in the 

study region,   
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2. Employ sensitivity and uncertainty analysis methods to systematically assess how parameter 

variability and model uncertainties respectively influence variability in the carbon footprint,  

3. Elaborate on the implications of our findings in terms of best practice for farm data collection and 

carbon footprinting of crop production.  

2 Materials and Methods 

2.1 Farm data collection 

Data were collected over 4 years by Agraz from open-field tomato cultivating farms located in the Extremadura 

region across Spain and Portugal. All farms under contract with Agraz are operated according to the SAC 

guidelines for farming practices. In total, 189 datasets were collected: 31 in 2012, 42 in 2013, 60 in 2014, and 56 

in 2015. Each year, the reporting farms were selected randomly from within Agraz’s farmer base, as required by 

the SAC. Small and large farms were included with production areas varying from 0.3 to 231 ha and annual 

production from 24 to 19,500 tonnes per year (Figure 1). 

Farm-specific variables were collected, reviewed and input in the CFT, an Excel-based tool developed by Hillier 

et al. (2011), including factors such as the types and amounts of fertiliser used, the amount of diesel used, and 

the production yield. Before running the carbon footprint calculations in the CFT, we run a second check to 

ensure the results did not have gross mistakes e.g. in reporting units, and spotted if some data points were wrong 

e.g. with regards to fertiliser reporting. Table 1 shows the full list of variables collected and the ranges of values 

observed in the farms sampled over the four years and distributions are presented for selected variables in Figure 

S1 of the Supplementary Information (SI). 

2.2 Carbon footprint assessment  

The carbon footprints of the 189 sampled farms were estimated by using the CFT model (Hillier et al., 2011). This 

tool was recently rated as the best carbon accounting tool for arable crops by Whittaker et al. (2013) due to its 

user-friendliness, transparency and comprehensiveness. The CFT takes an attributional life cycle assessment 

(LCA) approach, estimating the carbon footprint of a crop based on the following parameters: (i) farm conditions, 

i.e. location, climate, soil parameters (soil moisture, drainage, pH, soil organic matter); (ii) material and energy 

inputs to farming, i.e. fertiliser and pesticide types and amounts and energy used on farm and; (iii) efficiency of 

the farm, i.e. area harvested and volume of fresh tomato produced.  
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The system boundary for this study was the farm gate (Figure 2) and included the preparation of land, transplanting 

of the seedlings in the field, growing the plants, fertiliser and pesticide application, irrigation, harvesting, and 

management of crop residues. Nursery operations were excluded as these are a minor contributor to the carbon 

footprint of the crop. The production of capital goods was excluded (Hillier et al., 2011), as well as the impacts 

from land use change as this happened more than 20 years ago (BSI PAS 2050, 2011). Primary data from the 

farms (Table 1) were paired with secondary data taken from the CFT (Hillier et al., 2011), including inventories 

for production of fertilisers and pesticides, production of energy carriers, i.e. electricity and diesel, and emission 

factors for estimating field emissions and diesel burning (Table 2). All equations and related parameters are 

provided in SI. 

2.3 Statistical methods for characterising the variability in carbon footprints 

An arithmetic mean is the simplest way of describing central tendencies, but it can be influenced by outliers or 

skewed data. Geometric characteristics are better suited for skewed distributions such as the ones observed for 

most parameters in this dataset. LCA practitioners often use lognormal distributions for intermediate and 

elementary flows (Weidema et al., 2013) which are associated with geometric mean and standard deviation. Here 

we decided to present both arithmetic and geometric characteristics of the dataset as readers may be more 

familiar with the arithmetic metrics. Equations 1-4 show the arithmetic mean (µ) and standard deviation (σ) of a 

set of n numbers  n

iix
1=

  , as well as the geometric mean (GM) and standard deviation (GSD). Note that 95% 

confidence intervals were defined for normal distributions as [ µ - 2*σ - µ + 2*σ ], and for lognormal 
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As observed in Figure 1, the size of the farms sampled varied significantly. To account for this, volume-

weighted means and standard deviations were used. Equations 5-8 specify how they were calculated,  n
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Distribution fitting was performed with the @RISK software (PALISADE website) which provides the Akaike 

information criterion for any chosen distribution type. 

2.4 Methods for sensitivity and uncertainty analyses  

Sensitivity analysis was performed to understand the sensitivity of the GHG emissions to the variability in the 

different input parameters (for both farmer’s inputs and model parameters). A one-factor-at-a-time technique 

was used:  
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1. GHG emissions per tonne were first calculated for an “average farm” defined with median values 

for all parameters, 

2. Then GHG emissions per tonne were calculated using extreme (minimal and maximal) values for 

each parameter, one at a time: the values used were actual minimal and maximal values observed in 

the 189 farm datasets for all farmer input variables, and minimal and maximal values found in 

literature for model uncertainties. 

Tables 1 and 2 present the values used for all parameters in the sensitivity analysis. To simplify calculations, the 

use of fertilisers was limited to one fertiliser type: “Compound NPK”, and represented solely by the total 

amount of nitrogen input (kg N per ha) and the content of nitrogen within the fertiliser (%). The amount of 

fertiliser input (kg fertiliser per ha) was then back-calculated. This was deemed reasonable since the 

“Compound NPK” fertiliser type represented 91% of all fertiliser use over all 189 farms, the remaining 9% 

being compound NK, ammonium nitrate or in some rare occasions potassium sulphate, calcium nitrate, calcium 

ammonium nitrate, poultry layer manure, super phosphate or sheep farmyard manure. In addition, the carbon 

emission factor of compound NPK lies within the medium range of the emission factors of other fertilisers. 

We used mostly the information found in Hillier et al. (2011) to set minimal and maximal values for all model 

parameters (See last column of Table 2). The CFT uses the model by Bouwman et al. (2002) for estimating 

emissions of N2O, NO and NH3. Bouwman et al. (2002) specifies that the 95% confidence interval for N2O 

estimates is [-40%; +70%], which we used, but they could not assess the uncertainty around the estimations of 

NO and NH3 due to a lack of data. We arbitrarily assumed the same 95% confidence interval for NO and NH3 as 

for N2O, and added for them the uncertainty in the conversion to N2O as given by IPCC (2006). We employed 

the same approach for the leaching-related emissions. 

Subsequently, uncertainties in all variables were propagated jointly using a Monte Carlo sampling. Parameters’ 

distributions were selected to fit best to the reality: lognormal distribution for most continuous parameters (fitted 

to observed data) and discrete probabilities for the discrete parameters such as soil moisture. Tables 1 and 2 

present all assumptions used for primary and secondary data respectively. Three sets of 10,000 simulations were 

run: first, only the variability in farmer’s inputs were propagated (primary data from Table 1), then only model 

uncertainties (secondary data from Table 2), and finally all uncertainties and variability together.  
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3 Results and discussion 

3.1 Variability in the carbon footprints of the sampled farms  

The carbon footprint of the whole tomato supply, calculated with the 4-year dataset, showed a weighted 

geometric mean of 51 kg CO2-eq/t and a weighted GSD of 1.32, meaning a 95% confidence interval of 29 to 89 

kg CO2-eq/t. These results were expressed with geometric characteristics since the carbon footprint results were 

slightly skewed as confirmed by distribution fitting performed with the @RISK software (PALISADE website). 

Arithmetic means were found systematically higher than geometric ones due to the positive skewness of the 

dataset (See Table 3). The results were weighted by production volumes because, as can be observed from the 

189 farm results presented on Figure 3, minimum and maximum results were usually found for smaller rather 

than larger farms. Weighting farm results by the associated production volumes therefore significantly 

decreased standard deviations as confirmed in Table 3. When weighting by production volumes larger farms 

have more weight in the resulting carbon footprint, providing a more accurate estimate for the tomato supply 

than when all farm results were weighted equally regardless of their size. On the other hand, unweighted results 

can be useful if one wants an overview of farming practices regardless of the size of the farms, e.g. to 

demonstrate change of farming practices within a region or to know the performance of individual farms. The 

volume-weighted estimate is therefore more relevant to buyers and users of tomatoes whereas the non-weighted 

one is more useful to contractors and growers. 

Our results of 51 kg CO2-eq per t tomato are comparable with the results obtained by Karakaya & Ozilgen 

(2011) and Ntinas et al. (2017) for open-field production of industrial tomatoes in Turkey (67 kg CO2-eq per t 

tomato2) and Greece (72 kg CO2-eq per t tomato) respectively. However, they lie in the lower range of the data 

generally found in literature for tomato production. The review by Clune et al. (2017) reported a range of 80 to 

1000 kg CO2-eq per t tomato with a mean of 460 kg CO2-eq per t tomato, based on 19 LCA studies. Differences 

in production systems and system boundaries can partly explain the variation. For example, Jones et al. (2012) 

obtained a carbon footprint of 190-270 kg CO2-eq per t tomato for open-field tomato production in Florida. The 

higher results can be attributed to factors such as a higher nitrogen input per hectare, the use of plastic mulch 

and inclusion of post-farm gate transportation. Pishgar-Komleh et al. (2017) also reported values of 100-400 kg 

CO2-eq per t tomato for 204 Iranian open-field tomato farms and these were driven by high energy consumption 

for pump irrigation and biogenic carbon emissions linked to recent land use change. In comparison the farms 

                                                           
2 All results are presented in kg CO2-eq per t tomato for the purpose of comparability. 
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reported this paper are all well-established farms with no land use change in the last 30 years, and operating 

under sustainable agricultural farming practices and with less energy required for irrigation than in the Iranian 

case.  

 

3.1.1 Contribution analysis 

GHG emissions originated mostly from fertiliser production (45% on average), on-farm energy consumption 

(30%) and direct N2O field emissions (11%), while background N2O emissions, pesticides production and use, 

and crop residues management contributed relatively less to total GHG emissions, 4%, 3% and 7% respectively. 

Figure 4 shows the GHG emissions of all processes aggregated in six groups: background N2O emissions 

(background), direct field N2O emissions (field), fertiliser production (fertiliser) which includes production 

processes of the different types of fertilisers used by the farms, pesticide production and use (agrochemicals), 

on-farm energy consumption (energy) which includes both diesel consumption for agricultural machinery and 

diesel and electricity consumed for running the irrigation pumps, and crop residue management (CRM). The 

greatest contributors to the carbon footprint (fertiliser production and on-farm energy use) also showed the 

largest variability. For fertilisers, this was mostly explained by the differences in the quantity of nitrogen applied 

on land and by the different types of fertiliser used by individual farms. The choice of fertiliser combination to 

use each year is made by the farmer to optimise yields and the use of the CFT highlights the wider GHG 

implications of such management decisions. For energy-related emissions, the differences were due to the 

different irrigation systems used by farmers, i.e. conventional vs. drip irrigation, powered by either diesel or 

electric motors, depending on the farm. Conventional irrigation systems were found to be more energy intensive 

than drip irrigations systems that circulate and use less water, irrespective if the farms used diesel or electric 

pumps. This contribution analysis highlighted the key activities for GHG management in tomato production in 

this region, indicating that efforts should be focused on optimising the choice and use of fertilisers and the 

efficiency of the irrigation system. The large contribution of energy (for irrigation) and fertiliser uses was 

highlighted as well by Pishgar-Komleh et al. (2017) and Ntinas et al. (2017). 

3.1.2 Inter-year variability of GHG emissions from tomato production 

Results presented in Figure 3 clearly show that both the intra-year and inter-year variabilities are significant 

when assessing the carbon footprint of tomato production within a single region. The level of variability 



11 

 

observed in this study is particularly interesting since all farmers in our sample worked with the same supplier 

(Agraz) and complied with the same set of best management practices, as laid out in the SAC.   

Figure 3 shows that the 2014 production had the lowest GHG emissions as opposed to the 2013 dataset which 

showed the highest impacts. This was confirmed by the weighted geometric means presented in Table 3, where 

the largest difference was observed between the 2013 and 2014 datasets (49% difference). The 2013 results 

could be explained by bad weather conditions that year that resulted in lower yields and higher use of fertilisers. 

We ran a statistical analysis using both an ANOVA on the full dataset and two-sample t-tests, which we 

considered valid even if t-tests assume normal distributions and the dataset was slightly skewed. The statistical 

analysis confirmed that, despite the intra-year variability, all annual datasets were significantly different with a 

significance level of 0.90, and therefore it evidenced the importance of the year effect for this dataset.  

In addition, the spread of GHG emissions per tonne of tomato produced varied depending on the year: it was, for 

example, much larger for the 2013 dataset than for the 2014 dataset. This was confirmed by the standard 

deviations presented in Table 2, where the coefficients of variations varied between 22% and 33%, and pointed 

to the influence of weather conditions as a major driver for production and GHG performance.  

The results show that, for this dataset, intra-year and inter-year variability had an equivalent importance. Indeed, 

the coefficient of variation between the four yearly weighted arithmetic means was 20%, a similar magnitude to 

the coefficients of variation (weighted arithmetic) calculated within each year, which were between 19 and 24%. 

The full dataset, which combined intra-year and inter-year variability, had a coefficient of variation equal to 

28% (weighted).  

3.2 Sensitivity and uncertainty analyses 

The variability of carbon footprints observed in Figure 3 is due to many factors. Although some of the 

explanations were revealed by the contribution analysis or by the observation of the 189 single GHG results 

presented in Figure S1, no simple correlation could be drawn between the variability in just one or a few of 

those parameters and the variability in the total carbon footprints. It is interesting to note in particular from 

Figure S1 that the farms’ carbon footprints per tonne were not correlated with their sizes.  

The objectives of the sensitivity analysis were to quantify the importance of each individual parameter (both 

primary and secondary data) in determining the farm’s GHG emissions and to verify if the variability observed 
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in the primary data is a bigger contribution to the variability in total carbon footprint than the uncertainty in the 

model parameters.  

Figure 5 presents the total GHG emissions per tonne of tomato produced, when individually varying the values 

considered for each parameter, using the minimal and maximal values presented in Tables 1 and 2. We 

distinguished between parameters collected at farm level for which minimal and maximal reported values were 

used (underlined in Figure 5, input parameter variability from Table 1), and model parameters for which we 

used literature estimates of uncertainty and variability (from Table 2). The results indicated that the variability 

of total GHG emissions per tonne of tomato produced was very sensitive to variations in the production yield, in 

line with what other studies showed, e.g. Röös et al. (2010). For example, a 70% reduction in the production 

yield induced a threefold increase of the GHG emissions per tonne of tomato. In general, GHG emissions were 

found to be mainly sensitive to variability in farm practices (underlined in Figure 5), in particular to the ones 

related to fertiliser and diesel uses (confirming the variability observed in Figure 4). A 269% increase in 

nitrogen input on the field (kg N per ha) implied a 205% increase in the GHG emissions of the tomato 

production. The influence of model uncertainties on the GHG results was found to be relatively lower. Only the 

carbon emission factor from fertiliser production was found to be of importance due to the high contribution of 

fertiliser use to the impact. The use of the highest value for fertiliser production (2.5 kg CO2-eq per kg fertiliser) 

lead to a 70% higher GHG emission result than when using the default (0.96 kg CO2-eq per kg fertiliser). 

The combined effects of all sources of uncertainties and parameter variability were analysed by running three 

Monte Carlo simulations, each with 10,000 random samples. Results presented in Figure 6 show that the 

distribution obtained by propagating only variability in farmers’ input parameters was more spread (standard 

deviation of 20 kg CO2-eq/t) than the one with only model uncertainties implemented (st. dev. of 11 kg CO2-

eq/t). This confirms that the impact of the variability in the farmers’ input parameter was more important than 

the impact of model uncertainties in this case study, as also observed in Figure 5. This result is important and 

highlights the fact that efforts should be focused on collecting sufficient amounts of farm data when building 

crop production datasets or databases, and that model uncertainties are relatively less important. The distribution 

obtained by propagating all uncertainties was (as expected) the most spread (standard deviation of 27 kg CO2-

eq/t) because it was the result of the joint propagation of variability in farmer’s input variables and of model 

uncertainties. Overall, the non-weighted coefficient of variation increased from 36% when only farmer-specific 

variabilities were implemented, to 49% when model uncertainties were considered as well. Note that these 

coefficients of variation are different from the ones reported in Section 3.1, as here they are a result of the 
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Monte Carlo simulation using a distribution for each individual parameter, while the coefficients of variation 

presented in Table 3 reflected the actual variation between the farms’ individually reported GHG emissions.  

3.3 Implications for data requirements and carbon footprinting  

The study has shown that the variability of the parameter values collected at the farm level was critical when 

assessing the carbon footprint of tomato production within one region. It is therefore crucial to collect enough 

data over several years in order to represent correctly the diversity of practices within a crop supply chain. It 

was then reasonable to consider what a representative sample should include, i.e. how many farms should be 

considered, and how many years’ worth of data are required. Even though we presented here a specific case 

study, general conclusions could be drawn from this analysis for the amount of data required for getting a robust 

estimate of the carbon footprint of an agricultural product.  

To assess how much data would be required to account for intra-year variability, we performed bootstrapping of 

the GHG emission results within each year. This consisted of randomly selecting one farm at a time and 

evaluating at each step the weighted geometric mean of all selected farms. Repeated application of this 

technique allowed us to establish the number of farms after which the collection of additional farm data did not 

affect the final result much, because of the inherent variability.  

Figure 7 shows the results we obtained for 100 random samplings of farms from the 2014 dataset. For example, 

if we consider the dark line, we can see that the mean GHG emissions of the two first farms are around 38 kg 

CO2-eq/t and that the five next randomly picked farms have higher GHG emissions making the weighted 

geometric mean increase to 46 kg CO2-eq/t, before decreasing again. The 100 random farm samples presented in 

Figure 7 show that in all cases, once 30 farms had been sampled from the 2014 dataset, the weighted GM stayed 

within the zone of natural variability. The same approach was applied to the three other annual datasets. The 

results, presented in SI, confirm that the weighted geometric mean remained stable with sampling of 25-30 

farms. Note that in this study we used verified and cleaned data and that in the presence of measurement or 

reporting errors the minimum amount of data required might have been higher.  

Regarding inter-year variability, Table 3 showed that the mean obtained with 1 year of data was 9% to 27% 

different from the one obtained with the 4-years’ worth of data. This difference between single-year results 

meant that if we had sampled farms only in one year (e.g. 2013), the carbon footprint would not have been 

representative of the average performance of tomato production in this region. The statistical test performed on 
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the dataset confirmed this result. The limited number of years covered in this study (four) did not allow us to 

reach a conclusion about the minimum amount of years required to account for inter-year variability, but 

certainly, an average of several years appears more appropriate than a 1-year average.  

4 Conclusions  

This analysis of a comprehensive dataset of farm data provides insights into the variability of GHG emissions of 

crop production between farms and between years and can help in the context of interpretation and use of data. 

First, we showed that, in our dataset, small farms were characterised by a higher variability than larger ones, 

while not showing systematically higher carbon footprint per tonne than larger farms as opposed to results 

presented by Pishgar-Komleh et al. (2017). This confirms the need to weight farm results by production volume 

if the objective is to obtain a carbon footprint for total production in a given region. 

Second, we quantified separately the intra-year and inter-year variabilities for our dataset. They were found of 

similar importance (approximately 20% variation when considering volume-weighted carbon footprints) and 

resulted in an overall volume-weighted variability of 28% (or a GSD of 1.32). We showed that variability in on-

farm data in different years was more significant than model uncertainties in our case study; however, LCA 

studies in the literature have generally put greater emphasis on addressing model uncertainties, probably due to 

difficulties in obtaining large primary data sets. Our study suggests the need for collection and reporting of crop 

carbon footprints based on a minimum of 30 farms for the region of concern and on several years’ worth of data, 

particularly as climate change effects become more prevalent and extreme events such as draughts or torrential 

rain become norm rather than the exception. In the case of regions of larger sizes or of a supply base, the 

minimum amount of farms required may differ and further work is needed to extend these findings to such 

cases. This confirms the need for datasets to be representative of local conditions as argued by Sala et al. (2017) 

and reinforces the relevance of initiatives such as the Cool Farm Alliance, Roundtable on Sustainable Palm Oil 

(RSPO) or the Sustainable Agriculture Initiative (SAI) platform, which are providing mechanisms for 

standardising and mainstreaming farm data collection for the assessment of environmental performance and 

improvement opportunities. In fact, other certifications schemes could usefully follow suit and initiatives such 

as Agrimetrics (Agrimetrics website) may also promote collection and sharing of large agricultural data sets in 

the future, as well as providing quantitative analytics. This suggests the need for an evolved approach to ensure 

that life cycle inventories in commonly-used LCA databases keep pace and reflect these developments.  
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The variability between farms was found to be similar to that observed by Pishgar-Komleh et al. (2017). 

However, the carbon footprints of the farms were generally lower than reported studies and this may be 

explained by the fact that the farms are well established, they operate according to the same guidelines for 

sustainable farming practices and their energy and fertiliser uses are in the lower ranges. This study is the first to 

present an analysis of the intra- and inter-year variability of GHG emissions from tomato production and to 

demonstrate the influence of yearly weather conditions. The need to optimise yields through N fertiliser input 

and energy use for irrigation is consistent with the single year findings of Jones et al. (2012) and Pishgar-

Komleh et al. (2017).  

This study confirms the need for data collection over several years for more robust environmental footprint 

assessment of crop production, as recommended by World Resources Institute (2014). Further work is required 

to extend this study to more crops and regions to validate our findings. For instance, different types of crops 

may be affected differently by the annual variation in weather conditions. Longer assessments would also be 

needed in order to help determine the optimum temporal extent of datasets required for carbon footprinting. In 

summary, our work highlights the fact that carbon footprints cannot be reduced to single numbers, in particular 

in the case of agricultural production, and variability needs to be better accounted for in life cycle assessments.  
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Tables 

Table 1. Data collected in the 189 farms under study and used in the GHG calculations (min and max values 

were used in the sensitivity analysis, distributions were used in the Monte Carlo simulation) 

Parameter 

name 

Unit Median  Min Max Distribution used in Monte 

Carlo simulation * 

Nitrogen input  kg N / 

ha 

188 66.1 505.7 Lognormal (5.19, 0.334) 

Content of 

nitrogen in 

fertiliser 

% 10.4 4.8 20.4 Lognormal (2.35, 0.311) 

Yield  t / ha 86.1 29.3 148.5 Lognormal (4.44, 0.249) 

Pesticides 

applications 

- 7 3 34 Lognormal (2.01, 0.45) 

Electricity use kWh / 

ha 

225.5 0.0 2743.0 0 with 158/189 probability, 

else Uniform (46, 2743) 

Diesel use  L / ha 420 29.2 998.2 Lognormal (6.02, 0.438) 

Soil organic 

matter 

% 1.3 0.26 3.44 Lognormal (0.161, 0.54) 

Soil texture 
 

 Medium 

(128/189) 

Fine 

(47/189) 

Coarse 

(14/189) 

Discrete 

Soil moisture  Moist 

(149/189) 

Dry 

(40/189) 

 
Discrete 

Drainage  Good 

(111/189) 

Poor 

(78/189) 

 
Discrete 

Soil pH **  Mid-low** 

(105/189) 

Low** 

(6/189) 

High** 

(4/189) 

Discrete 

Country  Spain 

(151/189) 

Portugal 

(38/189) 

 
Discrete 

*: The characteristics shown for lognormal distributions are the mean and standard deviations of the 

associated normal distribution as required for the MATLAB function “logrnd” 

**: The data on soil pH is divided into four categories: low (pH≤5.5), mid-low (5.5<pH≤7.3), mid-high 

(7.3<pH≤8.5), high (pH>8.5) 
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Table 2. Secondary data used in the GHG calculations (min and max values were used in the sensitivity analysis, 

distributions were used in the Monte Carlo simulation)  

Parameter 

name 

Unit Median  Min Max Distribution used in 

Monte Carlo 

simulation  

Source for min, max 

and distribution used 

GHG emissions 

from fertiliser 

production  

kg CO2-

eq / kg 

fertiliser 

0.96 0.19 2.50 Triangular (0.19, 0.96, 

2.50) 

Extreme values found 

in Hillier et al. (2011) 

GHG emissions 

from pesticides 

production  

kg CO2-

eq / fert. 

applic. 

20.50 14.70 28.10 Triangular (14.7, 20.5, 

28.1) 

Extreme values 

found in Audsley 

and Alber (1997) 

Content of N in 

residues  

% 0.015 0.01 0.03 Triangular (0.01, 

0.015, 0.03) 

Estimated based on 

variability observed for 

other crops (Hillier et 

al. 2011)  

Tonnes residues 

per ha * 

t / ha 3.227 1.00 8.00 Triangular (1, 3.227, 8) 

GHG emissions 

from electricity 

grid in Spain  

kg CO2 –

eq / MJ 

0.083 0.04 0.12 Triangular (0.04, 

0.083, 0.12) 

Assumed 50% higher 

and 50% lower values  

GHG emissions 

from electricity 

grid in Portugal 

kg CO2–

eq / MJ 

0.102 0.05 0.15 Triangular (0.05, 

0.102, 0.15) 

GHG emissions 

from diesel 

production  

kg CO2-

eq / L 

2.68 2.00 3.11 Triangular (2, 2.68, 

3.11) 

Hillier et al. (2011)  

N2O direct 

emissions  

% of N 

input 

100 60 170 Triangular (60, 100, 

170) 

95% confidence 

interval of model by 

Bouwman et al. (2002)  

N2O emissions 

due to NO 

emissions  

% of N 

input 

1 0.12 

(0.2*0.6) 

8.5  

(5*1.7) 

Triangular (0.12, 1, 

8.5) 

Same uncertainty 

assumed as for N2O 

emissions adding the 

uncertainty of 

conversion to N2O 

according to IPCC 

(2006) 

N2O emissions 

due to NH3 

volatilisation  

% of N 

input 

1 0.12 

(0.2*0.6) 

8.5  

(5*1.7) 

Triangular (0.12, 1, 

8.5) 

N2O emissions 

due to NO3
- 

leaching (moist 

soil conditions) 

% of N 

input 

1 0.03 

(0.05*0.6) 

4.25 

(2.5*1.7) 

Triangular (0.03, 1, 

4.25) 
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*: In the Cool farm tool the amount of residues produced can be specified by the farmer instead of using the 

default value of 3.22 t/ha. However, none of the farmers reported a specific amount so we used the default value. 

 

 

Table 3. Arithmetic and geometric means and standard deviations for the 4 yearly datasets as well as for the 

total 4-year dataset. Data presented as unweighted and weighted with production volumes (in kg CO2-eq per t 

tomato). 

 
2012 2013 2014 2015 Total 

Arithmetic Non- 

weighted 

Arithmetic mean (µ) 57.4 65.1 42.7 47.4 51.5 

Arithmetic standard deviation (σ) 19.4 21.7 9.5 13.9 18.0 

Coefficient of variation (σ/µ) 34% 33% 22% 29% 35% 

Weighted Weighted arithmetic mean (µw) 62.6 65.6 44.1 47.3 52.9 

Weighted arithmetic standard deviation (σw) 15.0 12.9 8.4 10.9 14.7 

Coefficient of variation (σw/µw) 24% 20% 19% 23% 28% 

Geometric Non- 

weighted 

Geometric mean (GM) 54.7 61.6 41.6 45.4 48.7 

Geometric standard deviation (GSD) 1.37 1.41 1.25 1.34 1.39 

Weighted Weighted geometric mean (GMw) 60.6 64.4 43.4 46.1 50.9 

Weighted geometric standard deviation (GSDw) 1.31 1.22 1.21 1.27 1.32 
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Figures 

 

 

Figure 1. Production area and total weight of harvested tomatoes of the 189 farms analysed 

 

 

 

Figure 2. System boundaries for producing open field tomatoes. Grey background indicates processes modelled 

with primary data, white background indicates secondary data.  
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Figure 3. GHG emissions from tomato production calculated with the 189 farm datasets (bubble sizes show 

production volumes in tonnes) and resulting box plots showing quartiles, median and outliers for each dataset. A 

data point was considered an outlier when it is further away from the 1st or 3rd quartiles by more than 1.5 times 

the inter-quartile range (IQR). 
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Figure 4. GHG emissions calculated for each group of processes for the 189 farms: background N2O emissions, 

direct field N2O emissions, fertiliser production, pesticides production, on-farm energy consumption, crop 

residue management (CRM). Box plots show minimum, 1st quartile, median, 3rd quartile and maximum. A data 

point was considered an outlier when it was further away from the 1st or 3rd quartiles by more than 1.5 times the 

IQR.  

 



24 

 

 

Figure 5. Total GHG emissions obtained using median values for all parameters, with error bars showing the 

minimal and maximal GHG emissions obtained when testing minimal and maximal values for each parameter 

one at a time. Farmer-input data are underlined. Input parameter variabilities are presented in Tables 1 and 2.  
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Figure 6. Results of the Monte Carlo simulations (10,000 runs each) for the carbon footprint of tomato 

production when implementing solely farm input variability, solely model uncertainties, or both. Box plots show 

median, quartiles and minimal and maximal (or 1.5*IQR away from the 1st or 3rd quartiles in the presence of 

outliers). 
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Figure 7. Weighted geometric mean of the carbon footprint of tomato production obtained with 100 different 

random samplings of 2014 farm data (bootstrapping). The dark bold line shows one specific sampling described 

in the text. 

 


